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SUMMARY

The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algo-
rithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted
from subsurface interfaces, but cannot calculate the other later reflections/conversions having
a minimax time path. In order to overcome the above limitations, we introduce the concept
of a stationary minimax time path of Fermat’s Principle into the multistage irregular shortest
path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray
tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for
49 different kinds of crustal, mantle and core phases show that the maximum absolute travel-
time error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when
compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical
tests in terms of computational accuracy and CPU time consumption indicate that the new
scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking

in regional or global traveltime tomography.
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1 INTRODUCTION

Since the ground-breaking work of Aki & Lee (1976), in which
medical computer-aided tomography (MCT) was introduced to
seismology, seismic tomography has become a popular and ef-
fective way to image the inner structure and heterogeneity of the
Earth (e.g. Anderson & Dziewonski 1982; Thomsen 1986; Pratt &
Chapman 1992). Many 3-D earth models have been produced that
have greatly advanced our knowledge about the complex structure,
constitution and dynamics of the Earth’s interior (e.g. PREM model,
Dziewonski & Anderson 1981; IASP91 model, Kennett & Engdahl
1991; AK135 model, Kennett et al. 1995). However, continuing
efforts should also be required to improve the theoretical aspects of
seismic tomography as well as its applications, especially for real
3-D tomographic studies at the global or regional scales.

Atthe regional scale there exist several 3-D ray tracing algorithms
for tomographic imaging (i.e. Steck et al. 1998; Keyser et al. 2002).
But most global traveltime tomographic procedures still use a sim-
ple ray tracing method through a 1-D reference velocity model to
accelerate the forward modelling process, because usually millions
of multiphase traveltime data are involved. That is, ray paths are
only calculated for a 1-D velocity model where velocity changes
with depth or (radius) alone (e.g. the IASP91 model, Kennett &
Engdahl 1991 or the AK135 model, Kennett ef al. 1995), and the
ray paths are fixed during the inversion process; ray path varia-
tions due to the lateral velocity heterogeneities being sought are not

considered (e.g. Su et al. 1994; van der Hilst et al. 1997). For small
velocity variations about the reference model, such a linear inver-
sion approach might at first seem acceptable, but in general a more
rigorous procedure is required.

Bijwaard & Spakman (1999) examined ray path variations of
first arriving P waves in 1-D and 3-D mantle velocity models,
whereas Zhao & Lei (2004) checked pP, PP and PcP phases in 1-D
and 3-D regional velocity models. Both studies found that there
exists traveltime discrepancies larger than a few seconds and ray
path deviations of nearly 100 km when converting from the 1-D to
the 3-D velocity model. Therefore, investigation of the problem is
important not only from a theoretical seismology point of view but
also for practical imaging of the Earth’s heterogeneous structure.

With the remarkable advances in computer technology over re-
cent years and also the need to take into account lateral veloc-
ity heterogeneity, 3-D ray tracing methods in spherical coordi-
nates based on real 3-D complex models have become feasible
in regional and global traveltime tomographic studies. A few re-
searchers have developed 3-D ray tracing schemes in spherical
coordinates. For example, Bijwaard & Spakman (2000) exploited
perturbation theory to develop a fast kinematic ray tracing algo-
rithm to trace the first and later arrivals for some global seismic
phases. Dahlen ef al. (2000) used a combination of dynamic and
kinematic ray tracing method to calculate the finite-frequency trav-
eltimes and the corresponding Fréchet kernels. Zhao (2001) ex-
tended their original pseudo-bending ray tracing scheme (Zhao
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et al. 1992) to the global scale to calculate the global later seismic
arrivals.

The above 3-D ray tracing schemes are all based on two-point ray
tracing, which means that one must repeat the ray tracing process
when the receiver location is changed. This costs significant CPU
time if on the order of a million rays for different phases are required
in the tomographic reconstruction. Moreover, for the bending or
pseudo-bending method, there exists a local minimum problem,
while for the dynamic ray tracing method or the perturbation theory
method, the difficulty of finding a source—receiver path increases
with increasing complexity of the velocity model.

Grid/cell-based wavefront propagation methods, such as the fi-
nite difference eikonal equation solver (2-D/3-D, Vidale 1988, 1990,
and revisions thereafter) and the shortest-path method (2-D, Moser
1991; 3-D, Klime$ & Kvasnicka 1994; and modifications there-
after), are advantageous over the traditional two-point ray tracing
schemes in that (1) they are capable of computing the traveltimes
and related ray paths at all nodal points within the velocity model
using the outward expanding wavefront technology, and are even
able to locate ray paths in shadow zones; (2) they guarantee that
a numerically stable global solution will be found; (3) they are
very efficient computationally for common source point gathers
compared with the two-point ray tracing method; (4) they are able
to find first arrivals within continuous media, whereas for tradi-
tional ray tracing algorithms there is usually no guarantee that
the selected arrival is a first or later arrival and (5) it is possi-
ble to trace multiple (transmitted, reflected and converted) arrivals
when combined with a multistage scheme in the computations, for
example, the multistage fast marching method (multistage FMM,
Rawlinson & Sambridge 2004a,b), the multistage modified shortest-
path method (multistage MSPM, Bai et al. 2009) and the multi-
stage irregular shortest-path method (multistage ISPM, Bai ef al.
2010).

De Kool ef al. (2006) extended the above multistage FMM to 3-
D spherical coordinates to track global later arrivals and concluded
that it is an efficient and accurate 3-D ray tracing scheme. The
previous studies (Bai e al. 2009, 2010) showed that in 2-D Cartesian
coordinates for rectangular models both the multistage MSPM and
ISPM are advantageous over the multistage FMM in the sense of
computational accuracy and CPU time. They are expected to show
similarly good performance in spherical coordinates for 3-D models.
For this purpose we extend in this paper the multistage ISPM scheme
to 3-D spherical coordinates to calculate 49 global multiple later
arrival phases. We compare the computational accuracy against the
AK135 global theoretical traveltime tables (Kennett et al. 1995) and
also assess its computational efficiency.

2 MULTISTAGE ISPM IN SPHERICAL
COORDINATES

Before introducing the multistage ISPM, we must first describe how
the velocity model is parametrized in spherical coordinates.

2.1 Earth model parametrization

Basically we can utilize irregular cells near an interface or ve-
locity discontinuity, and use regular cells elsewhere. In the model
parametrization, we first divide the subsurface model into several
layers according to the interface lines (2-D) or surfaces (3-D) and
parametrize each layer with regular or irregular cells. Secondary
nodes are then uniformly distributed along the cell boundary (2-D
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Figure 1. Model parametrization in 2-D spherical (polar) coordinates (di-
agram a, for clear representation, the secondary nodes are not depicted)
and three kinds of cells used to divide the spherical model with undulated
topography or discontinuities (diagrams b, ¢ and d, in the figure the larger
circles are the primary nodes and the smaller circles are the secondary nodes,
respectively). In figure the different colour regions indicate different layers
(from outer to inner is crust, mantle, outer core and inner core, respectively).

case) or cell surface (3-D case) so that each node (both primary
and secondary) belongs to the specific (regular or irregular) cells.
For example, in 2-D polar coordinates (see Fig. 1a), several cell
types are available, for example, the triangular or the trapezoidal or
pentagon cell. Here for reasons of simplicity we use an irregular
cell (Figs 1c and d) near the irregular interfaces and a trapezoidal
cell (Fig. 1b) elsewhere. We refer to the corner nodes of the trape-
zoidal or triangular or pentagon cell as the primary nodes. In order
to improve the computational accuracy (ray coverage), we insert
secondary nodes along the edges of the trapezoidal or triangular
or pentagon cell. Furthermore, the pentagon cell can be divided
into two cells; one is a trapezoidal cell and the other is a triangu-
lar cell (see Fig. 1d). Therefore, the basic cell type for the model
parametrization is either a trapezoidal or triangular cell. The reader
is referred to Bai ef al. (2007) for primary and secondary node def-
initions, as well as for details on the modified shortest path method.
The secondary node spacing can be simply uniform (or irregular),
and determined by the metric distance. Fig. 2 shows part (fan-
shaped) of a model parametrization, in which the cell length along
the radial direction is the same, but its length in the zonal direction
increases from the centre of the Earth outwards towards the free
surface. Note that the secondary node spacing is the same for both
directions.

In 3-D spherical coordinates we extend the above 2-D model
parametrization to the 3-D case (see Fig. 3a). Note that other cells
are also available, for example, polyhedron or tetrahedron (see,
Ballard et al. 2009; Bai et al. 2012b). We use a trapezoidal prism
(Fig. 3b) to divide the 3-D spherical earth model, except for the
global and other irregular subsurface interfaces, where a trape-
zoidal cone or a hexahedral cell is used (Figs 3c and d). By similar
considerations, the secondary nodes are inserted along the sides of
the trapezoidal prism or trapezoidal cone or hexahedral cell. In-
side each cell there are no nodes at all but sources and receivers
may be located there. Note that for uniform model parametriza-
tion (that is, using regular trapezoidal prisms) it is possible not to
record each node position, but for irregular cells it is necessary to
record each node position, which accounts for the memory require-
ment. The total number of the nodes can be estimated by eq. (6) in
Bai et al. (2007), but is at least 50 per cent less than that using such
an equation because the added number of secondary nodes in the
directions of longitude and latitude reduce from the Earth’s sur-
face to its centre (see Fig. 2) to maintain an equal secondary node
spacing.
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triangular cell

Figure 2. A small (or fan-shaped) section of model parametrization. In
figure the larger circles are primary nodes and the smaller circles are the
secondary nodes. The cell length (between the larger circles) along the radial
direction is the same, but decreases from the Earth surface to the globe
along the zonal direction. Note that the secondary node spacing (between
the smaller circles) is the same for both directions. Note that the pentagon
cell can be further divided into two cells, one is the trapezoidal and the other
is the triangular cell (see the dashed line).

Figure 3. Model parametrization in 3-D spherical coordinates (diagram a,
for clear representation, the secondary nodes are not depicted) and three
kinds of cells used to divide the spherical model (diagrams b, ¢ and d, in
the figure the larger circles are primary nodes and the smaller circles are the
secondary nodes, respectively).

2.2 Velocity interpolation function

In general, in both 2-D and 3-D spherical coordinates the velocity
field is sampled at the primary nodes of the cell and a specified
velocity function is defined across the cell, which links the primary
and secondary nodes (including the source and receiver positions in

Figure 4. Diagrammatic explanation for interpolating velocity values.

acell). Fora2-D trapezoidal cell, a bilinear Lagrangian interpolation
function is used:

4 4
(x—xp)
V(x)= e | V(XD 1)
; E (xj —xp) !
where x; and V(x;) (k=1,2,...,4) are the vector co-ordinates

and the sampled velocity values at the primary nodes of the cell,
respectively.

For a 3-D trapezoidal prism cell, a tri-linear Lagrangian interpo-
lation function is used:

8
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where x; and V(x{) (k=1,2,...,8) are the vector co-ordinates

and the sampled velocity values at the primary nodes of the cell,
respectively. For other special cells (2-D, Fig. 1c; 3-D, Figs 3c
and d), the velocity values at the secondary node positions are
determined by a triangular area interpolation function. For example,
in triangular cells (2-D case) the following velocity interpolation
function is used to determine the velocity values at the secondary
node positions:

V()C,') = Zi:l u;v;, (3)

where v; is the velocity value of the primary node at that triangular
cell which includes the ith node and u; is the area coordinates for

that triangular cell. In the 2-D case k& = 3, that is u; = {I;I%Tg%,
— [PTWT5] — [PT\ D] :
2= [nn;p Y3 = Ba) where [PT, T3], [T T, Ts] are respective

areas of the triangles indicated in Fig. 4(a). In the 3-D case, k = 4,
for example, u; = %, where [PT>T5T,] and [T\ T, T3 T4] are
the volume coordinates of the tetrahedrons P7> 73T and T1 1, T3 T,
indicated in Fig. 4(b). In similar fashion we can easily obtain u,, u;
and uy (for details, refer to Bai et al. 2011, 2012a). Note that the
subsurface interface is defined by two different velocity values at all
points along its extent [i.e. sampled values just above (upper values)
and just below (lower values) the interface]. As with the AK135
model, the velocity interpolation follows a similar rule such that for
reflections from the interface we use the upper velocity values, and
for critical refraction just below the interface or transmission into
the lower layer, we use the lower velocity values.

2.3 Irregular shortest-path ray tracing scheme

Basically, the irregular shortest-path method (ISPM, Bai et al. 2010)
for ray tracing is more complicated than the modified shortest-path
method (MSPM, Bai et al. 2009), because the wave propagation is
no longer along the expanding regular square (or circle in spheri-
cal coordinates) wavefront, but along the expanding irregular one.



Therefore, the technical treatment of the ISPM for wavefront prop-
agation is quite different from that used in the MSPM, where only
the cell length is used to expand the square (or circular) wavefront
propagation. In order to expand the wavefront propagation, we can
exploit a similar approach used in the MSPM ray tracing, but use the
metric distance criterion (not the cell length) to control the wave-
front propagation (for details, see Bai ef al. 2010, 2011, 2012a).
Alternatively, in the model parametrization, the neighbouring cells
around each cell can be indexed; therefore it is easy to conduct
wavefront propagation throughout the whole model. In addition,
with the introduction of second level forward star scheme, the total
number of nodes can be sufficiently reduced and therefore less com-
puter memory is required. In this fashion, the computing accuracy
with the second level forward star scheme can be largely improved
(say, two to three times in general) over the accuracy possible with
the first level forward star scheme applied in the multistage ISPM
scheme (see, Bai et al. 2011).

In calculating the minimum traveltimes and locating the associ-
ated ray paths for all grid nodes, we can gradually expand outwards
from the source the volume of the computed nodes (simply belong
to all neighbouring cells or determined by the metric distance crite-
rion) by continually adding the undetermined neighbouring nodes of
the cells to the computed nodes. The wavefront expansion is realized
cell by cell. The connection between the nodes is restricted within
each cell. It is referred to as the first level forward star scheme.
In the second level forward star scheme, the node connections are
not only within current cell, but also with neighbouring cells (see
Bai et al. 2011). In this process one should start with the node
that has a minimum traveltime in the subset N; (where N; is the
total number of computed nodes in the current wavefront) so as to
keep track of the first arrival times for the undetermined nodes. An
interval sorting method (Klime$ & Kvasnicka 1994) is used so that
the larger traveltimes are deleted; only the minimum traveltime and
the related ray path are retained. The minimum traveltime from a
source node 7 to an undetermined node j in a cell can be expressed
as

t,'.j = min {I,‘ + [ 2D(Xi’ Xj) } 5 (4)

ieN; m

where D(x;, x;) is the distance between the source node i and the
undetermined node j, and V(x;) and V' (x;) are the velocity values

P (r,9,)
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B

le(rz, 2)

A

Figure 5. Diagram showing correction for Earth ellipticity. The radius
varies over the surface of the ellipsoid.
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at the ith and the jth node positions. If the ith or the jth nodes do
not belong to the subset of primary nodes, then the velocity value
at such a node position in a cell can be obtained from the above
Lagrangian or B-spline interpolation function, dependent on which

=
A (deg) g
(b)
N
(c)

Figure 6. Diagrammatic calculation of later arrivals following the minimax
time path (diagram a: the ray paths from both the source and receiver to the
sampled interface; diagram b: summed time curve on the sampled interface,
showing two extreme locations, and diagram c: the ray paths for pP and PP
according to Fermat’s Principle of stationary minimax time path.

80 90 100
70 110

290 250
280 979 260

Figure 7. Ray paths of some global phases calculated by using the mul-
tistage ISPM scheme (in the figure black lines are for P-mode phases and
grey lines for S-mode phases).
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cell the node belongs to, a regular or an irregular cell. Furthermore,
in this process the order number of the incident point (node) i*
giving the minimum traveltime to the node j is recorded for the
co-ordinates of the related ray path.

2.4 Multistage scheme of computation

According to the layered spherical earth model (Fig. 1a or Fig. 3a),
we can divide the earth model into several spherical layers (or shells)
corresponding to the major velocity discontinuities. For illustrative
purposes consider as an example the Moho discontinuity which
separates the crust and mantle. A simulated downwind wavefront
(P, phase) is propagated through the crust (or upper computational
domain) until it impinges on all sampled nodes of the Moho sub-
surface interface (In our notation convention: P or S represents
a compressional or shear wave, respectively, and the subscript or
superscript indicates a downwind or upwind seismic wave prop-
agating in different regions, respectively). At this stage the inde-
pendent computational domain is halted at the upper computational
domain and we are left with a narrow band of traveltime values

[T 2

n.,' /7 ""Il
2

2%

0

i

0 280 270 260 =

(©)

defined along the sampled (Moho) subsurface interface. From here,
a downwind propagation of a transmitted wave (P;P,) or trans-
mitted and mode-converted branch (PS5, phase) can be simulated
by re-initializing it, starting at the sampled node position of the
(Moho) interface with the minimum traveltime (i.e. according to
Huygens Principle, the node is treated as one new source point in
the wavefront). The wave is then projected into the adjacent man-
tle (or lower) layer. Meanwhile, an upwind-propagating wavefront
consisting of a reflected branch (P, P' or PmP phase) or a reflected
and converted branch (P;S' or PmS phase) can now be obtained
by re-initializing the wavefront and starting at the sampled node
position with the minimum traveltime, from the narrow band of the
Moho interface into the incident layer (or crust). Different velocity
models (i.e. P or S) are used if wave-mode conversion occurs at
the subsurface interfaces. In summary, the multiple arrivals are the
different combinations or conjugations, via velocity discontinuities
(i.e. subsurface interfaces), of the incident, reflected and converted
phases, which obey Snell’s Law, Fermat’s Principle and Huygens
Principle. In order to trace complex ray paths that may refract, reflect
and/or convert at the velocity discontinuities, we use the so-called
‘phase code’ in the input file to control how the ray path progresses

290 260 570 260 250

(d)

Figure 8. Ray paths for direct arrivals (P and S), diffracted arrivals from the mantle-core boundary (Pdiff and Sdiff), reflected arrivals from the mantle—core
boundary (PcP, PcS, ScS and ScP), reflected arrivals from the outer core-inner core boundary (PKiKP and SKiKP), and arrivals crossing the outer core (SKSac)

and inner core (SKSdf), by directly using the multistage ISPM scheme.



Multistage ISPM in 3-D spherical coordinates

2222,
<2

1
TN

R

H
77

“\\\\\\“\“

LLTTTATRRAS
0 280 270 260 2
(c)
90

80

280 270 260 290 280 270 260 250

(e )
Figure 9. Ray paths computed by the multistage ISPM incorporated with an extreme solution of the summed traveltime curve for reflections from the Earth’s
free surface (diagram a: PP and SS), Earth’s free surface reflected mode conversions (diagram b: PS and SP), deep reflections (diagram c: pP and sS) for a

focal depth of 100.0 km, deep reflected mode conversions (diagram d: pS and sP) for a focal depth of 100.0 km, pure core phases (diagram e: PKPab, PKPbc
and PKPdf) and mode-converted core phases (diagram f: PKSab, PKSbc, PKSdf, SKPab, SKPbc and SKPdf).
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Figure 10. The time—distance curves calculated for the 49 global phases with different focal depths (diagram a: for focal depth of 0.0 km; diagram b: for
focal depth of 100.0 km; diagram c: for focal depth of 300.0 km and diagram d: for focal depth of 600.0 km). In figure, the black lines (red online) indicate the
P-mode phases and the grey lines (green online) the S-mode phases.



through the earth model volume. That is, whether the ray goes up or
down from the source, which subsurface interface is crossed, and at
which subsurface interface(s) the ray is refracted, reflected and/or
converted.

2.5 Radius correction for Earth ellipticity

The Earth is not a perfect sphere but an ellipsoid (see Fig. 5 for
2-D case), so it is necessary to correct the Earth radius at different
surface locations (Snoke & Lahr 2001). There are two ways to make
ellipticity corrections: one is to do the correction after the traveltime
calculation and the other is to directly calculate the traveltime on
the ellipsoidal Earth. The ellipticity has a direct influence on the
radius (Dziewonski & Gilbert 1976) and the ellipticity correction
is then the sum of contributions due to lengthening or shortening
of the ray at its ends. The actual radius r of an ellipsoidal Earth at
latitude ¢ can be written as

r=a(l —e sin’ ), @)

Table 1. The maximum (E1) and mean (E2) absolute time errors, and
the maximum (E3) and mean (E4) relative time errors against the AK135
theoretical traveltime tables for a focal depth of 0.0 km.

Phases El(s) E2(s) E3 (per cent) E4 (per cent)
P 0.07 0.01 0.01 0.00
S 0.08 0.05 0.01 0.00
PcP 0.05 0.01 0.01 0.00
PcS 0.04 0.01 0.01 0.00
ScS 0.08 0.05 0.01 0.00
ScP 0.04 0.01 0.01 0.00
PP 0.05 0.01 0.01 0.00
PS 0.06 0.02 0.00 0.00
SS 0.10 0.05 0.01 0.00
Sp 0.06 0.02 0.00 0.00
Pdiff 0.05 0.04 0.01 0.00
Sdiff 0.08 0.06 0.01 0.00
SKiKP 0.09 0.05 0.01 0.00
PKiKP 0.07 0.03 0.01 0.00
Pb 0.03 0.02 0.05 0.03
Sb 0.03 0.02 0.03 0.02
Pn 0.02 0.01 0.03 0.01
Sn 0.06 0.05 0.07 0.02
Pg 0.00 0.00 0.00 0.00
Sg 0.06 0.02 0.03 0.01
PbPb 0.05 0.05 0.10 0.04
SbSb 0.05 0.04 0.04 0.02
PgPg 0.01 0.00 0.01 0.00
SgSg 0.06 0.01 0.03 0.00
PnPn 0.05 0.03 0.05 0.01
SnSn 0.08 0.06 0.07 0.02
PgS 0.04 0.02 0.01 0.00
PnS 0.09 0.07 0.01 0.01
PKPab 0.11 0.06 0.01 0.00
PKPbc 0.02 0.01 0.00 0.00
PKPdf 0.07 0.02 0.01 0.00
PKSab 0.02 0.02 0.00 0.00
PKSbc 0.02 0.01 0.00 0.00
PKSdf 0.09 0.02 0.01 0.00
SKPab 0.02 0.02 0.00 0.00
SKPbc 0.02 0.01 0.00 0.00
SKPdf 0.09 0.02 0.01 0.00
SKSac 0.06 0.03 0.00 0.00
SKSdf 0.10 0.02 0.01 0.00
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Table 2. Same as for Table 1, but with a focal depth of 100.0 km.

Phases El(s) E2(s) E3 (per cent) E4 (per cent)
P 0.03 0.01 0.02 0.00
S 0.08 0.04 0.02 0.00
PcP 0.04 0.01 0.01 0.00
PcS 0.03 0.01 0.00 0.00
ScS 0.08 0.04 0.01 0.00
ScP 0.04 0.01 0.01 0.00
PP 0.05 0.01 0.01 0.00
PS 0.07 0.02 0.00 0.00
SS 0.10 0.06 0.01 0.00
Sp 0.01 0.01 0.00 0.00
Pdiff 0.04 0.04 0.00 0.00
Sdiff 0.05 0.04 0.00 0.00
SKiKP 0.07 0.04 0.01 0.00
PKiKP 0.07 0.02 0.01 0.00
Pn 0.02 0.01 0.02 0.01
Sn 0.05 0.03 0.03 0.01
PnPn 0.04 0.01 0.01 0.00
SnSn 0.07 0.06 0.01 0.01
PnS 0.10 0.07 0.01 0.01
pP 0.02 0.01 0.00 0.00
pS 0.06 0.04 0.00 0.00
sS 0.06 0.03 0.01 0.00
sP 0.02 0.01 0.01 0.00
pPn 0.02 0.01 0.01 0.00
sPn 0.04 0.02 0.04 0.02
sPg 0.05 0.05 0.04 0.03
sPb 0.04 0.04 0.07 0.04
PKPab 0.10 0.06 0.01 0.00
PKPbc 0.02 0.01 0.00 0.00
PKPdf 0.07 0.02 0.01 0.00
PKSab 0.01 0.01 0.00 0.00
PKSbe 0.02 0.01 0.00 0.00
PKSdf 0.10 0.02 0.01 0.00
SKPab 0.02 0.02 0.00 0.00
SKPbc 0.02 0.01 0.00 0.00
SKPdf 0.09 0.02 0.01 0.00
SKSac 0.04 0.02 0.00 0.00
SKSdf 0.10 0.02 0.01 0.00

where a is the semi-major (long) axis of the ellipsoid, and e is the
eccentricity. The distance (L) between any pair of node locations
within a cell (for triangle OAB) can be calculated as follows:

L =

Jh =200+ () — 26 = 20, — 2)rp, — 75) OS2 — 1),
©)

where z, and zp are the depths of two nodes (A and B), respectively,
rp, and rj, are the respective radii at the crossing points A and B
(see Fig. 5).

2.6 Fermat’s principle of the minimax time path
and extremal solutions

Note that the nomenclature specifying the seismic phases in the
AK135 traveltime tables was modified to the standard nomenclature
proposed by Storchak et al. (2003), so in the following discussion
we make use of this symbolism. It is well known that the grid/cell
based wavefront propagation schemes are only capable of tracking
first arrivals (i.e. P, S, Pn, Sn, Pg, Sg, Pb and Sb) and some kinds
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Table 3. Same as for Table 1, but with a focal depth of 300.0 km.

Table 4. Same as for Table 1, but with a focal depth of 600.0 km.

Phases El(s) E2(s) E3 (per cent) E4 (per cent) Phases El(s) E2(s) E3 (per cent) E4 (per cent)
P 0.02 0.01 0.05 0.00 P 0.02 0.01 0.03 0.00

S 0.08 0.04 0.01 0.00 S 0.08 0.04 0.01 0.00
PcP 0.03 0.01 0.01 0.00 PcP 0.03 0.01 0.01 0.00
PcS 0.03 0.02 0.00 0.00 PcS 0.03 0.02 0.00 0.00
ScS 0.08 0.04 0.01 0.00 ScS 0.08 0.04 0.01 0.00
ScP 0.03 0.01 0.00 0.00 ScP 0.03 0.01 0.01 0.00

PP 0.06 0.01 0.01 0.00 PP 0.06 0.01 0.01 0.00

PS 0.08 0.03 0.00 0.00 PS 0.08 0.03 0.00 0.00

SS 0.11 0.06 0.01 0.00 SS 0.11 0.06 0.01 0.00

SP 0.08 0.01 0.01 0.00 SP 0.07 0.01 0.01 0.00
Pdiff 0.05 0.04 0.01 0.00 Pdiff 0.04 0.04 0.01 0.00
Sdiff 0.05 0.04 0.00 0.00 Sdiff 0.05 0.04 0.00 0.00
SKiKP 0.06 0.04 0.01 0.00 SKiKP 0.06 0.04 0.01 0.00
PKiKP 0.06 0.02 0.01 0.00 PKiKP 0.06 0.02 0.01 0.00

Pn 0.02 0.01 0.02 0.01 pP 0.03 0.02 0.01 0.00
PnPn 0.05 0.01 0.01 0.00 pS 0.05 0.04 0.00 0.00
PnS 0.10 0.09 0.01 0.01 sS 0.06 0.04 0.00 0.00

pP 0.04 0.02 0.01 0.00 sP 0.03 0.01 0.01 0.00

pS 0.05 0.04 0.00 0.00 sPn 0.04 0.03 0.01 0.01

sS 0.06 0.03 0.00 0.00 sPb 0.08 0.08 0.02 0.02

sP 0.02 0.01 0.01 0.00 PKPab 0.09 0.06 0.01 0.00
pPn 0.01 0.01 0.00 0.00 PKPbc 0.02 0.02 0.00 0.00
sPn 0.04 0.03 0.03 0.01 PKPdf 0.08 0.02 0.01 0.00
sPg 0.07 0.07 0.04 0.03 PKSab 0.01 0.00 0.00 0.00
sPb 0.05 0.05 0.03 0.03 PKSbe 0.03 0.02 0.00 0.00
PKPab 0.10 0.06 0.01 0.00 PKSdf 0.12 0.03 0.01 0.00
PKPbc 0.02 0.01 0.00 0.00 SKPab 0.02 0.01 0.00 0.00
PKPdf 0.08 0.02 0.01 0.00 SKPbc 0.02 0.01 0.00 0.00
PKSab 0.01 0.00 0.00 0.00 SKPdf 0.10 0.02 0.01 0.00
PKSbc 0.03 0.02 0.00 0.00 SKSac 0.04 0.02 0.00 0.00
PKSdf 0.11 0.03 0.01 0.00 SKSdf 0.11 0.02 0.01 0.00
SKPab 0.01 0.01 0.00 0.00

SKPbc 0.02 0.01 0.00 0.00

SKPdf 0.09 0.02 0.01 0.00 For example, pP and PP are the same kind of surface reflections
SKSac 0.04 0.02 0.00 0.00 from the Earth’s free surface; the former follows the minimum time
SKSdf 0.10 0.02 0.01 0.00 path and the latter follows the maximum time path. For those kinds

of initial reflections, transmissions and mode conversions (i.e. PmP,
SmS, PmS, SmP, PnPn, SnSn, PgPg, SgSg, PcP, ScS, PcS, ScP, etc.),
which are the ray paths following the minimum traveltime, while,
it is not possible to calculate other later arrivals which follow the
stationary maximum or minimax ray paths (i.e. PKPab, pP, sS, PP,
SS, sP, pS, etc.). Fermat’s Principle states that the ray (or energy) will
follow an extremal time path, that is, it takes that path / between
two points, which takes an extreme traveltime # (i.e. the shortest
(minimum) or the longest (maximum) possible traveltime, or a point
of inflection with d#/0/ = 0). Such a path is called stationary. In the
case of a stationary time path the three possibilities identified above
depend on the sign of the higher derivatives of 3#/d/ (e.g. Cerveny
2001; Bormann et al. 2009):

(1) 8°t/d1* > 0, the ray follows a true minimum traveltime path
(i.e. P, S, Pn, Sn, Pg, Sg, Pb, Sb; PmP, SmS, PmS, SmP, PnPn, SnSn,
PgPg, SgSg, PcP, ScS, PcS, ScP, etc.),

(2) 8°t/d1* < 0, the ray follows a maximum traveltime path (i.e.
PKPab) and

(3) 9%t/3I*> = 0, that is, in case of an inflection point of the
traveltime curve, the ray follows a minimax traveltime path (i.e. pP,
sS, PP, SS, sP, pS, etc.).

of stationary minimax time ray paths we can use an extreme solution
of the summed ray fields to calculate the related ray paths and the
corresponding traveltimes, as illustrated in Fig. 6. The principle of
the extreme solution of the summed ray fields is that we calculate ray
paths and the related traveltimes from both the source and receiver to
the sampled subsurface interface (Fig. 6a) and obtain the summed
traveltime curve (2-D, see black curve at the Fig. 6b) or surface
(3-D) and locate extreme locations (see grey dot on the curve of
the Fig. 6b), which correspond to the reflection points. That is,
the minimum extremum on the summed traveltime curve is the pP
traveltime and the maximum is the PP reflection. Finally, we link the
ray paths and sum the traveltimes from the source and receiver to
the reflector, which constitute the real pP and PP traveltimes and the
corresponding ray paths (Fig. 6¢). Note that the summed traveltime
curve (2-D) or surface (3-D) to locate the minima, maxima and
saddle points are along the reflecting interface (2-D) or subsurface
interface (3-D). The reader is referred to Bai et al. (2012b) for a
detailed explanation.

3 THEORETICAL TRAVELTIMES
OF GLOBAL SEISMIC PHASES

To validate the new ray tracing scheme in terms of computational
accuracy and efficient performance, we now calculate the travel-
times and corresponding ray paths for 49 crustal, mantle and core
phases and compare our results with the AK135 global theoretical
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Figure 11. (a) The time difference (error) curves between the calculated and the AK 135 theoretical traveltime tables for a focal depth of 0.0 km (diagram
a: for P and S; diagram b: for PP, SS, PS and SP; diagram c: for Pdiff and Sdiff; diagram d: PcP, ScS, PcS and ScP; diagram e: for Pb, Sb, PbPb and SbSb;
diagram f: for PKiKP and SKiKP; diagram g: Pg, Sg, PgPg and SgSg; diagram h: for PKPab, SKSac, SKPab and PKSab; diagram i: for PgS and PnS; diagram
j: for PKPbc, SKPbe and PKSbc; diagram k: for Pn, Sn, PnPn and SnSn and diagram 1: for PKPdf, SKPdf, SKSdf and PKSdf). (b) Same as for Fig. 10 but for
a focal depth of 100.0 km. (c) Same as Fig. 10(a) but for a focal depth of 300.0 km. (d) Same as Fig. 10(a) but for a focal depth of 600.0 km.
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traveltime tables (Kennett et al. 1995). The reference earth model
in this case is a 1-D spherically layered model and there are eight
velocity discontinuities located at depths of 20, 35, 210, 410, 660,
2740,2891.5 and 5153.5 km, respectively (see AK135 model, Ken-
nett et al. 1995). For the model parametrization, we use a cell size
of 0.5° x 20km depth to divide the spherical earth model (re-

Delta deg
@

fer to Fig. 1a), and a secondary node spacing of 1.0km x 1.0km
is applied. Fig. 7 shows some calculated ray paths including di-
rect arrivals (P and S), Earth surface reflections (PP and SS),
outer core reflections (PcP, ScS and ScP), inner core reflec-
tions (PKiKP and SKiKS) and core refracted phases (SKP, SKS
and PKP).



According to the AK135 traveltime tables, the calculated 49
global phases include: (1) crustal phases: Pg, Pb, Pn, PgPg, PbPb,
PnPn, PgS, PnS, Sg, Sb, Sn, SgSg, SbSb, SnSn; (2) mantle phases:
P, S, PP, PS, SP, SS, PcP, PcS, ScS, ScP, Pdiff, Sdiff; (3) core
phases: PKP (PKPab, PKPbc and PKPdf), PKS (PKSab, PKSbc
and PKSdf), SKP (SKPab, SKPbc and SKPdf), SKS (SKSac and
SKSdf), PKiKP, SKiKP and (4) depth phases: pP, pS, sS, sP, pPn,
sPn, sPg, sPb. Fig. 8 shows ray trajectories of calculated global
phases which obey the minimum time paths in which the P and S
wave become diffracted waves (Pdiff and Sdiff) when they graze
the core mantle boundary (or CMB) with increasing epicentral dis-
tance, due to the low P-wave velocity in the outer core (where S
velocity is zero, see Fig. 8a). Because the P-wave velocity of the
outer core is significantly lower than the P-wave velocity at the base
of the mantle, but larger than the S-wave velocity at the base of the
mantle, the incident angle of the phase PKiKP is reduced signifi-
cantly when it leaves the mantle and enters the outer core. By the
same argument, the outgoing angle of phase PKiKP is increased
when it leaves the outer core and enters the mantle (see Fig. 8c).

Fig. 9 depicts the ray trajectories for the calculated global phases
which follow the stationary minimax time paths. For the pairs of
Earth free—surface reflections, the maximum extremal solution
coincides with the phases (PP, PS, SP, SS, see Figs 9a and b), whereas
the minimum extremal solution corresponds to the deep reflections
and /or converted phases (pP, pS, sP and sS, see Figs 9c and d). When
the rays cross the inner core the phenomenon of caustics occurs for
the families of phases (PKPab, PKSab and SKPab) and (PKPbc,
PKSbc and SKPbc). The former correspond to the maximum time
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paths and the latter coincide with the minimum time paths (see
Figs 9¢e and f). Note that for the phases (PKPdf, PKSdf and SKPdf)
itis possible to directly apply the multistage ISPM to calculate them.

4 COMPARISONS WITH THE AK135
TRAVELTIME TABLES

To make a detailed comparison with the AK135 traveltime tables,
we use four different source focal depths (0.0, 100.0, 300.0 and
600.0km) as listed in the AK135 traveltime tables. The time—
distance curves of the calculated 49 different global phases for
the different focal depths are shown in Fig. 10 (diagram a: for focal
depth of 0.0 km; diagram b: for focal depth of 100.0 km; diagram
c: for focal depth of 300.0 km and diagram d: for focal depth of
600.0 km). From Fig. 10 we see that for the same kind of global
phases the time—distance curves have similar features, regardless
of the focal depth, and the time—distance curves of the reflections
exhibit a hyperbolic shape, such as for PcP, ScS, PcS and ScP. The
phases PcS and ScP coincide with each other when the source is
located at the Earth surface (Fig. 10a) and separate from each other
with increasing focal depth (Figs 10b—d).

For ease of comparison, the receiver locations are the same as in
the AK135 traveltime tables, that is, at an interval of 2°. Tables 1—
4 give the maximum absolute traveltime errors (E1), the average
absolute traveltime errors (E2), the maximum relative traveltime
errors (E3) and the average relative traveltime errors (E4) against
the AK135 traveltime tables for these 49 global phases. From the
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Figure 12. Tests for computational accuracy and efficiency for 3-D regional model with changing cell size and number of secondary nodes (diagram a:
accuracy test; diagram b: computational efficiency and diagram c: the total number of the nodes via the number of added secondary nodes).
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tables we may draw the following conclusions: (1) for almost all the
phases the maximum absolute traveltime error is less than 0.12s,
and the average absolute traveltime is within 0.09s (except for
phase PKPab); (2) the computed S-mode phases have slightly larger
absolute traveltime errors than those of the P-mode phases; (3) the
computed traveltime errors against the reference AK135 tables have
similar error features, regardless of source focal depth and (4) for
global traveltimes it is meaningless to cite the relative traveltime
errors. Taking the phase PKPab as an example, the maximum ab-
solute time error is over 1.6 s but the maximum relative time error
is only about 0.13 per cent, due to the long time associated with its
long propagation path.

To appreciate the variations of traveltime error patterns with
changes of epicentral distance, we show in Fig. 11 the time dif-
ferences (or time errors) between the calculated and the AK135
traveltimes as a function of epicentral distance (diagram a: for focal
depth of 0.0 km; diagram b: for focal depth of 100.0 km; diagram
c: for focal depth of 300.0 km and diagram c: for focal depth of
600.0km). From Fig. 11 it is obvious that the error curves are
fluctuated slightly above zero value (within 0.1 s). Basically, the
traveltime errors of the S-mode waves are larger than those of the
P-mode waves, which increase slightly with epicentral distance, due
to relatively longer time taken. Meanwhile, the error patterns are
independent of the focal depth. The largest errors (see Tables 14
and Figs 11a—d) occur in the prediction of the PKPab phase, due to
a couple of source—receiver pairs missing the outer core paths (see
Fig. 9).

In summary, the multistage ISPM is capable of predicting most
global main phases with a high computational accuracy, less than
0.1 s absolute traveltime errors compared with the AK135 theoret-
ical traveltime tables. Such computational accuracy is high enough
to enable regional or global traveltime tomographic studies.

5 COMPUTIONAL EFFICIENCY

For the multistage ISPM in 2-D polar coordinates (see Fig. 1a), there
is no problem with CPU time consumption, but for the multistage
ISPM in 3-D spherical coordinates, the CPU time has to be taken into
consideration. 3-D global or regional traveltime tomography usually
requires millions of multiphase arrivals to be predicted and the
forward modelling needs to be repeated several or dozens of times
in the inversion model updating process. Therefore, a really fast
and accurate 3-D ray tracing scheme is highly beneficial. For these
reasons, it is useful to estimate the CPU time in 3-D applications.
We select a uniform spherical regional earth model (8.0 kms™)
to estimate the computational accuracy and especially the CPU time
to calculate the first P arrivals. The scale of the velocity model is
24° x 24° x 1200 km and there are five kinds of the trapezoidal
prism cells (i.e. 8° x 8° x 400km, 6° x 6° x 300km, 4° x 4° x
200km, 3° x 3° x 150km and 2° x 2° x 100km) to parametrize
the velocity model. There are 625 receivers located uniformly over
the model surface (i.e. 1° x 1° spacing) and the source is located
at the co-ordinate origin at a depth of 100 km. To evaluate the
influences of secondary node spacing in terms of computational
efficiency and CPU time consumption, the added secondary node
number increases from 3 to 19 for those five kinds of differently
parametrized velocity models. The computer used here is a 2.8 GHz
Intel Core 15-2300 with 4 GB memory. Fig. 12 shows the mean ab-
solute traveltime errors (diagram a), the CPU time (diagram b) and
the total number of nodes (diagram c) for the five different kinds
of parametrized velocity models, as a function of secondary node

number (strictly speaking, it is the secondary node spacing, which
equals the length of the cell divided by the number of secondary
nodes). From Fig. 12(a) we see that the computed traveltime errors
are independent of the selected trapezoidal prism cells, but depend
on the number of added secondary nodes. With 7, 9 and 13 sec-
ondary nodes, the mean absolute time error is less than 0.3, 0.2 and
0.1s, respectively. The CPU time consumption and also the total
number of nodes are highly dependent on both the selected cell size
for the model parametrization and the number of added secondary
nodes for accuracy improvement. It increases according to the power
law n? In, n, where 7 is the number of added secondary nodes (see
Bai et al. 2007). Such conclusions are similar to previous results
when the MSPM or ISPM schemes are applied in 2-D/3-D Cartesian
coordinates (Bai er al. 2007, 2009, 2010). In real applications we
should select a suitable cell size to divide the target velocity model
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Figure 13. Contour plots of the direct P-wave arrival time errors on the
surface for two models (diagram a: uniform velocity model and diagram b:
AK135 velocity model). The source is located at 100 km depth under the
model origin and 0.5° x 0.5° receiver spacing applied on the model surface.
In the figure the solid black circle indicates the epicentre.



(according to the velocity field variation) and add enough secondary
nodes to achieve the required computational accuracy. For example,
to obtain a 0.2 s computational accuracy (absolute traveltime error)
when the smallest cell size (2° x 2° x 100km) is used and nine
secondary nodes applied, the CPU time consumption is less than
20 s for that computed velocity model (see Fig. 12b). Such accuracy
and CPU time are easy to achieve and the new method therefore is
highly recommended for regional or global traveltime tomographic
studies.

To inspect the error distribution on the Earth’s surface, here
we select two velocity models: one is the uniform velocity model
of 8.0kms™! as used above and the other is the AK135 velocity
model. The model scale and source—receiver layout are the same as
described above. The cell size we selected is 2° x 2° and secondary
node spacing is 5 km. The traveltimes of the direct P wave were cal-
culated and the error distributions on the Earth‘s surface are shown
in Fig. 13 (diagram a: for uniform velocity model and diagram b:
for AK135 velocity model). From Fig. 13 both error patterns are
symmetric with respect to the source location, and the traveltime er-
rors are increase slightly with increasing epicentral distance. For the
uniform velocity model the largest error is less than 0.14 s (Fig. 13a)
and for the AK135 model it is less than 0.24 s (Fig. 13b). Note that
such errors can be further reduced by decreasing the secondary node
spacing.
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6 3-D MULTIPLE RAY PATHS

To visualize the performance of 3-D multiphase ray tracing, we
select a regional scale layered velocity model (model scale is
15° x 15° x 700km, see Fig. 14), in which the velocity field
changes both with longitude ¢ and depth. In the longitude direc-
tion the velocity field varies according to a sin(p) function with
a +0.25kms™! fluctuation. In depth, the velocity increases lin-
early from the top surface at 5.0kms™ to the model base where
the velocity is of 10.9kms™!. There are two undulating subsurface
interfaces located at depths of 410 and 660 km, respectively. For
model parametrization, a trapezoidal prism cell of size 1° x ° 50 km
is used and the secondary node spacing is 2.0km. The source
is located at the model centre line at 100 km depth, and 46 re-
ceivers are located at the three edges (not the front edge) of the
model surface at 1° uniform spacing. Fig. 13(a) shows the ray
paths of the direct P arrivals and the primary reflections both
from the 410km discontinuity (phase P410P) and the 660km
discontinuity (phase P660P). Fig. 13(b) shows the ray paths
of the double (two times) reflections between the Earth’s sur-
face and the 410 discontinuity (phase pP410P), and between the
Earth’s surface and the 660km discontinuity (phase pP660P).
More complicated multiphase arrivals can be predicted in
this way.

(a)

R

N

long(deg)
(b)

Figure 14. Multiple ray paths in a realistic 3-D regional velocity model. Diagram a: for direct P (grey lines), and reflections both from the 410 km discontinuity
(P410P, dark grey lines) and the 660 km discontinuity (P660P, black lines) and diagram b: two-time reflections between the Earth’s surface and the 410 km
discontinuity (pP410P, grey lines) and between the Earth’s surface and the 660 km discontinuity (pP660P, black lines).
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7 DISCUSSION AND CONCLUSIONS

To calculate the later arrivals having stationary ray paths, we intro-
duce the concept of Fermat’s Principle of stationary minimax time
paths, and extend the functional of the multistage ISPM scheme
(Bai et al. 2010), previously only developed for Cartesian coor-
dinates. This allows us to compute ray paths and traveltimes in
spherical coordinates for 2-D/3-D velocity models to trace multi-
ple later arriving of global phases for the Earth. The computational
accuracy for the 49 predicted main global phases (except for the
PKPab phase) is very good, with absolute errors of less than 0.09 s
when compared with the AK135 theoretical traveltime tables (Ken-
nett et al. 1995). The new formulation can be used to generalize
regional or global traveltime tables for use in earthquake location.
Furthermore, the scheme is computationally efficient with CPU
time small enough for regional and global traveltime tomographic
studies, for example, the CPU time on a standard PC is less than
1 min to calculate the response for a model involving millions of
nodes with a suitable trapezoidal prism cell to divide the velocity
structure (see Fig. 11). The method can be very suitable for to-
mographic purposes to delineate crust, mantle, even whole Earth
velocity structure and velocity discontinuities with multiple classes
of arrivals. In summary, the multistage ISPM performs as well in
spherical coordinates as previously shown in Cartesian coordinates,
in terms of both computational accuracy and CPU time.
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