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ABSTRACT

Motivation: Comparative analyses of gene expression data from
different species have become an important component of the
study of molecular evolution. Thus methods are needed to estimate
evolutionary distances between expression profiles, as well as a
neutral reference to estimate selective pressure. Divergence between
expression profiles of homologous genes is often calculated with
Pearson’s or Euclidean distance. Neutral divergence is usually
inferred from randomized data. Despite being widely used, neither
of these two steps has been well studied. Here, we analyze these
methods formally and on real data, highlight their limitations and
propose improvements.
Results: It has been demonstrated that Pearson’s distance, in
contrast to Euclidean distance, leads to underestimation of the
expression similarity between homologous genes with a conserved
uniform pattern of expression. Here, we first extend this study
to genes with conserved, but specific pattern of expression.
Surprisingly, we find that both Pearson’s and Euclidean distances
used as a measure of expression similarity between genes depend
on the expression specificity of those genes. We also show that
the Euclidean distance depends strongly on data normalization.
Next, we show that the randomization procedure that is widely
used to estimate the rate of neutral evolution is biased when
broadly expressed genes are abundant in the data. To overcome
this problem, we propose a novel randomization procedure that is
unbiased with respect to expression profiles present in the datasets.
Applying our method to the mouse and human gene expression data
suggests significant gene expression conservation between these
species.
Contact: marc.robinson-rechavi@unil.ch; sven.bergmann@unil.ch
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Changes in gene expression have been suggested to underlie many
differences in gene function or in phenotype. More generally,
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expression is an important component of gene function, and studying
the evolution of gene expression is a key step in evolutionary
genomics. While there has been a great deal of research concerning
the primary treatment of expression data in general (see Garber et al.
(2011), and Quackenbush (2002) for reviews), there has been little
investigation into the methods used more specifically to quantify
expression evolution (Pereira et al., 2009). This can make it difficult
to critically assess contradictory results, such as the reports that
broadly expressed genes are more conserved (Khaitovich et al.,
2005) or less conserved (Liao et al., 2010; Liao and Zhang, 2006b)
than specifically expressed genes.

To assess whether and how much expression has been
conserved between two orthologous genes by selection, we need
an expectation for expression similarity under neutral evolution.
Thus, the estimation of gene expression conservation requires two
components: (i) a measure of gene expression similarity; and (ii) the
expected value of the divergence level under neutrality.

The two most common measures of similarity between expression
profiles of orthologous genes are Pearson’s correlation coefficient
(Chan et al., 2009; Liao and Zhang, 2006a, b; Xing et al., 2007;
Yanai et al., 2004; Yang et al., 2005; Zheng-Bradley et al., 2010)
and Euclidean distance (Jordan et al., 2005; Liao and Zhang,
2006a; Yanai et al., 2004). The results obtained with Pearson’s and
Euclidean distances have been reported to be poorly correlated (Liao
and Zhang, 2006a; Pereira et al., 2009). This poses the question
which of these measures provides a better description of expression
similarity. It has been demonstrated that Pearson’s correlation
coefficient, in contrast to Euclidean distance, underestimates the
expression similarity between orthologous genes with a conserved
uniform pattern of expression. In consequence, use of the Euclidean
distance has been encouraged (Pereira et al., 2009).

For neutral evolution, one expects that similarity between
expression profiles of orthologous genes gradually decreases with
time. For species that have diverged for sufficiently long time no
detectable similarity in expression is expected to remain; this has
been postulated to be the case between mouse and human (100
million years; Jordan et al., 2005). It has been suggested that such
large neutral divergence could be approximated by calculating the
distance between expression profiles of randomly chosen pairs of
genes from the species compared. The standard approach used
to generate random pairs of genes is to permute the orthology
relationship between them (Chan et al., 2009; Liao and Zhang,
2006a, b; Xing et al., 2007; Zheng-Bradley et al., 2010).
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Here, we show formally and empirically that, in contrast to
previous reports (Liao and Zhang, 2006a; Pereira et al., 2009),
there exists a relationship between the Pearson’s correlation
coefficient and the Euclidean distance, which depends on the
data normalization. We also extend the previous study of Pereira
et al. (2009) by considering more than just the uniform pattern
of expression. We demonstrate that in fact both distance measures
depend on the expression specificity of analyzed genes. Next, we
discuss these observations in the context of the assessment of gene
expression conservation. We show that the comparison of expression
profiles for randomly permuted gene pairs is biased when broadly
expressed genes are abundant in the data, a distribution characteristic
of many datasets. To overcome this problem, we propose a novel
procedure to generate random gene pairs. This procedure is not
biased by the over- or underrepresentation of any expression profile
in the datasets. Finally, we use our approach to provide clear
evidence for constrained evolution of gene expression between
mouse and human.

2 METHODS

2.1 Gene expression data
We used the human and mouse gene expression data from the GNF Gene
Expression Atlas of Su et al. (2004) as a case study. This study was performed
on the Affymetrix HG-U133A array as well as on the custom array GNF1H
for human, and on the custom array GNF1M for mouse. In total, expression
profiles for 79 human and 61 mouse organs were measured, with 44 928
probe sets for human and 36 182 probe sets for mouse. We only took into
account organs belonging to the homologous organ groups (HOGs) defined
in the Bgee database (Bastian et al., 2008). Using the mapping available in
the Bgee database we could connect 36 human organs and 30 mouse organs
to 27 HOGs. See Supplementary Table S1 for the list of HOGs and their
corresponding organs. Microarray data were normalized with the gcrma R
package (Wu et al., 2004).

To assign the probe sets to their corresponding human or mouse genes we
used the mapping available in Bgee. We kept only probe sets which matched
to a unique Ensembl gene. A total of 15 121 probe sets corresponding to
13 853 mouse genes, and 23 920 probe sets corresponding to 15 338 human
genes were found.

To estimate the expected values of distances for gene pairs with conserved
expression patterns, we used data from replicated experiments, performed
in each species. Thus, for each probe set we had two vectors of values
representing its expression over the organs. The datasets contained 36 organs
and 23 920 probe set pairs for human, and 30 organs and 15 121 probe set
pairs for mouse. The results of the study on mouse gene expression data are
presented in the Supplementary Materials.

To study gene expression evolution between mouse and human we merged
human and mouse organs into 27 HOGs. For every probe set in each
HOG the arithmetic mean of the gcRMA normalized expression values was
calculated (each HOG was represented by at least two microarrays). We
used a subset of 8942 one-to-one orthologous gene pairs (see Human–Mouse
Orthologous Genes). If the gene was matched by more than one probe set
on the microarray, we randomly picked one probe set to represent that gene.

2.2 Human–mouse orthologous genes
Homology information of human and mouse genes was retrieved from
Ensembl release 55 (Hubbard et al., 2009), using BioMart (Smedley et al.,
2009). A total of 8942 pairs of human–mouse one-to-one orthologous genes
had expression information in the datasets we used.

2.3 Normalization procedures
For a given gene we consider a vector x of expression intensities xi across n
different organs indexed by i=1,...n. The Manhattan normalization of x is
calculated by dividing it by its L1 norm:

||x||1 =
n∑

i=1

|xi|.

In some studies (Liao and Zhang, 2006a; Pereira et al., 2009) this
normalization is called relative abundance. The Euclidean normalization of
vector x is calculated by dividing the vector by its L2 norm:

||x||2 =
√√√√

n∑
i=1

x2
i .

Finally, we introduce a so-called z-like normalization of x which corresponds
to the Euclidean normalization of x minus its mean value:

z̃x = x−x

||x−x||2 .

2.4 Pearson’s and Euclidean distances
The Pearson’s distance (dP) between two expression profiles is defined as
1−r, where

r = 1

n

n∑
i=1

(xi −x)(yi −y)

sxsy
= z̃T

x z̃y = 1

n
zx

T zy (1)

is the Pearson’s correlation coefficient between vectors x and y. Here the
vector elements xi and yi are the expression signal intensities of two genes
in the condition i, x and y are the sample means, sx and sy are the sample
SDs. zx and zy are the z-scores of vectors x and y.

The Euclidean distance (dE) between two expression profiles is defined as

dE =
√√√√

n∑
i=1

(xi −yi)2 (2)

with notations as for Equation (1).

2.5 Organ specificity of gene expression
To measure the expression specificity of human genes we used the organ
specificity index τ (Yanai et al., 2005). The τ of a given gene with an
expression vector x is defined as follows:

τ =

n∑
i=1

(1− x̂i)

n−1
, (3)

where
x̂i = xi

||x||∞ = xi

max1≤i≤n(xi)
.

The value of τ varies between 0 and 1, with higher values indicating higher
organ specificity.

2.6 τ -group composition
To study the relation between dE and τ we used replicated expression data
for human genes (36 organs, 23 920 probe sets). We sorted the probe set pairs
according to the organ specificity index τ [Equation (3)] of the first replicate,
and we divided the probe set pairs into three τ -groups of equal size (e.g. the
first group contained 1/3 of the probe set pairs with the first replicate having
lowest τ ). For each group we recorded the minimum and maximum τ value
of the first replicate, and used these values to filter out probe sets with the two
replicates having τ values from different groups. The resulting τ -groups were
of similar, but not equal, size (Table 1). An alternative τ -group composition,
with a more balanced distributions of τ values (first group containing genes
with τ ∈[0,0.2); second group with τ ∈[0.2,0.6); and third group with τ ∈
[0.6,1]) leads to unbalanced sizes of three groups. Nevertheless, for both
approaches the results are qualitatively the same (Supplementary Figs. S6
and S7).
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2.7 Randomization procedures
Changes in gene expression patterns between randomly chosen genes from
two species have been suggested as an approximation for the result of
neutral expression evolution (Jordan et al., 2005). We used two different
randomization procedures to create such sets of random gene pairs. First, we
permuted the gene order within replicates (or within species). We refer to
these as randomly permuted pairs. Second, we performed what we refer to as
‘τ -uniform sampling’. We first randomly chose an organ specificity index (τ ),
uniformly from the interval of (τmin, τmax), where τmin and τmax are the lowest
and the highest values of the observed τ , respectively. Next, we picked the
gene with the value of τ closest to the randomly chosen τ within one dataset
(i.e. within one replicate, or one species). Then, independently, we repeated
the procedure for the second dataset. Thus, we obtained two randomly chosen
genes which form a new random pair. Repeating the procedure provides the
‘τ -uniform’ random gene pairs.

3 RESULTS AND DISCUSSION

3.1 Correlation between Pearson’s and Euclidean
distances depends on data normalization

To compare gene expression between species, over many different
conditions, it is important to normalize the expression levels between
the conditions to obtain a common scale between species. This is
distinct from the preprocessing normalization (within condition),
which is typically done using methods such as LOESS (Yang et al.,
2002) or gcRMA (Wu et al., 2004), and is not specific to inter-
species evolutionary studies. In the following, we only consider the
impact of the between conditions normalization on the evolutionary
comparisons. We discuss three normalization procedures commonly
used for evolutionary studies: Manhattan normalization [also
referred to as ‘relative abundance’ (Liao and Zhang, 2006a)],
Euclidean normalization and z-like normalization (see Section 2.3
for mathematical definition of all three normalizations).

One can use any of these normalizations before calculating
the Pearson’s or Euclidean distance between two gene expression
profiles. However, the choice of normalization can affect the results.
Pearson’s distance (dP) between two expression profiles remains the
same, regardless of whether and how the data are normalized, and
it ranges between 0 and 2. The reason is that r is defined on the
z-scores [see Equation (1) in Section 2.4], which are invariant with
respect to linear transformation. In contrast, the Euclidean distance
between two expression profiles (dE) changes its value depending
on the normalization used, even though the interval of possible dE
values is always between 0 and 2.

The correlation between dP and dE is poor for Manhattan
(Supplementary Fig. S1A; see also Liao and Zhang, 2006a;
Pereira et al., 2009) and Euclidean normalizations (Supplementary
Fig. S1B). In contrast, z-like normalization leads to an
interdependent relationship between dP and dE, defined by

d2
E =2dP (4)

(see Theoretical Analysis in Supplementary Material, and
Supplementary Fig. S1C). As dP gives the same results for all
three normalizations, and for z-like normalization it is equal to
d2

E/2, we focused on the Euclidean distance. If not stated otherwise,
the Euclidean distance was calculated for all three normalizations:
Manhattan, Euclidean and z-like, referred to as dM

E , dE
E and dZ

E ,
respectively.

Table 1. Composition of three τ -groups of human probe set (ps) pairs

Organ specificity (τ ) Number of ps pairs

τ -group 1 0.003≤τ ≤0.117 6348
τ -group 2 0.117<τ ≤0.295 5280
τ -group 3 0.295<τ ≤0.879 6692

3.2 Commonly used measures of gene expression
similarity depend on the organ specificity of
the genes

Intuitively, one might assume that the distance between two
orthologous genes which have conserved the expression profile of
their last common ancestor should be close to zero, and that this
should hold regardless of the gene expression pattern. To assess if
this is indeed the case, we performed an empirical study. We used
human microarray data with the expression information from 36
different organs in two replicates (Su et al., 2004). The replicates
were used to ‘simulate’ pairs of genes with conserved expression
profiles. We calculated the organ specificity index τ [Equation (3)]
for each pair of replicates, and then divided them into three τ -
groups of similar size (see Section 2.6 for details). The first two
groups contained broadly expressed genes (τ ≤0.295), and only the
third group consisted of genes with more specific expression patterns
(τ >0.295; Table 1).

We measured the Euclidean distances (dM
E , dE

E and dZ
E ) for probe

set pairs within each τ -group. The resulting levels of expression
similarity between replicates strongly depended on the organ
specificity level. Values of dM

E and dE
E were significantly lower for

broadly expressed genes than for organ-specific genes (p<10−16,
Mann–Whitney U test, Fig. 1A and B; Supplementary Fig. S5A
and B). In contrast, values of dZ

E were significantly higher for

broadly expressed genes than for organ-specific genes (p<10−16,
Mann–Whitney U test; Fig. 1C; Supplementary Fig. S5C). See
Supplementary Figure S3 for the correlation analysis between the
Euclidean distances and organ specificity index.

3.3 The rate of neutral expression evolution estimated
with randomly permuted gene pairs depends on the
organ specificity of the genes

The rate of neutral expression evolution is typically approximated
by calculating the distance between expression profiles of randomly
paired genes. The random choice of the genes is assumed to remove
any similarity between them (Jordan et al., 2005). The standard
approach to generate random gene pairs is to permute the ortholog
relationship between the genes in the datasets. We created random
probe set pairs by permuting the probe set order within each of
the three τ -groups separately, and we then calculated the Euclidean
distances (dM

E , dE
E and dZ

E ) between their expression profiles. We

found that dM
E and dE

E were significantly lower for random pairs
from the first τ -group, than for random pairs from the third τ -group
(p<10−16, Mann-Whitney U test; Fig. 1A and B; Supplementary
Fig. S5A and B). This is because the first τ -group consisted of
broadly expressed genes. Consequently, even the randomly matched
probe set pairs tended to have similar expression patterns and thus
low distances. In contrast, the third τ -group consisted of genes with
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A B C

Fig. 1. The distribution of expression similarity between human replicates depends on their organ specificity. (A) dM
E and (B) dE

E are significantly lower
for broadly expressed genes (group 1) than for organ-specific genes (group 3). For randomly permuted gene pairs dM

E and dE
E also differ between the three

τ -groups. They are significantly lower for random pairs in group 1 than in group 3. (C) dZ
E is significantly higher for broadly expressed genes (group 1) than

for organ-specific genes (group 3). dZ
E for randomly permuted pairs is high in all three groups, even in the first τ -group, where random pairs consist of two

broadly expressed genes (this is a consequence of low r for uniformly expressed genes). Note that the scale of the x-axis differs strongly between graphs.
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more specific expression patterns, and so the random pairs were
truly different.

dZ
E between random pairs was not affected by organ specificity,

in the sense that in all three τ -groups the median dZ
E was around 1.4

(Fig. 1C; Supplementary Fig. S5C). Values of dZ
E were high even in

the first τ -group, although it consisted of random pairs with similar,
broad patterns of expression. The reason is that dZ

E =√
2(1−r) is

a decreasing function of r, which for broadly expressed gene pairs
reflects mainly the noise of the measurement and is close to 0 (for
details see Pereira et al., 2009 and Supplementary Fig. S2). Thus,
random gene pairs from the first τ -group tend to have high dZ

E values

(around
√

2).

3.4 A large fraction of broadly expressed genes leads to
an underestimation of expression conservation

Our analysis shows that if the fraction of broadly expressed genes
is large, the level of gene expression conservation is likely to be
underestimated. This is especially important if we consider the
fact that housekeeping genes (broadly expressed) are more frequent
than organ-specific genes (Ramsköld et al., 2009). We found such
skewed distributions not only in the human data considered here
(Fig. 3A), but also in several other datasets, e.g. most mouse genes
are broadly expressed over different organs, most Arabidopsis genes
are broadly expressed over different light conditions, and most
zebrafish genes are broadly expressed over different developmental
stages (Supplementary Fig. S4).

To illustrate the extent to which the abundance of broadly
expressed genes affects measures of gene expression conservation,
we re-analyzed all the human probe set pairs, without dividing them
into τ -groups. We created random probe set pairs by permuting
the probe set order within both replicates, and we calculated the
Euclidean distances (dM

E , dE
E and dZ

E ) both for the pairs of replicates
and for the random pairs. Ideally, one would expect to detect very
high similarity between replicates, and very low similarity between
random pairs.

For Manhattan and Euclidean normalizations, distances for most
human random pairs were very small, indistinguishable from
the distances between replicates (Fig. 2A and B; Supplementary
Fig. S8A and B). This contradicts the assumption that differences
between randomly paired genes are to approximate well the rate
of neutral divergence, with very low similarity (i.e. high distance)
expected (Jordan et al., 2005). For the z-like normalization, distances
between random pairs were high, which is consistent with the
assumption of pseudo-neutrality (Jordan et al., 2005). However
the dZ

E values for the replicates were similarly high (Fig. 2C;
Supplementary Fig. S8C), whereas they are expected to be low.
Thus, the presence of numerous broadly expressed genes causes
systematically low values of dM

E and dE
E between randomly paired

genes, and systematically high values of dZ
E between conserved

gene pairs. The first is a consequence of the fact that it is easier
to randomly choose two broadly expressed genes, and thus to get a
low value of dM

E or dE
E . The second is a consequence of low values

of r for uniformly expressed genes, leading to the high values of
dZ

E (as discussed in the Section 3.3). In all cases, the level of gene
expression conservation is underestimated.

Although we show this effect using a specific set of human
microarray data, our conclusions are very general and hold for
any study in which a significant fraction of the genes is uniformly

expressed over conditions (see Fig. S2 and its caption for a
mathematical explanation).

3.5 An alternative construction of random gene pairs
improves the estimation of expression conservation

To overcome the limitation of using randomly permuted gene pairs
to estimate the expression divergence under neutrality, we propose
a new procedure to create random gene pairs. This procedure
is unbiased regardless of over- or underrepresentation of any
expression profiles in the datasets. Consequently, it provides a better
approximation of the expression divergence under neutral evolution
between distant species. To generate a single random pair of genes,
one randomly chooses two expression specificity values, τ1 and τ2,
uniformly from the interval of (τmin, τmax), where τmin and τmax
are the lowest and the highest values of the observed τ , respectively.
Next, one picks the two genes from the two datasets that have the
closest τ values to τ1 and τ2, respectively. The resulting pairs of
genes have the two τ values uniformly distributed, and not biased
as for randomly permuted gene pairs (Fig. 3B and C).

We applied our new procedure 23 920 times to create as many
random probe set pairs for human datasets. Then, we calculated
the Euclidean distances (dM

E , dE
E , and dZ

E ) both for replicates and
random probe set pairs. We found that, relative to classical randomly
permuted pairs, the distribution of dE

E and dM
E for τ -uniform random

pairs differs strongly from that for replicates (Fig. 2A and B),
with a high frequency of large distance values, as expected for
very divergent pairs. Of note, dM

E and dE
E give the same shape of

distribution (Figs. 1A and B, and 2A and B). While both of these
measures could be combined with τ -uniform sampling to estimate
gene expression conservation, for mathematical consistency we
prefer the use of dE

E .

The estimation of gene expression conservation with dZ
E cannot

be corrected by creating the set of random gene pairs differently,
because dZ

E varies significantly with organ specificity for replicates,
i.e. for conserved genes, and not for random gene pairs. Thus, we do
not recommend using dZ

E , and consequently the Pearson’s correlation
coefficient, in any study which aims to detect similarity between
genes expressed uniformly over all conditions.

Of note, neither the standard procedure used to generate random
pairs, nor our new proposed approach takes into consideration the
time passed since the divergence of two organisms. Therefore, the
estimated ‘neutral’ divergence will be the same for closely related
species (e.g. human and chimp) and more distant species (e.g. human
and mouse).

3.6 Results of the comparative study of human and
mouse gene expression differ strongly according
to the choice of randomization method

To demonstrate the importance of our novel approach, we
investigated how much evidence of selectively constrained gene
expression evolution we can detect between human and mouse. We
selected 8942 one-to-one orthologous gene pairs from the human
and mouse datasets (Su et al., 2004). We created two sets of random
gene pairs, using both random permutation and the procedure of
τ -uniform sampling, and we calculated the Euclidean distance
(dE

E ) for orthologous gene pairs and for both sets of random pairs

(see Fig. S9 for analogous analysis with dM
E ). If the dE

E value for
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A B C

Fig. 2. Overrepresentation of broadly expressed human genes causes underestimation of the conservation of expression when randomly permuted pairs are
used to approximate the neutral evolution rate. (A, B) For most randomly permuted pairs (grey) the distance (dM

E and dE
E ) is small, indistinguishable from the

distances between replicates (green). For τ -uniform random pairs (blue) dE
E and dM

E are higher, which is more consistent with the assumption about neutral
evolution (Jordan et al., 2005). (C) dZ

E is high both for randomly permuted gene pairs and for the group of replicates. The distribution of dZ
E does not change

with the new random pairs set.

Fig. 3. Random gene pairs have their τ values differently distributed depending on the randomization procedure used. (A) τ distribution for human replicates.
The τ pairs are distributed along the diagonal, which is expected for replicates. (B) τ distribution for randomly permuted gene pairs. The τ pairs are biased
towards low values, which are the most frequent values in human datasets. (C) τ distribution for τ -uniform random pairs. The τ pairs are uniformly distributed,
and not biased towards the low values.

a human–mouse orthologous gene pair is smaller than the fifth
percentile of dE

E for randomly paired genes, there is some evidence
that the expression evolution of this pair has been constrained
(Liao and Zhang, 2006a). Using randomly permuted gene pairs
did not provide clear evidence for constrained evolution (Fig. 4).
Only 8% of orthologous pairs were identified to have a conserved
expression pattern, which was close to the random expectation of
5%. In contrast,with τ -uniform random pairs, 29% of orthologous
genes were identified to have conserved expression (Fig. 4).

The number of detected genes with conserved expression pattern
may seem surprisingly low in comparison to Liao and Zhang
(2006a), who reported that as much as 84% of genes showed
conserved expression between human and mouse. However, we note
that Liao and Zhang (2006a) used two different metrics to calculate

the distance between orthologous genes and between randomly
paired genes — the so called net distance and the Euclidean
distance, respectively. We show that this inconsistency caused an
overestimation of the expression conservation between human and
mouse (see Supplementary Materials and Supplementary Fig. S10).
Consequently, we believe that correcting for the randomization
process yields more accurate results than a one-sided correction of
the distance.

We are aware that the alternative way of creating random gene
pairs proposed in this article has some weaknesses, such as visible
artificial peaks in the dE

E distribution (Fig. 4), which are the
consequence of the non-uniform distribution of τ between 0 and 1.
This is because with the τ -uniform sampling one chooses the genes
with less frequent τ values more often than genes with more frequent
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Fig. 4. The choice of the randomization method changes the conclusions
about gene expression evolution between mouse and human. There is no
clear evidence for constrained evolution if we compare the distribution of dE

E
for orthologous (green) and randomly permuted gene pairs (grey). Whereas,
comparison of dE

E distribution for orthologous (green) and τ -uniform random
pairs (blue) suggest that expression evolution is far from neutral.

τ values. For example here, the number of narrowly expressed
genes was increased at the expense of decreasing the number of
broadly expressed genes. Consequently, when only a few genes
have a τ value in some non-negligible range, these few genes might
repeat many times in the randomized set, and discrete effects may
manifest themselves causing artificial peaks. Note that the peaks
would disappear if τ values were uniformly distributed between 0
and 1, but then there would be no need for τ -uniform sampling of
gene pairs at all. Note also that the peaks do not affect the analysis,
as they do not change the overall shape of the distribution of distance
values between the randomized gene pairs (Fig. 4).

Finally, one may argue that the τ -uniform sampling contradicts
the very purpose of randomization because it makes a probability
of choosing a gene higher, if its τ value is underrepresented in the
dataset. But the aim of the set of randomized gene pairs is not to
be ‘just random’, but to display maximal divergence between gene
pairs, i.e. to simulate the neutral evolution defined in Jordan et al.
(2005). In contrast to the standard approach, the τ -uniform sampling
makes the distribution of distance values between gene pairs actually
independent of the τ distribution observed in the analyzed dataset.
Thus, we believe that the distance between τ -uniform random gene
pairs approximates better a large neutral divergence.

4 CONCLUSIONS
The Euclidean distance should be used with caution as an estimator
of gene expression conservation because it varies as a function of
expression specificity. Our results strongly suggest that to assess
whether gene expression evolves neutrally, one should use dE

E
(Euclidean distance preceded by Euclidean normalization) and
compare its distribution for orthologous and τ -uniform random
pairs. Importantly, we validated this approach on real data, and
recovered clear evidence for gene expression conservation between
mouse and human. Previous small differences reported between real
and random gene pairs were likely caused by the way the random

pairs were constructed (Liao and Zhang, 2006a, b). Although in this
study we applied our approach to microarray data analysis, the issues
highlighted here are also relevant to data acquired with RNA-seq
technology (Mortazavi et al., 2008).

We would like to emphasize that while it is possible to verify
whether the expression of a given set of genes was under selective
pressure, there is no straightforward way to compare the strength of
selection acting on two groups of genes with different expression
patterns. Indeed, if we compare a group of broadly expressed
genes with a group of narrowly expressed genes, with similar high
conservation of expression, the latter will always have higher dE

E
values (and lower dZ

E values). This methodological problem suggests
a need to re-interpret results from previous evolutionary studies
comparing the evolution of broadly and narrowly expressed genes.
In particular, studies which have reported higher conservation of
organ-specific genes (Liao et al., 2010; Liao and Zhang, 2006b;
Movahedi et al., 2011) could have been biased by the fact of using
the Pearson’s correlation coefficient (equivalent to dZ

E ) as a measure
of conservation.

In this article, we thoroughly analyzed, formally and experi-
mentally, the common measures of expression conservation, and
we showed the superiority of the Euclidean distance paired with
the Euclidean normalization. We also highlighted the limitation of
using randomly permuted pairs to approximate neutrally evolving
genes, and proposed a new methodology to better estimate the rate
of neutral evolution. With the increase of expression data for many
species, our work is likely to become very useful for evolutionary
studies of gene expression.
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