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S U M M A R Y
We present a time-independent gridded earthquake rate forecast for the European region
including Turkey. The spatial component of our model is based on kernel density estimation
techniques, which we applied to both past earthquake locations and fault moment release on
mapped crustal faults and subduction zone interfaces with assigned slip rates. Our forecast
relies on the assumption that the locations of past seismicity is a good guide to future seismicity,
and that future large-magnitude events occur more likely in the vicinity of known faults. We
show that the optimal weighted sum of the corresponding two spatial densities depends on
the magnitude range considered. The kernel bandwidths and density weighting function are
optimized using retrospective likelihood-based forecast experiments. We computed earthquake
activity rates (a- and b-value) of the truncated Gutenberg–Richter distribution separately for
crustal and subduction seismicity based on a maximum likelihood approach that considers
the spatial and temporal completeness history of the catalogue. The final annual rate of our
forecast is purely driven by the maximum likelihood fit of activity rates to the catalogue
data, whereas its spatial component incorporates contributions from both earthquake and
fault moment-rate densities. Our model constitutes one branch of the earthquake source model
logic tree of the 2013 European seismic hazard model released by the EU-FP7 project ‘Seismic
HAzard haRmonization in Europe’ (SHARE) and contributes to the assessment of epistemic
uncertainties in earthquake activity rates. We performed retrospective and pseudo-prospective
likelihood consistency tests to underline the reliability of our model and SHARE’s area
source model (ASM) using the testing algorithms applied in the collaboratory for the study
of earthquake predictability (CSEP). We comparatively tested our model’s forecasting skill
against the ASM and find a statistically significant better performance for testing periods of
10–20 yr. The testing results suggest that our model is a viable candidate model to serve for
long-term forecasting on timescales of years to decades for the European region.
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1 I N T RO D U C T I O N

A basic component of any probabilistic seismic hazard assessment
(PSHA) is an earthquake source model that defines earthquake
activity rates, that is the occurrence rates of events as a function of
space, time and magnitude. Earthquake source models commonly
use catalogued earthquakes as input, combined with knowledge of
faults, geology, tectonics and/or other indicators of the seismogenic
potential of a region. Such models are essentially earthquake rate
forecasts that can be compared with seismicity following the period
of data these models have been developed from. For a PSHA, they
are combined with ground motion prediction equations, resulting
in exceedance probabilities for a specified ground motion intensity
measure in a given time period.

There is no unique solution to building a rate forecast model,
and multiple approaches to build an earthquake source model for
a PSHA exist, with the most often used approaches being (1) the
regionalization of the study region following the traditional area
source model (ASM) concept (including the consideration of fault
sources; Cornell 1968; Wiemer et al. 2009a) and (2) the description
of earthquake activity for geologically assessed faults in combi-
nation with a background seismicity described by some smoothing
algorithm (Petersen et al. 2008; Field et al. 2009; Field & Page 2011;
Stirling et al. 2012). In addition to these approaches that involve
subjective expert judgments, efforts have been made to introduce
more objective, data and algorithm driven models. In particular,
kernel-smoothed seismicity approaches, starting on a prominent
yet experimental attempt to map the seismic hazard within the cen-
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tral and eastern United States (Frankel 1995), have been suggested
as an alternative model branch to address epistemic uncertainties of
earthquake occurrence within a PSHA.

Following the pioneer models of Kagan & Jackson (1994)
and Frankel (1995), several other kernel-smoothed seismicity ap-
proaches have been proposed (e.g. Cao et al. 1996; Lapajne et al.
2003; Woo 1996; Jackson & Kagan 1999; Stock & Smith 2002;
Helmstetter et al. 2007; Zechar et al. 2010a; Werner et al. 2011)
which all rely on using only seismicity as input to estimate future
earthquake locations and rates, with differences in the shape and
functional form of the smoothing kernel. Helmstetter & Werner
(2012) used space–time kernels to obtain spatial densities of earth-
quakes, thereby circumventing the relatively subjective choice of a
declustering algorithm. Some efforts were also made to include tec-
tonic knowledge in terms of regionalization schemes (e.g. Burkhard
& Grünthal 2009). Pseudo-prospective forecast experiments have
been used to optimize the kernel width for a given time period by
separating the earthquake catalogue into learning and target peri-
ods, finding the optimal kernel width based on likelihood evaluation
procedures (e.g. Zechar et al. 2010a). Such data-driven smoothed
seismicity models perform well in prospective testing of earth-
quake forecasts within the framework of the Collaboratory Study for
Earthquake Predictability (CSEP, Jordan 2006) for the intermediate-
term forecast period of 5 yr (e.g. the Regional Earthquake Likeli-
hood Models experiment, RELM, Field 2007; Schorlemmer et al.
2010; Zechar et al. 2013). This is a result of one of the basic as-
sumption of these models: earthquakes occur at or very close to
locations of previous seismicity.

Despite the relative success to forecast seismicity rates, skepti-
cism still exists within the hazard community towards the use of
this method in PSHA due to its basic assumptions: (1) future seis-
micity occurs in areas close to where past seismicity occurred, (2)
seismic catalogues limited to the past few decades to centuries are
sufficient to model future seismicity on time spans of centuries to
millennia, (3) tectonic structures are not considered, assuming that
active features are mapped via the catalogued seismicity alone and
(4) the occurrence of the rare largest events can be forecast using
the numerous smaller ones, hence earthquake size scaling holds up
to the maximum event size considered.

The first assumption has proven to be very useful along well-
defined plate boundaries. For intraplate seismicity evidence has
been presented supporting the idea that events delineate wider
zones with a higher likelihood for events to occur in the prox-
imity of former events (Kafka 2007); however, the assumption has
been challenged not to be a very good proxy for future seismic-
ity in intraplate regions as seismicity may jump between fault
structures that have been inactive for long time spans (Swafford
& Stein 2007; Stein et al. 2009; Liu et al. 2011). The additional
assumptions arise from the successful application of the models
in CSEP-testing experiments and from evidence for no breaks in
scaling over a large magnitude range (e.g. Main 2000; Kwiatek
et al. 2010). In fact, the seismicity record in many regions is not
long enough to support these assumptions albeit the efforts of
prolonging this record with historical, archeological and palaeo-
seismological studies (Meghraoui et al. 2001; Fäh et al. 2006;
Camelbeeck et al. 2007; Hinzen & Reamer 2007) which are used
when available.

Hiemer et al. (2013) introduced a stochastic earthquake source
model that addresses assumption (3) of earlier gridded smoothed
seismicity models. By combining information on active faulting
with a smoothed seismicity approach, they build an alternative
source model for California. The model applies in essence the

kernel density estimation technique to both, past seismicity and
fault moment release, with the latter being estimated from slip rates
on mapped active fault structures. We use the term SEIFA for such
a combined smoothed SEIsmicity and FAults model. The resulting
forecast relies on data-driven likelihood optimization techniques
and is thus less dependent on subjective expert judgments compared
to other source model types used in PSHA—though some cannot
be avoided. A similar model has been presented for New Zealand
(Rhoades & Stirling 2012) pointing out shortcomings within the
New Zealand national seismic hazard assessment (Stirling et al.
2012).

In this paper, we adapt and improve the SEIFA-approach pre-
senting its application to Europe, a much larger region, more di-
verse in terms of tectonic regimes and data availability. We use the
European Database of Seismogenic Faults (EDSF; Basili et al.
2013), which includes both crustal faults and the subduction zones
of the Calabrian, Hellenic and Cyprus arcs. The implementation
at the European scale is possible thanks to the large-scale commu-
nity effort made in the European Union project SHARE (Seismic
HAzard haRmonization in Europe) to homogeneously parameterize
the fault sources and to provide the necessary input data for PSHA.
The EDSF comprises not only structures in active tectonic regions
similar to California (e.g. the North Anatolian fault) or moderately
active tectonic regions (e.g. the Apennines), but also in regions of
low activity such as the Lower Rhine embayment (Camelbeeck et al.
2007; Hinzen & Reamer 2007) or regions like the Po Plain typically
characterized by blind faulting (Burrato et al. 2012). In addition, the
SEIFA-approach can treat crustal faults and subduction sources (i.e.
subduction interfaces) in the same way as both are characterized by
geometry and slip rate data that can be used to estimate geological
moment release.

In the following sections, we outline the methodological concept
of the stochastic earthquake source model and detail choices for
the construction of the model. We focus on the pathway to con-
struct a gridded earthquake rate forecast that is readily employed
for earthquake rate forecasting experiments and PSHA purposes.
The main differences with respect to the original model by Hiemer
et al. (2013) are: (1) we use an optimized variable-sized kernel in-
stead of a fixed-sized kernel to estimate the spatial seismicity den-
sity following Helmstetter et al. (2007); (2) we introduce pseudo-
prospective likelihood-based forecast experiments to constrain the
weighting function between the seismicity- and fault-based spa-
tial model components; (3) we estimated the a- and b-values of
a truncated Gutenberg–Richter magnitude distribution based on a
maximum likelihood approach that considers the spatial and tem-
poral completeness history of the entire seismic catalogue; and (4)
we adapt the model to treat subduction zones. Finally, we present
properties and features of the resulting long-term earthquake rate
forecast and its sensitivity to some model choices. We perform ret-
rospective and pseudo-prospectively likelihood tests à la CSEP to
evaluate and compare the consistency of all model’s dimensions
against independent catalogues providing moment magnitudes and
compare the performance to the ASM rate forecast of the SHARE
project (Giardini et al. 2014).

2 DATA

2.1 Earthquake catalogue and declustering

We used the earthquake catalogue that was compiled in the frame-
work of project SHARE and publicly released as the SHARE
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Figure 1. (a) Epicentres of earthquakes within the study region from 1000 to 2006 (declustered SHARE European Earthquake Catalogue). Black polygons
outline the 23 superzones for completeness assessment (cf. Fig. 2). (b) Traces of the upper edge of fault sources, projected to ground surface, for the entire
Euro-Mediterranean area (colour-coded by maximum slip rate). Inset shows fault discretization example: grey lines correspond to depth contours. The estimated
corresponding moment rate point sources are labelled by their focal mechanisms (A, downdip extent; sr, slip rate; ra, rake).

Figure 2. Magnitude of completeness histories within 23 superzones. Each horizontal bar is annotated by its corresponding magnitude of completeness value,
and its background colour denotes the involved number of events. For a detailed description see SHARE deliverable D3.2 (http://www.share-eu.org).

European Earthquake Catalogue (SHEEC; Grünthal & Wahlström
2012; Stucchi et al. 2012; Giardini et al. 2013; Grünthal et al.
2013). By combining macroseismic data and instrumental seismo-
logical data in the period 1000–2006, the catalogue provides loca-
tion and moment magnitude estimates m along with uncertainties
for both (Fig. 1a). SHARE provided a completeness assessment of
the catalogue within large completeness zones (Fig. 2) that were
drawn based on historical constraints, that is considering the doc-
umentation history throughout Europe, not tectonic regionalization
or seismic network constraints. These large zones consequently do
not reflect many local variations in the completeness history, yet
are a good approximation for the entire region. The SHEEC cata-
logue was declustered with a windowing technique (Grünthal 1985;
Burkhard & Grünthal 2009).

We used the complete part of the declustered SHEEC catalogue
as input to estimate the spatial and magnitude probability density
of seismicity. Due to the limited quality of the depth information in
the SHEEC catalogue, earthquakes in subduction zones and crustal
seismicity were separated at 40 km depth. Accordingly, we applied

the density estimation separately to crustal seismicity and subduc-
tion zone seismicity.

2.2 Database of seismogenic faults

The fault sources of the European Database of Seismogenic Faults
(EDSF; Basili et al. 2013) are the second input to our model. Build-
ing on previous experiences in this field (Basili et al. 2008, 2009;
Haller & Basili 2011), new standards have been adopted for the def-
inition and characterization of active faults, including subduction
zones, to ensure a homogenous data set for use in hazard assess-
ment. This data set is homogeneous in the sense that all records
are characterized by a common mapping strategy and the same set
of parameters. For each fault parameter, the compilers documented
the origin of the information being provided, along with the per-
tinent scientific reference to a publication, where applicable. Data
uncertainties are handled by assigning a range of values to each pa-
rameter of a seismogenic source to capture its aleatoric variability
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(Basili et al. 2008). The current version encompasses 1128 crustal
faults with a slip rate of at least 0.01 mm yr−1 (Fig. 1b) and three
subduction zones.

2.2.1 Crustal faults

The EDSF adopt the concept of the composite seismogenic source
for crustal faults, which is a generalized, 3-D representation of a
dipping surface in the Earth’s crust on which fault slip occurs and
where most of the seismic energy is released during an earthquake.
Such fault sources are idealized as a uniformly dipping surface con-
strained between two horizontal lines that define the top and bottom
edge of the source itself. Pairs of latitude–longitude geographic
coordinates in decimal degrees with positive values for north/east
define the locations of seismogenic sources. Depth values are pos-
itive downwards and are given in km. We applied a tessellation of
the fault planes with elements of 5 × 5 km. Each fault element is
associated with a set of geometrical and kinematic parameters, such
as average strike, dip, rake and minimum and maximum annual slip
rate; the latter are always positive and measured in millimetres per
year along the direction of movement.

We estimate the moment rate M′ of each fault element by using
(Aki & Richards 2002)

M ′ = μ · A · D′, (1)

where μ is the shear modulus, the area A of each fault element
corresponds to its spatial downdip extent, and the slip rate D′ is
taken as the maximum value provided by the fault-source database.
For a complete description of each moment rate, we use the strike,
dip and rake angle given in the fault database. In this way we
simplify all faults to a series of point sources (example in inset of
Fig. 1b); by grouping these, we have a ‘catalogue’ of moment rate
point sources that is based purely on fault geometry and slip rates.
In other words, we transform the fault network representation to
resemble an earthquake catalogue.

2.2.2 Subduction zones

Subduction zone seismicity is known to generate earthquake rup-
tures of several types with varying size and faulting styles at the
slab interface or within the slab. These earthquakes follow different
scaling laws (Strasser et al. 2010) and rheology (Bilek & Lay 1999)
from those of crustal earthquakes.

In the EDSF, a subducting plate is mapped as a collection of
free-form subelements with a variable number of nodes. Each sin-
gle subelement represents a portion of the entire surface of the
subducting plate and is bounded by lines of constant depth ex-
cept for the uppermost line when it coincides with the seafloor.
Subduction sources are characterized by geometric (strike, dip and
depth) and kinematic (rake, and slip rate taken equal to convergence
rate) parameters. These parameters are given for all subelements
together with their range of variability for the entire subduction
zone (SHARE deliverable D3.4, www.share-eu.org). Thus the ho-
mogeneity and consistency of the EDSF data format facilitates the
same treatment of both subduction and crustal fault data.

3 M E T H O D

3.1 Overview

We divided the study area, the European region including Turkey,
into 265 120 non-overlapping 0.1◦ × 0.1◦ cells. Each cell is

composed of 41 magnitude bins (bin size of 0.1), which span the
entire model’s magnitude range of 4.5 ≤ m ≤ 8.6. The expected
annual number of events λ within each space–magnitude bin (jlon,
jlat, jm) is estimated according to

λ( jlon, jlat , jm) = N0 · μ( jlon, jlat , jm) · P( jm), (2)

where μ(jlon, jlat, jm) describes the spatial probability density, P(jm) is
the magnitude probability density and N0 is the expected total cumu-
lative number of events per year over all magnitude and spatial bins.
The spatial component of our model relies on two spatial probabil-
ity densities μseis(jlon, jlat) and μfault(jlon, jlat). Both are estimated by
applying the kernel density estimation method: μseis(jlon, jlat) orig-
inates from past seismicity and μfault(jlon, jlat) from a moment-rate
scaled contribution of active faults. The final spatial density μ(jlon,
jlat, jm) is the weighted sum of these two densities. Here we show that
the weighting function depends on the magnitude and estimate its
functional form using retrospective forecast experiments. We com-
puted earthquake rates by scaling the resulting spatial probability
density according to N0 given the frequency–magnitude distribution
P(jm) estimated from the entire catalogue.

3.2 Kernel density estimation

Kernel smoothing is a density estimation technique when no para-
metric density function is known. Thus it is a suitable technique
to capture spatial clustering properties of observed seismicity. The
locations of earthquakes are redistributed in space, where the ker-
nel function and its bandwidth govern the shape and the amount of
the redistribution (Stock & Smith 2002). Different kernels (e.g.
Gaussian, power law) generate qualitatively similar densities,
whereas the choice of an appropriate bandwidth has a crucial im-
pact on the results (e.g. Silverman 1986; Wiemer et al. 2009b).
A spatially varying bandwidth accounts for the clustered nature of
earthquake occurrence and depicts a better representation of the spa-
tial distribution of seismicity than estimates from spatially invariant
bandwidths (Stock & Smith 2002). The optimal local or regional
kernel width is found through retrospective forecast experiments by
dividing the data into a learning and target period (e.g. Zechar et al.
2010a).

We estimate the density of seismicity in each cell by smoothing
the location of each earthquake i with an isotropic variable power-
law kernel (Helmstetter et al. 2007):

ki (r ) = C(di )

(r 2 + d2
i )1.5

, (3)

where r is the epicentral distance, di is the smoothing distance, and
C(di) is a unity normalization constant. We measure the smoothing
distance di associated with earthquake i as the horizontal distance
between the event and its n-th closest neighbour. The number of
neighbours n is an adjustable parameter, estimated by optimizing
the forecast for a given target period. We impose di ≥ 0.5 km to
account for location uncertainty. The smoothing distance (i.e. the
kernel bandwidth) thus decreases with increasing seismicity den-
sity. The variable kernel bandwidth consequently assures a better
resolution where the density is higher. Each events contribution can
then be corrected to account for its hosting space–time magnitude
of completeness window:

k ′
i (r ) = ki (r )

10b·(mc,i −mmin )

Tc
, (4)

where mc, i is the magnitude of completeness, Tc is the length
of the corresponding completeness period and mmin equals 4.5,

file:www.share-eu.org
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Figure 3. Location probability density for the declustered SHEEC catalogue based on two different kernel density estimation techniques: (a) constant kernel
size of 10 km and (b) variable kernel size using the two spatially nearest events. The insets show the results of retrospective forecast experiments for optimizing
the kernel size and the number of nearest neighbours, respectively. For two distinct 5-yr target periods, we used all m ≥ 5.0 earthquakes as target events. The
probability gain per earthquake was estimated with respect to a spatially uniform earthquake density model as reference.

Figure 4. Location probability density for SHARE’s database of crustal faults based on moment-weighted kernel density estimation. The upper inset shows
the 9.2 per cent of all cells that contain 97.5 per cent of the density (as indicated by the dashed line in lower left-hand panel).

which is the minimum magnitude of our model. We centre the
spatial smoothing kernels on each earthquake epicentre and inte-
grate their contributions over all cells. The normalization makes
the sum of earthquake rates over the whole test area equal to unity.
The seismicity kernel treats all magnitudes identically. Thus we as-
sumed that each earthquake provides equal information about future
earthquakes.

For the converted fault moment rate points, however, we applied
an isotropic kernel of the form

ki (r ) = C(d)

(r 2 + d2)1.5
Mi , (5)

where d is a constant smoothing distance and Mi is the moment rate
of the corresponding fault point i. Accordingly, the kernel contri-
bution is driven by both the location and moment rate of each fault
moment rate point.

We used retrospective forecast experiments to optimize the
smoothing distance d and the number of nearest neighbours n.
We divided the earthquake catalogue into two sub catalogues: a
learning catalogue for kernel density estimation and a target cata-

logue for kernel parameter evaluation. Assuming that the observed
earthquakes in each cell are independent and follow a Poisson dis-
tribution, the joint log likelihood of a model is given by

log L =
∑

log p(μk, wk)=
∑

[−μk +wk · log(μk)−log(wk!)],

(6)

where p is the Poisson probability, μk is the spatial density in
longitude–latitude cell k, and wk is the corresponding number of
target events during the target period. We used two different tar-
get periods of 5 yr (2002–2007, 1997–2002) to estimate the opti-
mal smoothing parameters for all m ≥ 5 target events. We found
dc = 10 km for the density based on a constant bandwidth kernel
(using a fixed distance di = dc in eq. 3, inset Fig. 3a) and n = 2 for
the density based on a variable bandwidth kernel (inset Fig. 3b). On
the resulting seismicity-based maps (Fig. 3), the location probabil-
ity is high near the locations of past earthquakes and low far away
from all past earthquakes (cf. Fig. 1a). We applied eq. (5) using d
= 10 km to the fault moment rate points. On the resulting fault-
based density map (Fig. 4), the location probability is high close to
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Figure 5. (a) Seismicity-fault spatial density weighting as a function of target magnitude for the target period 1997–2007. In each magnitude bin the log-
likelihood per target event is normalized with respect to its corresponding maximum. (b) Log-likelihood per target event for two different selected target
magnitudes. Black symbols highlight maximum for different 10-yr target periods (including results shown in a). (c) Overview of results for all target periods.
Grey line denotes weighting function (eq. 7).

mapped faults, and the faster the slip rate of a fault, the greater its
location probability (cf. Fig. 1b).

3.3 Spatial density weighting

The SEIFA model requires the combination of two distinct loca-
tion probability densities μseis and μfault to a single spatial density
μ. Hiemer et al. (2013) introduced a simple magnitude-dependent
linear weighting function, such that the contribution from the fault-
based density linearly increases from 0 to 1 with increasing magni-
tude (in the magnitude range of 6.5 ≤ m ≤ 8.0). Such a weighting
function resembles the assumption that larger future earthquakes
are more likely to occur in the vicinity of a fault. A magnitude-
dependent location probability density leads to an apparent vari-
ability in the local frequency–magnitude distribution. Previously,
the weighting function’s linear slope and magnitude range was ad-
justed to minimize strong variations of local apparent b-values. Note
that such an apparent b-value is not a b-value estimated from the
catalogue, but it follows from the weighting of the scaled spatial
probability density functions, with the scaling factors being nor-
malized to match the global productivity, or a-value, of the study
region.

We introduce a less arbitrary approach for estimating a weighting
function, which is based on retrospective forecast experiments—
similar to the ones used for kernel bandwidth optimization. We
assure that the resulting function is again linear to reduce local vari-
ability in the frequency–magnitude distribution. Any fault database
is inherently incomplete and unknown faults can be included when
they are discovered in future times. To account for this incomplete-
ness, we applied the seismicity-fault density weighting only for
areas of mapped faults. The remaining areas are fully described by
the seismicity-based density. We define areas of mapped faults as
all cells that received a significant density contribution from the
fault moment rate points. We set the significance level to a conser-
vative value of 97.5 per cent, which leads to discarding all cells with
a density lower than 2.68 × 10−6 (inset Fig. 4). Accordingly, the
spatial component of our model (total of 265 120 longitude/latitude
cells) consists of two parts: 240 739 cells, which rely solely on
the seismicity-based density and 24 381 cells (inset Fig. 4), where we
applied a likelihood optimized weighting of the contribution from

the fault and seismicity densities. To estimate weights for the two
location probability densities, we divided the available earthquake
catalogue into disjoint learning and target periods. The weights that
best forecast earthquakes in the target period based on events in
the learning period are considered to be optimal. We used different
target periods with durations of 5, 10, 15 and 20 yr to estimate the
optimal weights. We find that the result is robust with respect to the
choice of the duration of the target catalogue. The larger the time
window, the higher the number of available target events, however,
the fewer the number of distinct target windows. We used three dif-
ferent target windows of 10 yr to investigate the optimal seismicity-
fault weights: 1997–2007 (Fig. 5a), 1992–2002 and 1987–1997. We
estimate the weights as a function of target magnitude (examples in
Fig. 5b). With increasing target magnitude, the number of available
target events decreases, and thus the estimated weights for higher
magnitudes are less reliable. Fig. 5(c) summarizes the results for
target catalogue time spans of 10 yr. To avoid double counting of
target events due to time span overlaps, we used the entire 1987–
2007 period to optimize the coefficients for the linear weighting
function (Fig. 5c):

Wseis =

⎧⎪⎨
⎪⎩

0.76 for m ≤ 5.5

−0.28 · m + 2.3 for 5.5 ≤ m ≤ 7.5

0.2 for m ≥ 7.5.

(7)

Wseis is the contribution from the seismicity-based spatial density,
and 1-Wseis is the contribution from the fault-based density. The
function implies that the larger the earthquake magnitude, the more
likely is it to occur on a fault. For events with m ≤ 5.5, an event
will occur with a probability of 0.76 in the regions mapped by the
seismicity density map, and only a probability of 0.24 in the regions
of the fault moment weighted one. With a small probability of 0.2,
events with magnitudes larger than m ≥ 7.5 will occur in regions
not mapped by the fault database.

3.4 Frequency–magnitude distribution

We assume that a single universal frequency–magnitude distribution
is valid for the entire study area, thus our model does not a priori
account for spatial variability in the relative occurrence of small
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Figure 6. Frequency–magnitude distribution (FMD) for the crustal part (a) and subduction part (b) of the SHEEC catalogue taking into account regional
magnitude of completeness histories. The legend lists the a- and b-value together with the corresponding interquartile ranges derived from the 1000 bootstraps
of the catalogue.

and large magnitude events as expressed by the b-value. However,
this variability is introduced by the weighting function as explained
above. Traditionally, methods consider the temporal variations in
the completeness history within one volume or study area (We-
ichert 1980; Wiemer et al. 2009b; Kijko & Smit 2012). Given the
spatial variability of the completeness periods within the SHEEC
catalogue, we extended the method by Wiemer et al. (2009b) to
estimate the global a- and b-values considering the space–time
complexity of the completeness using a maximum-likelihood ap-
proach. The temporal completeness history is available within 23
superzones (SHARE deliverable D3.2, Fig. 2). We combined the
histories of all zones to estimate the best overall b- and a-values for
the entire catalogue as: b = 0.9 and a = 5.87 (Fig. 6a). The magni-
tude range of our model is 4.5–8.6. The minimum magnitude of 4.5
was adopted as the lower magnitude of engineering interests while
the 8.6 corresponds to the upper magnitude distribution across the
SHARE target region. We quantify the uncertainty in the regional
estimate of the a- and b-values with a bootstrap approach. To gen-
erate a bootstrap sample of the catalogue, we first select events in a
given superzone, divide the catalogue in the completeness periods,
bootstrap the catalogue within the completeness periods and then
recreate the catalogue for the entire time span of the catalogue. This
procedure ensures that the infrequent large events are well repre-
sented when bootstrapping. For the 1000 bootstrapped samples, we
obtained quantiles for both, the b-value distribution (q0.25 = 0.89,
q0.75 = 0.91) and a-value distribution (q0.25 = 5.85, q0.75 = 5.93;
Fig. 6a).

4 R E S U LT S

4.1 Earthquake rate forecast

We applied the method to crustal seismicity (depth ≤40 km) and
subduction zone seismicity separately. The depth value for differ-
entiating between deep and crustal seismicity is a compromise as the
focal depth uncertainty in the catalogue is large in parts or very often
not available; the latter is especially true for many larger historical
events based on macroseismic intensities, but also for those located
through the recordings of seismic networks. For both earthquake
types, we estimated spatial probability densities and the overall a-
and b-values of the truncated Gutenberg–Richter magnitude distri-
bution. We first discuss the results of the crustal seismicity and then
outline the adaption for the subduction seismicity.

4.1.1 Modeling crustal seismicity

We compared two different kernel-density estimation techniques for
the seismicity component of our model: using a constant kernel size
and a variable kernel size. We emphasize that the kernel size is not
a spatial resolution parameter of past seismicity, but an expression
of the degree of stationarity of seismicity. The kernel bandwidth
optimization is based on retrospective forecast experiments; it con-
sequently aims to estimate a spatial density that well describes the
spatial distribution of future events. Such an optimization accounts
for the prevalent observation that future events do not occur at the
exact same location as past events. Our likelihood analysis supports
the use of a constant kernel size considering target time spans of 5 yr
as the likelihood gains per target event are slightly higher (insets
Fig. 3). Nevertheless, we argue that the sensible use of a variable
kernel size is more appropriate. The resulting density adverts to
its advantages (Fig. 3b): On the one hand, a smaller bandwidth is
more appropriate in high-density regions since the large number of
earthquakes allows for a more accurate estimation of the density
itself. On the other hand, a larger bandwidth is more appropri-
ate in low-density regions where only a few events are observed
(e.g. Northern Europe, Fig. 1a). The constant kernel spatial density
results in a punctuated forecast, while the variable kernel one dis-
tributes event contributions to larger regions (e.g. Northern Europe,
Fig. 1b). The latter resembles the arguments by Kafka (2007) and
Liu et al. (2011), who argue that seismicity in intraplate regions
may jump between fault system and the proximity to past events is
in contrast to high-seismicity regions not the best guide for fore-
casts. The variable kernel technique is thus suitable for smoothing
long tail distributions where under-smoothing in the tails is likely
to cause difficulties (Silverman 1986). Our decision is supported by
findings of Stock & Smith (2002) for New Zealand and the outcome
of the RELM project (Schorlemmer et al. 2010; Zechar et al. 2013),
where the forecast submitted by Helmstetter et al. (2007) showed
the highest skill with respect to all other candidate models.

We converted the resulting spatial densities into spatial distri-
butions of annual earthquake rates by scaling each spatial density
with its corresponding activity, respecting the total productivity of
the global Gutenberg–Richter magnitude distribution (Fig. 6a). Ac-
cordingly, the final annual rate of our forecast is purely based on
an estimate from the earthquake catalogue data, whereas its spatial
component incorporates contributions from both earthquake and
fault moment-rate densities. The resulting earthquake rate model
forecasts a total cumulative number (m ≥ 4.5) of 65.6 events yr−1
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Figure 7. (a) Spatial distribution of cumulative annual earthquake rates (4.5 ≤ m ≤ 8.6). The total annual rate is 65.6 events yr−1 (cf. Fig. 6a). (b) Spatial
rate distribution for selected incremental magnitudes. Note the increasing imprint of the fault contribution with increasing magnitude (cf. Fig. 5). (c) Resulting
local departures from overall Gutenberg–Richter magnitude distribution (b = 0.9, cf. Fig. 6a).

(cf. Fig. 6a). Fig. 7(a) shows the cumulative annual earthquake rate
for all cells in our model space. The cumulative rates are dominated
by the contributions from smaller magnitudes; thus, their spatial
distribution is primarily controlled by the seismicity-based location
probability density. Mapping incremental annual rates with increas-
ing magnitude thresholds, the fault contribution increases and the
spatial distribution of the rates is less affected by past earthquake oc-
currences (Fig. 7b). For the selected magnitude range 4.5 ≤ m ≤ 4.6,
the spatial rate distribution resembles the one in Fig. 7(a), however,
for the magnitude range 7.5 ≤ m ≤ 7.6, the seismically active faults
in Greece and Turkey light up prominently compared to the other
areas in Europe.

Fig. 7(b) underlines that the final spatial component of our model
is magnitude dependent (eq. 2). In regions of mapped faults, the
contribution from past seismicity dominates the weighted location
probability density for small events (4.5 ≤ m ≤ 5.5, 76 per cent seis-
micity +24 per cent faults), and the contribution from fault moment-
rate points is predominant for large events (m ≥ 7.5, 20 per cent
seismicity +80 per cent faults). The imposed functional form of
the weighting function (Eq. 7) assures that local deviations from
a plain Gutenberg–Richter distribution are minimized (Fig. 7c, see
also Hiemer et al. 2013, their fig. 6). We find that in particular the
fast slipping faults deviate to smaller b-values while slow slipping
faults show slightly increased values. The deviations are limited to
a relatively small range of 0.2 (Fig. 7c).

4.1.2 Modelling seismicity in subduction zones

We applied the same approach to the subduction zone seismicity for
events deeper than 40 km (Fig. 8). Due to the uncertainties in the
focal depth, we did not differentiate between interface and intraslab
seismicity, thus we assume that there is no difference in the spatial

Figure 8. Input data for the subduction part of our model (top panel
shows seismicity: event depth >40 km, bottom panel shows fault database:
Calabrian Arc, Hellenic Arc and Cyprus Arc).

variation of these two types of earthquakes only due to the limita-
tions in the given data set. We estimated spatial density probabilities
based on the earthquake data and on the converted fault moment
rate points, respectively (Fig. 9a). Smoothing was performed on the
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Figure 9. (a) Normalized spatial densities for the subduction zone model (top panel for seismicity, using a constant size kernel of 10 km; and bottom panel
for the fault database, using a moment-weighted kernel). (b) Spatial distribution of cumulative annual earthquake rates (4.5 ≤ m ≤ 8.6). We used the same
weighting function as for the crustal part of our model to weight the two spatial probability densities. The total annual rate is 8.1 events yr−1 (cf. Fig. 6b).

surface projection of the subduction zones considered (Calabrian
Arc, Hellenic Arc and Cyprus Arc).

The seismicity-based density is less homogeneous than the sub-
duction zone moment rate density, representing the spatial variabil-
ity of seismicity and its apparent clustering. Seismicity density in
the Calabrian Arc extends further to the northeast compared to the
moment rate contribution. A similar feature is observed in the east-
ern Hellenic Arc, where the seismicity seems clustered from the
eastern end of Crete to the southwestern border of Turkey. Consid-
ering the comparatively limited amount of data, we used the same
weighting function as for the crustal part of our model for internal
model consistency. We estimated the a- and b-values of a truncated
Gutenberg–Richter magnitude distribution (a = 5.21, b = 0.95, and
corresponding interquartile ranges from bootstrapping, Fig. 6b) for
the complete part of the data set and scaled the weighted densities
accordingly. Our resulting subduction model forecasts a total cu-
mulative number (m ≥ 4.5) of 8.1 events yr−1. As highlighted by
the densities (Fig. 9a) and the cumulative annual occurrence rates
(Fig. 9b), the model’s spatial component accentuates the location of
observed seismicity that is laterally heterogeneous. The variability
reduces for the larger magnitude events. Note that relatively large
uncertainties due to the focal depth information remain for where
events actually occur in the subduction zone. Resolving separate
densities for inslab and interface events will only be possible for
high-resolution catalogues including the characterization of each
event with a moment tensor or a focal mechanism.

4.2 Consistency tests of earthquake rate forecasts

Procedures for testing and evaluating earthquake likelihood mod-
els have been established within CSEP (e.g. Jordan 2006; Zechar
et al. 2010b; Eberhard et al. 2012), which is a community-supported
infrastructure for conducting forecasting experiments in several re-
gions around the world. Our model is expressed as a gridded earth-
quake rate forecast and suitable for such likelihood testing proce-
dures: It specifies the annual expected number of earthquakes within
non-overlapping spatial cells (256 210 cells, size of 0.1◦ × 0.1◦),
each of which is composed of 41 magnitude bins (4.5 ≤ m ≤ 8.6,
0.1 magnitude binning), and the model incorporates the assumption

that the number of earthquakes in each bin is Poisson-distributed
and independent of those in other bins.

We tested the consistency (1) between the total number of ob-
served and forecasted events (CSEP: N-test), (2) between the ob-
served and forecasted magnitude distribution (CSEP: M-test), (3)
between the observed and forecasted spatial distribution (CSEP:
S-test) and (4) between the observed and forecasted joint space–
magnitude distribution (CSEP: conditional L-test, Werner et al.
2010). These consistency tests are all governed by the same prin-
ciple. One simulates many catalogues (in this study 10 000) that
are consistent with the forecast and estimates the corresponding
distribution of joint log-likelihoods (eq. 6). This distribution is then
compared with the joint log-likelihood of the forecast given the ob-
served data by computing a quantile score, that is the fraction of
simulated likelihoods smaller or equal the observed one. The fore-
cast is considered inconsistent with the observed data if the quantile
score is lower than a critical significance value, which is commonly
set to 0.05 (corresponds to 0.95 confidence in the results, for exam-
ple Eberhard et al. 2012). In case of a Poisson forecast, the N-test has
an analytical solution and thus does not require simulations (Zechar
et al. 2010b). The objective of the S-test is to consider only the spa-
tial distribution of the forecast and the observation. To isolate the
spatial information, one computes the sum of all magnitude bins,
and the resulting forecast sum is normalized so that it matches the
observed number of target events. Similarly, the M-test only consid-
ers the magnitude distribution by summing over longitude–latitude
spatial cells.

We tested four different earthquake rate forecasts: the SEIFA
model presented, its single seismicity-based component (spatial
density equals the seismicity density, SEI), its single fault-based
component (spatial density equals the fault moment rate density,
FA), and the classical ASM that is an alternative seismic source
model in SHARE’s logic tree for PSHA (Giardini et al. 2013,
http://www.efehr.org/). The first three only differ in their spatial
earthquake rate distribution (implying identical results for N- and
M-test), thus we used the S-test to detail their individual consistency.

We define target events as moment magnitudes m ≥ 5 crustal
events (depth ≤ 40 km). We created two sub-catalogues from
the SHEEC catalogue for retrospective likelihood testing, which
span the time periods 1987–2007 (20 yr) and 1997–2007 (10 yr),

http://www.efehr.org/
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Table 1. Forecasted vs. observed number of m ≥ 5 target events (depth
≤ 40 km). Asterisks indicate failure of the N-test at a critical significance
value of 0.05, that is inconsistency between the total forecast expectation
and the number of target events. See Fig. 11 for the corresponding spatial
distributions of target events.

Observed/ CMT NEIC SHEEC SHEEC
forecasted (6 yr) (6 yr) (10 yr) (20 yr)

SEIFA 121/139.7 133/139.7 205/232.8 382/465.7*
ASM 113/179.5* 122/179.5* 205/299.2* 382/589.3*

Figure 10. Frequency–magnitude distribution for SHARE’s area source
model (ASM) and smoothed seismicity-fault model (SEIFA). Both are con-
sistent with observed magnitude distributions. The likelihood consistency
tests were performed pseudo-prospectively using CMT/NEIC target events
and retrospectively using SHEEC target events. We considered all m ≥ 5
earthquakes (depth ≤ 40 km) as target events.

respectively. The fact that the SHEEC catalogue ends in 2007 allows
for pseudo-prospective consistency testing considering the time pe-
riod of 2007–2013; these independent 6 yr of data were not in-
corporated in the initial model construction. For that purpose we
used target events from both the CMT catalogue (Global Centroid-
Moment-Tensor, http://www.globalcmt.org/CMTsearch.html) and
the NEIC catalogue (National Earthquake Information Center,
http://earthquake.usgs.gov/earthquakes/eqarchives/epic/) as these
provide also moment magnitudes. The latter catalogues were declus-
tered with the same window approach as the SHEEC catalogue prior
to testing.

The total expected annual number of m ≥ 5 events within the
study region equals 29.9 for the ASM and 23.3 for the SEIFA
model. Considering the N-test we find that the ASM is inconsistent
with the target events in all four investigated target catalogues (i.e. it
overpredicts the observed total annual number, Table 1). However,
the ASM shows a close match with the observed rates of the entire
SHARE catalogue (Fig. 10). Notice that the model fits an a- and
b-value in each area source, and each of those values were man-
ually checked and adjusted to match the rates of observed events
between m = 5.5 and 7.5. Thus the ASM is mainly constrained
by the historical part of the catalogue with special consideration
for a certain magnitude range, which explains the elevated rates
in its overall summed frequency–magnitude distribution (Fig. 10).
For the SEIFA model, the corresponding annual expected number
of m ≥ 5 events is consistent with both, the pseudo-prospectively
observed ones and the total observed number during the last 10 yr of

Table 2. M-test quantile scores (the fraction of simulated
joint log-likelihoods smaller or equal the observed one). Both
model’s magnitude distributions are consistent with the ob-
served data, because their quantile scores are greater than the
significance value of 0.05. See Fig. 10 for the correspond-
ing frequency–magnitude distributions of the models and the
target events.

M-test CMT NEIC SHEEC SHEEC
(6 yr) (6 yr) (10 yr) (20 yr)

SEIFA 0.88 0.64 0.63 0.18
ASM 0.87 0.47 0.78 0.30

Table 3. Conditional L-test quantile scores (the fraction of
simulated joint log-likelihoods smaller or equal the observed
one). Both model’s magnitude–space dimensions are con-
sistent with the observed data (at the 95 per cent confidence
level).

L-test CMT NEIC SHEEC SHEEC
(6 yr) (6 yr) (10 yr) (20 yr)

SEIFA 0.64 0.63 0.44 0.65
ASM 0.34 0.68 0.47 0.82

the SHEEC catalogue (Table 1, Fig. 10). Considering the last 20 yr,
however, the SEIFA model also overpredicts the total annual number
(Table 1). With the M-test, we check for consistency of the observed
and normalized modelled frequency–magnitude distribution so that
the total number does not influence the result. We find that the mag-
nitude dimension of both tested models are consistent with all four
investigated target catalogues (see Table 2 for respective quantile
scores). We obtained similar results for the conditional L-test, where
we tested the joint magnitude–space dimensions normalized to the
respective observed number of events (Table 3).

We devote more attention to the results of the consistency test for
the spatial earthquake rate distribution, because the corresponding
S-test allows for investigating the reliability of individual SEIFA
model components (SEI, the purely seismicity-based, and FA, the
purely fault-based end-member). We find that the spatial com-
ponents of the ASM, SEIFA and SEI model are consistent with
the spatial distribution of observed earthquakes applying the S-test
(middle row panels in Fig. 11). The ASM model shows the highest
joint log-likelihood per event given the observations. Note that for
the retrospective cases (two right columns, Fig. 11) the target events
were included when constructing the ASM.

To further detail differences, we created a subset of target events.
We therefore considered only the target data that are located within
the cells which were subjected to seismicity-fault density weight-
ing, that is events that happened on or nearby a mapped fault (black
circles in top row panels of Fig. 11). In these regions the ASM
and SEIFA model are the only forecasts being fully consistent with
all considered target catalogues (bottom row panels, Fig. 11). The
target catalogues include surprises, i.e. events that did not happen
on previously mapped faults and events that occurred in regions
of low density of past-observed seismicity. Thus the individual
components of the SEIFA model do not prove consistency when
applying the S-test. The SEIFA model, however, accounts for such
surprises, because it incorporates a weighted combination of both,
the seismicity-based and fault-based location density. We investi-
gated likelihood ratio maps for all model components with respect
to a uniform forecast to underline our findings (Fig. 12). Such maps
identify which spatial locations of earthquakes are less likely given
a forecast compared to a uniform forecast (Werner et al. 2010).

http://www.globalcmt.org/CMTsearch.html
http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
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Figure 11. Results for consistency test of spatial rate distribution of models (ASM, area source model; SEIFA, smoothed seismicity-fault model; SEI, smoothed
seismicity end-member; FA, smoothed fault end-member). Each column corresponds to a different target catalogue using m ≥ 5 events (depth ≤ 40 km). The
middle rows show consistency test results for all target events (total number N1, black circles and grey diamonds on top row map) and bottom rows for target
events in the vicinity of mapped faults (number N2, black circles only). The inverted triangle represents the spatial log-likelihood/event of the observation given
the forecast. The horizontal grey bars delineate the top 95 per cent of log-likelihoods from simulated catalogues that are consistent with the corresponding
forecast. Non-filled triangles indicate a failure of the spatial consistency test, that is the respective forecast is inconsistent with the observed spatial distribution
of target events.

The spatial inconsistency of the FA model is due to its strong con-
centration of event location density (compare Fig. 4 and Fig. 3b).
The model suffers from losses in likelihood due to numerous off-
fault events that are not compensated by equal or greater likelihood
gains from well-located on-fault events. Note that we did not ac-
count for location uncertainties when evaluating the likelihoods of
the individual target events.

We performed the same consistency test for the subduction part
of our model (Fig. 9b) and the model passed all outlined consistency
tests at the 95 per cent confidence level. In comparison with the tests
of the crustal part of our model, however, these tests are less reliable
due to the limited number of target events, for example, 11 events
within SHEEC’s target time span of the last 10 yr and 30 events
within its last 20 yr.

The consistency tests do not allow for addressing the question
whether one model is better than the other. We applied the T-test
(Rhoades et al. 2011) to evaluate the significance of the observed
spatial likelihood differences between the ASM and SEIFA model.
The T-test is based on the Student’s paired t-test to estimate whether
the corrected average information gain per earthquake is signifi-
cantly different from zero for a given pair of models or not. We
find for all our considered target catalogues, that the SEIFA model
has a positive information gain over the ASM. The likelihood gains
are significant for the retrospective cases (filled circles, Fig. 13).
We obtain the same results when using the W-test, which applies
the Wilcoxon signed-rank test to the individual rate-corrected in-
formation gains and thus does not assume that they are normally
distributed (as the T-test; Rhoades et al. 2011).

We emphasize that the crustal parts of both the ASM and the
SEIFA model are consistent with the observed seismicity in the
space and magnitude dimension considering target catalogues of
different time spans and data sources. The SEIFA procedure high-
lights the importance of the instrumental part of the SHEEC cat-
alogue, which is the reason why it successfully forecasts the total
number of CMT and NEIC events. The ASM approach accentuates
the historical part of the SHEEC catalogue, which results in a close
agreement with the observed frequency–magnitude distribution of

the entire SHEEC catalogue. Whether the emerged bulge in the
magnitude range of m6 – m7.5 is an artifact or a feature of the
Pan-European region remains to be understood. The testability of
the models will enable to revisit the models and prospectively test
their performance using much longer time spans within the Euro-
pean CSEP Testing Center.

5 C O N C LU S I O N S A N D D I S C U S S I O N

We presented a kernel smoothing approach applied to seismicity
and fault moment release to model earthquake activity throughout
Europe. The method is a zone-less alternative to other earthquake
source models and has been used to capture epistemic uncertain-
ties in the SHARE source model logic-tree. Our model extends the
classical seismicity kernel-smoothing method to include the mo-
ment release information from faults. This extension addresses the
strongest criticism directed to kernel-smoothing approaches: the
disregard of slip rates and fault geometries. Furthermore, smoothed
seismicity models are the antipode to the seismic gap model, in
which large earthquakes are not expected where they had occurred
in the past. Our approach includes slip rates on active faults and
historically quiet faults. Note that we use this data component only
for the estimation of the spatial distribution of earthquake rates. The
overall productivity of our model is based on a global scaling law
relation fit to the entire catalogue proposed here also for the first
time. Regions, where no structures are mapped, are solely modelled
by smoothing seismicity data, accounting for the present incomplete
knowledge about the fault network.

Our approach is data-driven and aims to reduce the number of
subjective judgments. The largest subjective influence arises from
the determination of the frequency–magnitude distribution—we
used a global approach for the crustal and the subduction zone
separately to minimize its influence. Most influential in this re-
spect is the determination of a regional space–time completeness
history, which might be more difficult to solve in low than in
high seismicity regions (Stirling & Gerstenberger 2010). We used
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Figure 12. Likelihood ratios between the (a) SEIFA, (b) SEI and (c) FA
spatial forecast and a uniform forecast, respectively. All forecasts are nor-
malized to sum to the 220 observed earthquakes (SHEEC 20 yr, see Fig. 11,
bottom right-hand panel). Locations of earthquakes in blue areas are less
likely given the forecast compared to the uniform forecast.

retrospective forecast experiments to optimize the model parame-
ters for the spatial components of our model: the optimal kernel
size and the optimal function for weighting the seismicity-based
and fault-based probability densities. For the magnitude dimension,
we assumed that a truncated Gutenberg–Richter distribution is ap-
propriate to describe the entire earthquake catalogue. The estimated
a- and b-values account for regional differences in the temporal
evolution of the magnitude of completeness.

Major improvements compared to the model by Hiemer et al.
(2013) are: (1) we estimated the spatial seismicity density using
optimized variable-sized kernels; (2) we used retrospective fore-
cast experiments to optimize a weighting function between the
seismicity- and fault-based spatial densities; (3) we estimated the
a- and b-value of a truncated Gutenberg–Richter magnitude distri-
bution based on a maximum likelihood approach that considers the
spatial and temporal completeness history of the entire seismic cat-

Figure 13. Results for comparison T- and W-test of spatial rate distribution
of models (ASM, area source model; SEIFA, smoothed seismicity-fault
model). Each plot shows the mean and 95 per cent confidence interval of the
information gain per earthquake of the SEIFA model over the ASM model
for a different target catalogue. N1 is the total number of target events, and
N2 is the number of target events in the vicinity of mapped faults (compare
Fig. 11). Filled circles denote T-test significance at 95 per cent confidence
level. The corresponding W-test significance is indicated by a small ‘W’
next to the average.

alogue using the approach by Wiemer et al. (2009b) for each single
zone and (4) in addition we applied the technique for the first time
to a subduction zone model, introducing spatially varying activity
rates on a complex fault model.

Our results are affected by both the completeness and uncertain-
ties of the input data. The main limitation is the intrinsic incomplete-
ness of the fault database (e.g. Basili et al. 2013) especially outside
the area of well known plate boundaries (England & Jackson 2011).
We used the upper 97.5 per cent of the fault-based density to repre-
sent areas of mapped faults (24 381 of all 265 120 cells, inset Fig. 4).
We repeated our analysis using values of 90 per cent (12 599 cells),
95 per cent (18 248 cells) and 99 per cent (33 545 cells) to estimate
the sensitivity of our results with respect to this choice. We found
that the value does not alter our main findings presented in Figs 11
and 13: The forecasts are consistent with the target observations and
they show a positive information gain over the ASM. Limitations
due to data incompleteness are similarly true for the seismicity
component, in particular for low-seismicity regions. The kernel-
smoothing approach captures uncertainties in earthquake location,
fault geometry and slip-rate estimate. Magnitude uncertainties have
no impact on the kernel smoothing, because the kernel treats all
magnitudes identically. However, they might lead to missing or ad-
ditional events within completeness windows. Thus, the magnitude
dimension of our model is affected by these uncertainties. The ac-
curacy of the estimate of the regional a- and b-values of the entire
SHEEC catalogue depends on the reliability of the previously con-
ducted completeness-time assessment within SHARE’s predefined
superzones. The overall annual rate of our model is entirely driven
by the a- and b-values estimate.

We estimated the optimal kernel bandwidth for the seismicity
component of our model, but did not optimize the kernel band-
width for the fault component individually. We optimized the
weights between both densities assuming a weighting function’s
functional shape that aims at minimizing local deviations from a
plain Gutenberg–Richter distribution. It would be insightful to es-
timate optimal kernel bandwidths and their weights jointly. Such a
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joint optimization should include constant, variable and moment-
dependent kernels in order to reveal which approach yields the
highest likelihood gain for which part of the data. The number of
free parameters for the weighting function should be subjected to
penalized-likelihood investigations as part of this optimization. An-
other important question for future studies is to determine whether
including the historical part of the catalogue leads to a better fore-
cast or not. We also used the entire declustered SHEEC catalogue to
comply with the large-scale hazard community effort of the SHARE
project. Wang et al. (2011) examined the importance of several as-
sumptions and choices when constructing a smoothed seismicity
forecast for California. They found that the inclusion of historical
earthquakes failed to improve the forecast consistently.

The model concept is modular: the spatial densities and the
magnitude density are exchangeable without changing the general
flavour of the model. We used seismicity and geologic fault informa-
tion for its spatial component, however, input from strain-rate mod-
els or recent geodetic observations could be implemented within the
first step of the density estimation procedure. For each probability
density function, a modeler can select the contributing data sets, as
long as the choices are self-consistent. The time-independent imple-
mentation presented in this paper fits many requirements of time-
independent probabilistic seismic hazard assessment by taking into
account community-driven information, such as the regional com-
pleteness history of the cataloguer and the tectonic characterization
of the study region. However, such assessments could be conducted
independently (e.g. Hiemer et al. 2013, for tectonic information
weighting).

Our model is the first European zone-less forecast model that
includes seismicity and fault information. We showed that it is a
reliable and skillful alternative to the classical ASM; therefore we
propose this to serve as a reasonable candidate reference model for
the European region—as an earthquake rate forecast model as well
as a seismic hazard model.

6 R E S O U RC E S

All presented annual rate forecasts and their documentations are
available at http://www.efehr.org/ (European Facility for Earthquake
Hazard and Risk).
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