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Human inhalation exposure to iron oxide particles

Abstract: In the past decade, many studies have been 
conducted to determine the health effects induced by 
exposure to engineered nanomaterials (NMs). Specifi-
cally for exposure via inhalation, numerous in vitro and 
animal in vivo inhalation toxicity studies on several types 
of NMs have been published. However, these results are 
not easily extrapolated to judge the effects of inhaling 
NMs in humans, and few published studies on the human 
response to inhalation of NMs exist. Given the emergence 
of more industries utilizing iron oxide nanoparticles as 
well as more nanomedicine applications of superpara-
magnetic iron oxide nanoparticles (SPIONs), this review 
presents an overview of the inhalation studies that have 
been conducted in humans on iron oxides. Both occupa-
tional exposure studies on complex iron oxide dusts and 
fumes, as well as human clinical studies on aerosolized, 
micron-size iron oxide particles are discussed. Iron oxide 
particles have not been described to elicit acute inhalation 
response nor promote lung disease after chronic expo-
sure. The few human clinical studies comparing inhala-
tion of fine and ultrafine metal oxide particles report no 
acute changes in the health parameters measured. Taken 
together existing evidence suggests that controlled human 
exposure to iron oxide nanoparticles, such as SPIONs, 
could be conducted safely.
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Introduction
Nanotechnology is one of the few material technologies 
that researchers have proactively examined for human 
health effects in parallel with its development. However, 
given the complexity of many engineered nanomaterials 

(NMs), which are often multi-component structures 
versus pure materials, researchers have faced challenges 
in measuring toxicokinetic parameters and interpreting 
data to determine mechanisms of action. Although much 
knowledge on the toxicity of NMs has been gained in the 
past decade, the nanotoxicology research community 
remains hesitant to answer the public’s question: Are 
NMs toxic or not? As researchers continue to study this 
question, human exposures to NMs are occurring through 
consumer products and occupational exposure. Workers 
manufacturing and handling NMs will likely be the first 
subpopulation to exhibit any potential chronic effects due 
to often daily exposures at the workplace. Inhalation is of 
significant concern since inhaled particulates are known 
to induce various respiratory conditions. In addition, com-
pared to dermal and oral exposures, inhalation is more 
likely to result in a systemic effect [1–3]. Due to their small 
size, NMs can deposit in the lower, gas exchange region 
of the lungs. Therefore, exposure to high concentrations 
of airborne NMs could lead to physiologic effects. Particle 
deposition and biokinetics of NMs in the lungs have been 
reviewed in depth in recent articles [4, 5].

Although numerous in vitro and animal in vivo 
inhalation toxicity studies on several types of NMs have 
been published, these results are not easily extrapolated 
to judge the effects in humans. Currently, there are few 
published studies on the human response to inhalation 
of NMs. Many safety and ethical concerns restrict the 
possibility of conducting controlled exposure studies in 
humans. In addition, how should it be determined which 
NMs should advance to human testing? At the preclinical 
level, researchers are presented with a daunting number 
of NMs to test due to varying chemical composition, size, 
shape, surface characteristics, and dispersion. This only 
names a few of the major parameters that can be manipu-
lated, and the number will increase as our ability to control 
matter at the nanoscale continues to become more sophis-
ticated. To date, nanotoxicology research has focused on 
NMs with high production levels categorized by chemical 
composition. In addition, the Organization for Economic 
Cooperation and Development (OECD) identified fourteen 
priority NMs for evaluation [6]. These are carbon black, 
C60, single and multi-walled carbon nanotubes, Ag, Au, Fe, 
TiO2, Al2O3, CeO2, ZnO, SiO2, dendrimers, and nanoclays. 
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Of these, pharmaceutical formulations of Ag, Au, and Fe 
nanoparticles plus dendrimers have undergone human 
clinical trials for intravenous (IV) administration [7].

Only iron nanoparticles, specifically superpara-
magnetic iron oxide nanoparticles (SPIONs), have been 
approved by both the US Food and Drug Administration 
and the European Medicines Agency for IV medical use. 
To the authors’ knowledge, no controlled human inhala-
tion exposure study has been conducted using SPIONs. 
However, micron-sized bare and radiolabeled iron oxide 
particles have been used as routine tracer aerosols for 
magnetopneumography, lung function, and particle 
clearance measurements. In addition, occupational expo-
sure studies on complex iron oxide dusts and fumes pro-
duced during industrial processes have been conducted. 
The potential hazards associated with inhalation of par-
ticulates, including nanoparticles, have been discussed 
extensively in the literature, and the consequences of 
exposure include the onset of lung disease and systemic 
effects due to particle translocation [8–10]. This review 
presents an overview of the inhalation studies that have 
been conducted in humans on iron oxides particles, with 
some discussion of in vivo animal inhalation studies using 
iron nanoparticles, to guide future studies on human 
inhalation of iron oxide nanoparticles.

Occupational inhalation exposure 
to iron oxide particles
Reports on the human health effects due to inhalation 
of iron oxides date back to 1867 with Zenker suggesting 
a link between lung fibrosis and iron oxide exposure [11]. 
The X-ray shadows often observed in iron oxide exposed 
workers were suggested by Collis in 1923 not to be signs 
of fibrosis but visualization of retained iron oxide parti-
cles in the lungs [12]. More recently, a case study corrobo-
rates this retention theory by demonstrating a significant 
recovery of particles from the lungs as well as a reduction 
in computerized tomography (CT) contrast in the lungs of 
a welder after undergoing bronchial alveolar lavage [13]. 
These reports suggest that inhalation of iron oxide, despite 
particle retention in the lungs, results in little to no gross 
adverse health effects. However, an increased incidence 
of lung disease is associated with workers in occupations 
involving exposure to iron oxide dusts or fumes. The indus-
tries of most concern for human exposure to inhaled iron 
oxide particles include four distinct and historically rele-
vant groups: iron welders, iron foundry workers, iron and 
steel manufacturers, and iron ore miners. Epidemiologi-
cal evidence on exposed cohorts from these four groups 

indicates higher risk of lung fibrosis, siderosis, and silico-
sis. In addition, iron oxide exposure is suspected to lead 
to an increased risk of lung cancer for workers in these 
industries [14, 15]. However, these studies contain several 
methodological drawbacks, due in part to their retrospec-
tive nature, that do not directly correlate iron oxide expo-
sure with the observed health effects, perpetuating the 
uncertainty of a causal relationship.

In response, industrial hygienists included iron oxides 
when crafting the first list of Threshold Limit Values 
(TLV), the exposure level that is deemed acceptable over 
a working lifetime [16]. The limit has changed over time 
from the original 1949 TLV of 15 mg/m3 (total particulates) 
to 10 mg/m3 (total particulates) in 1964 to 5 mg/m3 (respir-
able fraction) in 2006 [17]. While the International Agency 
for Research on Cancer (IARC) classifies iron and steel 
founding exposures as Group 1 substances, which are 
considered carcinogenic to humans, hematite and ferric 
oxides are listed as Group 3 substances, which are consid-
ered not classifiable as a carcinogen to humans [18]. Few 
human epidemiological studies specifically investigate 
the risk of cancer in relation to iron oxide exposure. Occu-
pational cohort study results are difficult to interpret due 
to potential confounding with multiple exposures, namely 
to other potential and proven carcinogens such as PAHs, 
silica, and formaldehyde [19–21]. Additionally, failure to 
report on the use of personal protective equipment (PPE), 
namely respiratory protective devices, makes it impossible 
to accurately discern differences between workplace con-
centration of iron oxide and personal exposure, specifi-
cally, the inhaled dose. The following studies summarized 
in Table 1 on workers in steel factories show inconsistent 
results and have shared a similar concomitant exposure 
problem. Bourgkard et al. investigated a cohort of 16,742 
males and 959 females employed for at least 1 year in a 
French carbon steel-producing factory between 1959 and 
1997 [14]. Overall, no correlation was determined between 
iron oxide exposure and mortality from lung cancer rela-
tive risk adjusted with asbestos, silica, and polycyclic aro-
matic hydrocarbon (PAH) exposures (RR = 0.80; 95% CI, 
0.55–1.17). However, this retrospective study suffers from 
an incomplete exposure assessment for iron oxides. Char-
acterization of iron oxide exposure was mostly qualitative 
with the mineralogy and particle size not reported. The 
exposure assessment was primarily based on a job expo-
sure matrix and historical air monitoring measurements 
performed in the factory. Only total dust concentrations, 
30% of which were above 10 mg/m3, were collected from 
workplace air measurements. The authors noted that the 
percentage of iron in total dust ranged from 10% to 50%, 
and reported quartiles of total iron ranging from 0.18, 0.32 
and 0.85 mg/m3 for a 10% total iron content to 0.89, 1.61 and 
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4.24 mg/m3 for a 50% total iron content. However, these 
levels are estimated from sporadic measurements leaving 
uncertainty in the actual dust composition. Moulin et al. 
conducted a dynamic, cross-sectional, cohort study of 
4288 male and 609 female workers employed for at least 1 
year in a French steel factory between 1968 and 1991 [15]. 
Overall, the authors did not find any excess risk of lung 
cancer in relation to exposure to iron oxides (Odds Ratio 
adjusted for asbestos, PAHs, silica and smoking  < 0.50). 
However, the authors note that the job exposure matrix 
showed simultaneous exposures to some chemicals and 
dusts may have occurred, thus making it difficult to dis-
tinguish the individual effects of pure iron oxide to the 
risk of lung cancer mortality. Also, similar to the Bourg-
kard study, the exposure assessment of iron oxide fails to 
accurately assess true worker exposure. Due to the lack of 
exposure measurements, speciation of the metals at the 
workplace was not considered, indicating that iron oxide 
exposure estimates may have been inaccurate. In addition 
to inadequate exposure assessment, many studies such 
as the ones previously described have focused on occu-
pational tasks that result in iron oxide exposure and their 
relationship to carcinogenicity instead of directly linking 
health effects to iron oxide exposure [22, 23].

Iron welders utilize an industrial process that releases 
small, solid particles into the air creating a plume, known 
as welding fume. The contents of these fumes are complex 
and depend on the components of the base metal, coat-
ings, filler materials, and temperatures used in the 
welding process [24, 25]. Iron represents the predominant 
component of welding fumes, containing 80–95 wt% iron, 
and this relates to the fact that most welding fumes are 
generated from mild steel or carbon steel materials [26]. 
In regards to specific welding processes, iron and steel 
arc welding, including gas metal arc welding (GMAW) 
and shielded metal arc welding (SMAW), are known to 
produce iron containing fumes [25, 26]. A characterization 
of welding fumes conducted by Jenkins determined the 
presence of magnetite (Fe3O4) in the GMAW process and 
MnFe2O4 in the SMAW process [25]. A more recent welding 
fume characterization study assessed the components of 
arc welding fume and found three crystalline phases of 
iron: Fe0, FeO and Fe3O4 [27]. It is important to note that 
characterization of welding fumes has confirmed the pres-
ence of nanosized iron oxide particles, providing likely 
evidence for occupational exposure to inhaled particles 
of this size [25, 28]. Kalliomaki et al. studied three welder 
cohorts (2 years, 5 years, 13  years continuous exposure) 
who were exposed to welding fumes containing 25–70% 
iron oxide (90% Fe3O4) particles with mass median 
diameter of 0.5 µm and concentrations ranging from 2 to  
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400 mg/m3 [29]. The methods used to characterize the 
dust content and the use of personal protective equip-
ment (PPE) by the workers were not reported. From these 
workers, they report that a constant lung contamination 
was reached in  < 9 years with a balance between particle 
retention and clearance reached between 5 and 9 years of 
continuous exposure. The average amount retained for 
5–30 years exposure was determined to be approximately 
200  mg by converting measurements collected using a 
SQUID magnetometer. Therefore particle clearance was 
calculated to be approximately 23% of the deposited dose 
per year. Interestingly, more recent occupational studies 
of welders overlook iron oxide, focusing on other work-
place hazards such as asbestos, hexavalent chromium, 
and manganese [30]. The lung effects including carcino-
genicity of welding fumes have been reviewed in depth 
and current evidence points to co-exposure with known 
carcinogens (i.e., asbestos, Cr, Mg, Ni) as a possible expla-
nation for elevated cancer risk [26, 31].

It is evident that the lack of accurate exposure assess-
ment and the inability to differentiate complex, occupa-
tional exposure scenarios, which may or may not involve 
use of PPE, makes the relationship between pure iron oxide 
exposure and related health effects difficult to ascertain from 
epidemiological studies. While semi-quantitative exposure 
estimates (such as job exposure matrixes) are often used in 
occupational cohort studies when exposure measurements 
are not always documented, this lack of quantitative expo-
sure levels to iron oxide weakens any potential study con-
clusions [32]. Few occupational exposures involve pure iron 
oxide dusts or fumes. Teculescu and Albu reported the pul-
monary function of male workers exposed to pure iron oxide 
(Fe2O3) dust in a plant manufacturing rouge polish [11]. The 
exposure concentration in all parts of the plant were above 10 
mg/m3, with the lowest at 10–15 mg/m3 or 20–25 particles/cm3 
with 30% of particles in the submicron size range measured. 
The highest concentration reported was 500 and 700 mg/m3  
or more than 3000 particles/cm3. The methods used to 
characterize the dust content and the use of PPE by the 
workers were not reported. Less than half of the examined 
workers (38 out of 113) had opacities or shadows in their 
chest X-rays, and further examination of 14 workers with 
an average exposure duration of 10 years revealed no lung 
function changes to suggest lung fibrosis. A more recent 
review of occupational lung diseases corroborates their con-
clusion stating that siderosis, or iron oxide accumulation 
in lung macrophages, does not lead to fibrosis or impair-
ment in lung function and adds that the X-ray abnormalities 
observed are reversible [33].

It is important to note that occupational exposures 
to iron oxide particles are not limited to metal workers, 

miners, and iron oxide manufacturers. Iron oxides have 
become increasingly important as a pigment due to their 
pure hue, consistent properties, and tinting strength. 
Single-component forms are mainly produced with red 
(hematite, Fe2O3, 70% Fe), yellow (limonite/goethite, 
FeO(OH), 63% Fe), orange (lepidocrocite, γ-FeO(OH), 63% 
Fe) and black (magnetite, Fe3O4, 72% Fe) colors. Its use is 
highest in the construction and coatings industries, with 
uses also in ceramics, paint, ink, rubber, plastics, and cos-
metics [34]. There are many other applications including:  
(a) additives in fertilizers; (b) catalysts; (c) fluid tracers; 
(d) magnetic materials; (e) water purification adsorbers; 
and (f) biomedical imaging and therapeutic agents. There-
fore, a new group of workers potentially exposed to iron 
oxide particles include producers and users of nanoscale 
iron oxide for medical, scientific, or industrial purposes. 
However, the novel applications of iron oxide nanoparti-
cles have not yet given rise to epidemiological studies of 
these uniquely exposed occupational groups. The limited 
number of workers directly exposed to NMs in such occu-
pational settings further hinders such research [35].

A recent study from Curwin and Bertke presents expo-
sure data for various metal oxides (including iron oxide) 
in seven companies that produce or utilize nanoscale 
metal oxides [35]. Half and full shift sampling based 
on direct reading and mass based area and personal 
aerosol sampling was employed to measure metal oxide 
exposure. Overall, the authors found that medium-sized 
facilities had higher particle number and particle surface 
area concentrations in the air, followed by small facili-
ties for all particle sizes measured. Production processes 
had the highest particle number concentrations, par-
ticularly for the smaller particles when compared with 
handling processes. However, the authors note that the 
greatest potential for exposure to all workers in the study 
occurred during the handling process. The majority of the 
particles were agglomerated, with the predominant par-
ticle size being between 100 and 1000 nm (measured by 
TEM). The authors concluded that exposure levels were 
well below established and proposed limits in the US. 
Unfortunately because the predominant metal analyzed 
was titanium dioxide, other metal oxides, including iron 
oxide, are expressed as titanium equivalents for com-
parison purposes, thus not providing an actual mass for 
pure iron oxide particles. This study pointed out that the 
number of employees specifically involved in producing 
and handling the metal oxide nanoparticles in each facil-
ity was minimal, with usually only one or two employees 
involved, highlighting the difficulties of modern day epi-
demiological studies of workers exposed to iron oxide nan-
oparticles. Overall, it should be noted that characterizing 
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nanoparticle exposure in the workplace is challenging 
given the lack of standard methods for assessing exposure 
scenarios. Despite this fact, this study provided salient 
information on occupational exposures to metal oxide 
nanoparticles and highlighted the importance of accurate 
characterization methods in the workplace.

Controlled human volunteer  
inhalation studies
Epidemiological studies involve assessing the health 
effects from chronic exposure to aerosol mixtures. 
While more representative of real world scenarios, they 
are limited with regard to identification of (a) biomark-
ers of exposure, (b) dose-response relationships, and  
(c) individual substances responsible for measured 
effects. Therefore, controlled human volunteer studies, 
which comprise clinical studies, can fill this knowledge 
gap by contributing human exposure data where many 
exposure para meters are defined. Surprisingly to the 
authors’ knowledge, there are no standardized methods 
of conducting controlled human inhalation exposures. 
While there are discussions in the literature about the 
benefit of controlled human inhalation studies, no stand-
ard such as those published by OECD (403, 412, 413) and 
the International Organization for Standardization (ISO) 
(10801, 10808) for conducting controlled animal inhala-
tion studies exist for human clinical studies [36, 37].

Since the 1950s, iron oxide (Fe2O3 or Fe3O4) particles 
have been studied in human volunteer inhalation experi-
ments. The iron oxide particles served as a tracer aerosol 
utilizing either the particles’ inherent magnetic proper-
ties or radiolabeling (59Fe, 198Au, 111In, or 99mTc) for detec-
tion and measurement. The primary aim of these earlier 
studies was to understand human lung physiology as 
well as particle deposition, clearance rate, and clear-
ance mechanism(s) in the lungs of healthy volunteers and 
patients with lung disease. The human experimental data 
generated from these studies was used to develop a model 
of the human respiratory tract which is discussed exten-
sively in the International Commission on Radiological 
Protection (ICRP) Publication 66 [38]. For the purposes of 
this review, these experiments were examined for toxico-
logical endpoints. Overall, none of the reviewed studies 
reported acute toxicity or adverse effects due to inhalation 
of iron oxide aerosols. The reviewed studies spanned over 
30  years and included over 475 volunteers. All of these 
studies employed micron-sized iron oxide particles with 
physical diameters ranging from 1 to 6 µm and about half 

used Fe2O3 and half Fe3O4. Exposure durations ranged 
from  < 1 min to 30 min with multiple exposures conducted 
in some cases. A summary of the human inhalation 
studies reviewed is presented in Table 2.

Besides inherent toxicity, a substance can also elicit 
adverse effects if it is persistent or bioaccumulative. The 
epidemiological studies presented in the previous section 
suggest iron oxides exhibit both of these qualities since 
X-ray shadows resulting from iron oxide retained in the 
lungs were reported for exposed workers. Interestingly, 
the ICRP clearance model for particles is based in large 
part on measurements of iron oxide particle clearance in 
human volunteers [38]. Two phases of clearance, a fast 
phase on the order of days representing mucociliary clear-
ance in the tracheobronchial region and a slow phase on 
the order of years representing macrophage clearance in 
the alveolar region were defined. Studying 59Fe labeled 
iron oxide dust, Albert and Arnett found that particle 
clearance rate was dependent on size [39]. When the same 
dose of 100 μCi was inhaled, clearance of ~47% was meas-
ured after 2.4 h for particles with diameters of 1.4–2.3 µm 
while ~87% of larger particles with diameters of 3.5–4.3 µm 
cleared after 2 h. Note that in this study and for about half 
of all studies reviewed, the methods used to characterize 
the aerosol content were not reported. This size depend-
ent clearance was further investigated by Stahlhofen et al. 
using particles with aerodynamic equivalent diameters of 
1, 2, 3, and 6 µm [40]. Their results, which gave the frac-
tion of particles quickly cleared as ~75% for 6 µm parti-
cles compared to ~40% for 1–2 µm particles, corroborate 
the observations of Albert and Arnett. A later study by 
Stahlhofen et al. examined Fe3O4 particles with an average 
aerodynamic equivalent diameter of 1.3 µm and reported a 
slow phase clearance half-life of ~110 days [41]. More than 
1 year post exposure, particle retention in the lungs was 
also detected, approximately 15% of the initial measured 
signal, without any associated health effects reported.

Not only has iron oxide been administered by aerosol 
inhalation, healthy human volunteers have also under-
gone intrapulmonary instillation, which involves instill-
ing a solution of particles directly into the lungs. Lay 
et  al. investigated clearance of instilled Fe2O3 particles 
with average physical diameter of 2.5 µm by conduct-
ing bronchioalveolar lavage (BAL) to harvest alveolar 
macrophages and to determine the number of particles 
recovered [42, 43]. Clearance after instillation was also 
found to be similar to inhalation, with a measured fast 
phase clearance half-life of 0.5 days and a calculated slow 
phase clearance half-life of 110.1 days. Uneven distribu-
tion of particles in alveolar macrophages, some contain-
ing 0–1 particle and some loaded with  > 70 particles, was 
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suggested to indicate intracellular overload and release of 
particles which are rephagocytized by other macrophages. 
It is important to note that instillation is known to result in 
different lung deposition of particles compared to inhala-
tion [44]. At the instilled concentration (3 × 108 particles or 
3.2 particles per alveolar macrophage), an acute inflamma-
tory response was observed one day post-instillation with 
reactive oxygen species generation leading to measurable 
lipid peroxidation and cell injury [42]. In a follow-up inha-
lation study with healthy volunteers exposed to ~12 mg/m3 
of Fe2O3 particles with aerodynamic diameter of 1.5 µm, no 
signs of inflammation or altered pulmonary function were 
detecting using non-invasive techniques [45]. In addi-
tion, using another tracer aerosol, technetium labeled 
diethylene triamine pentaacetic acid (99mTc-DTPA), clear-
ance half-lives were similar for air and iron oxide exposed 
volunteers, approximately 50–200  min post-inhalation. 
These results suggest that short-term iron oxide particle 
inhalation does not alter normal lung function.

No adverse effects were reported in studies using iron 
oxide particles to measure particle deposition and clear-
ance differences between non-smokers and smokers as 
well as patients with lung disease. Both radiolabeled Fe2O3 

and Fe3O4 particles as well as magnetite (Fe3O4) particles 
served as the tracer aerosol. Deposition patterns for 198Au 
labeled Fe2O3 particles with an average physical diam-
eter of 2 µm were found to be similar between smokers 
and non-smokers by Lourenco et al.; however, clearance 
was significantly slower in the first hour after exposure 
in smokers [46]. This was not the case for asymptomatic 
smokers as Bennett et al. reported their mucociliary clear-
ance of 99mTc labeled Fe2O3 as comparable to healthy vol-
unteers over time [47]. Although fast phase clearance was 
slower in smokers vs. non-smokers, Cohen et  al. found 
the impairment of clearance was even more pronounced 
around 1 year post-exposure with smokers retaining ~50% 
of the administered particles while non-smokers retaining 
~10% [48]. In the Cohen study and predominantly in more 
recent studies, retained particles were measured by mag-
netopneumography which uses the inherent magnetic 
property of Fe3O4 for detection, making it better suited for 
monitoring over longer time periods compared to radio-
active methods. Magnetometry, which includes magneto-
pneumography, and human studies using this method 
were recently reviewed by Aizawa and Kudo [49]. Mag-
netic relaxation was found to be delayed following differ-
ent types of chemical exposures.

In addition to smokers, the lung function of cystic 
fibrosis (CF), chronic obstructive pulmonary disease 
(COPD), emphysema, bronchial hyper-responsiveness 
(BHR), sarcoidosis (SAR), idiopathic pulmonary fibrosis 



14      Lewinski et al.: Human inhalation exposure to iron oxide particles

(IPF), chronic obstructive bronchitis (COB), and primary 
cilia dyskinesia (PCD) patients were also studied with 
iron oxide particles [50–56]. The primary objective of the 
studies by Brown, Meyer and Scheuch was to determine 
the influence of controlled breathing on particle deposi-
tion in order to optimize the delivery of therapeutic aero-
sols in lung disease patients. In comparison, the studies 
by Moller et  al. focused on alveolar clearance kinetics 
and differences in slow phase clearance between healthy 
and diseased patients. Interestingly, iron oxides were still 
chosen as the tracer aerosol in these more recent studies 
despite evidence of long-term particle retention. We 
suspect that the risks associated with lung retention of 
iron oxide particles do not outweigh their utility in lung 
function studies.

All of the before mentioned studies on iron oxide par-
ticles were conducted using particles with average diame-
ters in the micron size range. The authors are not aware of 
any published human inhalation studies using iron oxide 
nanoparticles. However, several controlled human inha-
lation studies have exposed volunteers to other ultrafine 
particles [57–66]. In addition, many human inhalation 
studies have been conducted using Technegas or 99mTc 
labeled ultrafine carbon particles; however, this literature 
is beyond the scope of this review. There are two published 
human inhalation studies comparing the effects of nano-
sized and submicron sized metal oxide particles. Kusch-
ner et al. conducted a study comparing the physiological 
response to inhaling ultrafine and fine magnesium oxide 
particles in healthy and former smoker, male and female 
volunteers [61]. Six volunteers were exposed for 15–45 min 
to MgO generated by a furnace system at a median con-
centration of 133 mg/m3, which consisted primarily of par-
ticles  < 1.8 µm in aerodynamic diameter, determined by 
micro-orifice uniform deposit impactor analysis. No sig-
nificant differences in pulmonary function, hematology 
and bronchoscopy/bronchoalveolar lavage were meas-
ured after 18–20 h post-exposure.

Beckett et al. conducted a study comparing the physi-
ological response to inhaling ultrafine and fine zinc oxide 
particles in healthy male and female volunteers [59]. Twelve 
volunteers were exposed for 2 h to ZnO generated by an 
electric arc discharge system brought to a concentration of 
500 µg/m3, which consisted of either 4.6 × 107 particles for 
the ultrafine (~40 nm in aerodynamic diameter) particles 
or 1.9 × 105 particles for the fine (~300 nm in aerodynamic 
diameter) particles. Particle concentration and size were 
determined by a condensation particle counter and an 
electrostatic classifier respectively. Several effects of metal 
fume fever were monitored, but no significant changes in 
these parameters were measured. The concentration was 

ultimately deemed below the level where acute systemic 
effects occur. In earlier papers, the same research group 
and another reported observing symptoms of metal fume 
fever in healthy volunteers exposed to 4.5, 5 and 33 mg/m3  
ZnO dust, which are concentrations above the 2 mg/m3 
TLV for ZnO [67–71]. In these studies, the ZnO particles 
had average diameters of 300 nm (Fine and Gordon) and 
170 nm (Kuschner), the latter having primary particle sizes 
of 8–40 nm. These studies suggest that controlled human 
exposure to some metal oxide nanoparticles can be con-
ducted safely and that current threshold limit values can 
serve as reference concentrations for study design.

Animal inhalation studies on iron 
oxide nanoparticles
Although to date no human inhalation clinical studies 
have been conducted using iron oxide nanoparticles, 
there are beagle dog and several rodent inhalation studies 
reported in the literature. Of over 30 papers reviewed, 43% 
of the studies report exposure via instillation while 57% 
of the studies report generating an aerosol for exposure 
via inhalation. Focusing on the inhalation studies, iron 
oxide particle concentrations ranged from 2 × 103–2 × 109 
 particles/cm3 or 0.04–640 mg/m3. Most of the authors 
(90%) reported concentration in terms of mass, and for 
reference, particle concentrations were calculated based 
on the reference density of 3 g/cm3 in Table 3. Particle sizes 
ranged from the nanoscale (0.01 µm) to comparable parti-
cle sizes found in the previously discussed human studies 
(1.5 µm). No acute toxicity was reported in the studies 
that tested micron sized particles [72–74]. While oxida-
tive stress and inflammation were reported in some nano-
particle inhalation studies, these experiments involved 
multiple exposures or very high (orders of magnitude 
above the current TLV) exposure concentrations [75–77]. 
Beyond acute toxicity, a comprehensive carcinogenicity 
evaluation of several types of iron oxides was conducted 
in rats by Steinhoff et al. [78]. The shortest dimension of 
the seven iron oxide particles tested ranged from 0.03 to 
1 µm. An instilled dose of 1530 mg/kg resulted in tumor 
induction in 1–2% of exposed rats; however, the tumors 
were attributed to non-specific stress effects rather than 
specific carcinogenic effects of the other iron oxide formu-
lations. Therefore based on these findings, iron oxides are 
not considered to be carcinogenic.

Although a few studies reported oxidative stress and 
inflammation responses to iron oxide nanoparticle inha-
lation, the effects occurred without associated acute 
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toxicity, morbidity, or mortality. Pettibone et al. exposed 
mice 4 h per day for 2 weeks to γ-Fe2O3 nanoparticle con-
centrations as high as 7.6 mg/m3 and found increased cell 
counts in BAL fluid, which returned to baseline 3 weeks 
post exposure, with no acute toxicity or signs of pathology 
[75]. In a study by Zhou et  al., rats exposed 6  h per day 
for 3 days to 90 µg/m3 of γ-Fe2O3 nanoparticles presented 
with mild respiratory effects measured by BAL (i.e., induc-
tion of ferritin, increased lavage protein, elevated oxida-
tive stress and inflammatory markers) but no significant 
cytotoxicity [77]. Also testing rats, Srinivas et al. reported 
elevated oxidative stress and inflammation markers after 
a single 4  h exposure to 640 mg/m3 Fe3O4 nanoparticles 
but no morbidity, mortality or changes in blood bio-
chemistry, despite using a concentration that is over 100 
times higher than the current TLV for iron oxides [76]. 
The observed oxidative stress and inflammation could 
be due to free iron released from the particles. Although 
iron oxides are relatively insoluble in aqueous conditions, 
Beck-Speier et al. reported that Fe2O3 particles can dissolve 
in the acidic lysosomal environment after phagocytosis by 
alveolar macrophages [27]. However, they also report that 
the intracellular free iron may suppress particle induced 
inflammation since the level of inflammatory marker IL-6 
was not significantly elevated.

In addition to particle dissolution, impurity of the 
stock solution can also contribute free iron. Lay et  al. 
measured an acute inflammatory response in human vol-
unteers instilled with Fe2O3 particles synthesized in their 
laboratory [42]. Additional testing in rats led the authors 
to attribute the observed inflammatory response to free 
iron present in the laboratory made particles compared to 
commercially available Fe2O3 particles from Alfa Chemi-
cals or Sigma Chemicals. One should note that in both 
human and animal inhalation studies an analysis of the 
purity of the iron oxide particles is rarely reported. This 
becomes more important when testing complex NMs since 
multiple synthesis steps increase the number of possi-
ble impurities. Only four animal studies were found that 
tested the inhalation of surface modified iron oxide nano-
particles [79–82]. The coatings included dextran, oleic 
acid, and fluorescent-labeled silica. No acute toxicity or 
pulmonary effects were reported for mice exposed to aero-
sols containing these surface modified iron oxide nano-
particles for durations ranging from 5 min to 4 weeks. For 
the fluorescent-labeled iron oxide nanoparticles which 
were inhaled 4 h per day, 5 days per week for 4 weeks, sys-
temic effects were reported with particles found not only 
in the lungs but also in the liver, spleen, brain and testes 
[79]. In addition, decreased body weight, increased white 
blood cell counts and extramedullary hematopoiesis were 

observed [80]. As the latter two conditions suggest an 
immune response, this also raises questions on the purity 
of the test particles. Since many regulatory authorities 
require that materials tested in controlled human inhala-
tion studies be produced under good manufacturing prac-
tice (GMP) conditions, NMs that advance to human testing 
will be quality controlled, with impurities identified and 
within acceptable levels.

Respiratory medicine applications 
of SPIONs
While no inhalation clinical studies have been conducted 
using iron oxide nanoparticles, SPIONs have undergone 
extensive preclinical and clinical studies, which has 
resulted in their regulatory approval for medical IV and 
oral administration [83–86]. These include SPION formu-
lations in two size ranges (USPIO:  < 50 nm and SPIO:  > 50 
nm) and with several surface modifications (aminosilane, 
citrate, dextran, polyethylene glycol-starch, polyglucose 
sorbitol carboxymethyl ether, siloxane, and sulphonated 
styrene–divinylbenzene copolymer) [87]. The indications 
include magnetic resonance imaging contrast agent for 
liver and gastrointestinal cancers (dextran and silicone 
coated SPIONs), and treatment of iron deficiency anemia 
(modified dextran coated SPIONs).

However, SPIONs have yet to be administered by inha-
lation in humans. One of the most promising applications 
of SPION aerosols is targeted imaging and treatment of 
lung disease. Dames et al. showed theoretically by com-
puter-aided simulation, and for the first time experimen-
tally in mice, that targeted delivery of SPIONs in the lungs 
can be achieved with a directed magnetic gradient field 
[88]. A SPION aerosol was generated using an ultrasonic 
nebulizer, which outputs droplets of 2.5–4 µm in diam-
eter. The SPIONs were delivered to mice via intratracheal 
intubation and an eight-fold increase in SPION lung depo-
sition was found in the presence of a magnetic field, meas-
ured by magnetorelaxometry and qualitatively confirmed 
by histology. More recently, this group demonstrated 
experimentally in mice that an increase in SPION deposi-
tion can be achieved using more realistic exposure routes 
of nose-only and whole body inhalation [89]. The aerosol 
was generated using both ultrasonic and jet nebulizers, 
which output micron sized droplets. A two-fold increase in 
SPION deposition in the presence of a magnet was meas-
ured by magnetorelaxometry and pDNA quantification.

Although Dames et al. determined dry powder formu-
lations of SPIONs will not undergo magnetic direction, 
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Upadhyay et  al. formulated drug and SPION containing 
lipid microparticles for dry powder inhaler based lung 
delivery [90]. Cascade impactor measurements showed 
that 30% of the inhaler-generated aerosol consisted of 
particles with a diameter  < 2.5 µm, which would deposit 
deeper into the lungs. Magnetic mobility testing resulted 
in 100% recovery at a magnet distance of 5 mm and ~5% 
recovery at a magnet distance of 2 cm. Since a 0.2 T magnet 
was employed, higher recovery at longer distances may be 
achieved with a stronger magnet. For reference, a 1.3 T 
magnet was used in sheep for SPION mediated drug deliv-
ery for treating inflammatory joint disease [91]. However, 
a major issue with magnetic direction is that the strength 
of the magnetic field decreases with distance to the fourth 
power compared to optical methods where light radiation 
decreases with the distance squared. Therefore, despite 
encouraging results in rodents, clinical use of SPIONs in 
human respiratory medicine is still in the horizon. Since 
no human clinical trials testing inhalation of SPIONs have 
been conducted, the determinants of pulmonary deposi-
tion and kinetics of SPIONs after inhalation can only be 
extrapolated from in vitro and animal in vivo studies.

Discussion
Both human epidemiological and clinical studies contrib-
ute to our understanding of the physiological effects of 
inhaling particles, and neither type of study alone gives 
a clear picture on the relationship between exposure and 
health effects. While occupational cohort studies provide 
data on real workplace conditions, they are often limited 
due to incomplete exposure assessment, exposures to 
complex mixtures, and potential confounding from mul-
tiple exposures. In clinical studies, investigators have 
control over the exposure conditions; however, these 
studies are limited to assessing short-term effects. When 
examined together, the two study types provide comple-
mentary information that present a better understanding 
of the health effects from exposure.

With their extensive use in industry as well as a multi-
tude of emerging applications, this review has focused on 
iron oxide particles since iron oxide nanoparticles, such 
as SPIONs, are a strong candidate for controlled human 
inhalation studies. No adverse effects were reported in 
all of the reviewed clinical studies using iron oxide tracer 
aerosols. Although most were designed to determine dep-
osition and clearance of particles in the lungs versus toxi-
cological endpoints, the few that did assess biomarkers 
of exposure did not report acute effects from inhalation 

[42,  43, 45]. Acute effects are also not associated with 
workplace exposure to dusts and fumes primarily com-
posed of iron oxide. While increased risk of developing 
lung disease has been correlated with iron oxide expo-
sure, co-exposure to other known carcinogens present 
in the dusts and fumes as well as smoking confound the 
relationship. Those that examined workers exposed to, at 
times, very high concentrations of pure Fe2O3 dust did not 
indicate acute toxicity but rather asymptomatic particle 
retention in the lungs [11].

Taking into account the findings from human inhala-
tion studies on micron sized iron oxide particles and other 
ultrafine particles as well as animal inhalation studies 
on iron oxide nanoparticles, do we have enough data to 
extrapolate the consequences of iron oxide nanoparticle 
inhalation in humans? While past studies allow research-
ers to formulate more precise hypotheses, these new 
hypotheses still need to be confirmed experimentally. For 
example, based on animal studies demonstrating persis-
tent inflammation after TiO2 nanoparticle exposure, many 
countries have adopted lower occupational exposure 
limits (OEL) for ultrafine TiO2 compared to fine TiO2 parti-
cles. However, a recent study on a TiO2 nanoparticle pro-
duction plant reported exposure concentrations up to 30 
mg/m3, which is significantly higher than European Union 
OELs for inert dust [92, 93]. Elevated oxidative stress bio-
markers were measured in exposed workers, although it 
is unclear whether this was due to the high exposure con-
centration or specifically nanoparticle inhalation. Despite 
40 years between the 1970s health effects study on Fe2O3 

pigment factory workers and the 2010s study on TiO2 nan-
oparticle production plant workers, assessments of work-
place air still reveal instances where conditions are above 
established OELs and unfortunately PPE use continues to 
be unreported [11, 93]. This example illustrates that weight 
of evidence analysis for respiratory effects may not always 
be strong enough to support regulatory enforcement.

While human clinical studies should be maintained 
at a minimum, they will remain a requisite in some 
risk assessments until accepted and validated model 
systems for human inhalation and resulting effects 
exist. Direct correlation studies comparing human 
in vivo and human in vitro measurements could pave 
the way for developing modern in vitro techniques to 
potentially replace acute inhalation testing. However, 
approval of these human studies faces similar chal-
lenges. In order to gain the most knowledge from con-
trolled human inhalation experiments, consistency in 
reporting the physiochemical characterization of NMs 
along with the exposure parameters is essential. Inad-
vertently, the type of study heavily influences which 
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parameters are measured and reported, resulting in 
some publications missing the aerosol particle concen-
tration. The lack of a standard method of conducting 
controlled human inhalation exposures further sup-
ports the need for consistently detailed documentation 
of the experimental conditions.

Nanotechnology is raising new questions and pro-
voking additional oversight in regards to human health 
research. Although controlled human exposure studies 
play an important role alongside epidemiological, animal 
in vivo, and in vitro studies when investigating human 
health effects, the criteria to justify human testing of NMs 
remains unclear. The rapid pace of development, matched 
with various uncertainties produce additional hurdles to 
overcome. It is essential to recognize that nanotoxicology 

researchers are testing a wide range of NMs, from simple 
and passive NMs to complex and active/interactive NMs. 
Many of these more sophisticated nanostructures are not 
ready and may never reach the stage of human testing. 
Nevertheless, the wide scope of nanotechnology should 
not block the onset of testing some NMs in controlled 
human inhalation studies.
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