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ABSTRACT

Motivation: Cancer cell genomes acquire several genetic alterations

during somatic evolution from a normal cell type. The relative order in

which these mutations accumulate and contribute to cell fitness is

affected by epistatic interactions. Inferring their evolutionary history

is challenging because of the large number of mutations acquired by

cancer cells as well as the presence of unknown epistatic interactions.

Results: We developed Bayesian Mutation Landscape (BML), a prob-

abilistic approach for reconstructing ancestral genotypes from tumor

samples for much larger sets of genes than previously feasible. BML

infers the likely sequence of mutation accumulation for any set of

genes that is recurrently mutated in tumor samples. When applied to

tumor samples from colorectal, glioblastoma, lung and ovarian cancer

patients, BML identifies the diverse evolutionary scenarios involved in

tumor initiation and progression in greater detail, but broadly in agree-

ment with prior results.

Availability and implementation: Source code and all datasets are

freely available at bml.molgen.mpg.de

Contact: misra@molgen.mpg.de
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1 INTRODUCTION

Tumor samples from cancer patients show a large variety of
genetic abnormalities that have accumulated during somatic evo-
lution from a normal cell state (Hanahan and Weinberg, 2011).

Somatic mutations are continuously acquired in individual cells,
but depending on, among other things, the fitness of the resultant
genotype, only a small fraction may reach fixation within a cell

population (Stratton et al., 2009). Fitness change induced by a
mutation can in turn depend on the genetic background, a phe-
nomenon known as epistasis (Fisher, 1918). Epistasis has been

known to play an important role in molecular evolution (Breen
et al., 2012; Kimura, 1985; Smith, 1970) and can constrain the
sequence of mutation accumulation (Gong et al., 2013;

Weinreich et al., 2005). The fitness function or landscape over
the space of all genotypes depends both on the magnitude and
sign of the epistatic interactions. Therefore, genotypes observed

in tumor samples are likely the result of a diverse set of muta-
tional paths evolving across a complex fitness landscape.

Patterns of somatic mutations observed in tumor samples

contain information, both about the evolutionary paths of

cancer progression and the epistatic gene interactions that influ-

ence them. However, extracting this evolutionary information is

challenging because the fitness landscapes are unknown, and

analyzing large datasets with hundreds of recurrently mutated

genes is computationally demanding. Owing to these difficulties,

existing computational methods for cancer progression either

constrain the set of possible evolutionary scenarios (Bozic

et al., 2010; Desper et al., 1999) or are feasible for relatively

small sets of genes (Attolini et al., 2010; Gerstung et al., 2009;

Hjelm et al., 2006).

2 APPROACH

Here, we report evolutionary progression paths (EPPs) for tumor

samples from colorectal, glioblastoma, lung and ovarian cancer

patients. The EPPs are estimated using a computational tech-

nique for reconstructing ancestral genotypes from observed

tumor genotypes, called Bayesian Mutation Landscape (BML)

(Fig. 1). The main novelty of BML is that it takes into account

unobserved ancestral genotypes and unknown epistatic gene

interactions, before inferring a probabilistic model for the accu-

mulation of somatic mutations in a population of cancer cells.

These unobserved precancer states present a systematic bias to all

methods that attempt to compute EPPs directly from tumor

samples. The nature and magnitude of epistatic interactions

also influence EPPs and can distinguish between evolutionary

scenarios with a clear sequence of genetic events from those

with multiple parallel EPPs (Fig. 1a–c). Furthermore, unlike

existing computational methods (Attolini et al., 2010; Gerstung

et al., 2009; Hjelm et al., 2006), BML incorporates several algo-

rithmic improvements that allow, for the first time, to compute

EPPs for some of the largest publicly available cancer datasets in

their entirety.

BML is based on a probabilistic model where every evolution-

ary path (with irreversible mutations) from the normal genotype

to any tumor genotype has a non-zero probability. BML first

estimates the probability P(g) that a particular combination of

mutations (denoted by genotype g) reaches fixation in a cell

population that has evolved from a normal cell genotype and

will eventually attain a tumor cell genotype (Fig. 1d). We will

refer to it as the evolutionary probability of genotype g. P(g)

equals the sum of path probabilities for every mutation path

from the normal genotype that passes through g and ends as a

tumor genotype. To get a better intuition as to what P represents,

consider the following hypothetical scenario: assume we had a*To whom correspondence should be addressed.
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database of tumor samples from large number of N cancer

patients. In addition, assume we had perfect knowledge of the

evolutionary paths followed by each tumor sample as it evolved

from a normal cell state. If n(g) was the number of samples in our

database that had g as an ancestral or current cell state, then

PðgÞ � nðgÞ=N. Because all tumor genotypes are assumed to have

evolved from an initial normal state, Pðg0Þ=1 for the non-

mutated normal genotype g0. Crucially, P(g) is not simply the

fitness of genotype g but depends on the fitness landscape over

all ancestral cell states traversed during somatic evolution, as well

as the details of evolutionary dynamics of cell populations. BML

assumes that the mutation accumulation process is irreversible

and sequential, proceeding one mutation at a time. Note that this

assumption may not be valid for large-scale karyotypic and copy

number changes that are frequently observed in tumor samples.

We therefore restrict this approach to point mutations and small

indels. We also ignore the effect of mutations already present in

the germ line.

(a) (b) (c)

(d)

(e)

(f)

Fig. 1. An overview of the BML model. Each circle represents a genotype that specifies the presence or absence of non-silent somatic mutation(s) in

either copy of each gene. Blue star represents the normal non-mutated genotype, blue circles represent genotypes that may contain somatic mutations,

but have not yet attained the phenotype of uncontrolled growth, and red circles represent cancer genotypes. Note that there may be additional

unobserved tumor genotypes (empty red circles). a, b and c show the fitness profile and the distribution of observed samples (red circles) for three

evolutionary scenarios. In a, mutations in genes A and B independently give rise to a genotype that is a fitter relative to the normal genotype. In contrast,

b shows a scenario where there is positive fitness epistasis between genes A and B. However, there is no clear sequence of mutational events in A and B. c

depicts a scenario where there is positive fitness epistasis between A and B, but the path through B encounters a fitness valley. This scenario is known as

sign epistasis because the sign of fitness difference between B mutated and non-mutated states depends on the mutation state of A. In this case, an

unambiguous sequence of mutations in A and B can be inferred (Supplementary Note S1). d, Evolutionary probability P(g) for any ancestral genotype g

contains information from all paths composed of sequential, irreversible mutations, from normal genotype to any tumor genotype that pass through g.

Each possible path has a non-zero probability, and P(g) equals the sum of all such path probabilities. e, Schematic for the algorithm. We use both

observed tumor samples (filled red circles) and imputed evolutionary paths to infer the probabilities P(g) of genotype g. P(g) is represented by a Bayesian

network, that is optimized for the best choice of imputed paths. Once a Bayesian network is selected, a recursive algorithm is used to infer the likely EPP.

f, Efficiency of the pruning scheme and the BML algorithm for glioblastoma, lung and ovarian cancer datasets. Cutoff shows the minimum number of

samples in which each retained gene was mutated to be considered recurrent (Section 3). Note that the search space is exponential in the number of

unpruned edges in the worst case. Run time results are4100 random restarts of the algorithm on 2.4GHz Intel Core i5 processor and 4 GB memory
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BML estimates the evolutionary probabilities using a graph-

ical model known as a Bayesian network. Bayesian networks
describe a large class of probability distributions that can be

represented as directed acyclic graphs (DAGs). They have previ-

ously been applied to gene expression analysis (Friedman, 2000),

as well as copy number variations in cancer (Bulashevska et al.,

2004). Figure 1e provides a schematic for the algorithm. Inferring

the distribution P over all genotypes is complicated because of a

systematic bias, as the highest probability precancer genotypes

(Fig. 1e, blue circles) are not present in the input, which consists

of samples from diagnosed cancer patients (red circles). BML

estimates P for these ancestral genotypes by imputing likely evo-

lutionary paths (in the form of a bifurcating tree). The collection

of paths connecting a set of vertices (observed tumor genotypes)

to a common vertex (the normal genotype) can always be repre-

sented by a tree. The internal nodes of the tree represent ancestral

genotypes and are treated as unobserved samples. These ances-

tral genotypes, along with the observed samples are then used to

estimate a Bayesian network. Because we do not know the true

paths followed by observed samples, we perform an additional

optimization step, where we perturb the paths using a class of

tree rearrangements known as nearest neighbor interchange

(NNI) (Felsenstein, 2004) and repeat the process until the algo-

rithm encounters a local optimum in tree space. The Bayesian

network estimates P up to an overall normalizing factor, that is

later set by requiring that the evolutionary probability for the

non-mutated normal genotype is one. The inferred Bayesian net-

work representation of P(g) is then used to reconstruct the most

likely EPP using a recursive algorithm (see Section 3).
Another advantage of using Bayesian networks is their ability

of separating direct from indirect epistatic interactions, with net-

work edges denoting direct epistatic interactions. Because nega-

tive epistatic interactions are difficult to separate from the

scenario in Figure 1a (Supplementary Note S1), we restricted

BML to model co-occurrence of mutations that provide a reli-

able signature of positive epistasis (Fig. 1b and c and

Supplementary Note S1). Together with the algorithmic im-

provements introduced to BML modeling, based on pruning

large regions of the search space (see Section 3 and

Supplementary Note S2), this approximation of P allows for

extremely efficient computations (Fig. 1f). As a result, BML

can be used to perform comprehensive bootstrap analysis for

tumor datasets with many more recurrently mutated genes

than previously feasible.

3 METHODS

In this section, we discuss algorithms for learning the structure and par-

ameters of the Bayesian network and for reconstructing the EPPs from

observed tumor samples.

3.1 Datasets

We performed BML analysis for colorectal (Bamford et al., 2004;

Sj€oblom et al., 2006), glioblastoma (Parsons et al., 2008; TCGA consor-

tium, 2008), lung (Ding et al., 2008) and ovarian cancer samples (TCGA

consortium, 2011). The colorectal cancer dataset was obtained from the

supplement to the paper by Attolini et al. (2010). Glioblastoma, lung and

ovarian cancer datasets were all downloaded from publicly available

databases maintained by The Cancer Genome Atlas (TCGA) and the

International Cancer Genome Consortium (ICGC) (Supplementary

Table S1). Each dataset was preprocessed to retain non-silent mutations,

identify recurrently mutated genes and coarse grain the data such that

each gene can take two states, mutated and non-mutated. For glioblast-

oma, we combined the data from two sequencing studies (Parsons et al.,

2008; TCGA consortium, 2008). We also removed one tumor sample in

glioblastoma that was identified as hyper mutated in the original sequen-

cing study (Parsons et al., 2008). We filtered genes that were mutated too

infrequently by imposing a cutoff on the number of samples with muta-

tions in a gene. For each dataset, this cutoff was chosen as the smallest

number (greater than three) such that the number of retained genes was

less than the number of available samples. The final input to our method

is a matrix of genes versus tumor samples with 0/1 entries indicating the

absence/presence of a non-silent somatic mutation in a gene for each

tumor sample (Fig. 1f). We should point out that the set of genes used

as an input to our method could also be restricted according to appro-

priate criterion (e.g. mRNA expression). This can be achieved via algo-

rithms for restricting input gene sets such as the MutSigCV algorithm

(Lawrence et al., 2013) or the somatic functional events in Ciriello et al.

(2013). In the absence of such functional information, the events in the

inferred paths must not be assigned functional importance and must be

interpreted as the set of events that frequently occur during the process of

cancer progression.

3.2 The BML model

BML models the evolutionary probabilities over the genotype space as

a probability distribution that is represented by a Bayesian network, up

to an overall normalizing factor. The normalizing factor is then ob-

tained by imposing the constraint that Pðg0Þ=1 for the normal genotype

g0 and appropriately scaling the Bayesian network probabilities. The net-

work is defined on a set C of binary random variables that represent

mutations of the genes, whereas edges represent direct epistatic inter-

actions. Formally, a Bayesian network BðG;�Þ is specified by G,

a DAG whose vertices are the genes in C, and a set of param-

eters �=f�CjC 2 Cg, representing conditional probabilities �Cðcj�Þ � Pr

ðC=cj�C=�Þ for each gene C given the state of its parents �C in G

(Koller and Friedman, 2009). Let D denote a m� n data matrix with

binary entries. The columns of D represent the set of genes

C=fC1; . . .Cmg, and rows represent the set of samples S=fS1; . . .Sng,

such that Dij=1 if gene Ci is mutated in sample Sj (with respect to a

reference state designated as normal) and 0 otherwise. The data matrix

can be used to compute sufficient statistics for learning the network struc-

ture, in the form of counts nc;� for the number of samples where gene

C= c when its parents �=�. We use the Bayesian information criterion

(BIC) for selecting candidate structures:

log PrðDjBÞ �
X
C2C

FamðC; �CÞ ð1Þ

where FamðC; �CÞ is the BIC score for a family fC;�Cg consisting of

each gene and its parents and is given by

FamðC; �CÞ=max �C

X
�

X
c

nc;� log½�Cðcj�Þ� �
log n

2

( )
ð2Þ

The BIC score is known to be statistically consistent in the sense that

given sufficiently many samples from an underlying Bayesian network,

we can learn the true structure by maximizing the BIC score.

3.2.1 Learning the evolutionary probability distribution To cor-

rectly learn the evolutionary probability P, we need to consider a dataset

containing both the given cancer genotypes and the unobserved precancer

ones. If the samples are lacking data from certain regions of the state

space, the inferred network parameters will be biased accordingly. To

account for this problem, we construct bifurcating trees, with normal
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genotype at the root (a node of degree one), tumor samples at the leaves

and all other internal nodes as degree three. If O is the input dataset of

observed tumor samples and T denotes the degree three internal nodes

and the root of the bifurcating tree, then the complete data D=O [ T,

and this is used for estimating the Bayesian network in Equation (1).

We also make the following simplifications in selecting the trees and

model parameters for reasons of computational efficiency. First, we

assume that the accumulation of mutations in a sample is irreversible,

with 0–1 transitions from the root to the leaf. The root node in our

problem is the normal state with all genes in state 0. We choose the

state of any gene at any internal vertex as 1 only if all its descendant

leaves are in state 1.

The second restriction we make is motivated by our model choice.

Because the probabilities that we infer represent the chance of a combin-

ation of mutations reaching fixation in a cell population, as it evolves

from a normal state, the probabilities for the mutated states must be

smaller than those of the normal state. We use a simple and computa-

tionally efficient heuristic criterion to incorporate this feature of BML by

requiring that the number of samples in D with a mutation in any gene

should not be more than half the total number of samples. Note that this

condition can always be satisfied by choosing an appropriate labeling of

the internal nodes. This holds because n, the total number of nodes,

equals the sum of s observed samples, one normal and s+1� 2 degree

three internal nodes, which yields n=2s.

Third, we restrict the parameters of our model such that given any

genotype, the probability of accumulating a mutation in a gene does not

decrease on acquiring a mutation in another gene (see Supplementary

Methods for details). Formally, we require the conditional probabilities

for a gene C 2 C to be mutated, given the state of its parents �C � C, to

obey the following constraints.

PrðC=1j�C=�AÞ � PrðC=1j�C=�BÞ8�B � �A ð3Þ

where �B � �A means that all genes in �C that are mutated in state �B
are also mutated in �A. Prior attempts at modeling the dynamics of

cancer progression have included similar parameter constraints

(Gerstung et al., 2009; Hjelm et al., 2006). One justification for this con-

straint is that co-occurrence of mutations in any pair of genes is unlikely

by chance and serves as a reliable test for positive epistasis, whereas

mutations that show a tendency to be mutually exclusive are not neces-

sarily because of epistatic interactions (Supplementary Note S1) and rep-

resent a weaker signal to be resolved at the small sample sizes of available

datasets. Note that this constraint does not imply a monotonically

increasing fitness landscape.

The structure learning problem with these simplifications is to estimate

the tree T	 and Bayes net B	 that maximize log PrðDjBÞ. WithD=T [O,

we can formally write our objective as

ðT	;B	Þ=arg max
T;B

log PrðDjBÞ ð4Þ

3.2.2 Bayesian network structure and parameter learning
algorithm In this section, we describe a heuristic for efficiently learn-

ing the distribution P. Given the leaves and internal nodes of the tree, we

search for the optimal DAG using the method of ordering-based search

(OBS) (Teyssier and Koller, 2005). OBS initializes an ordering on the

variables and constrains each variable to choose parents exclusively

from the set of its predecessors in the ordering. The algorithm then

searches the space of all orderings by flipping the order of any pair

of variables adjacent in the ordering. Note that this ordering is not

the same as the ordering of mutations in genes during somatic evolution.

The search over tree space was performed by a class of local moves

known as NNI (Felsenstein, 2004). We use two asymptotic pruning re-

sults that allow us to greatly restrict the search space (Supplementary

Note S2).

Algorithm 1: BML Structure learning.

1. Perform a global pairwise pruning for each pair of genes (Supplemen-

tary Note S2).

2. Randomly initialize a bifurcating tree with observed samples as leaves

and normal state as root and assign internal node labels.

3. Perform pairwise local pruning (Supplementary Note S2).

4. Find the DAG that maximizes BIC score and obeys Equation (3) using

OBS.

5. Perturb the tree using NNI and repeat the search steps 3 and 4 until

local optimum.

After performing structure learning using BIC, we used an empirical

Dirichlet prior for learning the parameters of the Bayes Net. For each

gene C, the parameters were chosen as �ðC=cj�C=�Þ=ðnc�+�cÞ=

ðn0�+n1�+1Þ, where the hyper parameter �c denotes the fraction of

samples in D that have C= c, and nc� is the number of samples where

C= c and �C=�.

3.3 Reconstructing the most likely EPP

The analysis performed in Supplementary Note S1 suggests that the most

probable ancestor for a given genotype is the one with highest evolution-

ary probability. We use this observation to reconstruct the most likely

EPPs, presented in Figure 2, using a recursive algorithm. Briefly, the

algorithm starts with a set of most likely states with three mutations

and retraces their mutational history by connecting each genotype to

their most likely ancestral state (i.e. the ancestral state with largest P).

The algorithm takes as input the inferred P and parameters k41 and

c51. Paths are initialized starting from all genotypes representing com-

binations of kmutations, which are present in the observed data and have

a probability larger than a cutoff c 	mk, where mk equals the largest

probability of a genotype with k mutations. The user can vary the level

of detail in the reconstructed paths by varying c, and the size of the paths

with k. At each subsequent step i5k of the algorithm, for each genotype,

the algorithm identifies the most likely ancestral state with i– 1 mutations,

by choosing the one with the highest P. The algorithm then adds a set of

nodes with i – 1 mutations that are either identical to the genotype of at

least one observed sample and have a probability larger than c 	mk, or

were identified as the likely ancestral state for a node retained at the

previous step i+1. This process is repeated all the way up to the node

representing the normal genotype. Figure 2 shows the likely paths with

c=0.3 and k=3.

4 RESULTS

BML analysis for each dataset was accompanied with 1000 para-

metric bootstrap replicates to assess the robustness of the

inferred Bayesian network. Figure 2 shows the highest probabil-

ity genotypes and the most likely paths of progression for each
dataset. Note that the trees shown in Figure 2 are not the same as

the full bifurcating tree used by the algorithm, but only the high

probability genotypes traversed by tumor samples (Fig. 1e, see

Section 3).

4.1 Most likely paths of progression

The temporal order of mutations has perhaps been best studied

in colorectal cancer (Fearon and Vogelstein, 1990). The temporal

order of APC, KRAS and TP53 mutations was also investigated
computationally in Attolini et al. (2010). Therefore, we first pre-

sent the results of BML analysis for the colorectal cancer dataset

analyzed by Attolini et al. (2010) for comparison. Their results

support the hypothesis that APC mutations are more likely to
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initiate tumorigenesis than KRAS mutations, which in turn are

more likely than TP53 mutations. BML estimates for the evolu-

tionary probabilities of initial mutations (Fig. 2a) agree with

these conclusions of Attolini et al. (2010). However, BML detects

a robust positive epistatic interaction (bootstrap confidence

498%) between APC and TP53. As a consequence, conditional

on APC being the initial mutation, a TP53 mutation is more

likely than a KRAS mutation. Therefore, in tumor samples

Fig. 2. Most likely paths followed by (a) colorectal, (b) glioblastoma, (c) lung adenocarcinoma and (d) ovarian cancer tumor samples. In general, there

are several other low-probability events that may occur, but have been left out for clarity. Color for a genotype g with kmutations is scaled according to

its relative probability PðgÞ=mk (decreasing from darker shade to light), where mk is the maximum probability for a node with k mutations (Section 3).

The bar plots (blue) show the number of samples with mutations in a given gene for the initial events shown in the paths
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that contain mutations in each of the three genes, the most likely

sequence is an APC mutation followed by a TP53 mutation,

which is then followed by KRAS.
We next performed BML analysis for a set of 22 recurrently

mutated genes in 194 glioblastoma samples. A model proposed

by Ohgaki et al. (2004) and Ohgaki (2007) indicated that a TP53

mutation is the initiating event in secondary glioblastomas, fol-

lowed most commonly by EGFR and PTEN mutations. In the

case of primary glioblastomas, TP53, EGFR and PTEN muta-

tions are present in roughly equal frequencies and provide alter-

native paths of tumor initiation. BML recapitulates these

findings and also identifies alternative lower probability paths

that are initiated by NF1, PIK3R1 and PIK3CA mutations

(Fig. 2b). The BML prediction that an initiating mutation in

NF1 is less likely than TP53 also agrees with the computational

analysis of Attolini et al. (2010). For lung cancer, BML analysis

of 51 recurrently mutated genes in 161 adenocarcinoma samples

inferred KRAS, TP53, EGFR and STK11 mutations as likely

early events in alternative paths during cancer progression

(Fig. 2c). TP53 and KRAS mutations tend to co-occur during

the later steps of mutation accumulation. In contrast, EGFR and

KRAS mutations are mutually exclusive and, as reported by

(Ding et al., 2008), correlated with the smoking status of the

patient, with EGFR mutations more common in non-smokers.
Applied to 192 recurrently mutated genes in 326 ovarian

cancer samples, BML inferred TP53 as the most likely initiator

of tumor cells. TTN is the second most common mutation fol-

lowed by several other recurrently mutated genes. BML predicts

that TTN mutation is unlikely before TP53, but the TP53-TTN

genotype is the most likely among states with two mutations in

the observed tumor samples (Fig. 2d).

4.2 Fitness epistasis and sequence of genetic events

Fitness epistasis refers to a departure from additivity in the effect

of mutation combinations with respect to their contribution to

log fitness (Fisher, 1918). Epistatic interactions contribute both

to the distribution of observed tumor samples in the genotype

space as well as the evolutionary probability (Fig. 1). Even

though BML is not constrained to any specific model of evolu-

tionary dynamics, it is instructive to estimate and interpret the

evolutionary probabilities for a population genetics model used

in prior studies (Attolini et al., 2010; Komarova et al., 2003;

Michor et al., 2004). The model is a stochastic process that de-

scribes the evolutionary dynamics of a population of cells as they

randomly accumulate mutations (with gene-dependent mutation

rates) during cell division, and compete for resources based on

the fitness of the genotype (Supplementary Note S1). This model

can be used to establish the following connection between epi-

static interactions and the evolutionary probability for the scen-

arios depicted in Figure 1a–c (Supplementary Note S1):

(i) Positive fitness epistasis (in Fig. 1b and c) leads to a

tendency for mutations in A and B to co-occur and

implies that the double-mutant genotype satisfies

PðABÞ � PðAÞPðBÞ.
(ii) Sign epistasis (Fig. 1c) implies PðAÞ44PðBÞ, and an un-

ambiguous ordering of mutations leading to the double

mutant genotype can be inferred. Furthermore, if

mutations in A occur at a sufficiently high frequency

and/or the epistatic interaction is particularly strong,

then, PðAÞ � PðABÞ � PðBÞ.

These observations suggest that epistatic interactions can lead

to scenarios where we can unambiguously infer the sequence of

genetic events (Fig. 1c and Supplementary Note S1). We use

BML estimates for P to detect such evolutionary scenarios by

identifying pairs of genes where the double-mutant genotype has

an evolutionary probability in between the two single-mutant

genotypes. Figure 3a shows one such instance for each dataset

analyzed.
The case of TTN, the gene that codes for the largest human

protein and is frequently mutated across multiple cancer types

(Balakrishnan et al., 2007; Greenman et al., 2007), highlights the

utility of this criterion. In particular, tumor samples from ovar-

ian cancer patients show a tendency of TP53 and TTNmutations

to co-occur, suggesting a possible epistatic interaction. However,

BML analysis predicts that TTN mutations rarely precede TP53

mutations (Fig. 3a) and are unlikely to initiate tumor formation.

This conclusion is in agreement with the original TCGA publi-

cations that did not identify TTN mutations as significant in

initiating tumor formation (TCGA consortium, 2011).

Although frequent mutations in TTN may likely be due to its

huge length and not entirely due to functional reasons, there

have been prior experimental studies that have suggested a pos-

sible role for TTN during cell division (Machado et al., 1998;

Machado and Andrew, 2000; Qi et al., 2008). A definite answer

regarding the role of TTN mutations and their contribution to

tumor cell fitness would require further experimental

investigation.

4.3 Simulations validate the improvement in accuracy and

robustness with BML

We performed a simulation-based parametric bootstrap

(Friedman et al., 1999) for validating our method as well as

demonstrating the effect of unobserved genotypes on the recon-

struction algorithm. Parametric bootstrap involves learning a

model from the given data and simulating the learnt model to

generate new datasets for learning. This way we have access to

ground truth for the simulated datasets and can estimate both

the accuracy and robustness of the learning algorithm. We per-

formed parametric bootstrap by simulating samples from the

DAG learnt by BML on each of the datasets. We only retained

those simulated samples that had at least one mutation and

where all the mutations were present in at least one observed

tumor sample. Because we wanted to assess the uncertainty in

estimated evolutionary probabilities, our goal was to simulate a

dataset where the region with unobserved precancer states closely

mimics real data. This is important because the retained geno-

types specify how many and which combination of mutations are

needed before a cell population becomes capable of uncontrolled

growth. The number of retained simulated samples was set equal

to the number of observed tumor samples in each case.

Figure 3b–d shows the results from bootstrapping of 1000

simulated datasets for our approach with and without the tree

estimation and parameter constraints. The former scenario re-

flects the DAG inferred by the full BML model, which takes into
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account and aims to correct for the bias due to unobserved

precancer genotypes. This is compared with standard Bayesian

network learning where the unobserved states (represented by the
internal nodes of the tree) are not included. Figure 3b shows the

probability of mutations for 10 frequently mutated genes for

the simulated Bayesian network in each case. These genes were
selected based on an ordering that the algorithm automatically

assigns to the genes (Section 3). The mutation probabilities for

the BML model are consistently lower, as expected, because the
standard algorithm does not take into account the probability

mass from ancestral states that have fewer mutations than in the
observed samples. As can be seen in Figure 3c and d, including

the tree and parameter constraints leads to both fewer false posi-

tives and fewer false negatives in inferred edges, at a fixed con-
fidence level.

By default, we constrain the parameters of our model to ac-
count for patterns of mutation co-occurrence (Section 3). To test

the assumption in a model-based manner, we also implemented

an alternative version of our method without any parameter
constraints for glioblastoma and lung cancer. For glioblastoma,

our method did not infer any additional edges. For lung cancer,

this method inferred an edge between EGFR and KRAS, but
with a low bootstrap confidence of 45%.

5 DISCUSSION

Modeling the evolutionary events leading to cancer and charac-
terizing the fitness landscape of cancer cells promises innovative

applications in clinical cancer research (Merlo et al., 2004). BML

allows the reconstruction of likely ancestral genotypes and the

paths of mutation accumulation in greater detail than existing

methods. BML accomplishes these tasks owing to several algo-

rithmic improvements that take into account the unobserved

precancer genotypes that provide a systematic bias to EPP re-

construction, as well as the effects of unknown epistatic

interactions.
We should emphasize that the goal of BML is not to classify

somatic mutations as drivers or passengers; rather BML recap-

itulates the likely sequence of somatic mutation accumulation in

recurrently mutated genes. It should also be noted that the bifur-

cating tree used by BML is simply an efficient data structure to

represent paths and does not necessarily imply a hierarchical

ordering of mutations. This distinction is important because

somatic evolution occurred independently in each cancer patient

and different tumor samples do not have a shared evolutionary

history. Even though the genotypes at the internal nodes of the

bifurcating tree allow us to correct for the systematic bias due to

unobserved precancer genotypes, the estimated evolutionary

probabilities are still only an approximation of the true distribu-

tion. However, since the estimated P are computed after taking

into account the inferred precancer genotypes, they also incorp-

orate the evolutionary aspect of the true evolutionary

probabilities.
There are some obvious limitations of BML analysis because it

does not include copy number and genomic rearrangements that

likely provide alternative paths for tumor initiation and progres-

sion. Another source of complexity is the existence of genetic

heterogeneity within individual tumor samples (Nik-Zainal

Fig. 3. (a) Sequence of genetic events. Box plots for 1000 bootstrap replicates showing examples of strong departures from additivity in log(P) for each

dataset. The third row (red) shows the computed log(P) and the fourth row (gray) shows the sum of the two single mutated states. Mutations in these

genes show a tendency to co-occur, suggesting that the departures from additivity are due to positive epistasis. Furthermore, a clear sequence of genetic

events can be inferred (along the red box plots), suggesting the presence of a fitness valley along one (blue single mutant) of two possible paths to reach

the double mutant genotype. The case of TP53-TTN genotype in ovarian cancer shows how TTN mutations, despite their recurrence, rarely initiate

tumor progression. (b–d). Simulation-based parametric bootstrap for each of the datasets. Blue (box plots in b and curves in c and d) show the results for

the BML model that uses inferred ancestral information, whereas the results for standard Bayesian network learning algorithm are in red. The box plots

in b show P(g) for single mutated states for 10 frequently mutated genes. These genes were selected based on an ordering that the algorithm automatically

assigns to the genes (Section 3). Vertical axes in c and d represent the percentages of bootstrap confidence, whereas the horizontal axes represent the

number of edges in the inferred networks that were false and true positives, respectively
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et al., 2012), as well as the role of tumor microenvironment
during cancer progression (Bissell and Hines, 2011). BML ig-
nores the possible cooperative interactions between subclonal
cell populations within a tumor and between tumor and sur-

rounding stromal cells. These are all important avenues that
are left for further exploration.
Aside from these limitations, an extensive bootstrap analysis

demonstrates that BML estimates of P are accurate and robust
(Fig. 3). Simulations (Fig. 3c and d) also show that BML iden-
tifies epistatic interactions with greater accuracy than a naive

network reconstruction algorithm. At the same time, BML is
scalable for application to some of the largest available cancer
datasets (Fig. 1f). Therefore, BML is an efficient and powerful

tool that brings us a step closer to understanding the evolution of
the cancer genome.
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