MATHEMATIKA

A JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 19. Part 2.
DECEMBER, 1972.
No. 38.

ON THE EULER CHARACTERISTIC OF SPHERICAL POLYHEDRA AND THE EULER RELATION

H. HADWIGER and P. MANI

Let E^{n+1}, for some integer $n \geqslant 0$, be the ($n+1$)-dimensional Euclidean space, and denote by S^{n} the standard n-sphere in $E^{n+1}, S^{n}:=\left\{x \in E^{n+1}:\|x\|=1\right\}$. It is convenient to introduce the (-1)-dimensional sphere $S^{-1}:=\varnothing$, where \varnothing denotes the empty set. By an i-dimensional subsphere T of $S^{n}, i=0, \ldots, n$, we understand the intersection of S^{n} with some " $(i+1)$-dimensional subspace of E^{n+1}. The affine hull of T always contains, with this definition, the origin of $E^{n+1} . \varnothing$ is the unique (-1)-dimensional subsphere of S^{n}. By the spherical hull, $\operatorname{sph} X$, of a set $X \subset S^{n}$, we understand the intersection of all subspheres of S^{n} containing X. Further we set $\operatorname{dim} X:=\operatorname{dim} \operatorname{sph} X$. The interior, the boundary and the complement of an arbitrary set $X \subset S^{n}$, with respect to S^{n}, shall be denoted by int $X, \operatorname{bd} X$ and $\mathrm{cpl} X$. Finally we define the relative interior rel int X to be the interior of $X \subset S^{n}$ with respect to the usual topology of $\operatorname{sph} X \subset S^{n}$. For $n \geqslant 1$ each ($n-1$)-dimensional subsphere of S^{n} defines two closed hemispheres of S^{n}, whose common boundary it is. The two hemispheres of the sphere S^{0} are defined to be the two one-pointed subsets of S^{0}. A subset $P \subset S^{n}$ is called a closed (spherical) polytope, if it is the intersection of finitely many closed hemispheres, and, if, in addition, it does not contain a subsphere of $S^{n} . Q \subset S^{n}$ is called an i-dimensional, relatively open polytope, $i \geqslant 1$, or shortly an i-open polytope, if there exists a closed polytope $P \subset S^{n}$ such that $\operatorname{dim} P=i$ and $Q=$ rel int P. $X \subset S^{n}$ is called a closed polyhedron, if it is a finite union of closed polytopes P_{1}, \ldots, P_{r}. The empty set \varnothing is the only (-1)-dimensional closed polyhedron of S^{n}. We denote by \mathfrak{X} the set of all closed polyhedra of $S^{n} . Y \subset S^{n}$ is called an i-open polyhedron, for some $i \geqslant 1$, if there are finitely many i-open polytopes Q_{1}, \ldots, Q_{r} in S^{n} such that $Y=Q_{1} \cup \ldots \cup Q_{r}$, and $\operatorname{dim} Y=i$. By Y_{i} we denote the set of all i-open polyhedra. Clearly $\varnothing \in \mathfrak{X}, \varnothing \notin \mathfrak{Y}_{i}$, for all $i \geqslant 1$, and each i-dimensional subsphere of $S^{n}, i \geqslant 1$, belongs to \mathfrak{X} and to \mathfrak{Y}_{i}. For each i-dimensional subsphere T of S^{n}, set $\mathfrak{Y}_{i}(T):=\left\{T \in \mathfrak{Y}_{i}: Y \subset T\right\}$. A map $\varepsilon: \mathfrak{X} \cup \mathfrak{V}_{1} \cup \ldots \cup \mathfrak{Y}_{n} \rightarrow\{0,1\}$ is defined by $\varepsilon X:=0$, for all $X \in \mathfrak{X}$, and $\varepsilon \boldsymbol{\varepsilon} Y:=1$, for all $Y \in \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n}, Y \notin \mathfrak{X}$.

Defintion 1. Let 3 be a ring of subsets of S^{n}, generated by some subset of $\mathfrak{X} \cup \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n}$. An Euler characteristic on \mathfrak{Z} is a map $\psi: \mathcal{Z} \rightarrow \mathbb{Z}$ (the ring of
integers) with the following properties:
(1) If $\varnothing \in \mathcal{Z}$, then $\psi \varnothing=0$.
(2) $\psi X=1$, whenever X is a closed non-void polytope, or an i-open polytope $(i \geqslant 1)$, contained in 3 .
(3) For all X, Y in $3, \psi(X \cup Y)+\psi(X \cap Y)=\psi X+\psi Y$.

It is well known that there exists a unique Euler characteristic χ_{0} on \mathfrak{X}, and, for each i-dimensional subsphere T of S^{n}, a unique Euler characteristic χ_{T} on $\mathfrak{Y}_{i}(T)$ (see [2], [3]). For notational convenience we denote all these characteristics by the same letter χ. Thus a mapping $\chi: \mathfrak{X} \cup \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n} \rightarrow \mathbb{Z}$ is defined, which satisfies (1) and (2), and which satisfies (3) for certain pairs of polyhedra. On the other hand we notice that there are rings 3 which admit no Euler characteristic, and others which admit more than one. For example there exists no Euler characteristic on the ring of sets generated by $\mathfrak{X} \cup \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n}, n \geqslant 1$. To see this, consider a 1 -dimensional subsphere $S \subset S^{n}$, a set $X \subset S$ with two elements, and the complement $Y:=S \sim X$. (3) would not hold for X and Y. Sometimes it is more convenient to study the map $\omega: \mathfrak{X} \cup \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n} \rightarrow \mathbb{Z}$ defined by $\omega(U):=(-1)^{\varepsilon U \operatorname{dim} U} \chi(U)$, rather than χ itself. For $n \geqslant 1$, let $S \subset S^{n}$ be a subsphere of dimension $n-2$, and denote by Θ the set of all ($n-1$)-dimensional subspheres of S^{n} containing S, together with the usual topology. \mathcal{S} is homeomorphic to the real projective line, and hence to S^{1}. Each choice of an orientation of \mathbb{E} and of a fixed element $S_{0} \in \mathbb{S}$ determines, by means of the " angular parameter", a continuous and periodic map $p: \mathbb{R} \rightarrow \Theta$ with $p(t)=p(t+\pi)$, for each real number t, and with the fundamental interval $I:=[0, \pi)$. For the rest of this article we assume that a fixed choice of the covering projection p has been made, for every ($n-2$) -dimensional subsphere $S \subset S^{n}$. The sphere $p(t) \in \mathbb{G}$ will often be denoted by S_{t}. Given a map $f: \mathcal{S} \rightarrow \mathbb{R}$ and an element $t \in I$, we define the right-hand limit $f^{+}\left(S_{t}\right)$ in the usual way. If there exists a real number x such that for each sequence of numbers t_{n} with $t_{n} \geqslant t$ and $t_{n} \rightarrow t(n \rightarrow \infty)$ we have $f p\left(t_{n}\right) \rightarrow x$ $(n \rightarrow \infty)$, we set $f^{+}\left(S_{t}\right):=x$. We say that two subspheres S and T of S^{n} are in general position, if either $S \cap T=\varnothing$ or $\operatorname{dim}(S \cap T)=\operatorname{dim} S+\operatorname{dim} T-n$.

Proposition 1. Let $X \subset S^{n}, n \geqslant 1$, be a spherical polyhedron,
 $$
X \in \mathfrak{X} \cup \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n},
$$

and let $S \subset S^{n}$ be an ($n-2$)-dimensional subsphere. With the notation introduced above,
(i) $\omega X=\omega(X \cap S)+\sum_{t \in I}\left(\omega\left(X \cap S_{t}\right)-\omega^{+}\left(X \cap S_{t}\right)\right)$.

As above $I:=[0, \pi)$ is the fundamental interval of the periodic map $p: \mathbb{R} \rightarrow \boldsymbol{\Omega}$, where \subseteq stands for the set of all $(n-1)$-spheres in S^{n} containing S. Before we proceed to prove Proposition 1, notice that the value $\omega\left(X \cap S_{t}\right)-\omega^{+}\left(X \cap S_{t}\right)$ vanishes for all but a single $t \in I$, whenever X is a closed polytope, or an i-open polytope, for some $i \geqslant 1$. Thus the sum to the right of the equality sign is in fact finite, for each polyhedron X. Proposition 1 is a spherical counterpart of a well
known recursion formula for the Euler characteristic for Euclidean polyhedra (see [1]).

Proof of Proposition 1. We assume $X \in \mathfrak{Y}_{i}$, for some $i \geqslant 1$. The case $X \in \mathfrak{X}$ may be treated by an obvious modification of the argument. Set $R:=\operatorname{sph} X$, and for each $Z \in \mathfrak{Y}_{i}(R)$,

$$
\psi Z:=(-1)^{i}\left(\omega(Z \cap S)+\sum_{t \in I}\left(\omega\left(Z \cap S_{t}\right)-\omega^{+}\left(Z \cap S_{t}\right)\right)\right)
$$

It suffices to show that ψ is an Euler characteristic on $\mathfrak{Y}_{i}(R)$. The requirements (1) and (3) of Definition 1 are satisfied by ψ. Now suppose that Z is an i-open polytope in R. Let us first assume $Z \cap S \neq \varnothing$. We distinguish three cases. If the spheres S and R are in general position we have $i \geqslant 2$, $\operatorname{dim}(Z \cap S)=i-2$, $\operatorname{dim}\left(Z \cap S_{t}\right)=i-1$, for each t in the interval $I:=[0, \pi)$, hence $\psi Z=\chi(Z \cap S)=1$. In the case $R \subset S$ we find $Z \cap S_{t}=Z \cap S=Z$, for every $t \in I$. This again implies $\psi Z=\chi(Z \cap S)=1$. If none of the above cases hold we see that $R \not \subset S$, but $R \subset S_{t}$, for some number $t \in I$. Hence $Z \cap S_{t^{\prime}}=Z \cap S$ for all $t^{\prime} \in I, t^{\prime} \neq t$, and

$$
\psi Z=(-1)^{i}\left(\omega(Z \cap S)+\omega\left(Z \cap S_{t}\right)-\omega(Z \cap S)\right)=1
$$

Assume now $Z \cap S=\varnothing$. We are confronted with two cases. If $R \subset S_{t}$, for some point $t \in I$, we have $Z \cap S_{t}=Z$ and $Z \cap S_{t^{\prime}}=\varnothing$, for every $t^{\prime} \in I, t^{\prime} \neq t$. Clearly $\psi Z=1$. If R and S are in general position, let $A \subset I$ be the set of all points $t \in I$ such that $Z \cap S_{t} \neq \varnothing . A$ is an open interval in I, denote its left endpoint by x. Clearly

$$
\omega\left(Z \cap S_{x}\right)-\omega^{+}\left(Z \cap S_{x}\right)=-(-1)^{i-1}
$$

whereas $\omega\left(Z \cap S_{t}\right)-\omega^{+}\left(Z \cap S_{t}\right)=0$, for all $t \neq x$. This shows again $\psi Z=1$, and ψ is indeed an Euler characteristic on $\mathfrak{Y}_{i}(R)$. To prove (3) for ψ, notice that $\chi(X)=0$, for each odd dimensional sphere X, hence for each $X \in \mathfrak{V}_{2 k+1} \cap \mathfrak{X}$.

Definition 2. Let X be a spherical polyhedron, $X \in \mathfrak{X} \cup \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n}$. By a δ-decomposition of X we understand a finite set $\mathfrak{D} \subset X \cup \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n}$ such that $\cup \mathfrak{D}=X$, and, further, $U \cap V=\varnothing$ whenever U and V are two different members of \mathfrak{D}.

If, for example, \mathfrak{C} is a complex, in the usual sense of the word, whose members are closed spherical simplices, then the relative interiors of the elements of \mathfrak{C} form a δ-decomposition of $\cup \mathbb{C}$.

Proposition 2. For each spherical polyhedron $X \subset S^{n}, n \geqslant 1$,

$$
X \in \mathfrak{X} \cup \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n}
$$

and for each δ-decomposition \mathfrak{D} of X we have
(ii) $\omega X=\sum_{Y \in \mathbb{D}} \omega Y$.

Proof. We proceed by induction on the dimension n of the sphere S^{n} containing X, the case $n=0$ being trivial. For given $n \geqslant 1, X \in \mathfrak{X} \cup \mathfrak{Y}_{1} \cup \ldots \cup \mathfrak{Y}_{n}$, and for a δ-decomposition \mathfrak{D} of $X \subset S^{n}$, choose an $(n-2)$-sphere $S \subset S^{n}$. With the notation of the section preceding Proposition 1 we find, by Proposition 1 and the inductive assumption of our statement

$$
\begin{aligned}
\omega X & =\omega(X \cap S)+\sum_{t \in I}\left(\omega\left(X \cap S_{t}\right)-\omega^{+}\left(X \cap S_{t}\right)\right) \\
& =\sum_{Y \in \mathbb{D}} \omega(Y \cap S)+\sum_{t \in I} \sum_{Y \in \mathbb{D}}\left(\omega\left(Y \cap S_{t}\right)-\omega^{+}\left(Y \cap S_{t}\right)\right) \\
& =\sum_{Y \in \mathbb{D}}\left(\omega(Y \cap S)+\sum_{t \in I}\left(\omega\left(Y \cap S_{t}\right)-\omega^{+}\left(Y \cap S_{t}\right)\right)\right) \\
& =\sum_{Y \in \mathbb{D}} \omega Y .
\end{aligned}
$$

As an application of the foregoing arguments let us derive some elementary relations involving the Euler characteristic.

Proposition 3.

(iii) $\chi\left(S^{n}\right)=1+(-1)^{n}$
(iv) $\chi X=\chi(\mathrm{bd} X)+(-1)^{n} \chi($ int $X)$

$$
X \subset S^{n}, \quad X \in \mathfrak{X}
$$

(v) $\chi(\mathrm{cpl} X)=1+(-1)^{n}-(-1)^{n} \chi X$

$$
X \subset S^{n}, \quad X \in \mathfrak{X}
$$

(vi) $\chi(\mathrm{cpl} Y)=1+(-1)^{n}-(-1)^{n} \chi Y$

$$
Y \subset S^{n}, \quad Y \in \mathfrak{Y}_{n}
$$

Proof. (iii) We proceed by induction on n. The cases $n \leqslant 0$ are trivial. For $n \geqslant 1$ choose an arbitrary ($n-2$)-dimensional subsphere S of S^{n}, and apply Proposition 1 to the polyhedron $S^{n} \in \mathfrak{X}$. By the inductive hypothesis,

$$
\chi S^{n}=\chi S=1+(-1)^{n-2}=1+(-1)^{n}
$$

(iv) $\{\operatorname{bd} X, \operatorname{int} X\}$ is a δ-decomposition of the polyhedron $X \in \mathfrak{X}$. By Proposition 2, $\omega X=\omega(\operatorname{bd} X)+\omega(\operatorname{int} X)$. Since $\{X, \operatorname{bd} X\} \subset \mathfrak{X}$ and int $X \in \mathfrak{V}_{n}$, our assertion follows at once from the definition of ω.
(v) $\{X, \mathrm{cpl} X\}$ is a δ-decomposition of the polyhedron $S^{n} \in \mathfrak{X}$. Our assertion follows immediately from Proposition 2 if we keep in mind that $\left\{X, S^{n}\right\} \subset \mathfrak{X}$ and $\mathrm{cpl} X \in \mathfrak{Y}_{n}$.
(vi) The proof of this relation is quite analogous to that of (v).

References

1. H. Hadwiger, " Eine Schnittrekursion für die Eulersche Charakteristik euklidischer Polyeder mit Anwendungen innerhalb der kombinatorischen Geometrie '", El. Math., 23 (1968), 121-132.
2. V. Klee, "The Euler characteristic in combinatorial geometry ". Amer. Math. Monthly, 70 (1963), 119-127.
3. H. Lenz, "Mengenalgebra und Eulersche Charakteristik," Abh. Math. Seminar Univ. Hamburg, 34 (1970), 135-147.

Mathematisches Institut, Universitat Bern, Bern, Switzerland.

05A99: Combinatorics; Classical combinatorial problems.
50B99: Geometry; Euclidean geometry.
57A99: Manifolds and cell complexes; Topological manifolds.
(Received on the 3rd of July, 1972.)

