
 The stress phytohormone ABA inhibits the developmental 
transition taking the mature embryo in the dry seed towards 
a young seedling. ABA also induces the accumulation of 
the basic leucine zipper (bZIP) transcription factor ABA-
insensitive 5 (ABI5) which, apart from blocking endosperm 
rupture, also protects the embryo by stimulating the 
expression of late embryogenesis abundant ( LEA ) genes 
that conferred osmotolerance during seed maturation. It is 
unknown whether ABA recruits additional embryonic 
pathways to control early seedling growth and fi tness. 
Here we identify  gia3  ( growth insensitive to ABA3 ), a recessive 
locus in Arabidopsis mediating cotyledon cellular maturation 
and ABA-dependent repression of cotyledon expansion and 
greening. Microarray studies showed that expression of the 
essential mid-embryogenesis gene  Maternal Embryo Effect 26  
( MEE26 ) is induced by ABA during early seedling growth in 
wild-type (WT) or  abi5  plants but not in  gia3  mutants. 
However, we also show that the  GIA3  locus controls 
ABA-dependent gene expression responses that partially 
overlap with those controlled by  ABI5 . Thus, the  gia3  
locus identifi es an additional arm of ABA signaling, distinct 
from that controlled by ABI5, which recruits  MEE26  
expression and maintains cotyledon embryonic identity. 
Fine mapping localized the  gia3  locus within a 1 Mb interval 
of chromosome 3, containing a large DNA insertion of a 
duplicated region of chromosome 2. It remains unknown at 
present whether  gia3  phenotypes are the result of single or 
multiple genetic alterations.  
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polymorphic sequence   ;     Col  ,    Columbia ecotype   ;     DOG1  ,    DELAY 
OF GERMINATION 1   ;     GIA3  ,      growth insensitive to ABA   ;       HRGP  ,   
   hydroxyproline-rich glycoprotein   ;       LEA  ,      late embryogenesis 
abundant   ;     MEE  ,    maternal embryo effect   ;       TAC  ,    transformation-
competent artifi cial chromosome   ;     SSLP  ,    simple sequence length 
polymorphism   ;     TAIL-PCR  ,    thermal asymmetric interlaced-PCR   ;   
    Ws  ,      Wassilewskija ecotype   ;       WT  ,      wild type.         

 Introduction 

 The emergence of seeds during evolution facilitated the wide 
distribution of fl owering plants. Quiescent and desiccation-
tolerant features of seeds enable plants to pause their lifecycles 
in the face of unfavorable conditions. The desiccation tolerance 
of a dry seed is notably implemented by massive accumulation 
of osmoprotectants during the maturation phase of embryo-
genesis, which starts after embryo morphogenesis. The accu-
mulation of these proteins, such as late embryogenesis 
abundant (LEA) proteins, during late embryogenesis is regu-
lated by transcription factors such as ABA-insensitive 3 (ABI3) 
and ABI5 ( Lopez-Molina and Chua 2000 ,  To et al. 2006 ). At 
the fi nal stage of embryogenesis, the embryo undergoes pro-
grammed desiccation and dormancy, which are positively 
regulated by the phytohormone ABA and  DELAY OF 

GERMINATION 1  ( DOG1 ), encoding a protein of unknown 
function ( Bentsink et al. 2006 ). 

 Upon seed stratifi cation (i.e. chilling and water imbibition 
in darkness), which breaks seed dormancy, a rapid decrease 
in the expression of osmoprotectants (e.g.  LEA  gene expression) 
is observed, which is soon followed by germination ( Parcy 
et al. 1994 ,  Lopez-Molina et al. 2002 ). The early growth 
processes — concomitant endosperm rupture and embryonic 
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axis elongation (i.e. germination) in turn followed by cotyledon 
expansion, greening and, fi nally, onset of vegetative growth — 
represent a major developmental transition in the life cycle of 
Arabidopsis. 

 During the early growth process, the plant faces a fragile 
transition since it gives up the highly protective state of the 
mature dry seed in order to develop into a young seedling. 
Under normal conditions, these steps are completed within 
48 h upon seed stratifi cation. However, during this time 
window, a sudden osmotic stress or exogenous ABA, which 
signals osmotic stress, severely delays or arrests growth so that 
the transition to the vegetative seedling state is prevented 
( Lopez-Molina et al. 2001 ). Growth-arrested embryos express 
de novo genes encoding late embryonic proteins such as 
osmoprotectants (e.g. the  LEA  genes  AtEm1  and  AtEm6 ) and 
retain osmotolerance as long as osmotic stress or ABA is 
present ( Lopez-Molina et al. 2001 ,  Lopez-Molina et al. 2002 ). 
Thus, when a germinating seedling encounters osmotic stress, 
its growth will be inhibited and embryonic programs will be 
reinitiated in response to ABA, thus preventing the plant from 
precociously entering the vulnerable seedling state. 

 Importantly, ABA can arrest growth only during a limited 
time window of about 48 h; once the seedling establishes vege-
tative growth, ABA is no longer effective to prevent growth. 
The basic leucine zipper (bZIP) transcription factor ABI5 is 
required for the stimulation of  AtEm1  and  AtEm6  transcription 
in response to ABA during the 48 h time window upon stratifi -
cation, and  abi5  mutants are insensitive to ABA-dependent 
inhibition of endosperm rupture (i.e. radicle protrusion out of 
the seed coat) ( Finkelstein and Lynch 2000 ,  Lopez-Molina and 
Chua 2000 ,  Piskurewicz et al. 2008 ). The molecular genetic pro-
cesses sustaining this time window of plant developmental 
plasticity are poorly understood. 

 To gain more insight about the physiological and develop-
mental role of this time window, we performed a genetic 
screening to isolate mutants whose germination and early 
growth is insensitive to ABA. We describe here a novel recessive 
ABA-insensitive locus:  growth insensitive to ABA3  ( gia3 ). The 
 gia3  locus was fi ne-mapped to a 1 Mbp region in chromosome 
3 where there were no previously reported ABA-insensitive loci. 
Mapping analysis of the  gia3  locus revealed the existence of a 
large duplicated fragment of chromosome 2 (5.7 Mbp) inserted 
in the chromosome 3 interval containing the  gia3  locus. 

 The study of  gia3  mutants revealed the existence of a novel 
and specifi c ABA-dependent signaling pathway that can be 
phenotypically and molecularly separated from that of 
 ABI5 . In particular, we found that the expression of the mid-
embryogenesis gene  Maternal Embryo Effect 26  ( MEE26 ) is 
induced by ABA in wild-type (WT) and  abi5  plants during the 
time window, but not in  gia3  mutants. Our results strengthen 
the notion that ABA-dependent growth arrest is associated 
with the maintenance of embryonic identity, including cell wall 
composition and morphology, to protect the plant from 
environmental stresses. Surprisingly, our studies also revealed 
that expression of  DOG1 , which positively regulates dormancy 

( Bentsink et al. 2006 ), is induced in  gia3  and  abi5  in response 
to ABA, suggesting the existence of cross-talk between 
ABA-dependent growth arrest pathways and seed dormancy 
pathways.   

 Results  

 The   gia3  mutation is recessive and behaves 
as a single genetic locus 
 Arabidopsis mutants resisting the growth-inhibitory effects 
of ABA were fi rst isolated by  Koornneeff et al. (1984) . The 
original screen focused in identifying  abi  mutant plants whose 
germination (i.e. rupture of the endosperm) is resistant to high 
ABA concentrations ( Koornneef et al. 1984 ). Using high ABA 
concentrations has the drawback of severely delaying germina-
tion so that mutations in genes mediating ABA-dependent 
responses after endosperm rupture (e.g. cotyledon expansion 
and greening) might be overlooked in the screen. 

 We wished to identify mutations affecting ABA-dependent 
responses throughout the entire period of seed germination 
(i.e. concomitant endosperm rupture and radical protrusion) 
and post-germination (i.e. further embryonic axis elongation, 
cotyledon expansion and greening). We lowered the ABA 
concentrations (3 µM) so that, although delayed, germination 
eventually takes place, which facilitates monitoring of cotyle-
don expansion and greening in response to ABA. Mutations 
obtained in this manner are termed  GIA  ( Growth Insensitive to 

ABA ). This approach led to the identifi cation of two recessive 
loci:  gia1 , a novel allele of  abi5  ( Lopez-Molina and Chua 2000 ), 
and  gia3  (this report).   

 Phenotypic characterization of  gia3  mutant 
responses to ABA 
 Under normal conditions seed germination and early seedling 
growth proceeded indistinguishably between WT and  gia3  
plants (      Fig. 1A ). 

 Endosperm rupture in  gia3  mutant seeds was moderately, 
but signifi cantly, insensitive to ABA relative to WT seeds 
( Fig. 1B ). For comparison, we also measured endosperm rup-
ture in  abi5  seeds, previously shown to be markedly insensitive 
to ABA for endosperm rupture ( Fig. 1B ) ( Piskurewicz et al. 
2008 ). The double mutant  gia3 / abi5  was more insensitive to 
ABA than  gia3  or  abi5  ( P  < 0.05), suggesting that each locus 
independently participates in repressing endosperm rupture 
in response to ABA ( Fig. 1B ). 

 In contrast,  gia3  mutants displayed marked resistance to 
ABA for cotyledon expansion and chlorophyll accumulation, 
which was delayed similarly in WT embryos ( Fig. 1A, C ). In the 
presence of ABA, relative chlorophyll accumulation was com-
parable in  gia3  and  abi5 , but not in  gia3 / abi5  double mutants, 
which accumulated about 2-fold more chlorophyll relative 
to single mutants ( Fig. 1C ,  P  < 0.05). Thus, each locus indepen-
dently participates in repressing chlorophyll accumulation in 
response to ABA ( Fig. 1C ). 
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 Fig. 1      Isolation and characterization of  growth insensitive to ABA 3  ( gia3 ), a novel ABA-insensitive locus. The  GIA3  locus is necessary to repress 
chlorophyll accumulation and cotyledon expansion in response to ABA. (A) Representative pictures showing WT and  gia3  plants, 7 d after seed 
stratifi cation in the absence (MS) or presence of 3 µM ABA (ABA). On ABA, the seed coat was removed for better comparison. (B) The percentage 
of endosperm rupture in populations of WT,  gia3 ,  abi5  and  gia3/abi5  seeds was scored 72 h after seed stratifi cation in the absence (white bars) or 
presence of ABA (5 µM, gray bars). Standard deviations are shown ( n  ≥   25). Asterisks indicate a signifi cant difference between the WT and the 
mutant, based on a two-tailed  t -test ( P  < 0.05). (C) Relative chlorophyll accumulation in WT,  gia3 ,  abi5  and  gia3/abi5  seeds 10 d after seed 
stratifi cation in the absence (white bars) or presence of ABA (5 µM, gray bars). Standard deviations are shown ( n  ≥   50). Asterisks indicate 
a signifi cant difference between the WT and the mutant, based on a two-tailed  t -test ( P  < 0.05). (D) Relative cotyledon expansion in WT,  gia3 , 
 abi5  and  gia3/abi5  embryos 48 h after seed stratifi cation and 24 h after transfer to a medium without (white bars) or with ABA (50 µM, gray bars). 
Standard deviations are shown ( n  ≥   14). Asterisks indicate a signifi cant difference between the WT and the mutant, based on a two-tailed  t -test 
( P  < 0.01). (E) Relative chlorophyll accumulation in WT,  gia3 ,  abi5  and  gia3/abi5  seeds 5 d after seed stratifi cation and 4 d after transfer to 
a medium without (white bars) or with ABA (2 µM, gray bars). Standard deviations are shown ( n  ≥   25). Asterisks indicate a signifi cant difference 
between the WT and the mutant, based on a two-tailed  t -test ( P  < 0.05).  

 These observations suggested that  gia3  mutants are specifi -
cally defi cient in repressing the post-germination steps of 
cotyledon expansion and greening in response to ABA. 
This hypothesis was further explored by examining embryo 
development after transfer to a medium containing ABA upon 
endosperm rupture ( Fig. 1D, E ).  Fig. 1D  shows that WT cotyle-
don expansion was strongly delayed by ABA, being about 20 %  
of that observed in the absence of ABA, remarkably,  gia3  
mutant cotyledon expansion exhibited pronounced resistance 
to ABA, being about 70 %  of that observed in the absence of 
ABA ( Fig. 1D ). In contrast,  abi5  mutant cotyledon expansion was 
not resistant to ABA, being comparable with the WT ( Fig. 1D ). 

Cotyledon expansion in  gia3 / abi5  double mutant seeds 
retained the same resistance to ABA as  gia3  single mutant 
seeds ( Fig. 1D ). 

 Unlike cotyledon expansion, chlorophyll accumulation 
was similarly resistant to ABA in both  gia3  and  abi5  mutant 
seeds ( Fig. 1E ). Moreover, resistance to ABA further increased 
in  gia3 / abi5  double mutant seeds, with chlorophyll levels 
virtually identical to those found in the absence of ABA 
( Fig. 1E ,  P  < 0.05). 

 Taken together, these observations support the notion that 
ABA-dependent repression of cotyledon expansion is specifi -
cally impaired in  gia3  mutants. In addition, ABA-dependent 
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repression of endosperm rupture and chlorophyll accumula-
tion is separately impaired genetically between  abi5  and  gia3  
mutants.   

 Physical mapping of the gia3 locus 
 The  gia3  and  abi5  mutants were isolated from a set of 2,400 
INRA-Versailles T-DNA lines available from the Nottingham 
Arabidopsis Stock Center (NASC). The plant transformation 
vector pGKB5 used in these lines confers resistance to kanamy-
cin in plants. 

  gia3  [Wassilewskija (Ws) ecotype] was backcrossed into 
Columbia (Col) and Ws WT backgrounds. The F 2  generation 
from both crosses established that  gia3  is a monoallelic 
recessive mutation (data not shown). We found complete 
co-segregation of kanamycin resistance and  gia3  mutant resis-
tance to ABA in 100 F 2  segregants from the  gia3   ×    Ws cross 
(data not shown), indicating that the  gia3  mutation may result 
from a T-DNA insertion. In parallel, rough mapping with about 
100 F 2  segregants from the  gia3   ×    Col cross located the  gia3  
locus to the bottom arm of chromosome 3 between markers 
SM107-350,0 (16.6 Mb) and ALS (18.0 Mb) (      Fig. 2A , Materials 
and Methods). Thus,  gia3  is a previously unreported locus 
positively mediating ABA responses during germination. 

 Genomic DNA sequences fl anking the T-DNA insertion were 
isolated by thermal symmetric interlaced (TAIL)-PCR and plasmid 

rescue techniques ( Bouchez et al. 1996 ,  Liu and Whittier 1995 ). 
To our surprise, this approach systematically led to two distinct 
DNA sequences both located in chromosome 2 and separated 
by 5.7 Mb. We initially interpreted these results as being arti-
facts from TAIL-PCR and plasmid rescue techniques. 

 In parallel, fi ne mapping analysis located  gia3  to an interval 
of about 1 Mb in chromosome 3 ( Fig. 2A ). However, despite 
analyzing several thousand segregating plant progeny, no 
recombination events within the interval could be found, which 
prevented further fi ne mapping of the chromosomal location 
of  gia3  ( Fig. 2A ). We speculated that low recombination might 
be due to a chromosomal rearrangement present in  gia3  plants, 
as previously reported in INRA-Versailles lines ( Nacry et al. 
1998 ,  Laufs et al. 1999 ,  Tax and Vernon 2001 ,  Lafl euriel et al. 
2004 ,  Curtis et al. 2009 ) and often consisting of chromosome 
fusions joined by T-DNA sequences ( Bouchez et al. 1993 ). 

 To explore this possibility, we isolated  gia3  DNA genomic 
fragments containing pGKB5 sequences by screening a  gia3  
genomic DNA phage library with pGKB5-derived DNA probes 
(Materials and Methods). DNA isolated from positive phage 
clones was subject to restriction map analysis and direct 
sequencing. Two categories of clones were found, each contain-
ing one of the two chromosome 2 sequences discussed above 
and each fused to chromosome 3 sequences by pGKB5 
sequences as shown in  Fig. 2A . These chromosome 3 sequences 
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 Fig. 2       gia3  locus characterization. (A) Fine mapping of the  gia3  locus on chromosome 3. Twenty-seven recombinants were isolated between 
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were identical to those of the bacterial artifi cial chromosome 
(BAC) F1P2 and belong to the 1 Mb DNA interval fi ne-mapped 
as discussed above ( Fig. 2A ). The resulting information 
combined with Southern blot analyses of  gia3  genomic DNA 
(Supplementary Figs. S1, S2) indicated that a 5.7 Mb duplica-
tion of a chromosomal 2 fragment had occurred and was 
subsequently inserted in the bottom arm of chromosome 3 
(i.e. positions 17,565,918 bp and 68,280 bp of chromosome 3 
and BAC F1P2, respectively) as depicted in  Fig. 2B . The 
chromosome 2 and 3 DNA sequences are linked together by 
two T-DNA sequences derived from pGKB5 ( Fig. 2B ). 

 To validate this model further, and to investigate whether 
other major chromosomal translocations were present in 
 gia3 , we undertook a chromosome painting approach ( Lysak 
et al. 2001 ).   

 Chromosome painting confi rms the occurrence of 
chromosome rearrangements in  gia3  
 Five differentially labeled contigs covering chromosomes 2 and 
3 were arranged according to the proposed model (      Fig. 3 ). 
Chromosome painting revealed a pattern of staining indeed 

consistent with the model: a duplication of the region between 
BAC T30D6 and T28P16 of chromosome 2 translocated 
between the integration sites of the transgenes within the BAC 
F1P2 on the bottom arm of chromosome 3 ( Fig. 3 ). Painting of 
all other chromosomes suggested that only chromosome 3 bears 
major translocation events ( Fig. 3 , Supplementary Fig. S3). 

 The 5.7 Mb chromosome 2 fragment insertion within the 
 gia3 -containing interval in chromosome 3 could explain the 
low recombination frequency found in this interval as it may 
prevent proper chromosomal pairing during meiosis. Moreover, 
the large insertion may explain why the  gia3  mutant locus is 
also found in the vicinity of the insertion site. Indeed, previous 
reports have shown that translocation events can be associated 
with mutations in fl anking sequences in the vicinity of the site 
of chromosomal translocation ( Nacry et al. 1998 ). Alternatively, 
the  gia3  mutation may directly result from the chromosome 2 
insertion disrupting the expression or coding sequence of one 
or several genes located in the 1 Mb DNA interval fi ne-mapped 
in chromosome 3. 

 To address these possibilities we analyzed the interrupted 
sequences of chromosome 3. The 5.7 Mb DNA insertion did not 

 Fig. 3      Visualization of a chromosomal rearrangement event in  gia3  by chromosome painting. Top: schematic representation of the complex 
probe used to paint chromosome 2 and 3 (Ch. 2 and 3) in the wild type (WT) and in  gia3 . Bottom: chromosome painting with the complex probe 
on pachytene chromosomes of  gia3.  Left: 4 ′ ,6-diamidino-2-phenylindole (DAPI) staining of  gia3  pachytene chromosomes with chromosome 2 
indicated with a dotted line and chromosome 3 with a dashed line. Middle: chromosome painting reveals the duplicated region originally from 
chromosome 2 (region between the arrowheads), translocated with T-DNA on each end, and integrated on the bottom arm of chromosome 3 
(region between the arrows). Right: merged picture.  
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interrupt any predicted gene sequence in chromosome 3. 
Rather, the fragment is inserted at about 4,000 bp from acces-
sions At3g47610 and At3g47620. Direct DNA sequencing of 
a 10,000 bp fragment encompassing the insertion site did not 
reveal DNA sequence alterations in  gia3  (data not shown). 
Complementation analysis with overlapping genomic DNA 
fragments covering an interval of about 18,000 bp encompass-
ing the insertion site did not complement  gia3  (data not 
shown) .  Taken together, these observations indicate that  gia3  
is not located in the near vicinity of the 5.7 Mb DNA fragment 
insertion site on chromosome 3.   

 Whole-genome analysis of  GIA3 -dependent gene 
expression during seed germination 
 To gain insight into the alterations of ABA-dependent responses 
in  gia3  mutants during seed germination we compared WT and 
 gia3  transcriptomes by Affymetrix microarray hybridization 
(Supplementary Table S1 and Materials and Methods). To reveal 
early differences in gene expression between WT and  gia3  plants, 
seed materials were harvested 48 h after stratifi cation in the pres-
ence of ABA, i.e. prior to the onset of obvious developmental dif-
ferences between WT and  gia3  plants such as cotyledon expansion 
and greening in  gia3  (      Fig. 4A , Supplementary Fig. S4). 
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 The analysis revealed 550 and 728 transcripts down-
regulated (<1.5 × ) and up-regulated ( > 1.5 × ), respectively, in 
 gia3  ( Fig. 4A , see Supplementary Table S1). As much as 55 %  
of all the up-regulated transcripts belonged to the duplicated 
region of chromosome 2 ( Fig. 4 ). This strong bias most proba-
bly refl ects the higher gene copy number resulting from the 
chromosome 2 fragment duplication. The observation also 
brings further independent support for the model describing 
the chromosomal translocation present in  gia3  ( Figs. 2 ,  3 ). 
Moreover, among the down-regulated genes in  gia3 , only nine 
were located in the duplicated region of chromosome 2, 
suggesting that no widespread gene silencing in the duplicated 
chromosome 2 fragment took place in  gia3  plants ( Fig. 4A , 
Supplementary Fig. S5). 

 To confi rm further the microarray analysis results, we per-
formed Northern blot expression studies using different seed 
batches and a range of ABA concentrations. For this second 
round of analysis we chose 30 genes with maximum fold change 
predicted by microarray. Surprisingly, only those genes identi-
fi ed by the microarray study having a change of  > 9-fold in 
expression between WT and  gia3  plants had their expression 
reproducibly affected in  gia3  in response to ABA (i.e. at least 
a 2-fold change in Northern blots, see below). This lack of repro-
ducibility could be due to the time chosen to harvest plant 
material for microarray analysis. Indeed, the WT and  gia3  may 
be already committed to different developmental paths 
although they may not yet be visible macroscopically. 

 Having established that the  abi5  and  gia3  loci control differ-
ent and overlapping ABA responses during seed germination, 
we also sought to explore whether  ABI5  also regulates the 
expression of genes whose expression is altered in  gia3  mutant 
plants. Among the genes whose expression was initially found 
by microarray to be affected in  gia3 , we distinguish three 
categories according to whether their expression is affected: 
(i) in  gia3  mutants only; (ii) in  abi5  mutants only; or (iii) in both 
 gia3  and  abi5  mutants. 

   Table 1  summarizes the results obtained for a fi nal number 
of 16 genes. Among them, nine were down-regulated and two 
were up-regulated genes in  gia3  in the presence of ABA with 
a reproducible fold change of at least 2-fold in Northern blots 
using different seed batches (see below). Interestingly, among 
the subset of up-regulated genes located within the 5.7 Mb 
duplicated region of chromosome 2, the highest fold change 
predicted by microarray analysis was 6-fold. However, Northern 
blot analysis revealed a modest, about or less than 2-fold, 
up-regulation in  gia3  plants (data not shown).   

 Genes up-regulated in  gia3  mutant seeds 
       Fig. 5  shows a time course of  DOG1  and ABA-specifi c  beta-

glucosidase1  ( AtBG1 ) mRNA expression in WT,  abi5  and  gia3  
seeds upon seed stratifi cation in the absence or presence of 
ABA.  DOG1  promotes seed dormancy and is a member of a 
small Arabidopsis gene family of unknown function ( Bentsink 
et al. 2006 ). AtBG1 releases bioactive ABA by hydrolyzing an 
inactive ABA glucose ester ( Lee et al. 2006 ). 

  DOG1  was undetectable in WT seeds upon seed stratifi ca-
tion under normal conditions, consistent with previous results 
( Bentsink et al. 2006 ). Similarly,  DOG1  mRNA was undetectable 
upon stratifi cation in  gia3  and  abi5  mutants under normal 
conditions ( Fig. 5 ).  DOG1  mRNA expression in response to 
ABA was not previously characterized.  DOG1  mRNA remained 
undetectable in WT plants in the presence of ABA; however, 
 DOG1  mRNA expression was markedly up-regulated in both 
 gia3  and  abi5 , although to a lesser extent in  abi5  ( Fig. 5 ). 
These results may suggest the existence of a previously 
unidentifi ed cross-talk between dormancy pathways present 
in the mature seed and ABA-dependent pathways repressing 
seed germination and post-germination early growth (see 
Discussion). 

 In WT seeds,  AtBG1  mRNA levels were barely detectable 
upon seed stratifi cation under normal conditions ( Fig. 5 ). This 
is consistent with gene expression databases, which predict 

 Table 1    Genes differentially expressed in  gia3  and  abi5  mutants  

 Fold change 
(microarray) 

Down-regulated in  gia3  only  

MEE26 (At2g34870) 25 

Down-regulated in  gia3  and  abi5  

Epoxide hydrolase, soluble (At2g26750/At2g26740) 57 

Cysteine protease inhibitor (At5g05040) 49 

F-box protein (acetylglucosamine deacetylase domain) 
(At1g25210)

42 

Meprin and TRAF homology domain-containing protein 
(At5g26260)

36 

Cyclic nucleotide-regulated ion channel (CNGC12) 
(At2g46450)

21 

CBS domain-containing protein (At1g80090) 11 

F-box family protein (At1g27580) 10 

RNA recognition motif (RRM)-containing protein 
(At1g73490)

9 

Down-regulated in  abi5  only  

ECP-like LEA protein (At3g22490) 6 

Oleo4 (At3g27660) 5 

Oleo1 (At4g25140) 5 

AtEm6 (At2g40170) 4 

AtEm1 (At3g51810) 2 

Up-regulated in  gia3  only  

 β -Glucosidase (AtBG1) (At1g52400) 9 

Up-regulated in both  gia3  and  abi5  

DOG1 (DELAY OF GERMINATION 1) (At5g45830) 20 

  A list of genes whose expression was up- or down-regulated in  gia3  and further 
confi rmed by RNA blot analysis. Gene expression was also assessed in  abi5  
mutants. Fold change indicates the absolute ratio of the hybridization signal 
between  gia3  and WT plants in the microarray experiment (see Supplementary 
Fig. S2). Gene accession numbers are indicated.  
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low  AtBG1  mRNA levels upon seed imbibition ( Nakabayashi 
et al. 2005 ,  Schmid et al. 2005 ,  Winter et al. 2007 ,  Goda et al. 
2008 ,  Yang et al. 2008 ). In contrast,  AtBG1  mRNA expression 
was markedly and specifi cally up-regulated in  gia3  under normal 
conditions. In the presence of ABA,  AtBG1  mRNA accumula-
tion was undetectable in WT and  abi5  plants and became 
markedly lower in  gia3  relative to normal conditions ( Fig. 5 ). 
These data suggest that endogenous  ABA  metabolism during 
germination is misregulated in  gia3  mutants (see Discussion).   

 Genes down-regulated in  gia3  mutant seeds 
 Unexpectedly, among the nine genes whose expression was 
down-regulated in  gia3  on ABA exposure, eight also had their 
expression down-regulated in  abi5  ( Table 1 , see examples in 
Supplementary Fig. S6 and data not shown). This indicates 
that common signaling pathways are down-regulated in  gia3  
and  abi5  mutant plants during germination. 

 Only one gene,  MEE26  (At2g34870) encoding a hydroxypro-
line-rich glycoprotein (HRGP), had its expression specifi cally 
down-regulated in  gia3  mutant seeds in the presence of ABA 
(      Fig. 6A ) ( Pagnussat et al. 2005 ).  Fig. 6A  shows a time course of 
 MEE26  mRNA levels upon seed stratifi cation in the absence and 
presence of ABA (5 µM). Under normal conditions,  MEE26  
expression was undetectable in dry seeds and thereafter in both 
WT and  gia3  ( Fig. 6A ). In the presence of ABA,  MEE26  mRNA 
levels increased between 24 and 48 h, reaching the strongest 
accumulation at 72 h ( Fig. 6A ). This contrasted with  MEE26  
mRNA accumulation in  gia3  mutants, which remained mark-
edly lower at all time points ( Fig. 6A ). The ABA-dependent 
induction of  MEE26  mRNA accumulation only took place 
during the same 2 d developmental time window of high 
responsiveness to ABA previously identifi ed for  ABI5  expression 
( Fig. 6B ) ( Lopez-Molina et al. 2001 ).   
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  GIA3 - and ABA-dependent  MEE26  expression 
identifi es a novel arm of ABA-dependent embryonic 
gene expression during seed germination 
  MEE26  was originally identifi ed as a female gametophytic 
(or maternal) factor which is essential for early embryo devel-
opment ( Pagnussat et al. 2005 ). Female gametes carrying 
a  mee26  mutation can be fertilized with WT pollen but the 
development of the resulting zygote is arrested at the one-cell 
stage ( Pagnussat et al. 2005 ).  MEE26  expression is restricted to 
embryogenesis, peaking during mid-embryogenesis according 
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to database searches ( Nakabayashi et al. 2005 ,  Schmid et al. 
2005 ,  Winter et al. 2007 ,  Goda et al. 2008 ,  Yang et al. 2008 ). 
Our observation that  MEE26  expression is strongly induced 
by ABA during germination was not previously reported in 
available transcriptome databases. This could be due to the 
time points analyzed, which are limited to the fi rst 48 h after 
seed imbibition ( Nakabayashi et al. 2005 ), and our observation 
that  MEE26  expression is detected 48 h after seed stratifi cation 
on ABA ( Fig. 6A ). 

 Given that  gia3  mutant plants are fertile and viable, we 
did not anticipate that  MEE26  mRNA expression would be 
signifi cantly down-regulated during  gia3  mutant embryogene-
sis. Indeed,  MEE26  mRNA expression was comparable with 
the WT in  gia3  siliques harvested during early, mid- and late 
embryogenesis (      Fig. 7A ). This suggested that  MEE26  expression 

and plant early growth stages are specifi cally impaired in  gia3  
mutants during germination in response to ABA. 

 We previously reported the occurrence of ABI5-dependent 
late embryonic gene expression during seed germination 
in response to ABA, such as that of  AtEm1  and  AtEm6  
( Lopez-Molina and Chua 2000 ,  Lopez-Molina et al. 2002 ). Our 
microarray analyses initially suggested that  AtEm1  and  AtEm6  
are strongly down-regulated in ABA-treated  gia3  seeds ( > 2- to 
6-fold, see  Table 1 , Supplementary Table S1) as well as that of 
 Oleosin1 ,  Oleosin4  and  ECP-like . However, as described above, this 
could not be confi rmed in subsequent experiments and different 
WT and  gia3  seed batches, which is also consistent with the 
observation that  ABI5  expression was normal in  gia3  in the 
absence or presence of ABA ( Fig. 6A ). As expected,  AtEm1  
and  AtEm6  mRNA expression was strongly down-regulated 
in  abi5  mutants in the presence of ABA as well as that of 
 Oleosin1 ,  Oleosin4  and  ECP-like , which was not previously 
reported ( Fig. 6A , Supplementary Fig. S6C, Table S1). 
However,  MEE26  mRNA accumulation was strongly stimulated 
by ABA in  abi5  mutants in a manner indistinguishable from 
that of WT seeds ( Fig. 6A ). 

 These data indicate that there is at least an additional path-
way of embryogenesis gene expression affected in  gia3  mutants 
in response to ABA during seed germination. This pathway is 
separate and distinct from that affected in  abi5  mutants:  MEE26  
expression is specifi cally affected in  gia3  mutants whereas  LEA  
expression is specifi cally affected in  abi5  mutants .    

 Altered cell wall morphology in  gia3  mature 
embryos 
 HRGPs are abundant and key structural components of 
plant cell walls ( Lamport 2001 ). Therefore, it is conceivable that 
the  gia3  locus may participate in establishing some features of 
embryonic cell wall identity in response to ABA during seed 
germination. The fact that  MEE26  appears to be normally 
expressed during embryogenesis in  gia3  mutants could refl ect 
the fact that other loci participate in stimulating the expression 
of  MEE26 , an essential gene, during embryogenesis. However, 
this does not exclude that the  gia3  locus could exclusively 
regulate other non-essential aspects of embryonic cell wall 
morphology during embryogenesis. Thus, the composition, 
morphology and therefore identity of embryonic cell walls 
could be altered in  gia3  mutants. To evaluate this possibility, 
we compared the morphology of the epidermal cells in mature 
seeds of WT and  gia3  by visualizing their natural cellular 
autofl uorescence using a confocal microscope.  Fig. 7B  shows a 
representative picture of epidermal cells of cotyledon from 
mature WT and  gia3  embryos. Cell walls display weak autofl uo-
rescence relative to intracellular structures and thus appear as 
dark lines. Epidermal cells from WT and  abi5  cotyledons were 
characteristically rectangular in shape and distributed in an 
orderly way, forming dark lines running parallel to the proxim-
odistal axis of the cotyledon ( Fig. 7B  and data not shown). 
In contrast,  gia3  cotyledons had fewer rectangular cells, which 
were mostly located at the base of the cotyledon ( Fig. 7B ). 
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Moreover,  gia3  epidermal cells progressively assumed, along 
the proximodistal axis, a distinctive convoluted, puzzle piece-
like shape ( Fig. 7B ). This effectively broke the characteristic 
orderly pattern of parallel lines formed by WT epidermal cells. 
No signifi cant morphological differences were found between 
epidermal cells of the WT,  gia3  and  abi5  embryonic axis (data 
not shown). 

 To quantify the degree of convolution in WT and  gia3  cells, 
we took confocal images as shown in  Fig. 7B  and considered 
two virtual separate points on the surface of the cotyledon 
and measured the distance separating them in two ways: 
(i) by measuring the distance of a straight line directly joining 
them and (ii) by measuring the distance of the shortest path 
along the dark lines formed by cell wall structures (illustrated in 
 Fig. 7C ; Materials and Methods). The ratio of these distances 
provides a measure of cellular convolution.  Fig. 7C  shows that 
using this procedure  gia3  epidermal cells are signifi cantly more 
convoluted relative to WT cells, unlike  abi5  epidermal cells. 
Taken together, these data indicate that the  gia3  locus plays 
a signifi cant role in seed maturation, at least with regard to 
mature cotyledon cellular morphology.    

 Discussion 

 How ABA is able to repress the numerous and varied develop-
mental processes unfolding during and after germination 
(i.e. endosperm rupture, radicle elongation, cotyledon expan-
sion and greening) remains incompletely understood. In order 
to isolate novel loci positively regulating ABA signaling, we 
followed the classical genetic screen pioneered by  Kornneeff 
et al. (1984) . However, we lowered the ABA concentration 
in the screen to 3 µM ABA while stratifying the seeds for 
3 d ( Giraudat et al. 1992 ,  Finkelstein 1994 ,  Finkelstein and 
Lynch 2000 ,  Lopez-Molina and Chua 2000 ). Under these condi-
tions, WT seed germination is severely inhibited but eventually 
occurs after a few days ( Lopez-Molina et al. 2001 ). This led to 
the identifi cation of  abi5  ( Lopez-Molina and Chua 2000 ) and, in 
the present work, of  gia3  mutants .  Comparison of  abi5  and  gia3  
seed germination revealed that  gia3  insensitivity to ABA mostly 
resides at the level of cotyledon expansion ( Fig. 1 ), whereas 
that of  abi5  mostly resided at the level of endosperm rupture 
( Piskurewicz et al. 2008 ). 

 We were unable to identify the nature of the molecular 
genetic defi ciency withstanding the  gia3  recessive locus using 
standard map-based approaches. This is due to the extremely 
low recombination frequencies taking place in the chromo-
some 3 interval where  gia3  is located. This is most probably due 
to the large chromosome 2 fragment insertion in that interval, 
which is best visualized in a chromosomal painting experiment 
( Fig. 3 ). We attempted to identify  gia3  by examining the 
phenotypes of mutant SALK lines harboring T-DNA insertions 
within the  gia3  mapping interval (see Supplementary 
Table S2). This approach did not give tangible results and was 
not pursued further due to the large number of genes within 
the interval and the fact that we were uncertain whether 

the  gia3  phenotype would be easy to follow in a different 
ecotype. 

 Given the size of the genomic DNA interval in which  gia3  is 
located, we attempted a transformation-competent artifi cial 
chromosome (TAC)-based complementation approach (data 
not shown). TAC binary vectors allow the transfer of genomic 
DNA fragments as large as 100 kbp. We had very limited success 
with this technique, succeeding with a single successful TAC 
insertion (TAC K6M3) containing a 68,000 bp fragment of 
chrosomome 3 spanning the insertion site of the 5.7 Mbp DNA 
insertion of chromosome 2 (see Supplementary Fig. S7A). 
 gia3 / K6M3  transformants were found to have normal ABA 
sensitivity during germination as well as normal  MEE26  expres-
sion in response to ABA and normal cell wall morphology 
(Supplementary Fig. S7B, C). These data therefore suggest 
that the  gia3  locus is located within a 68,000 bp DNA interval 
spanning position 20,156 to 87,890 or chromosome 3 as indi-
cated in Supplementary Fig. S7A. However, given that only 
one  gia3 / K6M3  transformant was obtained, we consider this 
result to be preliminary. We also attempted to identify a DNA 
fragment within the TAC K6M3 clone that could complement 
 gia3  in transformation experiments. Supplementary Fig. S7A 
summarizes the collection of fragments characterized. Taken 
together, they cover 61 %  of the 68,000 bp genomic fragment 
of chromosome 3 in TAC K6M3. None of these fragments 
complemented  gia3 . Clearly a combined approach of comple-
mentation analysis (using smaller genomic fragments) and 
direct sequencing of  gia3  genomic DNA should lead to the 
identifi cation of a putative single  GIA3  gene .  However, 
we cannot exclude that the large chromosome 2 fragment 
inserted in chromosome 3 affects multiple DNA locations in 
complex manners. This could include alterations in the expres-
sion of multiple genes necessary to implement ABA-dependent 
responses during germination. 

 As a result of these diffi culties, the salient fi ndings of this 
work are based on the phenotypic characterization of  gia3  
mutants during seed germination. They collectively indicate 
the existence of an ABA-dependent pathway controlling 
embryogenesis gene expression during germination and 
embryo maturation that is distinct from that controlled by 
ABI5. Indeed, we showed that (i) ABA-dependent repression of 
cotyledon expansion and greening does not take place in the 
single recessive locus  gia3  and (ii) that the same mutant locus 
prevents the ABA-dependent and high mRNA expression of 
 MEE26 , a gene encoding a putative HRGP cell wall protein 
previously shown to be essential for embryo survival during 
mid-embryogenesis ( Pagnussat et al. 2005 ). In contrast,  gia3  
mutants accumulate normal  MEE26  mRNA levels during 
embryogenesis ( Fig. 7 ), which most probably accounts for their 
survival. 

 Thus, a notable consequence of our studies on  gia3  is 
to reveal that the positive regulation of  MEE26  expression by 
ABA is developmentally restricted to the previously identifi ed 
time window of high ABA responsiveness occurring during 
seed germination ( Lopez-Molina et al. 2001 ). 
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  MEE26  encodes a putative HRGP factor and at this stage of 
the investigation we can only speculate about the developmental 
and physiological signifi cance of inducing its expression during 
germination in response to ABA. HRGPs are structural compo-
nents of cell walls ( Lamport 2001 ) and this led us to speculate 
that the  gia3  locus may regulate some other aspects of cell wall 
morphology during embryogenesis although not necessarily 
linked to  MEE26 , since it is normally expressed in  gia3  during 
embryogenesis .  Indeed, consistent with this hypothesis, we 
found that the regulation of epidermal cellular organization 
and morphology in the mature cotyledon is specifi cally 
altered in  gia3  mutants ( Fig. 7 ). In this respect, it is also notable 
that the main resistance of  gia3  to ABA concerns cotyledon 
expansion. 

 These observations may suggest that in  gia3  mutants, the 
normal establishment of the embryonic character of cotyledon 
epidermal cells is altered. In turn, this may explain the failure of 
the  gia3  mutant to repress cotyledon expansion in response to 
ABA, if one assumes that this is a process effi ciently imple-
mented when epidermal cell walls maintain an embryonic 
molecular composition. 

 As stated above,  abi5  and  gia3  mutants were isolated in the 
same genetic screen ( Lopez-Molina and Chua 2000 ).  ABI5  
encodes a bZIP transcription factor positively regulating the 
expression of osmotolerance  LEA  genes in the dry seed and 
during the time window of ABA responsiveness taking place 
during seed germination. Moreover, in the case of  abi5  mutants ,  
resistance to ABA occurs at the level of endosperm rupture. 
Thus, the characterization of  gia3  extends previous observa-
tions with  abi5  mutants showing that ABA plays a role in 
promoting (i) normal seed maturation; (ii) germination and 
early growth arrest; and (iii) temporally restricted embryonic 
gene expression. Thus, the study of  gia3  mutants identifi es 
an arm of embryogenesis gene expression that is distinct and 
separate from that involving  LEA  gene expression, which is 
positively regulated by ABA and ABI5 (see model in       Fig. 8 ). It is 
therefore tempting to speculate that the  gia3  mutant locus 
affects the activity or expression of a transcription factor. These 
data bring further support to the notion that a time window of 
about 2 d allows the plant to acquire an embryonic protective 
character and arrest growth in response to environmental 
stresses ( Lopez-Molina et al. 2001 ). 

 Our work may reveal unexpected insights into the regula-
tion of seed dormancy pathways.  DOG1 , encoding a protein of 
unknown function, is a positive regulator of seed dormancy 
( Bentsink et al. 2006 ). In WT seeds,  DOG1  mRNA is detected 
in dry seeds and then decays upon imbibition under normal 
conditions ( Bentsink et al. 2006 ).  DOG1  mRNA levels are higher 
in  abi5  and  gia3  mutant mature seeds but also decay upon seed 
imbibition under normal conditions ( Fig. 5 , Supplementary 
Fig. S6B;  Nakabayashi et al. 2005 ,  Schmid et al. 2005 ,  Winter 
et al. 2007 ,  Goda et al. 2008 ,  Yang et al. 2008 ). Here we showed 
that ABA does not signifi cantly affect  DOG1  mRNA expression 
upon imbibition of WT seeds, which was not previously investi-
gated ( Fig. 5 ). We also observed that  DOG1  mRNA expression is 

ABA

Cotyledon
expansion

Radicle tip 
emergence

AtEm1
AtEm6 MEE26

ABA-dependent embryonic 
character genes

Common
targets

Vegetative
growth

GIA3GIA3ABI5ABI5

 Fig. 8      A model for ABI5- and GIA3-dependent germination and early 
growth arrest.  

strongly induced by ABA in  abi5  and  gia3  mutants. Since the 
dry seed is also a state associated with higher ABA levels, 
these data could collectively suggest that  ABI5  and the  GIA3  
locus participate in repressing  DOG1  expression in response 
to ABA. 

 The mechanisms of seed dormancy remain poorly under-
stood; however, it is widely accepted that ABA is essential 
to maintain the seed in a dormant state ( Finch-Savage and 
Leubner-Metzger 2006 ). It is therefore tempting to speculate 
that at least a subset of genetic loci positively regulating ABA 
responses are also implicated in an ABA-dependent negative 
feedback loop operating during establishment of seed dor-
mancy to limit the extent of  DOG1 -dependent seed dormancy 
( Bentsink et al. 2006 ). 

 Moreover, our fi ndings regarding  AtBG1  expression illustrate 
the complexity of the regulation of ABA metabolism during 
seed germination in response to environmental cues. It was 
recently proposed that stress increases endogenous ABA 
levels by recruiting the activity of AtBG1 to deconjugate 
stored pools of ABA glucose ester ( Lee et al. 2006 ). Our 
observation that  AtBG1  expression is repressed in response 
to ABA in WT seeds could also suggest a negative feedback 
mechanism that limits endogenous ABA levels. Moreover, the 
fact that  AtBG1  expression is specifi cally high in  gia3  in both 
the absence and presence of ABA indicates that a single 
genetic locus controls the negative feedback limiting endoge-
nous ABA levels in germinating seeds. This possibility is rather 
intriguing since it would imply that the same locus exerts 
two functions which are apparently contradictory: on the 
one hand it is necessary to arrest growth in response to 
ABA and on the other it also limits endogenous ABA 
accumulation.   
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 Materials and Methods  

 Plant material 
  Arabidopsis thaliana  ecotype Ws and Col were used as 
WT plants.  gia3  and  abi5-4  were isolated in the T-DNA 
INRA-Versailles lines (stock Nos. N5389 and N5455) from 
the NASC.   

 Germination assays 
 Plants were grown, harvested and stored according to 
 Piskurewicz et al. (2008) . The germination assay were done 
according to  Perruc et al. (2007) . For cotyledon area measure-
ments, seedlings were dissected under a stereo microscope 
using a blade on syringes, and dissected cotyledons were placed 
fl at on nylon mesh. Pictures were taken using a digital camera 
attached to a stereo microscope and the cotyledon area was 
measured using ImageJ software (NIH).   

 Plasmid constructs and plant transformation 
 DNA manipulations were performed according to standard 
methods ( Sambrook et al. 1989 ).   

 Mapping of the GIA3 locus 
 The  gia3  mutant was outcrossed to Col WT plants and mapped 
as described ( Lopez-Molina and Chua 2000 ). For fi ne mapping, 
novel single SSLP (simple sequence length polymorphism) and 
CAPS (cleaved amplifi ed polymorphic sequence) markers were 
generated and are available upon request.   

 Chromosome painting 
 Pachytene chromosomes were isolated from fi xed immature 
fl ower buds of  A. thaliana  ecotype Ws and  gia3  according 
to  Lysak et al. (2001) . Contiguous BACs obtained from the 
Arabidopsis Biological Resource Center (ABRC; Columbus, OH, 
USA) and selected for negligible amounts of repeats ( Lysak 
et al. 2003 ) were pooled for painting individual  A. thaliana  
chromosome regions. BAC DNA isolation, labeling by rolling 
circle amplifi cation or nick translation, and fl uorescence in situ 
hybridization (FISH) were performed as described ( Berr and 
Schubert 2006 ,  Berr et al. 2006 ).   

 DNA and RNA isolation and analysis 
 DNA and RNA isolation was performed as previously described 
( Vicient and Delseny 1999 ,  Perruc et al. 2007 ). Southern blots of 
genomic DNA and RNA were performed according to standard 
procedures ( Sambrook and Russell 2001 ).   

 Genomic library construction 
 The  gia3  genomic library was constructed using a Lambda 
FIX II/XhoI Partial Fill-In Ventor Kit (Stratagene, La Jolla, CA, 
USA) according to the manufacturer’s instructions. Probes for 
Southern blot were generated by PCR amplifi cation using O65, 
gaactgcaggacgaggcagcg; and O66, gataccgtaaagcacgaggaagc.   

 Microarray analysis 
 For probe labeling and hybridization, total RNA extracted from 
 gia3  and WT seedlings was treated with DNase RQ1 (Promega, 
Madison, WI, USA) and cleaned up using Qia pure columns 
(Qiagen, Valencia, CA, USA). Total RNA from each pool 
was used to synthesize biotinylated cRNA according to the 
Affymetrix protocol (kits from Invitrogen for cDNA synthesis 
and Enzo for biotinylated cRNA synthesis). A 20 µg aliquot of 
biotinylated cRNA was hybridized to a mouse Affymetrix 
Arabidopsis Genome ATH1 array.    

 Supplementary data 

 Supplementary data are available at PCP online.   

 Funding 

 This work was supported by the Swiss National Science 
Foundation [grants to L. L-M.]; the State of Geneva; the 
Société Académique de Genève; Naito Foundation Subsidy 
for Promotion of Specifi c Research Projects [to N.K.].     

 Acknowledgements 

 We are especially grateful to Pierre Vassalli for numerous sug-
gestions in writing the manuscript. We thank Olivier Schaad, 
Mylène Docquier, Patrick Descombes and members of the 
Genomics Platform of the National Research Center Frontiers 
in Genetics for their invaluable help in conducting and inter-
preting microarray experiments. We thank Urszula Piskurewicz 
for critical comments on the manuscript. We are also grateful 
for the help of Adriana Garzon, Peter Hare and Nam-Hai Chua 
in the initial stages of this project. We also want to thank 
Francine M. Carland, Viola Willemsen and Glenn Thorlby for 
their advice and materials for the TAC complementation, and 
Barbara Hohn for her advice during the course of the study.   

 References 

     Bentsink  ,   L.  ,     Jowett  ,   J.  ,     Hanhart  ,   C.J.   and     Koornneef  ,   M.     (  2006  )   Cloning 
of DOG1, a quantitative trait locus controlling seed dormancy in 
Arabidopsis  .   Proc. Natl Acad. Sci. USA     103  :   17042  –  17047  .   

     Berr  ,   A.  ,     Pecinka  ,   A.  ,     Meister  ,   A.  ,     Kreth  ,   G.  ,     Fuchs  ,   J.  ,     Blattner  ,   F.R.  , 
   et al   . (  2006  )   Chromosome arrangement and nuclear architecture 
but not centromeric sequences are conserved between Arabidopsis 
thaliana and Arabidopsis lyrata  .   Plant J.     48  :   771  –  783  .   

     Berr  ,   A.   and     Schubert  ,   I.     (  2006  )   Direct labelling of BAC-DNA by rolling-
circle amplifi cation  .   Plant J.     45  :   857  –  862  .   

     Bouchez  ,   D.  ,     Camilleri  ,   C.   and     Caboche  ,   M.     (  1993  )   A binary 
vector based on Basta resistance for in planta transformation of 
Arabidopsis thaliana  .   C.R. Acad. Sci. Paris, Life Sci.     316  :   1188  –  1193  .   

     Bouchez  ,   D.  ,     Vittorioso  ,   P.  ,     Courtial  ,   B.   and     Camilleri  ,   C.     (  1996  ) 
  Kanamycin rescue: a simple technique for the recovery of T-DNA 
fl anking sequences  .   Plant Mol. Biol. Rep.     14  :   115  –  123  .   

     Curtis  ,   M.J.  ,     Belcram  ,   K.  ,     Bollmann  ,   S.R.  ,     Tominey  ,   C.M.  ,     Hoffman  ,   P.D.  , 
    Mercier  ,   R.  ,    et al   . (  2009  )   Reciprocal chromosome translocation 

250

N. Kinoshita et al.

Plant Cell Physiol. 51(2): 239–251 (2010) doi:10.1093/pcp/pcp183 © The Author 2009.



associated with T DNA-insertion mutation in Arabidopsis: genetic 
and cytological analyses of consequences for gametophyte 
development and for construction of doubly mutant lines  .   Planta   
  229  :   731  –  745  .   

     Finch-Savage  ,   W.E.   and     Leubner-Metzger  ,   G.     (  2006  )   Seed dormancy 
and the control of germination  .   New Phytol.     171  :   501  –  523  .   

     Finkelstein  ,   R.R.     (  1994  )   Mutations at two new  Arabidopsis  ABA 
response loci are similar to the  abi3  mutations  .   Plant J.     5  :   765  –  771  .   

     Finkelstein  ,   R.R.   and     Lynch  ,   T.J.     (  2000  )   The Arabidopsis abscisic acid 
response gene ABI5 encodes a basic leucine zipper transcription 
factor  .   Plant Cell     12  :   599  –  609  .   

     Giraudat  ,   J.  ,     Hauge  ,   B.M.  ,     Valon  ,   C.  ,     Smalle  ,   J.  ,     Parcy  ,   F.   and 
    Goodman  ,   H.M.     (  1992  )   Isolation of the Arabidopsis ABI3 gene by 
positional cloning  .   Plant Cell     4  :   1251  –  1261  .   

     Goda  ,   H.  ,     Sasaki  ,   E.  ,     Akiyama  ,   K.  ,     Maruyama-Nakashita  ,   A.  ,     Nakabayashi  , 
  K.  ,     Li  ,   W.  ,    et al   . (  2008  )   The AtGenExpress hormone and chemical 
treatment data set: experimental design, data evaluation, model 
data analysis and data access  .   Plant J.     55  :   526  –  542  .   

     Koornneef  ,   M.  ,     Reuling  ,   G.   and     Karssen  ,   C.M.     (  1984  )   The isolation and 
characterization of abscisic acid-insensitive mutants of  Arabidopsis 

thaliana   .   Physiol. Plant.     61  :   377  –  383  .   
     Lafl euriel  ,   J.  ,     Degroote  ,   F.  ,     Depeiges  ,   A.   and     Picard  ,   G.     (  2004  )   A reciprocal 

translocation, induced by a canonical integration of a single T-DNA, 
interrupts the HMG-I/Y Arabidopsis thaliana gene  .   Plant Physiol. 

Biochem.     42  :   171  –  179  .   
     Lamport  ,   D.T.     (  2001  )   Life behind cell walls: paradigm lost, paradigm 

regained  .   Cell Mol. Life Sci.     58  :   1363  –  1385  .   
     Laufs  ,   P.  ,     Autran  ,   D.   and     Traas  ,   J.     (  1999  )   A chromosomal paracentric 

inversion associated with T-DNA integration in Arabidopsis  .   Plant J.   
  18  :   131  –  139  .   

     Lee  ,   K.H.  ,     Piao  ,   H.L.  ,     Kim  ,   H.Y.  ,     Choi  ,   S.M.  ,     Jiang  ,   F.  ,     Hartung  ,   W.  , 
   et al   . (  2006  )   Activation of glucosidase via stress-induced 
polymerization rapidly increases active pools of abscisic acid  .   Cell   
  126  :   1109  –  1120  .   

     Liu  ,   Y.G.   and     Whittier  ,   R.F.     (  1995  )   Thermal asymmetric interlaced PCR: 
automatable amplifi cation and sequencing of insert end fragments 
from P1 and YAC clones for chromosome walking  .   Genomics     25  : 
  674  –  681  .   

     Lopez-Molina  ,   L.   and     Chua  ,   N.H.     (  2000  )   A null mutation in a bZIP 
factor confers ABA-insensitivity in Arabidopsis thaliana  .   Plant Cell 

Physiol.     41  :   541  –  547  .   
     Lopez-Molina  ,   L.  ,     Mongrand  ,   S.   and     Chua  ,   N.H.     (  2001  )   A postgermination 

developmental arrest checkpoint is mediated by abscisic acid and 
requires the ABI5 transcription factor in Arabidopsis  .   Proc. Natl 

Acad. Sci. USA     98  :   4782  –  4787  .   
     Lopez-Molina  ,   L.  ,     Mongrand  ,   S.  ,     McLachlin  ,   D.T.  ,     Chait  ,   B.T.   and     Chua  , 

  N.H.     (  2002  )   ABI5 acts downstream of ABI3 to execute an ABA-
dependent growth arrest during germination  .   Plant J.     32  :   317  –  328  .   

     Lysak  ,   M.A.  ,     Fransz  ,   P.F.  ,     Ali  ,   H.B.   and     Schubert  ,   I.     (  2001  )   Chromosome 
painting in Arabidopsis thaliana  .   Plant J.     28  :   689  –  697  .   

     Lysak  ,   M.A.  ,     Pecinka  ,   A.   and     Schubert  ,   I.     (  2003  )   Recent progress 
in chromosome painting of Arabidopsis and related species  . 
  Chromosome Res.     11  :   195  –  204  .   

     Nacry  ,   P.  ,     Camilleri  ,   C.  ,     Courtial  ,   B.  ,     Caboche  ,   M.   and     Bouchez  ,   D.     
(  1998  )   Major chromosomal rearrangements induced by T-DNA 
transformation in Arabidopsis  .   Genetics     149  :   641  –  650  .   

     Nakabayashi  ,   K.  ,     Okamoto  ,   M.  ,     Koshiba  ,   T.  ,     Kamiya  ,   Y.   and     Nambara  ,   E.     
(  2005  )   Genome-wide profi ling of stored mRNA in Arabidopsis 
thaliana seed germination: epigenetic and genetic regulation of 
transcription in seed  .   Plant J.     41  :   697  –  709  .   

     Pagnussat  ,   G.C.  ,     Yu  ,   H.J.  ,     Ngo  ,   Q.A.  ,     Rajani  ,   S.  ,     Mayalagu  ,   S.  ,     Johnson  ,   C.S.  , 
   et al   . (  2005  )   Genetic and molecular identifi cation of genes required 
for female gametophyte development and function in Arabidopsis  . 
  Development     132  :   603  –  614  .   

     Parcy  ,   F.  ,     Valon  ,   C.  ,     Raynal  ,   M.  ,     Gaubier-Comella  ,   P.  ,     Delseny  ,   M.   and 
    Giraudat  ,   J.     (  1994  )   Regulation of gene expression programs during 
Arabidopsis seed development: roles of the ABI3 locus and of 
endogenous abscisic acid  .   Plant Cell     6  :   1567  –  1582  .   

     Perruc  ,   E.  ,     Kinoshita  ,   N.   and     Lopez-Molina  ,   L.     (  2007  )   The role of 
chromatin-remodeling factor PKL in balancing osmotic stress 
responses during Arabidopsis seed germination  .   Plant J.     52  : 
  927  –  936  .   

     Piskurewicz  ,   U.  ,     Jikumaru  ,   Y.  ,     Kinoshita  ,   N.  ,     Nambara  ,   E.  ,     Kamiya  ,   Y.   
and     Lopez-Molina  ,   L.     (  2008  )   The gibberellic acid signaling repressor 
RGL2 inhibits Arabidopsis seed germination by stimulating abscisic 
acid synthesis and ABI5 activity  .   Plant Cell     20  :   2729  –  2745  .   

     Sambrook  ,   J.  ,     Fritsch  ,   E.F.   and     Maniatis  ,   T.     (  1989  )   Molecular Cloning: A 
Laboratory Manual  .   Cold Spring Harbor Laboratory Press  ,   Cold 
Spring Harbor, NY  .   

     Sambrook  ,   J.   and     Russell  ,   D.W.     (  2001  )   Molecular Cloning: A Laboratory 
Manual  ,   3rd edn.     Cold Spring Harbor Laboratory Press  ,   Cold Spring 
Harbor, NY  .   

     Schmid  ,   M.  ,     Davison  ,   T.S.  ,     Henz  ,   S.R.  ,     Pape  ,   U.J.  ,     Demar  ,   M.  ,     Vingron  ,   M.  , 
   et al   . (  2005  )   A gene expression map of Arabidopsis thaliana 
development  .   Nat. Genet.     37  :   501  –  506  .   

     Tax  ,   F.E.   and     Vernon  ,   D.M.     (  2001  )   T-DNA-associated duplication/
translocations in Arabidopsis. Implications for mutant analysis and 
functional genomics  .   Plant Physiol.     126  :   1527  –  1538  .   

     To  ,   A.  ,     Valon  ,   C.  ,     Savino  ,   G.  ,     Guilleminot  ,   J.  ,     Devic  ,   M.  ,     Giraudat  ,   J.  ,    et al   . 
(  2006  )   A network of local and redundant gene regulation governs 
Arabidopsis seed maturation  .   Plant Cell     18  :   1642  –  1651  .   

     Vicient  ,   C.M.   and     Delseny  ,   M.     (  1999  )   Isolation of total RNA from 
Arabidopsis thaliana seeds  .   Anal. Biochem     268  :   412  –  413  .   

     Winter  ,   D.  ,     Vinegar  ,   B.  ,     Nahal  ,   H.  ,     Ammar  ,   R.  ,     Wilson  ,   G.V.   and     Provart  , 
  N.J.     (  2007  )   An ‘electronic fl uorescent pictograph’ browser for 
exploring and analyzing large-scale biological data sets  .   PLoS ONE     2  : 
  e718  .   

     Yang  ,   Y.  ,     Costa  ,   A.  ,     Leonhardt  ,   N.  ,     Siegel  ,   R.S.   and     Schroeder  ,   J.I.     (  2008  ) 
  Isolation of a strong Arabidopsis guard cell promoter and its 
potential as a research tool  .   Plant Methods     4  :   6  .     

251

GIA3 is a positive regulator of ABA responses

Plant Cell Physiol. 51(2): 239–251 (2010) doi:10.1093/pcp/pcp183 © The Author 2009.


