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1 INTRODUCTION

ABSTRACT

We study the problem of periodicity detection in massive data sets of photometric or radial
velocity time series, as presented by ESA’s Gaia mission. Periodicity detection hinges on
the estimation of the false alarm probability of the extremum of the periodogram of the
time series. We consider the problem of its estimation with two main issues in mind. First,
for a given number of observations and signal-to-noise ratio, the rate of correct periodicity
detections should be constant for all realized cadences of observations regardless of the
observational time patterns, in order to avoid sky biases that are difficult to assess. Secondly,
the computational loads should be kept feasible even for millions of time series. Using the
Gaia case, we compare the FM method of Paltani and Schwarzenberg-Czerny, the Baluev
method and the GEV method of Stiveges, as well as a method for the direct estimation
of a threshold. Three methods involve some unknown parameters, which are obtained by
fitting a regression-type predictive model using easily obtainable covariates derived from
observational time series. We conclude that the GEV and the Baluev methods both provide
good solutions to the issues posed by a large-scale processing. The first of these yields the
best scientific quality at the price of some moderately costly pre-processing. When this pre-
processing is impossible for some reason (e.g. the computational costs are prohibitive or good
regression models cannot be constructed), the Baluev method provides a computationally
inexpensive alternative with slight biases in regions where time samplings exhibit strong
aliases.
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and radius of their component stars, and thus also provide strong
constraints on stellar physics and the co-evolution of stars.

Identification and analysis of variable objects has been and will
remain an important product of many small or large-scale astro-
nomical surveys. Periodic sources among them are singularly im-
portant for many special fields of astrophysics. Examples include
the Cepheids, which form the basis of the cosmic distance ladder,
and therefore are fundamental to cosmology; RR Lyrae, which trace
ancient structures around the Milky Way and thus relate to the evo-
lution of our Galaxy; multiperiodic stars, whose asteroseismology
provides insight into the structure and evolution of stars; or eclips-
ing binaries, which can offer the possibility of determining the mass
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Specific research fields require the selection of objects of specific
types, and the data bases in which they must be sought have now
reached the terabyte scale. Whereas the Hipparcos mission (ESA
1997) 20 yr ago provided photometry and astrometry for about a
hundred thousand stars, the Gaia mission, launched in 2013 De-
cember, will furnish a similar catalogue of approximately 1 billion
astronomical objects by the end of its 5 yr lifetime, with a precision
of roughly 100 times that of Hipparcos. Other surveys also will pro-
duce data bases of comparable or larger size. To facilitate efficient
searches on such volumes, the catalogues should contain additional
derived information about the sources. Specifically, for studies rely-
ing on variable stars, the variability type is of primary importance;
however, other attributes of the source such as the mean absolute
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magnitude, period, amplitude, harmonic amplitudes and relative
phases can all help the researcher to direct better his/her search for
a sample.

A crucial step to obtain this information is the discovery and cor-
rect identification of the period of the variable objects. A search for
periodicity is performed on the time series of either photometric or
radial velocity measurements of candidate objects, in order to pro-
duce a periodogram. The found period corresponds to the extremum
of the periodogram. A decision should then be made as to whether
this period is significant or not. Depending on the decision, the pro-
cess then can continue with the characterization of the source as
periodic and the production of the derived information for the cat-
alogue. When the decision step fails for a source, this information
will obviously be erroneous. If these failures are systematic, and
depend on some unrecognized factors, studies using such samples
may be affected by serious unidentified and unknown biases.

Unfortunately, period detection is one of the procedures which
is most at risk from such biases, because quasi-periodicities and
sparse sampling in the time cadence of the observations affect the
statistical characteristics of the periodogram. Their most important
effects are the strong long-term dependences appearing in the pe-
riodograms (called ‘aliases’ in the rest of this paper), the loss of
an orthogonal frequency system (that is, loss of orthogonality of
the Fourier frequencies) and the degeneracy caused by computing
an oversampled periodogram often at hundreds of thousands of test
frequencies, based often on only a few dozen observations. Never-
theless, whether a found period belongs to a real periodic signal or is
just due to random fluctuations must be assessed in a strictly formal-
ized statistical way (a concise and clear paper is Schwarzenberg-
Czerny 1998). In the presence of these strong long-range depen-
dences, the most commonly applied statistical tests (Lomb 1976;
Scargle 1982; Horne & Baliunas 1986; Frescura, Engelbrecht &
Frank 2008; Schwarzenberg-Czerny 2012) lack solid theoretical
support, and can yield incorrect estimates in the absence of clear
recipes by which to tune them (Horne & Baliunas 1986; Frescura
et al. 2008; Schwarzenberg-Czerny 2012). Thus, they can present
largely uninvestigated biases. When applied en masse to time series
from a sky-scanning survey, which have coordinate-dependent ob-
servational cadences with different regularities from point to point,
these biases will add an unknown, coordinate-dependent element to
other, better-investigated biases, such as that due to the number of
observations (for e.g. the Gaia survey; see Eyer & Mignard 2005).

In addition to these biases, the computational greediness of most
procedures makes the situation even more difficult for survey data.
The above methods usually need many noise simulations for each
time sampling pattern as well as the computation of the periodogram
for each simulation, in order to reproduce the distribution of the pe-
riodogram peak in the absence of periodicity. This is not feasible
during the data processing of a large-scale survey producing mil-
lions of time series.

To help solve these issues, we collected three propositions from
the literature on how to perform a significance test on periodograms:
that of Paltani (2004) and Schwarzenberg-Czerny (2012) (FM
method), that of Baluev (2008, Baluev method) and that of Stiveges
(2014, GEV method), and we added a fourth, ad hoc one, which
consists of the direct determination of a critical level of periodogram
peaks separating significant periodicities from non-significant ones
at a given confidence level (quantile method). Three of these mod-
els, the FM, the GEV and the quantile methods, depend on unknown
parameters, which differ from one sky location to another, and must
be estimated for each of the candidate variable light curves (several
tens of millions for Gaia).
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In our study, instead of individually estimating these parameters
for each time series, we investigated how they depend on some
quantities that can be easily and quickly computed for every time
series, such as the number of observations, the variance of times
or spectral window features. We constructed regression-type mod-
els linking these covariates to the parameters of the false alarm
probability (FAP) methods. As a result, the costly simulation-based
individual estimation of the parameters can be replaced with an es-
timation based on only the calculation of the above quantities and
predicting the parameters from the previously estimated regression
model with excellent results.

In order to achieve this, the crucial condition is the existence of
such a regression model. Although theory gives indications as to
what covariates the parameters of the FAP methods may depend
on, at present there is no derivation of specific formulae or relation-
ships. For the Gaia case, where the observational times consist of
relatively irregularly spaced clusters of quasi-regular sequences of
observations, some quite clear-cut relationships were found empiri-
cally. Since for many scanning surveys, their location on Earth or in
a space orbit and/or their rotation determines some typical repeat-
ing observational cadences, and hence some characteristic spectral
window patterns, in general it appears worthwhile to investigate
these possibilities for the detection of periodic variability in other
surveys too.

The performance of the procedures was assessed using two fun-
damental statistical paradigms. First, on simulated noise sequences,
we checked the false alarm rate of the methods and the quality
of their approximation to the true distribution of the maximum of
the periodograms. Secondly, on weak noisy signals, we checked
the ability of the methods to find their periodicity as significant.
This way, we characterize the methods in terms of their statistical
size and power. We conclude that at least two of these methods,
the Baluev and the GEV ones, provide good approximations to the
p-value of the periodicity in the interesting low value range.

In Section 2 we give an overview of the problem. First we summa-
rize the statistical principles applied in the detection of periodicities,
and discuss the factors that can influence the crucial ingredient in
the methods, the distribution of the extrema of the periodograms
of white noise. We demonstrate these effects on a simple model
using Gaia-like simulations. Section 3 presents the four candidate
methods and the regression models to estimate their parameters.
Section 4 details their application to the Gaia survey, and summa-
rizes the expected performances of the four methods using noise
and signal simulations. Finally, Section 5 provides a summary ta-
ble of the crucial advantages and drawbacks of the methods, and
discusses the possible choices for large surveys.

2 PERIODICITY DETECTION

2.1 Principles of testing

Suppose X, Xz, ..., Xy is a photometric or radial velocity time
series observed at epochs #1, ,, . . ., ty. The sequence of times may
be anything from almost completely irregular to almost completely
regular. The goal is to assess whether the time series X;, Xa, ...,
Xy contains a periodic signal or not. To this end, we compute a
periodogram, consisting of some appropriately defined goodness-
of-fit measures of some periodic models at a large set of candi-
date frequencies, using one or more of the various methods in the
literature, such as the Deeming method (Deeming 1975), PDM-
Jurkevich (Jurkevich 1971; Stellingwerf 1978; Dupuy & Hoffman
1985), String Length (Lafler & Kinman 1965; Burke, Rolland &
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Boy 1970; Renson 1978; Dworetsky 1983; Clarke 2002), Super-
Smoother (Friedman 1984; Reimann 1994), cLean (Foster 1995),
Keplerian periodograms (Cumming 2004), Lomb-Scargle or gen-
eralized Lomb-Scargle method (Lomb 1976; Ferraz-Mello 1981;
Scargle 1982; Zechmeister & Kiirster 2009), FastChi2 (Palmer
2009), conditional entropy method (Graham et al. 2013) and
raMous (F. Mignard, available with documentation at the web site
ftp://ftp.obs-nice.fr/pub/mignard/Famous). The most probable fre-
quency of a potential periodic signal is indicated by the extremum
Zobs Of the periodogram, which can be a maximum or minimum
depending on the specific period search algorithm.

Strict statistical hypothesis testing contrasts the zero hypothesis
H) of no periodicity to the alternative H; of a periodic component of
any frequency in the time series. It consists of computing the prob-
ability that a time series with no periodicity produces a maximum
higher than or equal to the observed maximum z,ps (Or @ minimum
lower than or equal to the observed minimum). This probability
is called the false alarm probability (FAP). Denoting in general
the distribution of z,,s under Hy with G, FAP = 1 — G(zoys) for
maxima and FAP = G(z,ps) for minima. If we find a periodogram
extremum which is less likely than a pre-specified confidence limit
o, then we can state that the hypothesis of no periodicity can be
rejected at the confidence level «. This case of a FAP < o will be
termed a detection. Based on inspection of frequency search results
for weak noisy signals, if the significant maximum/minimum of
the periodogram is within £1073 d~! of the correct frequency, then
we will speak about a correct detection, otherwise an incorrect or
false detection (we did not use the theoretically based formula for
the calculation of the errors, since the inspection showed a signif-
icantly enlarged distribution of absolute differences between true
and found frequencies with respect to what is expected from the
formula).

To compute the FAP, we need to know the zero distribution G of
Zobs Under Hy, that is, the distribution of the periodogram maximum
in the absence of periodicity. This is determined by several factors.

(1) The periodogram type defines the distribution F of any single
periodogram value (in statistical terminology, the marginal distri-
bution or margin), and has a determining role in shaping G. For
example, for the generalized least-squares (GLS) periodogram as
defined in Zechmeister & Kiirster (2009), z € [0, 1], and F is ap-
proximately a beta distribution, so G also must have a finite tail
with endpoint at 1. The Lomb—Scargle periodogram with the orig-
inal normalization (Lomb 1976; Scargle 1982) has an exponential
marginal distribution, with an exponentially decaying tail, and thus
G must have a tail smoothly decreasing towards infinity.

(i1) The ‘no periodicity’ assumption is usually not sufficient to
constrain G, we must make further assumptions about the character
of the time series under H,. Some options are as follows: the time
series is white noise with a specific distribution; the time series
is white noise, with an unspecified distribution; the time series
has some specified temporal structure such as a CARMA process
or a random walk. The derivation of G is very hard under most
of these assumptions, so there is practically no known G for the
periodograms listed above under any assumption other than white
noise, and even under the assumption of white noise, well-behaved
approximate distributions were published only quite recently and
only for certain types of periodograms.

(iii) An irregular character of the time sampling entails the loss
of any orthogonal frequency system, so in theory, no principles
relying on independence could be applied without an extra step
of orthogonalization. Quasi-regularities in the time sampling, e.g.
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Figure 1. Spectral windows of Gaia at two different ecliptic latitudes with
the same number of observation.

daily and yearly cadences in ground-based observations or the 6-h
spin rate of Gaia, can induce aliasing (strictly speaking, leakage,
but we will use the commonly accepted term in astronomy), which
leads to a complex pattern of dependence across frequencies in
the periodogram. Moreover, dependence is also introduced into the
periodogram by the simple fact that based on N observations, we
usually compute n >> N periodogram values. According to mathe-
matical statistics, extrema of dependent sets do not behave the same
way as those of independent sets (see e.g. Leadbetter, Lindgren &
Rootzén 1983; Beirlant et al. 2004; de Haan & Ferreira 2006), not
even when their marginal distribution is the same, so this depen-
dence must have an effect on G. This is clearly demonstrated by
the simulations of Cuypers (2012), using Gaussian noise sequences
with the same time span and the same number of observations, but
with different temporal sampling patterns.

Theory and simulations thus both suggest to take dependence into
account when trying to derive the distribution of periodogram max-
ima. However, there is no general mathematical derivation pointing
to explicit formulae with which this could be accomplished. The
parameters of the distribution of maxima of dependent or indepen-
dent variables are in practice not derived from theory, but estimated
casewise for every time series. The reason is that dependence itself
in the set of random variables can take infinitely many forms, and
for any real-life data set, usually little is known about it a priori.

However, for the frequency analysis of time series, we have an aid
in revealing dependence structures in the periodograms: the spectral
window of the time cadence yields a picture of the autocorrelations
in the periodogram. Though correlations are in general not suffi-
cient measures of dependence (apart from the case of a multivariate
Gaussian), a non-zero correlation is an indicator of dependence.
Moreover, from a practical point of view, the spectral window is
quite easily available. As a substitute for theory-based relations be-
tween the distribution of periodogram maxima and the dependence
in the periodogram, we may look for relationships linking the pa-
rameters of the distribution to numerical features of the spectral
windows.

Gaia’s complex motion, consisting of a 6 h rotation and a slow
precession of its axis, induces a large variety of spectral windows
showing more or less prominent peaks corresponding to its spin rate
4d~" and the integer multiples thereof (see e.g. Eyer & Mignard
2005). Two examples in Fig. 1 illustrate the range of possibilities.
The spatial variations over the sky, together with those of the number
of observations N, can be appreciated in Fig. 2, which shows maps
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Figure 2. Number of observations N (top) and spectral window peak s12
around 12 d~! (bottom) over the sky; the shades of grey indicate the value of
N and s15. The red dots show the locations used for training, model selection
and testing.

of N and the strength of a typical Gaia alias, at 12 d~!. Their spatial
inhomogeneity implies that we can expect also the distribution of
maxima to vary over the sky. We show on an example in the next
section that this is indeed so.

2.2 Illustration

We illustrate the importance of these issues and their possible ef-
fects on the detection of periodicities over the sky by showing the
discrepancies resulting from an independence-based simple FAP
model in the Gaia case. The model approximates the distribution of
the periodogram maxima by

G~ FM, (1)

where M is the ‘equivalent number of independent frequencies’
(Scargle 1982; Horne & Baliunas 1986; Schwarzenberg-Czerny
1998), which should optimally be estimated for each time sampling
from a high number of noise simulations, and F' is the marginal
distribution of the periodogram. We simulated 1500 Gaussian white
noise sequences using Gaia-like time samplings at each of 900
sky positions along an ecliptic meridian from the ecliptic plane
to the pole (the long red line in Fig. 2).! A GLS periodogram
(Zechmeister & Kiirster 2009) was calculated for each sequence, its

I'See the Gaia Observation Forecast Tool link at http://www.cosmos.
esa.int/web/gaia/gaia-data for an online tool to predict Gaia observations
for arbitrary sky positions.
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Figure 3. Top panel: histograms of FAPs of white noise sequences side-
by-side at 300 locations along a meridian from ecliptic to pole (top panel).
Middle panel: the fractions of p-values less than 0.05 (black circles) and of
those less than 0.01 (red triangles) versus ecliptic latitude. Bottom panel: the
same versus N, the number of observations in the time series. The black and
brown solid lines indicate the expected fractions 0.05 and 0.01, respectively.

maximum retained, and the FAP based on equation (1) computed.
For the purposes of the illustration, and since many simulations
per time series are in any case unfeasible in large surveys, we
replaced M by its upper limit M’, the number of Fourier frequencies
falling in the scanned frequency range. The marginal distribution of
the periodogram values is approximately a beta distribution for the
GLS periodogram, so F is taken to be the incomplete beta function
with parameters 1 and (N — 3)/2 (Schwarzenberg-Czerny 1998).
At each location, we obtained thus 1500 FAP values for white noise
sequences.

The upper panel of Fig. 3 shows 300 of the 900 histograms of
FAPs, lined up side-by-side versus ecliptic latitude. Good approx-
imations to the true distribution of the maxima should give a flat
aspect of the surface traced by the histograms: the FAP values for
noise based on a good approximate G should follow a uniform
distribution, that is, a flat histogram when binned, and moreover,
they should do so at every location, independently of latitude or
any other parameter. The lower two panels show only the last bin
of these histograms, that is, the fraction of FAPs below the signifi-
cance levels o = 0.05 (black) and 0.01 (red). This is the proportion
of false detections (noise sequences for which a periodicity was
detected). In the case of a well-behaved FAP, this should be close
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to o by definition of the FAP. From the plots, we can draw several
important conclusions.

(1) The false detection fractions are in general much above «,
which means that this FAP approximation is too permissive. The
best M should indeed be lower than the number of Fourier frequen-
cies M'.

(i1) The middle panel of Fig. 3 shows a strong spatial inhomo-
geneity: some regions, most importantly the ecliptic pole (|8| >
80°), have a much lower average false alarm rate than others, say, a
region at 60° < || < 70°.

(iii) The false alarm rates depend only very weakly (if at all) on
N, as it can be seen in the bottom panel of Fig. 3, so this spatial
variation is not governed by variations in N. Around N = 70-80,
the significant fraction varies in a much wider interval (between
0.06, 0.16) than at other N values; the lowest false alarm rates here
are due to the ecliptic poles, where the numbers of observations are
about 80. As the ecliptic pole is the region where aliasing is the
strongest, indicating the strongest dependences in periodograms,
this hints at the significant effect of dependences in the distribution
of periodogram maxima.

A few important practical consequences can immediately be seen.
First, two variable objects with the same light-curve characteristics
and with the same number of observations and signal-to-noise ratio
(SNR) can have different detection probabilities, if located in dif-
ferent sky regions. Secondly, inhomogeneities are present on very
short angular distance scales on the sky, because the shapes of the
histograms are sharply fluctuating on very short distance scales. We
need to account for these spatial inhomogeneities on the sky. The
plots in this illustrative example and theory both suggest that this
should be pursued through a modelling of the distribution G of the
maxima with the help of N and variables characterizing the depen-
dence in the periodogram. In the next section, we present several
different approximations to G, and describe the strategy to model
its spatial variations.

3 METHODOLOGY

3.1 The four approximations to the FAP

There are now several propositions in the literature to obtain a reli-
able FAP for periodicity detection. We will investigate here three of
them: the F method (Paltani 2004; Schwarzenberg-Czerny 2012),
based on the formula G = F¥; the Baluev method (Baluev 2008),
based on high-level excursions of stochastic processes; and the GEV
method (Stiveges 2014), based on univariate extreme-value theory
of random variables. To these, we add a fourth, ad hoc alterna-
tive: we directly estimate some desired limit level (quantile) that
separates periodogram extrema that are significant at the required
confidence level from non-significant ones. We applied the GLS
method as described in Zechmeister & Kiirster (2009) to search for
periods. In this normalization, the marginal distribution of the peri-
odogram is Beta(1, (N — 3)/2) (Schwarzenberg-Czerny 1998), and
the extremum indicating the most likely frequency of a potential
signal is its maximum.

The first three alternatives all attempt to give an approximation
for the distribution of the maximum of the periodogram of a white
noise process as the null distribution. The fourth one, the quantile
method produces only a decision whether or not the found period-
icity is significant, without giving its probability under the noise
assumption. The four alternatives are the following:
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FM method (Paltani 2004; Schwarzenberg-Czerny 2012): this
method approximates the true distribution G of the periodogram
maxima by that of the maxima of an equivalent system of M inde-
pendent frequencies. These frequencies usually cannot be identified
with any subset of real test frequencies, as the periodogram values
are more or less dependent over the whole spectrum. The approxi-
mate null distribution is

Gpn = FM,

where F'is the marginal distribution of the periodogram [Beta(1, (N
— 3)/2) for the GLS used here; Schwarzenberg-Czerny 1998, and
M, the only unknown parameter of the distribution, is the number of
equivalent independent frequencies. M is estimated using simula-
tions; the Paltani—Schwarzenberg-Czerny proposition is to compute
periodograms of a sufficiently high number of noise sequences un-
der the same time sampling, extract their maxima, and then use the
median z,eq Of these maxima to give an estimate for M as

~  log0.5
B log F(chd)‘

After having estimated M for a specific time sampling, the p-value
of an observed periodogram maximum z,s can be given by

p=1—F(za)". )

Baluev method (Baluev 2008): this method is based on the the-
ory of the extremes of continuous-parameter stochastic processes
with beta, Fisher—Snedecor or chi-squared margins. We use here
a variant with beta margins. An upper bound to the FAP is given
using approximations to the right tail of the exact distribution as

_ TN =172 o
P = F =2y VA (= 20 T o, 3

where I'(.) is the gamma function, var(#;) is the variance of the
observation times and f;, is the uppermost test frequency of the peri-
odogram. The derivation assumes a low level of aliasing and spec-
tral leakage, and is best at the lowest FAP values. p-values higher
than 0.05 should be considered only as rough bounds on the actual
p-value, but for p — 0, the method provides good approximations to
the actual p-values when aliases are weak. The above formula does
not contain any unknown parameters, only simple quantities like
the number of time series points or the variance of the observing
times, which makes its implementation and application very fast
and straightforward.

GEV method (Siiveges 2014): a simpler look at the periodogram
considers it as a set of discrete random variables with a particularly
strong interdependence. According to univariate extreme-value the-
ory, the maximum of a set of random variables follows the general-
ized extreme-value distribution (GEV):

G() = Pr{Znwn <2}

_ —1/8
:exp{—<1+§zau) },

EeR, pneR, o>0, (€]

where the distribution function is defined only on z such that 1 + £(z
— p)/o > 0 (for the GLS periodogram the endpoint of the distri-
bution must be 1, that is, u = 1 4+ ¢ /&). This limiting distribution
plays a similar general role for maxima as the Gaussian distribu-
tion for sums and averages, and this remains so for certain types
of dependence. In practice, the GEV approximation works well for
astronomical periodograms when its parameters are estimated indi-
vidually for every time sampling, even though mathematical theory



has yet to prove the dependence in astronomical periodograms to
fall under the general validity condition of extreme-value limits.
The two free GEV parameters £ and o must be estimated for all
individual time series. Once the estimates &, & and p = 1 + 6 /€
have been obtained, the p-value of an observed periodogram peak
Zobs Can be computed as

o\ lE
p:I_G(Zubs)zl_exp{_(l_l'ézoméru) }’ (5)

and can be compared to the pre-specified level «.

Quantile method: this procedure consists of estimating directly
the level z; _ 4, which is exceeded by a maximum produced by a
pure noise sequence with the pre-specified probability «. That is,
Pr(Z > z, ) = «a if Z is the maximum of the periodogram of a
white noise sequence. Fig. 3 shows that this critical level z; _, (the
1 — o quantile) depends on the location, and a direct estimation
of z; _, needs to be done locationwise. Once z; _, is estimated,
the question ‘Is this periodicity significant or not at the level a?’
is equivalent to the question whether the computed z,; is larger or
smaller than z; _,. Thus, this method does not return any p-value,
only gives a yes/no answer to the question of significance, and there
is no quantification how unlikely z,ps is to come from noise. There
are no other parameters to estimate than z; _, itself.

3.2 Parameter estimation

Two of the approximations for G, namely the F and the GEV,
and the quantile method all contain one or more quantities that
should be estimated: £ and o for the GEV, M for the F¥ method
and the quantile z; _ , itself in the quantile method. In principle, the
best way would be to estimate them individually for each observed
sequence, by simulating a large number of noise sequences with the
same marginal distribution as the observations and with the same
time sampling pattern. But as this involves the computation of a
lot of periodograms (of the order of 5-10 in the case of the GEV
method, and hundreds or thousands for the others), this casewise
estimation cannot be applied to all objects of a large survey.

The first substitute for the casewise estimation may be interpo-
lation, if the characteristic cadence patterns on the sky are known
in advance for the survey. We can then simulate a high number
of noise sequences on a sufficiently fine grid on the sky with the
local predicted time sampling, estimate the local parameters of the
chosen method and interpolate them to obtain the parameters at any
other point. However, Fig. 3 shows extremely sharp variations as
a function of ecliptic latitude, which in fact would be even more
violent if all 900 histograms could have been plotted. There is also
at least one important characteristic of the time series that cannot
be expected to be smooth, the number of observations N, which
is inherently discrete. The distribution of the maxima is expected
to depend on it. It follows that simple interpolation in coordinates
might not yield an adequate model.

Nevertheless, for surveys with a fixed prescribed scanning law
like Gaia, these relationships provide a way to avoid costly case-by-
case estimation during the mission at the cost of some preparatory
work. Suppose that we have a representative sample of sky loca-
tions/=1,..., L. We can obtain the observing times in advance for
each, and use a high number of randomly generated white noise se-
quences at these points to infer the required parameter (denoted by
0, the index [ indicating that the parameter is location-dependent).
For all /, we can also compute a set of K good candidate explanatory
variables Xj1, . . ., Xix, which are preferably fast and straightforward
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to compute; they can be sky coordinates, the number of observa-
tions, the variance of the observation times, or any spectral window
feature such as its maximum value in some restricted range of test
frequencies, the value at a frequency corresponding to the domi-
nant cadence of the survey, or sums of its highest peaks. Then if
a relationship 0, = ho(X1, ..., Xu) can be established using these
simulations, the casewise estimation during data processing can be
replaced by a much cheaper computation: for a new time series
during mission, say at location i, we compute the necessary features
Xi1, ..., Xig for the given time series, and then use the estimated
relation hy(Xjy, ..., Xix) to infer the parameter 6. After obtaining
6, the decision about the significance of an observed periodogram
maximum Zz.s can be found from equations (2) and (5) or by a
simple comparison to the obtained quantile.

4 APPLICATION TO THE Gaia SURVEY

4.1 Simulations

We simulated 1500 constant photometric time series and 1500 si-
nusoidally varying photometric time series using AGISLab (Holl,
Lindegren & Hobbs 2012), both with Gaia-like noise (Jordi et al.
2010), at each of 3889 sky positions, with the local Gaia time
sampling, in the following manner:

(1) We selected several different sets of locations:

(1) 900 locations evenly distributed along an ecliptic meridian
between the points (A = —2°, 8 = 0°) and (A = —2°, 8 = 90°);

(ii) on a rectangular grid cutting into the most densely sampled
ecliptic latitude? g = 42°;

(iii) 714 uniformly randomly distributed points over the sky;

(iv) a region including part of the Large Magellanic Cloud near
the south ecliptic pole, where the Gaia scanning law induces strong
aliasing;

(v) randomly scattered points over a quarter of the sky with sparse
sampling (N < 55); and

(vi) randomly scattered points over a quarter of the sky that had
both high aliasing and a low number of points.

The selected 3889 sky positions are shown in Fig. 2 as red dots.

(2) Ateach location, we simulated 1500 independent white noise
sequences and 1500 sinusoidal signals with SNR =0.7 and 1, with
uniformly distributed random frequencies in [0.001, 30] d-!, with
Gaia-like error distribution, and sampled with the local Gaia nom-
inal scanning law.

(3) The full periodogram was computed for every simulated time
series (white noise and signals alike), and the maximum of each
periodogram extracted.

(4) We characterized each location [ by the vector of explanatory
variables {Xji, ..., Xjx}, as described in Section 3.2. The vector
contained the number of observations at [, the variance of the ob-
serving times, the highest spectral window values z4, zg, . . . , Zeg In
smallintervals around 4, 8, . . ., 68 d~! (characteristic Gaia alias fre-
quencies), S = > i< 43,..., 682 and various other sums of subsets
of these peaks, in an attempt to find the best approximation to an un-
known theoretical link between the distribution of the periodogram
maxima and the long-range dependence in the periodogram.

2 The inclination of the spin axis of the satellite was fixed differently for
the mission. As a consequence, the most densely sampled latitude is now at
45°.
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Figure 4. Dependences of the parameters of the FAP methods on two important features of the series of observational times. The 0.95 quantile (left-hand
panel), log ( — &) and log o parameters of the GEV method (middle two panels) and the logarithm M of the F method (right-hand panel) are shown versus
log N. The red to green colours code the value of S, the level of aliasing for the time series.

(5) At each location, we performed the casewise estimation of for 7000 locations randomly scattered on the sky, then fitted sepa-
the parameters of the F*, GEV and quantile methods, using the rate linear models in each class depending only on N; (b) cut-points
1500 noise simulations. in S were used to divide the time series into groups according to

the level of aliasing, then separate linear or non-linear models were
fitted within the groups; (c) we applied non-parametric random for-
est regression (Breiman 2001) using all the possible covariates we
defined for all locations; (d) we fitted 2D thin-plate splines using
N coupled with a spectral window-related covariate; (e) smoothing
splines as a function of N, which can be taken as the univariate
reduction of the thin-plate splines, without a dependence-related
covariate.

These models were fitted using the individually estimated M, &,
0, goos and goo9 at the training set locations. We needed to se-
lect both the best type of models and the best set of explanatory
variables for all the corresponding links M = hy,, & = hy, 6 =
he, Goos = hy,es and Gooo = hy, 4, Which represents a very broad
range of possible models. The random forest regression has some
especially useful features: it is able to fit models with a high number
of covariates without getting unstable, and it yields a measure of
importance about all the covariates, which greatly helps variable
selection. Using the few most important variables according to ran-
dom forest, we fitted the models (b), (c) and (d), together with (a)
and (e), and measured the goodness of the models by their predictive
mean squared error on the model selection set. Plots of the fitted
M, £, 6, §o.95 and g o9 against the individually estimated param-
eters were also inspected in order to avoid to select low-scatter, but
biased estimators.

The choice of model variables reflects the lack of theoretical
background: it is made purely on the grounds of predictive power
and parsimony. Nevertheless, when S was among the best candidate

We divided the 3889 locations into three parts. The points of
the line [region (i) above, see Fig. 2] and a band of the densely-
sampled rectangle [region (ii) above], in total 1329 points, were
selected for a training set. The casewise estimated parameters
at the training set locations were used to fit several alternative
models for each of the relationships M= hy(Xq, ..., Xp), é =
he(Xi, ..o, Xi), ooy G099 = hgyoo (X1, ..., Xy); these alternative
models are described in more details in Section 4.2. All fitted models
were then applied to 1280 locations randomly chosen from the re-
maining locations [the rest of region (ii) and (iii)—(vi))], and the best
one for each of hy, he, hg, hyy . and kg, was chosen according to
their performance in reproducing the casewise estimated parameter
values. Finally, the selected models were applied to the 1280 sky
positions not used so far, in order to compare their performances on
an independent test set.

Since there is no theory predicting the precise form of the func-
tions hy, we wanted to avoid unnecessary extrapolation as much
as possible, so we selected the subsets above such that training,
selection and test sets all had sufficient coverage of the whole space
of {X, ..., Xk} For instance, the number of observations were in
[45, 235], [42, 231] and [43, 237] for the training, model selection
and test set, respectively, while the sum § was within [5.7, 11], [5.7,
10.8] and [5.7, 11.1] in the three sets.

4.2 Model fitting

Fig. 4 gives a glimpse into the dependence of the parameters of variables, we preferred it to other, more particular choices such as
the FAP methods on two of the possible variables, N and the sum a spectral window value at a specific frequency, since S is a good
S=icqas . 6s32-Forzi _,, & ando, thereis a well-constrained general summary of the strength of the dependence between two
monotone relationship between the number of observations in the distant frequencies.
time series and the parameter in question; the link between M and For the three methods that have parameters to estimate, the best
N is rather diffuse, as the dependence on N is at least partly already models found are the following.
accounted for by F. The relationships for the GEV parameters are
not linear, despite the deceptive impression. Moreover, the relation- FM method: in agreement with the impressions from the right-
ships for all parameters seem to vary somewhat as a function of most panel of Fig. 4, we selected a relatively complex model with
S, indicated on the plots by colour. For M, this variation is at least four variables, N, var(f) and two spectral window-related quantities:
as important as the variation with N; for the GEV and the quantile the sum of spectral window values at nine pre-specified characteris-
methods, it seems only secondary. tic frequencies, Sy, and the sum of the highest three spectral window
In the absence of a theory for the relationship between N, spec- peaks Sy 3 within the range [0, 70] d~'. There were many nearly
tral window summaries and the parameters z; 4, §, o and M, equivalent choices, with only marginally worse performance. The
several options were tried, ranging from parametric to global non- final model is taken to be this four-variate random forest model
parametric models: (a) we classified the spectral windows obtained M = hy (N, var(t), So, Smax.3)- Fig. 5 shows a projection on the
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Figure 6. The dependence of £ and o on the explanatory variables in the
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parameters. The two-dimensional thin-plate spline fit is shown as contour
lines.

two-dimensional subspace spanned by Sy and log N, with the value
of log M colour-coded.

GEV method: for both parameters of the GEV method, the best
model in terms of predictive power turned out to be the thin-plate
spline with covariates N and S. An overview of the fit is given in
Fig. 6, where the values of the individually estimated parameters are
colour-coded over the plane (log N, S). The fitted thin-plate spline
model is superposed as contour lines. Their inclination confirms
that to know the parameters of the GEV, the sole knowledge of
N would not be sufficient: to estimate £ and o, we also need the
value of S. Indeed, if we use the smooth spline model without S,
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value of parameters. The two-dimensional thin-plate spline fit is shown as
contour lines.

the fraction of significant p-values on noise sequences becomes
increasingly downward biased as aliases grow, and in the highly
aliased region around the ecliptic pole, this bias shows a pattern
similar to the Baluev method (bottom third panel of Fig. 9). The
fractions become near-independent of region as shown in the bottom
second panel of Fig. 9, once § is included in the fit.

Quantile method: for the two quantiles, we selected the same
covariates as for the GEV (N and S) among several nearly equivalent
candidates. The fitted models are presented in Fig. 7. In this case,
the contour lines of the fit seem to be almost parallel to the S-axis,
implying that we should not find strong effect of aliasing on the
results. Despite this, the p-values computed on noise sequences
show a bias similar to that of the Baluev method or the smooth
spline-modelled GEV: in high-aliased regions, their fraction drops
below the nominal levels, though the effect is weaker than for those
two models. Consequently, we decided to keep S as a model variable.

4.3 Quality assessment of the FAP methods

‘We compared the best models selected in Section 4.2 through their
statistical size and power, using the noise simulations for the first
and noisy signal simulations for the second at the test locations.

4.3.1 Statistical size

The statistical size is the probability o of a Type I error: that we
get a significant test statistic value, although the zero hypothesis is
true. In other words, we make a false discovery of a periodicity in
noise. The desired value « for a test is always fixed in advance, as
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the fraction of false detections we allow when applying our tests to
white noise sequences. However, it is necessary to make sure that
whatever « we may wish to fix in the future, the true proportion of
the false discoveries among noise sequences is indeed close to . As
was already discussed in Section 2.1, this hinges on a sufficiently
good knowledge of the distribution of the test statistic under the
zero hypothesis. If this is unsatisfactory, the p-values computed for
any observed periodogram peak z,ps will be false, and we either find
a lot of contaminating constant stars in the periodic sample, or we
lose a higher than expected truly periodic sources in the low-SNR
regime. The first criterion of FAP methods is therefore the quality of
their approximation to the true zero distribution of the periodogram
peaks.

To check this, we used the periodogram maxima of the noise
sequences simulated at each of the 1280 test set locations. For
all of them, we computed the p-values according to each of the
models selected in Section 4.2. The general quality of the approxi-
mate distributions was visualized by taking the histograms of these
p-values, and comparing them to the uniform distribution. Fig. 8
depicts these histograms at 50 randomly selected test locations.

The overall quality of the approximate distribution is the best for
the GEV method, though there are some systematic discrepancies
for both very low and very high p-values. The distortion at high
p-values, which do not cause any contamination in a p-value-
selected periodic object sample, is not interesting from the practical
point of view. At the low p-value end, we find slightly fewer values
than expected, which means that the approximate distribution some-
what overestimates the p-values when they are low; this suggests
that the FAP based on the GEV will be slightly conservative, tend-
ing to give a bit fewer detections than the true distribution would
do.

The other two methods have more serious deformations as com-
pared to the uniform distribution. However, the Baluev approxi-
mation is not intended to be a true p-value, but an upper bound
on its true unknown value. Its discrepancies are concentrated at
the uninteresting high p-values, and, agreeing with the findings in
Baluev (2008), at low p-values it might be used as an approximate
p-value. Its performance there is similar to that of the GEV method,
somewhat even more conservative.

The approximation F¥ has a systematic curvature throughout the
interval [0, 1], and underestimates p-values, yielding about 1.5 times
more false positives than «. The quantile method does not give
p-values, so there is no corresponding histogram in Fig. 8.

As there seem to be some, at least slight, discrepancies in the
approximate distributions by all methods, it is important to assess
how these depend on the features of the time samplings, how they
are distributed over the sky, and whether they are capable of causing
systematic biases in the detection probability of low-SNR periodic
objects as a function of sky position. For all sky positions, we
computed the number of p-values falling below 0.05 (significant at
the level @ = 0.05) and those below 0.01 (significant at the level
o = 0.01). Fig. 9 shows these fractions as functions of the number
of observations and of the absolute value of the ecliptic latitude. As
the 0.95 and the 0.99 quantiles were modelled, the quantile method
too could be checked by these means.

One of the covariates in the models is NNV, the number of obser-
vations in the time series. If the models found in Section 4.2 are
sufficiently good, we do not expect much residual variation of the
fraction of significant p-values with respect to N. Indeed, this is
confirmed in the top row of Fig. 9, with only slight discrepancies:
the GEV method seems to be more conservative than average for
low N, whereas the Baluev one is more conservative for high N.
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Figure 8. Histograms of p-values produced by the Baluev (top), the thin-
plate spline GEV (middle) and the random forest F (bottom) approximation
to the zero distribution of the periodogram peaks. The broken black lines
correspond to the histograms of obtained p-values (we omit the vertical
lines of the bars for better visibility). The values in the last bin of the Baluev
method are scattered between 0.4 and 0.7; they were cut in order to better
distinguish details in the lower p-value ranges. The red line represents the
expected flat histogram; the more similar the black histograms are to this
line, the better the quality of the distributional approximation is.

Another set of exceptionally low false alarm rates is present at N
€ [60, 90] for the Baluev method. For both methods, the effect is
weaker for lower «. The quality of the modelling depends also on
the number of sparsely sampled time series used, so some improve-
ment for the GEV can be expected if we include more locations with
sparse sampling into the training set (our present choice overrep-
resented the densely sampled time series). Unfortunately, no such
improvement can be expected for the Baluev method, where the
dependence on N is fixed, and there is no free parameter to adapt.
The higher false alarm rate of the F¥ method, indicated by Fig. 8,
is more or less homogeneous over N; it is not obvious whether the
impression of higher rates at low N is significant or not. The most
homogeneous and best-performing method with the least bias is the
quantile method — perhaps not surprisingly, as it is a direct model for
the limit between significant and non-significant, and not a model
for the whole distribution of periodogram maxima.

Dependence on sky location was not explicitly included in
the models, so to check homogeneity with respect to celestial
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Figure 9. False alarm rates of the four methods on 1500 simulated noise sequences at 2248 test locations at confidence level o = 0.05 (light grey line) and
a = 0.01 (dark brown line), as a function of the number of observations N (top row) and the ecliptic latitude (bottom row). The black circles show the fraction

of noise sequences found significantly periodic at the level of & = 0.05, the red triangles are those significant at « = 0.01.

coordinates is important. Due to a rough rotational self-similarity
of the patterns around the ecliptic axis and the similarity of the two
hemispheres (see Fig. 2, dependences on the absolute value of the
ecliptic latitude are sufficient for the most important effects. The
bottom row of Fig. 9 shows this dependence. Again, the quantile
method shows the least systematic variation, followed by the GEV.
The FM method has a weak smooth variation with a minimum false
alarm rate around ecliptic latitudes 60°. The Baluev method shows
a decrease of false alarm rates in the pole regions, due to the fact
that the Baluev approximation is built on the assumption of weak
aliasing. In the pole regions the time samplings are close to peri-
odic; the spectral windows of these cadences have high peaks at
several multiples of the Gaia spin frequency up to high frequencies,
as Fig. 1 shows. The lower false alarm rates around N € [60, 90],
seen in the upper row of plots in Fig. 9, are due to these locations.
Since the formula for the Baluev FAP does not depend on anything
else than N, further modelling cannot correct for this bias.

The spatial patterns of the same false alarm rates in the region of
dense sampling [region (ii) in the list of Section 4.1] are presented
in Fig. 10, for « = 0.05. The fraction of false alarms is shown by the
colour, white denoting fractions equal to the required level «, red
indicating too many false alarms, blue too few of them. A homo-
geneous white colour on the map implies a good-quality method.
A map of the number of observations at the locations is given on
the left, in order to compare the patterns of false alarm fractions
with those of N. The maps confirm the main conclusions from the
previous plots, including the (formerly uncertain) impression that
the Baluev FAP is increasingly conservative with increasing N: the
bluest regions coincide with the most densely sampled regions. For
the GEV method, there is some tendency of the bluest regions to
roughly follow the regions with sparse time sampling, again corrob-
orating the impression of Fig. 9, though the effect is very weak. The
quantile method and the F* methods show the weakest systematic
sky effects, either correlating with NV, or independent of it.

The spatial distributions of the false alarm rates in region (iv), at
the ecliptic latitude of the Large Magellanic Cloud, are shown in
Fig. 11. The variations in N in this region are less important than in

region (ii), but the alias strengths are increasing steadily between
ecliptic latitudes 80° and 90°, as the leftmost panel shows. Neither
the GEV nor the F method has discernible correlation with the alias
strength, which indicates that most of the variation is accounted for
by including dependence-related variables in the fit. The false alarm
rates of the Baluev method decrease with increasing alias strengths,
as expected from Fig. 9. Surprisingly, the quantile method shows
a similar effect, though this was not obvious from Fig. 9, and the
fit for the quantiles also contain a dependence-related covariate.
However, the effect is weaker than for the Baluev method, as can
be seen from the generally whiter shades in the panel showing the
quantile method results than those in the panel corresponding to the
Baluev method.

In summary, the distributional quality seems to be generally best
for the GEV method. The Baluev method provides a good approxi-
mate distribution in the regime of very low p-values, despite strong
overall distortions. Both are slightly conservative. The quality of
approximation is the worst for the F* method, as it has a gen-
eral tendency to overestimate the significances (underestimate the
p-values). Sky systematics are the strongest for the Baluev method,
and relatively weak or very weak for the other three.

4.3.2 Statistical power

Statistical power measures the capacity of a method to reject the
zero hypothesis when it is not true. This quantity is in general hard
to compute, most importantly because the alternative hypothesis
is usually a composite hypothesis comprising a range of possi-
ble alternatives. Simulations for specific cases can be done, in the
hope that they yield insight into what can be expected under more
involved realistic situations. We used our signal simulations (de-
scribed in Section 4.1) at the 1280 test locations. Fig. 12 shows a
general overview of the results for signals with SNR = 1 and using
a = 0.05. The left-hand panel shows the fraction of all detections,
both correct and incorrect, by each of the methods, as a function of
the number of observations N in the time series. In agreement with
the results on the false alarm rate given in the previous section, the
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Figure 10. Spatial distribution of false alarm rates on the rectangle near the ecliptic equator by the four methods. The grey-scale panel on the left shows
the number of observations, while the other four panels show the fraction of false positives among noise sequences, using a common colour scale. White
corresponds to the nominal & = 0.05.
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to the nominal & = 0.05.
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Figure 12. Detection and correct detection rates of the four methods on weak signals. Left-hand panel: fraction of all detections on a large number of simulated
sinusoidal signals with SNR =1. Middle panel: the fraction of correct detections among all processed time series. Right-hand panel: the ratio of correct
detections to false detections. In all panels, black squares refer to the Baluev method, red stars to the quantile method, blue dots to the GEV method, grey
circles to the FM method.

F™ method produces the highest fraction of detection (grey circles), the highest number of correct detections. However, these correct
while the Baluev method yields the lowest (black squares). detections come at the cost of an even higher number of false de-

The middle panel of Fig. 12 presents the fraction of correct de- tections, as the third panel shows: the ratio between correct and
tections among all the signal sequences. This is, as expected, the incorrect detections is the lowest for the F method, and highest
highest for the FM method, and the lowest for the Baluev method, for the Baluev method. The difference between the ratios obtained
which implies that a sample selected by the F* method will contain by the four FAP methods is very small for small and near-average
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Figure 13. Spatial view of the detection rate (top row) and of the ratio of correct detections to incorrect detections (bottom row) on the rectangle at 1 = 42°
by the four methods, on 750 simulated sinusoidal signals with SNR =1. The leftmost, grey-scale panels show the number of observations (top) and the sum of
the dominant spectral window peaks (bottom). The other four panels in the top row show the fraction of sequences with detected periodicity by the different
methods, regardless of correct or false found frequency. In the bottom row, the panels show the ratio using a common colour scale. White corresponds to r = 2,
blue to ratios higher than this and so lower contamination, red to lower ratios and thus higher contamination.

N, where the detection score is anyway very low for this SNR, but
increases at high N where there is a more substantial chance to
discover the signal in the noise.

Spatial distributions of the detection rate and the correct/incorrect
detection ratio in the densely sampled X = 42° and the highly aliased
polar regions are also shown in Figs 13 and 14, respectively. For
the rectangle around A = 42°, where the variations in the number
of observations are more important than the variations in the level
of aliasing, Fig. 13 suggests that the main driving force behind the
variations in both the number of detections and the correct/incorrect
detection ratio is the number of observations, as the patterns in the
four right-hand side panels follow the patterns of the map of N in
the top-left panel, rather than the patterns of S in the bottom-left

panel. Apart from this, the plots confirm both conclusions drawn
from Fig. 12 as to the slightly higher number of detections and the
slightly worse correct/incorrect ratio of the F* method as compared
to the other three methods. Those perform quite similarly, only with
tiny differences, which are more visible in Fig. 12.

Similar conclusions can be drawn from Fig. 14 showing the polar
region, though with minor differences. With the numbers of observa-
tions characteristic of this region, the average detection rate is barely
above the respective false alarm rates of the methods (o = 0.05 was
used), and it is found to be quite homogeneous within the region.
The ratio between correct and incorrect detections does seem to vary
with N and S, although it is generally very low, at most 20 per cent
of the detections are correct. The changes with N are obvious for
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Figure 14. Spatial view of the detection rate (top row) and of the ratio of correct detections to incorrect detections (bottom row) in the polar region by the
four methods, on 1500 simulated sinusoidal signals with SNR =1. The leftmost, grey-scale panels show the number of observations (top) and the sum of
the dominant spectral window peaks (bottom). The other four panels in the top row show the fraction of sequences with detected periodicity by the different
methods, regardless of correct or false found frequency. In the bottom row, they show the ratio using a common colour scale. White corresponds to r = 0.04,

blue to ratios higher than this and so lower contamination, red to lower ratios and thus higher contamination.

all methods. The variations with S are much less evident; neverthe-
less, the average ratio seems to decline from A = —80° to the south
ecliptic pole, apparently following an average increase of S, while
the average N is fairly homogeneous throughout the region.

In summary, whereas the F¥ method gives the highest absolute
number of detections and of correct detections due to its generally
permissive behaviour, its ratio of correct and incorrect detections is
the least favourable among the four methods. The Baluev method
provides the best correct/incorrect ratio, but in general, there is a
small (~ few per cent) loss in the number of sources identified with a
correct significant frequency compared to the F method. The GEV
and the quantile methods perform very similarly to the Baluev one,
with a slightly worse correct/incorrect ratio.

5 DISCUSSION

We studied the problem of periodicity detection in large surveys,
using the Gaia case to demonstrate the issues and to assess the
proposed solutions. Three FAP methods were implemented and
tested from the literature: the proposition of Paltani (2004) and
Schwarzenberg-Czerny (2012), that of Baluev (2008) and that of
Stiveges (2014), which were all applied to the periodograms from
the GLS period search method, one of the most reliable methods
used nowadays in astronomy. We tested also a direct estimation of a
critical value between significant and non-significant periodicities
corresponding to a fixed confidence level « [the (1 — «)-quantile].

The quantile method, the F* method of Paltani—-Schwarzenberg-
Czerny and the GEV method of Siiveges involve parameters which
depend on the time sampling, and therefore, for the Gaia survey,
vary over the sky. Thus, these parameters must be estimated individ-
ually for each sky position, or equivalently, for each time sampling.
As these functions are strongly varying over short distances, we
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related the variations in the parameters to the number of obser-
vations and the sum of the most characteristic peaks in the lo-
cal spectral window instead of sky coordinates. We tested several
regression-type procedures to obtain these relations, and selected
the best-performing procedure for the parameters of each of the
three FAP methods.

The features and typical performances of the FAP methods, each
using the parameters estimated from the best-performing procedure,
are summarized in Table 1. The differences between the models are
in majority small, apart from one: the generally too permissive
behaviour of the F* method.

The Baluev method provides good FAP estimations in the inter-
esting low p-value regime with some systematics only at the most
highly aliased or most densely sampled time series, while not re-
quiring any pre-processing. Thus, it is the least costly but reliable
choice for period searches performed on large data bases, and can be
performed also when a sufficiently good model for the parameters
of the other three methods cannot be constructed.

In terms of unbiasedness and sky systematics, the GEV and the
quantile methods are the best. However, the quantile method deliv-
ers only a decision ‘significant/non-significant’ referring to a single
confidence level fixed in advance, whereas the GEV method pro-
duces a p-value which can be compared to any desired «, and is
the most reliable among the three distributional methods. Both the
GEV and the quantile methods require a preliminary construction
of models for their parameters. Once a model with good predic-
tive qualities is found, the GEV parameters or the quantile can be
computed for all time series at small cost. If such a model can-
not be found for the typical observational cadences of a data base
of time series, the parameters must be estimated individually; in
that case, the quantile method can require a very high number of
full periodogram calculations depending on the desired «, whereas



Table 1. Comparison of the four FAP methods.

Significance of periodicities

2065

FM method

Quantile method

GEV method

Baluev method

Supporting theory

Pre-processing

Distribution

Output

Contamination rate

Sky systematics

Robustness

Independence-based

Model fitting on a training
set of simulated noise.
Moderate number of
simulations required.

Approximate distribution
distorted

p-value

High (too permissive)

‘Weak

Sensitive to distributional
discrepancies or outliers

None

Model fitting on a training
set of simulated noise.
Moderate—high number of
simulations required;
number depends on «.

No approximate distribution

Yes/no decision

Low

Weak

Insensitive to distributional
discrepancies, adaptable to

Extreme-value theory:
maxima of univariate
dependent variables

Model fitting on a training
set of simulated noise.
Moderate number of
simulations required.

Generally good
approximate distribution

p-value

Low (slightly conservative)

Weak

Insensitive to distributional
discrepancies, adaptable to

Extreme-value theory:
upcrossings of stochastic
processes

Pre-processing not needed

Approximate distribution
good at p-values <0.01

p-value

Lowest of all (a bit more
conservative than GEV)

Moderate

Sensitive to distributional
discrepancies or outliers

outliers

outliers

the GEV method needs the time equivalent to several (~10) peri-
odogram computations (Stiveges 2014).

The FM method, in general, underestimates the p-values, and thus,
overestimates the significances of the periodogram peaks. However,
this effect is quite homogeneous over the sky, and there are only
weak systematic location-dependent effects. Like the GEV and the
quantile methods, it needs a preliminary model fitting for M, and
while the models for the first two contain variables that are at
least heuristically arguable (N determines the tail of the marginal
distribution of the periodogram, while S characterizes the average
strength of dependence in the periodogram), the variables necessary
for modelling M seem to be more ad hoc.

The number of detected weak signals is the highest for the F¥
method, similarly to the number of weak signals detected with cor-
rect frequency, though, due to its too permissive behaviour, the
correct detections are hidden in a larger sample of detections. The
rate of correct detections among all detections is the best for
the Baluev method, and the worst for the F¥ method.

The above methods differ from each other in their generalizabil-
ity to other period search methods and for other surveys than Gaia.
The Baluev method is given originally for variants of the least-
squares method, with three different normalizations (Baluev 2008).
Any periodogram derived from other period search methods should
be checked if they have margins compatible with one of these nor-
malizations. The FM method can be used in every case when the
marginal distribution F of the periodogram is known. The GEV
method can be used in principle for any periodogram type which
indicates the best frequency with a maximum; periodograms which
indicate it by their minima can be dealt with by transforming them
to be maxima, for example multiplying the periodograms by —1.
Another advantage is that it is unnecessary to know the marginal
distribution F of the periodogram. The predictive regression models
must then obviously be set up using the maxima of that specific kind
of periodograms.

As for the extendability of the model building to surveys with dif-
ferent typical time samplings, unfortunately there are no theoretical
indications for the direct estimation of the parameters of any of the
methods based on the full joint probability distribution of the peri-
odogram. However, there are suggestions from theory that the two

most influential factors must be the tail of F' (hence the dependence
on N for the GLS in this study), and something that characterizes
the strength of dependence in the periodogram (hence our choice
of spectral window features). Thus, a visualization of individually
estimated parameters at a relatively small random set of time sam-
plings of the survey against N and spectral window features can be
informative whether such modelling is promising enough.

Our findings, in summary, favour two methods of FAP calcu-
lations. One is the GEV method, which yields an overall good
performance with weak systematic inhomogeneities over the sky,
and can be combined with most period search methods, but needs
the setting up of a model for its parameters in a pre-processing step.
The other is the Baluev method, which shows some systematic bias
over the sky according to the varying strength of aliasing, and can
be used only for methods with specific margins, but does not re-
quire any pre-processing, and can be computed during processing
practically instantaneously. Both methods thus seem to make good
progress towards the solution of the question of FAPs in the special
case of large surveys.
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