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ABSTRACT
We present a new time-stepping criterion for N-body simulations that is based on the true

dynamical time of a particle. This allows us to follow the orbits of particles correctly in all

environments since it has better adaptivity than previous time-stepping criteria used in N-body

simulations. Furthermore, it requires far fewer force evaluations in low-density regions of the

simulation and has no dependence on artificial parameters such as, for example, the softening

length. This can be orders of magnitude faster than conventional ad hoc methods that employ

combinations of acceleration and softening and is ideally suited for hard problems, such as

obtaining the correct dynamics in the very central regions of dark matter haloes. We also derive

an eccentricity correction for a general leapfrog integration scheme that can follow gravitational

scattering events for orbits with eccentricity e → 1 with high precision. These new approaches

allow us to study a range of problems in collisionless and collisional dynamics from few body

problems to cosmological structure formation. We present tests of the time-stepping scheme

in N-body simulations of two-body orbits with eccentricity e → 1 (elliptic and hyperbolic),

equilibrium haloes and a hierarchical cosmological structure formation run.
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1 I N T RO D U C T I O N

Achieving spatial adaptivity in the evaluation of forces in N-

body simulations is a well-studied problem with many effec-

tive approaches based on the use of tree structures and mul-

tipole expansions or nested grids and Fast Fourier Transform

(FFT) techniques. Such adaptivity in space also comes with

a desire to achieve adaptivity in the time integration of these

simulations since a large dynamic range in density implies a

large dynamic range in time-scales for self-gravitating systems

(T ∼ 1/
√

Gρ). Two very different problems present themselves

when trying to achieve this. First, there are no practical (explicit),

general purpose (applicable to a wide range of astrophysical prob-

lems), adaptive integration techniques known for the N-body prob-

lem which are symplectic. By this we mean that the numerical

integration is an exact Hamiltonian phase flow very close to the

phase flow of the continuous system under study. This is a very de-

sirable property for following systems for longer than a single dy-

namical time. Such exact preservation of the geometrical properties

of the dynamical system is possible for fixed time-step schemes. For

general N-body simulations with adaptive time-stepping, we have

to resort to approximate symplectic behaviour or preservation of

time symmetry (a property which is known to lead to very good

integration methods). The second problem is that of continuously
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determining the appropriate time-step for each particle in the sim-

ulation so that the error in the integration remains within tolerance

while performing the fewest possible force evaluations and mini-

mizing the computational overhead. Resolving this second problem

is the main focus of this paper and can be considered independently

from methods symmetrizing the time-stepping scheme such as pre-

sented in Stadel (2001) and Makino et al. (2006).

There are several known time-step criteria based on different

properties of the simulation [e.g. local density ρ(r), potential �(r),

softening ε, acceleration a, jerk ȧ or even the velocity v of the par-

ticle] that are used in state-of-the-art numerical codes (Quinn et al.

1997; Stadel 2001; Aarseth 2003; Power et al. 2003; Springel 2005).

Some of them have a physical motivation, others are just a clever

combination of physical properties in order to obtain a criterion

which has the physical unit of time. All are an attempt to find an

inexpensive way of determining an appropriate time-step for each

particle in the simulation. For cosmological simulations, the ad hoc

time-step criterion based on the acceleration and the gravitational

softening of the particle (T ∼ √
ε/a) has proven very success-

ful, despite the fact that it is not directly related to the dynamical

time in these simulations. One reason why this time-step criterion

is thought to work well is that it results in a very tight time-step dis-

tribution with very infrequent changes in the time-step of a particle

in block time-stepping schemes (power of two step sizes; see also

Section 2.2). This hides the evils due to the first problem since the

behaviour is more like that of a fixed time-stepping scheme than

for other criteria. The price, however, is that more time-steps are
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taken in lower density regions of the simulation than would seem

to be necessary. Furthermore, while still adequate for the type of

simulations that have been performed up to now, which adapt the

softening and mass of particles in the highest density regions and

thus reduce the time-step somewhat artificially in those regions, this

time-stepping scheme is no longer effective in simulations covering

a much larger dynamic range.

In state-of-the-art computer simulations, structures can be re-

solved by Nvir ≈ O(107), which results in a resolution scale of

rres ≈ O(10−3 rvir). By comparing the dynamical scales at rvir and rres,

we get Tdyn(rvir)/Tdyn(rres) ≈ O(103) or even larger for future high-

resolution simulations. This large dynamical range in time-scales

demands acutely adaptive criteria so that the dense, dynamical ac-

tive regions are resolved correctly, while the simulations remain

fast.

However, in a general simulation, such as those used for cosmo-

logical structure formation, it is not straightforward to determine the

dynamical time of a given particle. This depends on the dominant

structure responsible for the orbit of a particle which needs to be

quickly determined at each time-step as the particle is advanced.

In this paper, we develop a new fast method of determining each

particle’s true dynamical time using information directly computed

in the force evaluation stage of the simulation. This is quite different

from using the local dynamical time which fails dramatically under

many circumstances, e.g. consider using the local density near the

Earth to estimate its time-step!

We present in Section 2 the basic ideas and our implementation of

the new adaptive dynamical time-stepping criterion into a tree-code.

Detailed and extensive tests are presented in Section 3. In Section 4

we conclude.

2 DY NA M I C A L T I M E - S T E P P I N G

2.1 General idea and description

In order to advance a particle in a numerical simulation, we have

to choose a particular time-step for each individual particle. Let us

consider a particle on a circular orbit in a system with spherical sym-

metric density profile ρ(r). The dynamical time Tdyn(r) (or orbital

time) of this particle at radius r under spherical symmetry is given

by

Tdyn(r ) = 2π
1√

Gρenc(r )
, (1)

where

ρenc(r ) ≡ M(r )

r 3
(2)

is the enclosed density within the radius r and M(r) is the total

mass within radius r. The natural choice for a time-step of a particle

would therefore be �T ∝ Tdyn were we not faced with the difficulty

of determining the enclosed density.

For a particle in a given landscape of cosmic structure, the en-

closed density should be set, roughly speaking, by the structure

that the particle is orbiting about. Within collisionless cosmological

simulations, this could be some super-cluster scale structure, or an

individual dark matter halo, or some substructure within a dark mat-

ter halo. Ideally, we would scan the whole sky of the particle and

determine the structure that gives the dominant contribution to its ac-

celeration. From this dominating structure, we could determine the

enclosed density and hence find the dynamical time of the particle.

Here, we have to distinguish between two different regimes. First,

we have the mean field regime, i.e. particles move in a (slowly)

varying potential that is determined by the total mass distribution.

The individual particles are only weakly influenced by their direct

neighbours, and their motions are dictated by the sum of more distant

particles. This is ensured by appropriately softening the short range

force, thereby placing an upper limit on the contribution from an

individual particle. In this regime, we want the enclosed density to

be set by the globally dominating structure. The second regime is

the gravitational scattering regime where we would like to follow

large angle scattering due to gravitational interactions, i.e. orbits

with eccentricity e → 1. Here, it is important to get the contributions

from the closest neighbours which dictate the orbital evolution when

they are very close and when there is little or no force softening.

This means that the enclosed density is often set by some locally

dominating particle.

The determination of the enclosed density is quite easy for some

simple configurations like the two-body problem or a particle orbit-

ing an analytically given spherical symmetric structure. However,

the generalization to any given configuration in an N-body simu-

lation is not so straightforward, and we present a simple way in

which this can be achieved within a tree-based gravity code. The

specific implementation within other code-types may look some-

what different, but the general scheme and spirit of the method stay

the same.

2.2 Implementation within a tree-code

We use the tree-code PKDGRAV written by Joachim Stadel (Stadel

2001) which allows for an adaptive time-stepping mechanism where

each particle can be on a different time-step. The time-steps of the

particles are quantized in fractions of powers of two of a basic time-

step T0 (block time-stepping). Therefore, particles on rung n have

an individual time-step of

�T = T0

2n
, (3)

where T0 is the basic time-step of the simulation and can be chosen

by the simulator. As stated previously, our time-stepping criterion

is given by

�TD = T0

2n
� ηD

1√
Gρenc(r )

, (4)

where ηD is a free parameter. Therefore, we need to calculate the

enclosed density ρenc for each particle from information that is avail-

able in a tree-code in order to determine its rung.

In hierarchical tree-codes, at every time-step two interaction lists

are generated for each particle: a list of cells and a list of parti-

cles that interact with the given particle. The tree structure in such

codes is a hierarchical representation of the mass in the simula-

tion with each subvolume, or cell, being a node in this tree. As

we proceed from the root to the leaves of this data structure, we

get an ever finer mass representation of the simulation. The forces

from more distant cells are calculated by using the multipole expan-

sion of the gravitational potential. This expansion makes it clear

that a finer mass representation, or smaller cell, is required for

nearby regions than for more distant ones if we want uniform rel-

ative errors for each multipole contribution to the force. In its sim-

plest form, this is realized by a tree-walk algorithm which, for a

given cell, decides whether the use of a multipole expansion for

this cell satisfies a given error tolerance. If not, this cell is opened

and its two or more children are considered in the same way. The

opening radius of a cell which sets an error tolerance is defined
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by

ropen = 2√
3

rmax

θ
, (5)

where θ is the opening angle and rmax is the distance from the centre

of mass of the cell to the most distant corner of the cell. The numbers

are only geometric factors so that in the case of a cubic cell with

homogeneous density 2/
√

3 rmax corresponds to the side length of

the cube. A cell may only be accepted as a multipole interaction

if the particle for which we are calculating the force is further from

the centre of mass of the cell than this radius. If a leaf cell (called

buckets) needs to be opened, then we calculate the interactions with

each of its particles directly (no multipole expansion is used in this

case).

At the end of this procedure, each particle in the simulation has

two interaction lists: (i) a cell list which can be thought of as the long

range contributions to gravity and (ii) a particle list which accounts

for the short range gravitational interactions. The acceleration and

the potential energy of each particle are calculated from these two

interaction lists. The opening angle varies the ratio of directly cal-

culated forces to those calculated via multipole expansions. It there-

fore controls force errors and also determines the primary cost of a

simulation.

For the calculation of the dynamical time of a particle, we generate

an additional cell list which provides a reduced representation of the

particle list, i.e. this list only contains the buckets that were opened

by the above procedure and these buckets are treated in the same

way as the cells for the long range contributions. The cell list and

this additional list, which we call the particle–bucket list, form a

complete tiling of the entire simulation volume except for the local

bucket of the particle itself, which is not included.

2.2.1 Mean field regime algorithm

We only need to calculate the time-step of a particle when we eval-

uate the force acting on it. The dynamical time of a particle is then

determined according to the following scheme.

(i) Pick out the 0.5 percentile highest values of ρenc from both the

cell and the particle–bucket interaction lists. We regard this subset

of cells as the centres of dominant contributions to the acceleration

of the particle, otherwise called maxima. Once we have added the

contributions of the mass surrounding each of these centres, we can

make a final determination of which is the dominating region and

hence set the correct dynamical time-step. The enclosed density for

a cell is defined by

ρenc = MC

|rPC|3 , (6)

where MC is the total mass of the cell and rPC the vector from the

location of the particle to the centre of mass of the cell.

(ii) For each of these centres, add up all the ρenc values from the

other cells in the list that satisfy both of the following criteria:

|rPC| � 2 |rPCmax| (7)

0.75 � rPCmax · rPC

|rPCmax||rPC| , (8)

where rPC is the vector from the location of the particle to the cen-

tre of mass of the cell and rPCmax is the vector from the particle

to one of the maxima. That means, we add up all the ρenc values

of cells that lie within a spherical viewing cone of opening angle

2α = 2 arccos(0.75) ≈ 83◦ around a maximum cell (Cmax) with

Figure 1. Viewing cone for the allowed region of cells to be accepted by

the time-step criterion. Cmax is the location of the maximum cell. We accept

all cells that are within the cone of opening angle 2α ≈ 83◦ with the particle

(P) being the apex extending to 2 |rPCmax|.

the particle (P) being the apex extending to 2 |rPCmax|.1 See also

Fig. 1 for the geometric configuration. If the particle would orbit a

perfectly spherically symmetric halo at radius r, then the dynamical

relevant mass would lie in the sphere of radius r centred at the ge-

ometric centre of the halo. Therefore, the angle α is chosen so that

the volume of the sphere

VS = 4π

3
r 3 (9)

equals the volume of the spherical cone

VC = 2π

3
(2r )3[1 − cos(α)] (10)

resulting in

VS

VC

= 1

4[1 − cos(α)]
= 1. (11)

This is reached for cos (α) = 0.75.

(iii) We now have a summed ρenc of mass contributions about

each maximum. Only the largest of these, ρenc,MF, is used in deter-

mining the dynamical time-step of the particle.

(iv) Add the local density ρ local to the enclosed density ρenc,MF of

the particle. We do this in order to account for possible contributions

from the local bucket of the particle.

1 Adding up the ρenc values shows less scattering in the determined time-

steps than adding up first the masses of the cells and then dividing by the

total volume. It also correctly accounts for softened contributions to the force

from the region close to P since the ρenc contributions are reduced there.
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As prefactor, we use a value of ηD = 0.03. This choice is moti-

vated by earlier studies in Stadel (2001) and is further discussed in

Section 3.5.

2.2.2 Error terms in leapfrog schemes

In computer simulations, the system is not evolved by the true Hamil-

tonian but by the approximate Hamiltonian

HA = H0 + �T 2 H2 + �T 4 H4 + O(�T 6). (12)

In PKDGRAV, particles are evolved by using a kick–drift–kick leapfrog

scheme. This means

H0 = HD + HK = H (13)

H2 = 1

12
{{HK, HD} , HD} − 1

24
{{HD, HK}, HK}, (14)

where we have split the true Hamiltonian H into a drift (HD) and

kick (HK) part. A detailed derivation and an expression for H4 are

given in the Appendix. Therefore, the dominant error term is the

second-order term E2 = �T2H2.

For a two-body problem, the Hamiltonian is given by

H = p2
r

2μ
+ p2

ϕ

2μr 2︸ ︷︷ ︸
HD

− A

r︸︷︷︸
HK

(15)

where μ ≡ M1 M2

M1+M2
is the reduced mass and A = GM1M2 and where

M1 and M2 denote the masses of the two particles. The problem

is described by the two coordinates r and ϕ, and their conjugate

momenta

pr = μṙ (16)

pϕ = μr 2ϕ̇ = L. (17)

Since the coordinate ϕ is cyclic, its conjugate momentum is an

integral of motion, i.e. the angular momentum,

L2 = μa A(1 − e2), (18)

is conserved. Here, a = A
−2E , i.e. |a| is the semimajor axis of the

ellipse (e < 1) or hyperbola (e > 1) and E is the total energy of the

orbit. By using a symmetrized time-step,

�T = ηD

√
r 3

G (M1 + M2)
= ηD

√
r 3μ

A
, (19)

we can calculate the higher order error term E2 of the approximate

Hamiltonian for a two-body problem and evaluate it at pericentre of

the particle’s orbit,

Eperi
2 = �T 2 H2 = 1

24

(1 + 2e) η2
D A

(1 − e) a
. (20)

We see that the error depends on eccentricity e of the orbit. This

allows us to correct for the second-order error and control the error

at pericentre.

2.2.3 Gravitational scattering regime algorithm

If the interaction of a particle is in the gravitational scattering regime

(e.g. it is located close to a super-massive black hole), we first deter-

mine the mean field value ρenc,MF for this particle in exactly the same

way as described in Section 2.2.1. However, in order to account for

gravitational scattering events we need to consider the close parti-

cle interactions in our determination of the dynamical time in more

detail. The procedure here is as follows. We go through the particle

interaction list and pick out the highest value of

ρenc,GS = C(e)
MP + MI

|rPP|3 , (21)

where MP is the mass of the particle, MI is the mass of the particle

in the interaction list, rPP is the particle–particle distance and

C(e) ≡ 1 + 2e

|1 − e| (22)

is the additional factor that corrects for eccentricity of the orbit.

The symmetrization in ρenc,GS is to cover cases where unequal mass

particles are involved in the interaction. In such cases, the heavier

particle would be on a much larger time-step than the interacting

partner, resulting in momentum conservation problems and unphys-

ical behaviour when the mass ratio is large. The eccentricity of two

interacting particles is given by

e ≡
√

1 + 2E L2

μA2
. (23)

Hence, for each particle we would like to follow in the gravitational

scattering regime, we have calculated the two values of ρenc,MF and

ρenc,GS. The larger of these two is then used.

3 T I M E - S T E P P I N G C R I T E R I O N T E S T S
A N D B E H AV I O U R

3.1 General properties

In order to see how the dynamical time-step criterion works, we

present the time-step distribution in four dark matter haloes, so

called αβγ -models (Hernquist 1990; Dehnen 1993; Zhao 1996):

with γ = 1.5, 1.0, 0.5 and 0.0 where γ is the inner slope of the den-

sity profile ρ(r) ∝ r−γ . The outer slope is always β = −3. All haloes

have a virial mass of Mvir = 1012 h−1 M
 = 1.429 × 1012 M
 (h =
0.7) and are represented by Nvir ≈ 7.5 × 106 particles within the

virial radius. This virial mass corresponds to a virial radius of rvir ≈
289 kpc. We fix the concentration of the Navarro–Frenk–White

(NFW; Navarro, Frenk & White 1996) profile to cNFW = 10, and the

concentrations of the other profiles were chosen so that the maxi-

mum circular velocity is reached at the same radius in all haloes.

The softening of the particles was ε = 0.1 kpc ≈ 3.5 × 10−4 rvir in

all haloes.

We compare our new time-step criterion based on the dynamical

time with the standard criterion commonly used in N-body simu-

lations. The standard criterion for selecting time-steps in N-body

simulations is based on the acceleration of the particle. The rung,

n, and time-step taken, �TS, for the standard criterion are given

by

�TS = T0

2n
� ηS

√
ε

|a(r )| , (24)

where ε is the softening and a the acceleration of the particle. By

default, a value ηS = 0.2 is generally used. In spherically symmetric

systems, the radius req where the dynamical and standard criteria

give the same time-step is given by

req = η2
S

η2
D

ε, (25)

independent of the form of the density profile.

In Fig. 2, we plot the time-step criterion distribution of the par-

ticles for all haloes as a function of distance from the centre of

the halo: between solid and long dashed lines, the values for the
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Figure 2. We plot the time-step criterion distribution for four profiles with central slope ranging from γ = 0.0, . . . , 1.5. The results for the dynamical and

standard time-stepping criteria are shown – between solid and long dashed lines: dynamical time-step criterion (blue) and following the short dashed line:

standard time-step criterion (red). Time-steps are in units of the dynamical time at the virial radius Tdyn(rvir) ≈ 12 Gyr. Additionally, we plot the theoretical

curves for the standard and dynamical time-stepping criterion we expect for a spherical symmetric halo with the given profile. It is evident that the dynamical

criterion is much more adaptive with radius than the standard criterion. The time-steps taken using the standard criterion remain constant over larger spans in

radius than with the dynamical time-step criterion. For example, in the NFW profile (γ = 1.0), all particles with a distance smaller than ≈0.1 rvir from the

centre are on a single constant time-step. Both criteria give equal time-steps at the radius req = 4.444 kpc ≈ 1.5 × 10−2 rvir – independent of the density profile.

For flat central profiles, the time-step increases below the radius where the acceleration has its maximum! One can also see the asymptotic radial behaviour of

both schemes in the central region given by equations (26) and (27), respectively. We also plot the time-step distribution of the dynamical time-step criterion

in three bins at ri = rvir, 10−1 rvir, 10−2 rvir of width 0.002 in logarithmic scale on the right-hand side of each plot. We can see that the dynamical time-step

criterion follows closely a band between ηD = 0.02, . . . , 0.03 (long dashed and solid lines). In the two flat cases (γ = 0.0 and γ = 0.5), the bin at 10−2 rvir is

close to the resolution limit and the distribution is therefore quite broad and noisy.

dynamical time-step criterion (blue) and following the short dashed

line the standard time-step criterion values (red). For a better

overview, we only plot 0.1 per cent of the particles randomly se-

lected from the total number of particles in each halo.

As we can see in Fig. 2, the standard criterion follows closely the

theoretical curve (short dashed) with |a(r)| calculated numerically.

The dynamical time-step criterion also follows closely a band be-

tween ηD = 0.02, . . . , 0.03 (long dashed and solid lines) for the the-

oretical curve with ρenc = M(r )

r3 . The radius of equal time-steps with

the parameters above results in req = 4.444 kpc ≈ 1.5 × 10−2 rvir.

On the right-hand side of each plot in Fig. 2, we also plot the

time-step distribution in three bins at ri = rvir, 10−1 rvir, 10−2 rvir of

width 0.002 in logarithmic scale. For the dynamical time-stepping

scheme, most of the particles lie in the band between the two curves.
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Of course, we expect a spread in our criterion since our add-up

scheme does not perfectly recognize the geometry of the surround-

ing structure. We note, however, that the add-up scheme is generally

more conservative for the choice of time-step at a given radius than

the analytical value. In the two flat cases (γ = 0.0 and 0.5), the

bin at 10−2 rvir is close to the resolution limit of the halo, and the

distribution is therefore quite noisy and relatively broad. Most of

the effect due to this broader distribution at small radii is absorbed

by the block time-step scheme’s way of discretizing the actual time-

step taken (see also equation 4); the time-step value provided by the

criterion is just an upper limit.

With a rather conservative choice of ηD = 0.03, we sample the or-

bit of a particle on a circular (tangential) orbit with at least 2π/ηD ≈
200 steps. The second curve (short dashed) used a value of ηD =
0.02 which corresponds to 2π/ηD ≈ 300 steps per circular orbit.

The situation is a bit more complicated for particles on perfect

radial orbits. For a homogeneous sphere, the particle will oscillate

through the centre of the sphere and describe therefore a harmonic

oscillator with period T = √
3π/(Gρ) where ρ is the homoge-

neous density of the sphere.2 If we take this value with ρenc = ρ,

we get for a complete radial orbit between
√

3π/0.03 ≈ 100 and√
3π/0.02 ≈ 150 steps per oscillation. Since our time-step criterion

is very adaptive with radius, the dynamical time will decrease in a

steep density profile when the particle approaches the centre, so that

the effective number of steps is even higher.

The main disadvantage of the standard time-step criterion (24) is

the bad adaptivity with radius, i.e. the particles are distributed over

relatively few rungs. Especially in the NFW profile, the particles

inside about 10 per cent of the virial radius are all on the same time-

step. For flatter central profiles with γ < 1 where ρ(r) ∝ r−γ , the

time-steps even increase inside the radius where the acceleration

has its maximum, in clear contradiction to the behaviour of the dy-

namical time! The asymptotic radial behaviour in the central region

of the standard time-stepping criterion is given by

�TS ∝
√

1

|a(r )| ∝ r
γ−1

2 (γ < 3), (26)

where γ is the inner slope of the density profile. In contrast, the

dynamical time-stepping scheme has the following dependence:

�TD ∝
√

r 3

M(r )
∝ r

γ
2 (γ < 3). (27)

The standard criterion can only obtain the correct choice of time-

step in the central regions by shifting the above relation, either by

choosing a small softening for these particles or by reducing ηS.

This automatically leads to an immense computational expense due

to the overly conservative time-steps in the outer parts of the halo

or even wrong physical behaviour due to the choice of too small

softening for the physical problem (e.g. undesired scattering of par-

ticles). The radial scaling of the standard criterion makes it ill suited

to the study of the centre of galaxies and in other situations where a

very large dynamic range in density needs to be evolved correctly.

The dynamical time-stepping technique we present is a much more

universal approach to choosing time-steps in self-gravitating sys-

tems, since the basic parameters of the method, such as the angle

for adding up mass contributions, once determined, are kept fixed

for different simulations.

2 Note that Binney & Tremaine (1987) define the dynamical time as the

time needed by the particle to reach the centre which means Tdyn ≡ 1
4 T =√

3π/(16Gρ).

3.2 Elliptic two-body orbits

In order to quantify the performance of our adaptive dynamical

time-stepping criterion in the scattering regime, we performed a

series of simulations studying the behaviour of high-eccentricity

two-body Kepler orbits. After choosing the masses M1 and M2 of

the two bodies, all other quantities are fixed, i.e. the orbital time of

the Kepler orbit is given by

TK ≡
√

a3(2π)2μ

G M1 M2

= 2π

√
a3

G(M1 + M2)
(28)

and the initial total energy is calculated by

E0 ≡ − G M1 M2

2a
. (29)

We chose a unit system where Newton’s gravitational constant

G ≡ 1, and we fix the orbit in the same way, i.e. the semimajor

axis is always a ≡ 1. The softening ε of the two particles was set to

0.1 dperi in all cases where dperi ≡ a (1 − e) is the periapsis distance

of the Kepler orbit. PKDGRAV treats the forces completely Newtonian

if the two particles have a distance larger than 2ε which is therefore

always the case in these test runs. Initially, the particles were set in

a coordinate system where the centre of mass is at rest at the ori-

gin and the two particles were at apoapsis configuration along the

x-axis. A short summary of the parameters can be found in Table 1.

We let each run evolve for 1000 TK (TK was also the basic or

longest time-step in the block time-stepping scheme, T0), measured

the total energy E1000 after the end of the run and calculated the

relative energy shift (E1000 − E0)/|E0|. These values are also listed

in Table 1. From Table 1, we see that even for a high eccentricity

(e = 0.999) orbit we still have relative energy conservation on the

level of ≈10−6 per orbit. The general behaviour can also be seen in

Fig. 3 where we plot the orbit from 0 to TK and the orbit from 999 TK

to 1000 TK for each of the different runs (i)–(l). The two orbits lie

nearly on top of each other except for the e = 0.99 case, where the

energy gain in the integration was the largest, we can see a small

deviation. When we compare the runs with different mass ratios, we

see that the relative energy conservation is nearly the same, i.e. the

relative energy conservation depends only on the geometry of the

orbit.

In order to illustrate the robustness of our method, we have per-

formed some further tests. In run (m), we switched off the eccentric-

ity correction in the symmetrized dynamical time-stepping (21), i.e.

C(e) = 1. We see that the energy gain over 1000 TK is ≈240 times

larger than in the corresponding run (b) with eccentricity correction.

This can also be seen visually in Fig. 4. Due to the energy gain, the

orbits of both particles become wider.

In run (n), we tried to resolve the orbit with the standard time-

stepping criterion given by equation (24). This criterion depends on

the softening length ε of the particle and is therefore certainly not

ideal in the gravitational scattering regime. We have chosen the same

value as in run (b) where we had ε = 0.1 dperi = 0.01. From Fig. 4, we

see immediately when comparing runs (n) and (b) that the standard

criterion cannot capture the dynamics of the orbit. The orbits of

the two particles become more circular and we get a rotation of the

whole system. If we had chosen a somewhat larger softening, so that

it is still smaller than half the periapsis distance, it would even look

worse since the standard time-stepping scheme directly depends on

the softening length ε while the dynamical time-stepping scheme

would still perform equally well since it has no such dependence.

Of course, the dynamical time-stepping criterion with eccentricity

correction uses a lot more steps per orbit than the standard criterion
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Table 1. Summary of elliptic two-body orbit runs (a)–(p).

Run M1/M2 e TK E0 (E1000 − E0)/|E0| N Time-stepping scheme Compare with run

a 1 0 4.443 −5 × 10−1 2.238 × 10−9 256 D/ec

b 1 0.9 4.443 −5 × 10−1 −7.278 × 10−4 2110 D/ec m, n, o

c 1 0.99 4.443 −5 × 10−1 6.648 × 10−3 9394 D/ec

d 1 0.999 4.443 −5 × 10−1 2.804 × 10−3 39 143 D/ec

e 103 0 1.985 × 10−1 −5 × 102 2.254 × 10−9 256 D/ec

f 103 0.9 1.985 × 10−1 −5 × 102 −7.014 × 10−4 2110 D/ec

g 103 0.99 1.985 × 10−1 −5 × 102 6.648 × 10−3 9394 D/ec

h 103 0.999 1.985 × 10−1 −5 × 102 2.804 × 10−3 39 142 D/ec

i 106 0 6.283 × 10−3 −5 × 105 2.242 × 10−9 256 D/ec

j 106 0.9 6.283 × 10−3 −5 × 105 −7.218 × 10−4 2110 D/ec p

k 106 0.99 6.283 × 10−3 −5 × 105 6.653 × 10−3 9394 D/ec

l 106 0.999 6.283 × 10−3 −5 × 105 2.802 × 10−3 39 142 D/ec

m 1 0.9 4.443 −5 × 10−1 1.730 × 10−1 398 D/nec b

n 1 0.9 4.443 −5 × 10−1 −1.263 316 S b

o 1 0.9 4.443 −5 × 10−1 1.895 × 10−3 2107 S/ηS = 0.029 b

p 106 0.9 6.283 × 10−3 −5 × 105 1.913 3197 S j

Note. The columns are mass ratio M1/M2, eccentricity e, orbital time TK, initial energy E0, relative energy change (E1000 − E0)/|E0|, number of

steps during the first orbit N, time-stepping scheme: D – dynamical, S – standard, ec – eccentricity correction, nec – no eccentricity correction,

run to compare with: (b) with (m), (n) and (o) and (j) with (p).

with ηS = 0.2. Therefore, we tried in run (o) a run with an equal

number of steps per orbit as run (b). This is reached for a value

η = 0.029. The energy conservation is still not as good as in the

case of the dynamical time-stepping with eccentricity correction

(b), and there is a small amount of precession of the periapsis.

The whole situation becomes even worse when we try to resolve

two-body orbits with unequal mass particles. Since the standard

time-stepping is not symmetric due to the asymmetry in acceleration,

it is not able to resolve a high-mass ratio two-body orbit correctly

and fails completely. This is shown in Fig. 5. Although the light

particle makes N = 3197 steps in the first orbit (here N in run p

denotes only the number of steps of the light particle in Table 1), the

heavy particle takes a much larger first step than the light particle.

Of course, when the light particle approaches, the heavy particle

gets an immense kick, the total energy becomes positive and the

whole system drifts apart.

3.3 Hyperbolic two-body orbits

In a similar way, we also tested the new dynamical time-stepping

scheme for hyperbolic orbits. Initial conditions were set up such that

the line connecting the two particles encloses an angle of π

6
with the

semimajor axis (symmetry axis) of the hyperbola. The time for the

particle to reach the periapsis of the orbit is given by

TH =
∫ π

π
6

μ r 2(φ)

L
dφ (30)

where r(φ) describes the angle-dependent relative separation of the

two bodies. The initial conditions used the same unit system as the

elliptic orbit tests, and we again set the softening to 0.1 dperi where

dperi ≡ a (e − 1) for hyperbolic orbits. A summary of different runs

can be found in Table 2.

In order to get an integrated effect, we mirrored the velocities of

the particles after 2 TH and let the runs evolve in total for 2000 TH

in order to get 1000 pericentre passages.

In Fig. 6, we plot the most extreme case, run (I), with mass ratio

of 106 and eccentricity e = 1.001. Over 1000 pericentre passages,

there is no visible evolution of the orbit, and the relative energy

change is of the order of O(10−5) per orbit. For the other cases

with lower eccentricities and mass ratios, the new dynamical time-

stepping scheme works optimally, and we do not show the other

orbits here.

We again tried to resolve high-mass ratio orbits without eccentric-

ity correction (run J) and the standard time-stepping scheme (run K).

The results can be seen in Fig. 7. If we do not correct for the eccen-

tricity (as in run J), the particles gain energy and the orbits become

wider. In run (K), we see the behaviour of the standard time-stepping

scheme. Due to the large-mass ratio, the acceleration of the light

particle is quite large and therefore it follows a qualitatively correct

orbit due to the small time-steps. This is similar to the case (p) of

the elliptic two-body orbits where the light particle describes an el-

liptical orbit about the massive particle, even though this massive

particle gets a spurious kick. Once again, the massive particle has a

completely incorrect orbit wandering around in a very large area due

to the spurious kicks (compare the scales of the inset plots in runs J

and K). The lack of momentum conservation in such cases results

in this contrasting behaviour of the two different mass particles.

The symmetrization of the time-step criterion restores momentum

conservation between the two particles involved in the gravitational

scattering event.

3.4 Cosmological structure formation

We also tested the performance of the dynamical time-stepping

scheme in a cosmological structure formation run. For this purpose,

we used a fiducial simulation of the Virgo cluster (Ghigna et al.

1998) in a cosmological framework with �M = 1, no cosmological

constant, i.e. �� = 0, and H0 = 50 km s−1 Mpc−1. The simulation

cube had a box length of L = 100 Mpc, and the total mass in the

cube was Mtot = 6.937 × 1016 M
. The cluster was resolved using

the standard refinement technique (Katz & White 1993; Katz et al.

1994) so that the particle mass in the highest resolution region was

8.604 × 108 M
 and the softening length of the lightest particles

was ε = 5 kpc. The total number of particles was 1.314 × 106. The

simulation started at redshift z = 69, and we evolved the cluster

to redshift z = 0 with three different time-stepping schemes: one

dynamical and one standard time-stepping run and, for comparison,
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Figure 3. Top left: run (i); top right: run (j); bottom left: run (k); bottom right: run (l) from Table 1. We plot the orbit from 0 to TK (orbit 1) and the orbit from

999 TK to 1000 TK (orbit 1000) for each run. All runs used the dynamical time-stepping scheme with eccentricity correction. We deliberately did not plot the

scaling of the two axes constrained in order to make the small deviations visible.

a fixed time-step scheme with 300 000 time-steps from z = 69 to 0

(this corresponds to 20 000 time-steps down to redshift z = 5 in the

above described cosmology). With this choice, the fixed time-step

length corresponds approximately to the smallest time-step chosen

by the dynamical criterion during the whole run. Only for a few

particles, the dynamical scheme did choose smaller steps than this

fixed time-stepping run.

The virial radius of the resulting cluster was in all cases rvir ≈
2 Mpc (overdensity ≈ 200) and had a final mass of MCluster ≈ 4.3 ×
1014 M
. In Fig. 8, we plot on the top panel the radial density profile

for the three runs at redshift z = 0. Here ρD(r) is the radial density of

the run with the dynamical time-stepping scheme, ρS(r) the density

profile of the run with the standard time-stepping scheme and ρF(r)

the profile of the fixed time-step run. In the lower panel, the relative

difference [ρ(r) − ρF(r)]/ρF(r) is also plotted. The softening of

the highest resolution particles corresponds to ε = 5 kpc ≈ 2.5 ×

10−3 rvir. As we can see in Fig. 8, the same radial density profile is

obtained for the final cluster in this cosmological simulation.

We also compared the substructure mass function at redshifts

z = 0 and 5 for the three runs. For that, we used the group finding

software skid3 with a linking length of 20 kpc = 4 ε and a density

and number cut so that only structures that are virialized and which

are represented by at least 100 particles are accepted. In Fig. 9, we

plot the mass function n(M) (number of substructures of mass M) as

a function of substructure mass M for output at redshifts z = 5 and

0. There is no substantial difference between the mass functions for

the different time-stepping schemes.

For these low-resolution runs, we do not expect to see a signifi-

cant difference between the three runs since the scale at which the

3 http://www-hpcc.astro.washington.edu/tools/skid.html
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Figure 4. Top left: run (b); top right: run (m); bottom left: run (n); bottom right: run (o) from Table 1. Run (b) shows the dynamical time-stepping case with

eccentricity correction. The orbit is perfectly followed. In run (m), we can clearly see the energy gain visually due to the lack of the eccentricity correction in

the time-step criterion. Run (n) where we tried to resolve a e = 0.9 orbit analogue to run (b) with the standard time-step criterion. As can be seen, the orbit

becomes more circular and the orbital plane starts to rotate which is completely unphysical. In run (o), we see a run where we used a smaller value of ηS =
0.029 so that the standard criterion initially makes an equal number of steps per orbit as the dynamical time-stepping scheme in run (b). This helps a lot, but it

still does not perform as good as the dynamical time-stepping scheme.

standard scheme begins to take an insufficient number of time-steps

corresponds approximately to the resolution scale of this simulation.

This is just a confirmation that the dynamical time-stepping scheme

also works for the extreme dynamics of a cosmological structure

formation run.

3.5 Dependence on parameters

3.5.1 Softening length ε

The standard time-step criterion (24) depends directly on the arti-

ficial simulation parameter softening length ε. There is, however,

no physical basis for this definition. Furthermore, the functional

form of the acceleration in centrally flat (γ < 1) haloes is prob-

lematic and can lead to non-sensical time-steps if the resolution

is high enough (see Fig. 2). Even a simple two-body problem is

not treated properly by the standard time-stepping scheme, since

the time-steps depend on acceleration which is not symmetric and

again there is the meaningless dependence on the softening of the

particles.

The dynamical time-stepping scheme only depends indirectly on

the softening length. If two particles are close enough such that their

forces are softened, we also use the softened values for the ρenc.

In this way, the scheme also determines an appropriate dynamical

time-step when the Green’s function deviates from the Newtonian

1/r. Furthermore, the new dynamical time-stepping scheme may be
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Figure 5. Run (p) where we tried to resolve an e = 0.9, high-mass ratio

orbit with the standard time-stepping criterion. The heavy particle gets an

immense kick, and the total energy becomes positive. Thus, the heavy particle

drags the light particle with it, and the whole system drifts apart. The standard

criterion therefore fails completely to follow the orbit correctly.

used without modification in simulations where the softening is set

to zero, i.e. where the interactions are never softened.

3.5.2 Force opening angle θ

The opening angle θ determines the weighting of directly calculated

forces to force contributions coming from the multipole expansion.

This parameter mainly determines the accuracy of the force. By

including the terms in the particle–bucket list, the dynamical scheme

does not show a significant dependence on the choice of the force

opening angle θ .

3.5.3 Cone viewing angle α

We normalized the viewing angle α so that the volume of the sphere

and the cone in Fig. 1 is equal. We also tried larger values of cos(α) >

Table 2. Summary of hyperbolic two-body orbit runs (A)–(K).

Run M1/M2 e TH E0 (E1000 − E0)/|E0| N Time-stepping scheme Compare with run

A 1 1.1 2.150 5 × 10−1 3.009 × 10−3 1713 D/ec

B 1 1.01 2.274 × 10−2 5 × 10−1 2.119 × 10−3 4935 D/ec

C 1 1.001 6.709 × 10−4 5 × 10−1 −1.298 × 10−2 15 177 D/ec

D 103 1.1 9.610 × 10−2 5 × 102 3.009 × 10−3 1713 D/ec

E 103 1.01 1.017 × 10−3 5 × 102 2.119 × 10−3 4935 D/ec

F 103 1.001 2.999 × 10−5 5 × 102 −1.298 × 10−2 15 178 D/ec

G 106 1.1 3.041 × 10−3 5 × 105 3.009 × 10−3 1713 D/ec J, K

H 106 1.01 3.216 × 10−5 5 × 105 2.118 × 10−3 4935 D/ec

I 106 1.001 9.488 × 10−7 5 × 105 −1.298 × 10−2 15 177 D/ec

J 106 1.1 3.041 × 10−3 5 × 105 8.336 × 10−1 296 D/nec G

K 106 1.1 3.041 × 10−3 5 × 105 1.360 × 10−1 333 S G

Note. The columns are mass ratio M1/M2, eccentricity e, time to reach the pericentre TH, initial energy E0, relative energy change (E1000 −
E0)/|E0|, number of steps during the first orbit N, time-stepping scheme: D – dynamical, S – standard, ec – eccentricity correction, nec – no

eccentricity correction, run to compare with: (G) with (J) and (K).

0.75 (i.e. smaller angles) but the resulting time-step distribution did

not follow the theoretical curves as well as for the case of cos (α) =
0.75 (especially close to the centre).

3.5.4 Number of maxima

Ideally, one would scan the particle’s whole sky for the gravitation-

ally dominating structure. But this would be computationally very

expensive. With our choice of the 0.5 percentile largest ρenc cells in

each of the cell and particle–bucket lists, we find a good compromise

between getting the correct dominating structure (i.e. low scattering

of the enclosed density values) and computational speed. Having

to consider multiple maxima is the main factor which makes the

dynamical time-stepping scheme more expensive than the simple

schemes used to date. However, if we loosen the strict geometrical

definition of the viewing cone, then faster schemes which rely on

the hierarchical tree structure when scanning the sky for maxima

and their surrounding mass become realizable. Such algorithmic

improvements are being investigated and will be discussed in future

work.

3.5.5 Prefactor ηD

Stadel (2001) performed stability tests for a leapfrog scheme in the

drift–kick–drift mode. The result was that two-body orbits became

unstable for choices of ηD � 0.1. For these tests, the choice of

time-steps was also based on the dynamical time of the two-body

problem.

We performed similar tests with the kick–drift–kick leapfrog

scheme and found that e = 0.9 orbits become unstable in the mean

field regime (i.e. without eccentricity correction) for choices of ηD

too large. Of course, by choosing a smaller value of ηD, one always

gets better precision but the computational costs become larger. With

the choice of ηD = 0.03, we found a compromise between stability

and computational costs.

3.6 Efficiency

In order to quantify the efficiency of the dynamical time-stepping

criterion in comparison with the standard criterion, we can compare

the number of force evaluations for a given problem. In a spherically

symmetric halo, the number of particles in a shell at radius r with
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Figure 6. The most extreme case, run (I), with mass ratio of 106 and ec-

centricity e = 1.001. The dynamical time-stepping scheme with eccentricity

correction is used. There is no significant evolution over 1000 repeated peri-

centre passages.

thickness dr is given by

dNP = 4πρ(r )r 2 dr

Mvir/Nvir

. (31)

The number of time-steps per time interval τ for each of these dNP

particles at radius r is given by

ND = τ

ηD

√
Gρenc(r ) = τ

ηD

√
G M(r )

r 3
(32)

Figure 7. Left-hand side: run (J), right-hand side: run (K) from Table 2. In run (J), we see the energy gain if the orbit is not followed correctly by not using

the eccentricity correction in the dynamical time-stepping scheme. On the right-hand side, we see run (K) where we used the standard time-stepping scheme.

The heavy particle is wandering around in a much larger area than allowed, as can be seen by comparing the scales of the two inset plots.

Figure 8. Density profiles of the three runs of the Virgo cluster with the

different time-stepping schemes at final redshift z = 0: ρD(r) is the radial

density of the run with the dynamical time-stepping scheme,ρS(r) the density

profile of the run with the standard time-stepping scheme andρF(r) the profile

of the fixed time-step run. The profiles are normalized with respect to the

critical density ρcrit. On the top panel, the absolute values and on the lower

panel the relative differences [ρ(r) − ρF(r)]/ρF(r) are plotted.

in the dynamical case. In the case of the standard time-stepping

scheme, this is instead given by

NS = τ

ηS

√
|a(r )|

ε
= τ

ηS

√
G M(r )

ε r 2
. (33)

We do not account for the actual block time-stepping scheme used

in PKDGRAV for this numerical estimation.
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Figure 9. Substructure mass function of the Virgo cluster run at redshift z = 5 (left-hand side) and z = 0 (right-hand side). There is no substantial difference

between the runs with different time-stepping schemes visible.

The number of force evaluations in that infinitesimal thin shell is

now simply given by

dFS = dNP NS (34)

dFD = dNP ND, (35)

respectively. The ratio

RE ≡ dFS

dFD

= ηD

ηS

√
r

ε
, (36)

shows that above req defined by equation (25), i.e. the radius where

both time-stepping criteria give the same value, the number of

force evaluations at a given radius is always a factor RE ∝ √
r

larger.

In Fig. 10, we plot the number of force evaluations per Gyr

per radius dFD/dr and dFS/dr for the NFW profile dark matter

halo used also in Fig. 2 with Nvir = 7.5 × 106. The figure shows

the asymptotic behaviour of the curves in the central region given

by

dFD

dr
∝ r 2− 3

2
γ

γ=1∝ r
1
2 (37)

dFS

dr
∝ r

5
2
− 3

2
γ

γ=1∝ r 1, (38)

respectively. In the inner region, i.e. at distances smaller than req

from the centre, more force evaluations are done in the dynamical

time-stepping scheme, as expected. Here, the standard scheme does

not give small enough time-steps to follow the dynamics. Since in

most cases of low-resolution simulations req (due to a clever choice

of softening orηS) is around the resolution scale, the error is typically

small. High-resolution simulations can, however, become very slow

if one wants to resolve the central region correctly with the standard

time-stepping scheme.

In order to illustrate the efficiency gain, we calculate the number

of force evaluations per Gyr for three different NFW haloes that have

the same profile and specifications as the one used in Figs 2 and 10.

We only changed the number of particles: they are Nvir = 7.5 ×

Figure 10. Number of force evaluations N per Gyr per radius for the dy-

namical scheme dFD/dr, respectively, dFS/dr for the standard scheme for

a NFW profile dark matter halo. For infinitesimal thin shells at radii larger

than req, the standard time-stepping scheme has always a factor RE (given

by equation 36) more force evaluations per Gyr. In a NFW profile, the inner

slope is γ = 1, and we have therefore the following asymptotic behaviour

in the centre: dFD/dr ∝ r
1
2 and dFS/dr ∝ r1.

106, 7.5 × 108 and 7.5 × 1010 particles within the virial radius. For

the first halo, we chose a softening length of ε1 = 100 pc ≈ 3.5 ×
10−4 rvir, and we scaled the softening of the other haloes according

to the scaling of rimp given by the solution of

rimp = h(rimp), (39)

where h(r) is the mean particle separation defined by

h(r ) ≡
3

√
Mvir/Nvir

ρ(r )
. (40)
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Table 3. Number of force evaluations per Gyr for a NFW

halo with different resolutions Nvir.

Nvir 7.5 × 106 7.5 × 108 7.5 × 1010

FD 7.612 × 108 7.612 × 1010 7.612 × 1012

FS 2.336 × 109 7.388 × 1011 2.336 × 1014

FS
FD

3.069 9.705 30.69

In other words, rimp is the distance of the innermost particle to the

geometrical centre of the halo and scales as

rimp ∝
3−γ
√

1

Nvir

γ=1∝
√

1

Nvir

(41)

resulting in ε2 = 10 pc and ε3 = 1 pc for the other softenings.

The number of force evaluations per Gyr (τ = 1 Gyr) is given by

FD =
∫ rvir

rimp

dFD, FS =
∫ rvir

rimp

dFS, respectively, (42)

and the numerical results can be found in Table 3. We see that FD

scales as FD ∝ Nvir whereas FS scales approximately as FS ∝ N1.25
vir

in the case of a NFW profile halo. This specific scaling of FS is due

to the scaling of the softening length ε ∝ rimp resulting in the general

scaling of

FS ∝ N
1+ 1

2(3−γ )

vir . (43)

For a different scaling of the softening, one, of course, gets a different

scaling of FS, e.g. ε ∝ N−1/3
vir results in FS ∝ N7/6

vir independent of γ .

This again shows the strong dependence of the standard scheme on

the softening length ε and that the dynamical time-stepping scheme

is much more efficient than the standard scheme for high-resolution

simulations.

4 C O N C L U S I O N S

We have developed a physically motivated time-stepping scheme

that is based on the true dynamical time of the particle. We also derive

an eccentricity correction for a general leapfrog integration scheme.

The combination of these schemes allows us to follow quite general

dynamical systems that may contain a mixture of collisionless and

collisional interacting components. Compared to the standard time-

stepping scheme used in many N-body codes, it has the following

advantages.

(i) It does not depend directly on ad hoc parameters such as the

softening length ε.

(ii) It gives physically correct time-steps in dark matter haloes

with arbitrary central cusp slopes.

(iii) It is faster in high-resolution simulations.

(iv) It allows orbits with eccentricity e → 1 to be followed cor-

rectly.

(v) It allows us to follow complex dynamical systems where scat-

tering events may be important.

The main conclusion is that one should use a time-step criterion

that is based on the dynamical time. This scheme shows the optimum

scaling with the number of particles and always gives a physically

motivated time-step.
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A P P E N D I X A : H A M I LTO N I A N F O R M A L I S M

For a physical system that is described by the state z = (q, p),

where q is the coordinate and p the conjugate momentum vector,

and this system is evolved under a Hamiltonian H, we can write the

formal time evolution (Hamilton equations) as (Yoshida 1993; Saha

& Tremaine 1994)

dz
dt

= {z, H} (A1)

where {,} denote the Poisson brackets defined by

{g, h} ≡
f∑
i

(
∂g

∂qi

∂h

∂pi
− ∂g

∂pi

∂h

∂qi

)
. (A2)

We can define the operator

Ĥ z ≡ {z, H} (A3)

and write down a formal solution to the time evolution

z(t) = et Ĥ z0. (A4)

In computer simulations, the system is evolved by using a specific

scheme in order to update positions and velocities. In PKDGRAV, the

following leapfrog scheme is used: during a time-step �T, first the

velocities are updated (kick mode) with a time-step of �T
2

then

the new positions are calculated (drift mode) using the new velocities

with a time-step of �T and finally the velocities are updated to the

final values at �T with again a half-step of �T
2

. This is therefore

called the kick–drift–kick mode and can be described by

z(�T ) = e
�T

2
ĤK e�T ĤD e

�T
2

ĤK z0, (A5)

where we have split the true Hamiltonian into a drift and a kick part

Ĥ = ĤD + ĤK. (A6)

4 http://www.zbox1.org
5 http://www.zbox2.org
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By using the Baker–Campbell–Hausdorff series, where we can cal-

culate the higher order terms by an elegant method developed by

Reinsch (2000), we can write the approximate operator ĤA under

which the system is evolved

z(�T ) = e
�T

2
ĤK e�T ĤD e

�T
2

ĤK z0 = e�T ĤA z0 (A7)

by

ĤA = Ĥ0 + �T 2 Ĥ2 + �T 4 Ĥ4 + O(�T 6) (A8)

where

Ĥ0 = ĤD + ĤK = Ĥ (A9)

Ĥ2 = 1

12
[[ĤK, ĤD], ĤD] − 1

24
[[ĤD, ĤK], ĤK] (A10)

Ĥ4 = 7

5760
[[[[ĤD, ĤK], ĤK], ĤK], ĤK]

7

1440
[[[[ĤD, ĤK], ĤD], ĤK], ĤK]

− 1

360
[[[ĤD, ĤK], ĤK], [ĤD, ĤK]]

− 1

180
[[[[ĤK, ĤD], ĤK], ĤD], ĤD]

− 1

360
[[[ĤK, ĤD], ĤD], [ĤK, ĤD]]

− 1

720
[[[[ĤK, ĤD], ĤD], ĤD], ĤD]. (A11)

Here, [,] denotes the commutator brackets defined by

[A, B] = AB − B A (A12)

for non-commutative operators A and B. By using the definitions of

the operators and the Jacobi identity for Poisson brackets, we can

calculate the approximate Hamiltonian

HA = H0 + �T 2 H2 + �T 4 H4 + O(�T 6) (A13)

where

H0 = HD + HK = H (A14)

H2 = 1

12
{{HK, HD} , HD} − 1

24
{{HD, HK} , HK} (A15)

H4 = 7

5760
{{{{HD, HK} , HK} , HK} , HK}

7

1440
{{{{HD, HK} , HD} , HK} , HK}

− 1

360
{{{HD, HK} , HK} , {HD, HK}}

− 1

180
{{{{HK, HD} , HK} , HD} , HD}

− 1

360
{{{HK, HD} , HD} , {HK, HD}}

− 1

720
{{{{HK, HD} , HD} , HD} , HD} . (A16)

Note that the replacement of the commutator brackets by the Pois-

son brackets is not trivial. The term H4 is not used in our method.

However, since H4 is not explicitly given in the recent literature we

present it here for completeness.
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