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SUMMARY
Thin-sheet approximations are widely used in geodynamics because of their potential
for fast computation of 3-D lithospheric deformations using simple numerical tech-
niques. However, this simplicity imposes limits to boundary conditions, rheological
settings and accuracy of results. This paper presents a new approach to reduce these
restrictions. The mathematical formulation of the model involves the construction of
the depth distributions of stress and velocity ¢elds using asymptotic approximations
of 3-D force balance and rheological relations. The asymptotic treatment is performed
on the basis of a small geometry parameter e (thickness to width ratio of the thin sheet)
with a high accuracy while keeping terms which are capable of generating strong
singularities due to possible large variations in material properties in layered systems.
The depth pro¢les are veri¢ed by a condition of exact equilibrium in the depth-
integrated force balance and by an asymptotic approach to the boundary conditions.
The set of analytical depth pro¢les of velocities and stresses, together with the 2-D
equations representing the integrated force balance, result in an extended thin-sheet
approximation (ETSA). The potential of the ETSA is demonstrated by applications to
problems with di¡erent types of boundary conditions and consideration of the types
of systems of equations governing each case. These studies have not found any
strong limitations to the boundary conditions considered and demonstrate the greater
generality and higher accuracy of ETSA in comparison with the previous generation of
thin-sheet approximations. The accompanying paper demonstrates the results of 2-D
experiments based on ETSA.

Key words: creep, lithospheric deformation, numerical techniques, perturbation
methods, shear stress.

1 INTRODUCTION

3-D modelling is one of the most important problems in geodynamics. However, direct 3-D numerical investigations are extremely
complex and highly expensive (Braun 1993; Braun & Beaumont 1995). To resolve this problem, additional analytical investigations
are being considered based on the speci¢c properties of particular geological settings.

Problems in geodynamics are often characterized by geometrical singularity when the horizontal scale is much larger than the
vertical scale (so-called `thin-sheet' structures). Scales can range from salt domes (*5 km in horizontal scale) to continent^continent
collisions. Thin-sheet approximations attempt to estimate the depth dependence of the thin sheet analytically and reduce the
originally 3-D (2-D) system to a set of 2-D (1-D) equations for numerical calculation.

The numerical advantages of the thin-sheet approximation are obvious. The solution of 2-D equations (as opposed to 3-D
equations) can be performed on smaller computers or with higher accuracy using well-known simple numerical techniques.
However, the analytical support of existing approaches is simpli¢ed mainly by neglecting some of the terms in the full governing
equations. This inevitably restricts the applications of existing thin-sheet approaches.
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Three types of thin-sheet approximations are in current use in geodynamic models. One assumes a negligible vertical gradient
of horizontal velocity (hereafter the `PS' or `pure shear' approach). The second involves gravitational spreading de¢ned by the
equilibration of vertical gradients of horizontal velocities (hereafter the `SS' or `simple shear' approach). The third recognizes
the importance of the long-term £exural rigidity of the lithosphere by ensuring equilibrium in bending moments (hereafter the `FP' or
`£exing plate' approach). The di¡erences between these approaches are de¢ned by the boundary conditions applied in each case
(Fig. 1). The suggested abbreviations do not assume a complete explanation of the physics behind the approximations, but are used
to distinguish between di¡erent models.

Figure 1. Three types of thin-sheet approximations are used in geo-
dynamics. These types are determined by the horizontal boundary
conditions applied and the rheological pro¢les possible. (a) The PS
approach is characterized by dynamic boundary conditions (normal
stresses). Creep rheology is averaged through a model depth. (b) The
SS approach is characterized by a kinematic boundary condition(s)
with the prescription of the velocity on an external boundary(ies).
Layered structures can be investigated on the basis of creep rheology.
(c) The FP approach is characterized by the £exural rigidity of a strong
layer (plate). The lateral force results in bending moments. When an
elastic rheology is used, shear traction and normal stress can be set on
external boundaries. If a strong layer creeps, the boundary conditions
are similar to case (a) without shear stresses on external boundaries.
The velocity pro¢les possible are demonstrated on the front of each
slab.

Figure 2. A general view of a thin sheet. (a) Generalized forces can be
speci¢ed as either external forces (stresses) or velocities (strain rates) or
combinations of the two. Note that external generalized forces can have
normal and tangential components at any boundary. (b) The 3-D geo-
metric settings illustrate the de¢nition of a thin sheet by condition
L�&h�. Layered systems can be investigated by introducing an internal
rheological boundary S�. Note that all boundaries can be material or
non-material. S1 can thus be a non-material level of compensation
which does not move with the surrounding material.
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Artyushkov (1973, 1974) investigated forces in a thin sheet under PS-type boundary conditions. On the basis of advanced force
balance (including equilibrium of moments), he investigated possible distributions of forces and velocities with respect to depth and
time. The estimates of relaxation times of depth variations presented in these works can be considered as the theoretical basis of the
PS approach.

England &McKenzie (1982, 1983) introduced the term `thin-sheet approximation' while investigating an isostatic system driven
from the lateral boundaries with a stress-free upper surface and no shear traction on the bottom boundary (Fig. 1a). They used a
power-law creep averaged over the depth to model the rheology of a thin sheet. The vertical gradient of horizontal velocities can be
neglected if the system is underlain by an inviscid substratum. This approach has been further developed by additional analytical
investigations (England 1983; England et al. 1985; Sonder & England 1986; Jones et al. 1996). Several geodynamic applications are
illustrated in Table 1 of Ellis et al. (1995).

The advantage of the PS approach is that a wide range of intercontinental collisions can be modelled by driving a sti¡ indentor
of any shape into a thin lithospheric sheet at any velocity (Vilotte et al. 1982; Vilotte et al. 1986; England & Houseman 1986;
Houseman & England 1986, 1993; Sonder et al. 1986). This model allows simple descriptions of a number of active tectonic zones
(England & Jackson 1989). Among the recent applications of the PS approach for the modelling of speci¢c regional deformations is
the work of Sobouti & Arkani-Hamed (1996).

The most signi¢cant limitation of the PS approach is that it is unable to satisfy a variety of horizontal boundary conditions.
Neglecting depth variations of velocity does not allow the generation of local instabilities leading to folding, pinching, etc. However,
a large di¡erence in mechanical strength between a shortening thin sheet and its surroundings is known to result in folding
(Ramberg 1970a,b; Smith 1975; Turcotte & Schubert 1982). The PS approach assumes an average rheology throughout the depth of
the thin sheet, which means that it cannot be applied to problems involving signi¢cant layering of the lithosphere.

The SS approach was developed by several authors in several works. The governing equations of this approach are similar to
the theory of a lubricating layer (Schlichting 1968). The method is fully described in the works of Zanemonetz et al. (1974, 1976)
and Lobkovsky & Kerchman (1991). A prescribed basal velocity ¢eld leads to spreading controlled by the equilibration of gravity
with the vertical gradient of horizontal velocity within the layer (Fig. 1b), which is described by di¡erent forms of creep rheology.
The SS approach is also in wide use: it has been applied to the spreading of lava (Huppert 1982; Huppert et al. 1982; Miyamoto &
Sasaki 1997), the evolution of salt domes (Talbot et al. 1998), lithosphere contractions (Lobkovsky & Kerchman 1991; Buck
& Sokoutis 1994) and investigating the shapes of domes on Venus (McKenzie et al. 1992). Bird (1991), Buck (1991) and Kaufman &
Royden (1994) used this approach to investigate the £ow of the lower crust during deformation of the lithosphere.

The advantage of the SS model is its ability to satisfy a variety of horizontal boundary conditions such as in investigations of
two-layer lithospheric systems (Zanemonetz et al. 1974, 1976). Deformation of a layered lithosphere caused by movements in the
mantle has been investigated by Myasnikov et al. (1993) and Mikhailov et al. (1996). Medvedev (1993) applied the SS approach to
the modelling of multilayered subhorizontal structures, which he based on analytical investigations of Svalova (personal
communication, 1988). However, the assumption of a velocity ¢eld of the same order across a model domain does not allow large
viscosity contrasts between the layers. The latest theoretical development of Royden (1996) partly resolved this problem and
demonstrated the great potential of the SS approach for the modelling of strongly layered orogenic systems.

Westaway (1993), Ribe (1996) and Sleep (1996, 1997) developed a variation of the SS approach to investigate the case where both
the upper and lower external horizontal boundaries are subjected to prescribed velocities to explore the interior £ow ¢eld of a hot
mantle plume.

The main restriction of the SS approach is that lateral boundary conditions are only passive and cannot be driven.
Several attempts to combine the PS and SS approaches have been successful. Ellis et al. (1995) investigated the coupling of two

layers using a combination of SS and PS approaches. They developed an advanced system of equations to describe the £ow in a
two-layer system with highly uneven viscosity. Bird (1989) investigated a two-layer system using the PS approach to describe each
layer; layer interaction was modelled using the SS approach. Even though some of the limitations of the thin-sheet approximation
remained, Bird's model is particularly suited to the numerical ¢nite element technique and has great potential for modelling global
structures with complex rheology (e.g. Bird & Kong 1994).

The problems of the interaction of two or more rheological layers is poorly described by the ¢rst two types of thin-sheet models.
This is because the PS and SS approaches cannot handle characteristic wavelengths even if the contrast in (e¡ective) viscosity is
high and the dominant wavelengths are much longer than the thickness of the layers. All existing thin-sheet approaches became
ill-conditioned if the model involves a density inversion, and numerical modelling cannot be based on these equations. The
mathematical di¤culties are similar to those that arise when attempting to solve the heat conduction equation backwards in time.

From a mathematical point of view, the PS and SS types of thin-sheet approximations lose the generality by neglecting terms
from the governing equations. External tractions cannot be applied to horizontal boundaries using the PS approach because it omits
all terms explaining the stress distribution with depth. External lateral stresses cannot be investigated by the SS approach because it
neglects all horizontal stress derivatives.

The FP approach was developed mostly on the basis of the thin elastic plate theory presented by Timoshenko &
Woinowsky-Krieger (1959). According to this theory, a lateral force applied to a pre-deformed plate gives rise to moments which
cause additional £exural bending (Fig. 1c). This redistributes horizontal stresses and explains geophysical observations in areas
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where the local compensation model (Airy isostasy) breaks down. Such mechanisms were introduced by applying elastic rheology to
lithospheric processes (e.g. Dubois et al. 1977; Karner & Watts 1983; Lyon-Caen & Molnar 1983). However, pure elastic models of
the lithosphere failed to explain some theoretical and geophysical observations (McNutt et al. 1988; Burov & Diament 1992, 1995).
Multilayered lithospheric structures were investigated on the basis of the FP approach to resolve these problems (McNutt et al. 1988;
Ranalli 1994). Extensions of the FP approach were developed by Burov & Diament (1992, 1995), Aouvac & Burov (1996) and
Cloetingh & Burov (1996) by introducing weak layers governed by the SS creep approach. This allows the application of more
realistic strength pro¢les for the lithosphere. Depending on crustal thickness, temperature conditions and upper-surface processes,
£exural decoupling between strong layers can occur in these models, which can explain a variety of lithospheric phenomena.

One of the advantages of the FP approach is that it can describe the folding of rocks because of its ability to take account of
di¡erent characteristic behaviours for each layer. This property distinguishes the FP approach from the PS and SS approaches.

Although many natural folded layers exhibit elastic (or plastic) behaviour, there are other layered structures which demonstrate
viscous (creep) behaviour. Application of the FP approach to the description of pure creep in layered structures with uneven viscosity
distributions is known as the Biot theory of folding (after Turcotte & Schubert 1982; Biot 1961; Ramberg 1970a,b; Fletcher 1977).
This theory is based on a thin-sheet approximation of the equilibrium of bending moments in thin viscous plates. Turcotte &
Schubert (1982, eq. 6-181) derived the `general equation for the bending of a thin viscous plate' using the clear similarity between
viscous and elastic forces and moments (see also Ramberg 1970a; De Bremaecker 1977). This equation describes how the evolving
vertical displacement is controlled by the distribution of normal external forces.

Application of this is limited to cases with strong viscosity contrasts because it neglects the external shear forces imposed by any
surroundings with low viscosity.

The limitations of existing models are not a necessary feature of thin-sheet approaches. The extended thin-sheet approximation
(ETSA) developed here is based not on a simpli¢cation but on asymptotic investigations of the balance of forces. The 3-D
deformation is driven by external forces (acting on all boundaries) and controlled by rheological properties within those boundaries.
The dynamic (tractions) or kinematic boundary forces (boundary velocities), or their combination at both lateral and horizontal
boundaries, can be speci¢ed in the ETSA (Fig. 2a). Geometrical settings are required to satisfy the scaling assumption,
e~H�=L�%1, in the de¢nition of a thin-sheet approximation (Fig. 2b). Due to the long-term e¡ect of gravity and lateral heat
conduction, the lithosphere is usually subhorizontally mechanically layered, so this assumption is easily acceptable for geodynamic
modelling. Certainly, horizontal multilayers are a common con¢guration at the onset of many new tectonic processes.

The model is formulated in two parts. The ¢rst part investigates the mass and force balance of a thin sheet, independent of
its rheology. The second part employs a creep rheology to close the system of equations. The new approach is illustrated by its
application to various types of boundary conditions to present the governing systems of equations for each case.

This paper is the ¢rst work in a sequence of developments and applications of the new extended thin-sheet approach. The
accompanying paper demonstrates the results of 2-D experiments on the basis of ETSA (Medvedev & Podladchikov 1999). 3-D tests
are in preparation.

2 FORMULATION INDEPENDENT OF RHEOLOGY

Rheologically independent relationships are derived in this section, which assumes stress (force) and mass balance in continuous
media.

To emphasize the di¡erence between coordinates we distinguish vertical and horizontal characteristic length scales in
dimensional analysis (Tables 1 and 2). Scaling assumptions introduced in Table 2 include the also inequality of scales for di¡erent
components of the stress tensor. This method of scaling results in the appearance of a small parameter e in the equations
(Zanemonetz et al. 1974, 1976; Fowler 1993; Medvedev 1993). The symmetry of two horizontal coordinates (x and y) is emphasized
by using indexed abbreviations in equations (xi, Table 3). Projections of 3-D equations onto two horizontal axes give the same
results, and indexed presentation of these projections allows avoiding the repetitions [e.g. eq. (5) represents two projections of the
force balance which are equal up to substitutions x<y and therefore horizontal coordinates are denoted by indexed x]. The indexed
abbreviation also allows the use of the summation convention (e.g. eq. 1). The vertical coordinate di¡ers signi¢cantly and is therefore
not abbreviated.

2.1 Kinematics

A set of kinematic relationships describing the motions of boundaries while maintaining mass balance is independent of rheology.
The mass balance for incompressible media is

Loj
Lxj

z
Loz
Lz

~0 . (1)

Note that we use abbreviations for horizontal coordinates and summation convention (Table 3). For the change in vertical velocity
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Table 1. De¢nition of widely used dimensionless variables{.

Variable Definition Coordinate Dimensional
dependence scale

az Vertical boundary conditions partitioning coefficient (eq: 30) { {

D, E, F , Coefficients for evaluation of horizontally oriented stress tensor components qxx, qxy, qyy (x, y, z) {

G, J, Q (eqs 43, 44)
Mo~zco Density momentum in vertical force balance (eqs 25) (x, y) o�(H�)2
P Isotropic part of stress tensor with minus sign (`pressure' in the text) (x, y, z) P�
Rx, Ry, Rz Dynamic integration functions (eqs 18, 14) (x, y) P� . e, P� . e, P�
S1, S2 Lower and upper boundaries of the system (x, y) H�
(Tx, Ty, Tz)DSm

Vectors of boundary tractions on the external surface Sm (x, y) (P� . e, P� . e, P�)
t Time ÿ t�
(Vx, Vy, Vz) Basal velocity vector (eq: 35), kinematic integration functions (x, y) (Vx

�, Vx
�, Vz
�)

(ox, oy, oz) Velocity vector (x, y, z) (Vx
�, Vx
�, Vz
�)

w, zc Reference surface and centred z coordinate during integration of vertical force balance (eq: 12) (x, y) H�
(x, y, z) Coordinate system (capital letters denote directions and Z-axis is directed upwards) { (L�, L�, H�)
q Deviatoric part of stress tensor (`stress tensor' in text); see scaling for its components below (x, y, z) {

qij , qzz Horizontal and vertical components of stress tensor (x, y, z) P�
qxz, qyz Vertical shear stresses (x, y, z) P� . e

{ Non-dimensional variables are used without special notations.

Table 2. Characteristic values.

Value Definition Units Comments

H� Vertical length scale m
L� Horizontal length scale m
g Acceleration due to gravity m s{2

P� Stress Pa P�~o�gH�
t� Time s t�~L�/Vx

�~H�/Vz
�

Vx
� Horizontal velocity m s{1 Vx

�~P�L�/k�
Vz
� Vertical velocity m s{1 Vz

�~P�H�/k�~eVx
�

e Small geometry parameter { e~H�/L�%1
k� Viscosity Pa s
o� Density kg m{3

Table 3. Designation.

Attribute Definition Examples

Superscripts
`prime' Approximate values of stress functions (eqs 13, 17)
1 Characteristic value (Table 1)
d Dimensional value Using Table 1, for any function F d~F . (Dim:scale)

Subscripts
i, j, k Abbreviated indices related to horizontal coordinates

(x, y). i usually refers to equation orientation, while
j, k usually assume summation

Vi<fVx, Vyg,
Lqij
Lxj

< Lqxx
Lx

z
Lqxy
Ly

Lqyx
Lx

z
Lqyy
Ly

� �
1 Skipping the differential operator in coefficients (44)

(see notes after equation)
Special designation

Vertical bar with one subscript Function value on selected z level oDS1
~o(x, y, S1(x, y))

Vertical bar with two limits Difference operator between its upper and lower limits (zc . qiz)DS2
S1

~(S2{w)qizDS2
{(S1{w)qiz)DS1

Overbar (1) For continuous functions: z integrating through the
system (note that there is no normalizing by H)

P(x, y)~
�S2

S1

P(x, y, z)dz, z . o~

�S2

S1

z .
�z
S1

o dz'
� �

dz

Overbar (2) For discrete functions: sum of values of the function Ti~Ti DS1
zTi DS2

, z .Ti~S1Ti DS1
zS2Ti DS2

at upper and lower external boundaries
Repeated indices in equations The Einstein summation convention: implication of

a sum for all combinations in respect of x and y
qii~

X
i

qii~qxxzqyy,

Lqij
Lxj

~
Lqix
Lx

z
Lqiy
Ly

,
L2qij
Lx2k

~
L2qij

LxkLxk
~

L2qij
Lx2

z
L2qij
Ly2
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across any material or non-material interfaces Sm and Sl , mass conservation in integrated form is�Sm

Sl

Loj
Lxj

dzzozDSl
Sm

~0 . (2)

For any material interface Sm, the impenetrability condition gives (Zanemonetz et al. 1974)

LSm

Lt
zoj DSm

LSm

Lxj
~oz DSm

: (3)

For the distance between any material interfaces Sm and Sl , combining eq. (3) and mass conservation (eq. 2) gives

L(Sm{Sl)
Lt

z
L

Lxj

�Sm

Sl

oj dz
� �

~0 . (4)

2.2 3-D force balance

The dimensionless force balance equations in terms of stresses are (Turcotte & Schubert 1982)

{
LP
Lxi

z
Lqij
Lxj

z
Lqiz
Lz

~0 , (5)

e2
Lqjz
Lxj

z
L(qzz{P)

Lz
~o . (6)

Note that eq. (5) represents two horizontal projections of the force balance using abbreviation convention (Table 2). The small
parameter e arises in the vertical projection of the force balance (eq. 6) due to di¡erent scalings of di¡erent components of the
deviatoric part of the stress tensor q and due to di¡erent coordinate scalings (see Table 1). Integration with depth results in

{
LP
Lxi

z
L qij
Lxj

zTi~0 , (7)

e2
L qjz
Lxj

zTz~o . (8)

The transformation of eqs (5) and (6) to integrated eqs (7) and (8) is performed by integration and the changing of integration^
di¡erentiation order. Vectors of boundary traction at the upper surface (m~2) and the base (m~1) are (TxDSm

, TyDSm
, TzDSm

), and
these are related to the internal stresses by

T DSm
~{q . nmzPnm , (9)

where nm is a unit external vector normal to Sm. Projected onto the horizontal and vertical axes,

Ti DSm
. ({1)m~ P

LSm

Lxi
zqij

LSm

Lxj
zqiz

� ��
am ,

TzDSm
. ({1)m~ {e2qjz

LSm

Lxj
zqzz{P

� ��
am ,

(10)

where ({1)m is due to opposite orientations of normal vectors on the top and bottom of the thin sheet and

am~

������������������������������������������������������
1z e

LSm

Lx

� �2

z e
LSm

Ly

� �2
s

& 1{
1
2

e
LSm

Lx

� �2

{
1
2

e
LSm

Ly

� �2
 !{1

&1 (11)

is the correction of the length of the normal vector applied to the right-hand sides of eqs (10) as required for the normal vector to be
unity in eq. (9). The small correction (*e2) is neglected in the developments that follow.

The averages of the shear stresses on vertical planes (qxz and qyz) can be expressed via moments of the stresses in the horizontal
plane (qxx, qyx, qyy) and pressure. Integration by parts gives

qiz~
�S2

S1

qiz dz~(zc . qiz)DS2
S1

{

�S2

S1

zc . Lqiz
Lz

dz~(zc . qiz)DS2
S1

z

�S2

S1

zc . {
LP
Lxi

z
Lqij
Lxj

� �
dz

~zcTjz
L zc . qij

Lxj
{

Lzc .P
Lxi

zqij
Lw
Lxj

{P
Lw
Lxi

� �
, (12)
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where zc~(z{w) is the centered z coordinate and w(x, y) is the reference surface for the calculation of moments; (zcTi), zc .P and
zc . qij are moments of Ti, P and qij respectively. It can be shown that the results do not depend on the position of the reference surface.
However, being able to change the position of the reference surface introduces an extra degree of freedom into the ETSA; possible
speci¢cations are discussed in Section 5.

2.3 Depth pro¢les of pressure and vertical shear stresses

Integration of eq. (6) yields

P(x, y, z)~{ Rz{qjj{
�z
S1

odz'ze2
�z
S1

Lqiz
Lxi

dz'%{ Rz{qjj{
�z
S1

odz'~P', (13)

where Rz is a new dynamic integration function,

Rz(x, y)~(qzz{P)DS1
. (14)

The de¢nition of the deviatoric part of the tensors used in the transformation of eq. (6) to (13) is

qjjzqzz~0 . (15)

The pro¢le P'(x, y, z) in (13) represents asymptotic approximation to the accurate pro¢le P while neglecting the term with small
parameter e. The change of the inexact normal vertical stresses across the layer is equal to lithostatic pressure at the bottom of the
thin sheet (from eq. 13):

({P'zqzz)DS2
{({P'zqzz)DS1

~o . (16)

Integration of eq. (5) and substitution of the approximation of P from (13) yields

qiz(x, y, z)~Riz

�z
S1

LP
Lxi

{
Lqij
Lxj

� �
dz'

%Ri{
LRz

Lxi
(z{S1){

�z
S1

Lqjj
Lxi

z
L

Lxi

�z'
S1

odz@z
Lqij
Lxj

� �
dz'~q'iz . (17)

This expression gives an asymptotic approximation, q'iz, to the vertical shear stress, qiz, neglecting all terms with e. Here Ri are the
horizontally oriented dynamic integration functions,

Ri(x, y)~qizDS1
. (18)

2.4 Thin-sheet force balance

Approximate equality in (13), the ¢rst major (dynamic) simpli¢cation of our thin-sheet treatment, results in inaccurate pro¢les
of pressure and vertical shear stresses (marked by primes). To compensate for this error, the inaccurate pro¢les of stresses
(eqs 13 and 17) need correction to satisfy the complete (non-truncated) integrated force equilibrium eqs (7) and (8) (after subtraction
of eq. 16) following the `thin-sheet force balance' form:

{
LP'
Lxi

z
L qij
Lxj

zT 'i~0 , (19)

Lq'jz
Lxj

zT 'z~0 , (20)

and to satisfy eq. (12) (the depth integration of vertical shear stress):

q'iz~zcT 'jz
{Lzc .P'

Lxi
z

Lzc . qij
Lxj

{P'
Lw
Lxi

zqij
Lw
Lxj

� �
, (21)
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where (T 'x, T 'y, T 'z) is a vector related to the sum of the boundary tractions acting on the upper surface (z~S2) and the base (z~S1):

T 'i~ ({P'zqij)
LS2

Lxj
zq'iz

� �����
S2

{ ({P'zqij)
LS1

Lxj
zq'iz

� �����
S1

,

T 'z~{q'jzDS2
. LS2

Lxj
zq'jzDS1

. LS1

Lxj

(22)

and

(zcT 'i)~ zc({Pzqij)
LS1

Lxj
zzcqiz

� �����
S1

z zc({Pzqij)
LS2

Lxj
zzcqiz

� �����
S2

. (23)

Note that, due to the simpli¢cation in (13), we cannot claim direct equality of primed tractions (eq. 22) with full boundary
tractions (eq. 10), and their relation requires additional investigation (see below). According to eq. (13), depth averaging of
pressure yields

P'~{RzH{qjj{o . (24)

Similarly, the moment of pressure is

zc .P'~{Mo{Rzzc{zc . qjj . (25)

Substitution of eqs (21), (24) and (25) into eqs (19) and (20) yields the ¢nal form of the `thin-sheet force balance equations':

Lqij
Lxj

z
Lqjj
Lxi

z
L

Lxi
(RzHzo)zT 'i~0 , (26)

L2zc . qkj
LxkLxj

z
L2

LxjLxj
[zc . qkkzMozRzzc]z

L
Lxj

(RzHzozqkk)
Lw
Lxj

zqkj
Lw
Lxk

� �
z

L
Lxj

(zcT 'j)zT 'z~0 . (27)

These equations represent corrections for low-order asymptotic approximations (eqs 13 and 17) by the condition of the exact
integrated equilibrium (eqs 6 and 7). Therefore, eqs (26) and (27) represent a high-order asymptotic approach of the model presented
here.

Let us consider the relations between inaccurate (primed) and accurate (full) boundary tractions. According to the assumption
of integrated equality of the inexact and exact solutions, for terms related to boundary tractions in eqs (26), (27) can be written as

Ti~T 'i , zcTi~zcT 'i ,

Tz~oze2T 'z .
(28)

Therefore, the horizontal projection of relations between internal and external boundary stresses can be speci¢ed via dynamic
integration functions and horizontal stresses using

Ti DS1
~{Riz(Rzzqjj)

LS1

Lxi
zqij

LS1

Lxj
,

Ti DS2
~Ti{Ti DS1

.

(29)

The relation between the vertical tractions in eq. (28) represent the correction of the lithostatic condition in eq. (16) to the sum of the
full boundary tractions. The separation of this integrated condition cannot be performed in the same way as in the horizontal
separation (eq. 29) because the vertical boundary stress relation is described by only a single equation in eqs (28). Therefore, the
separation is performed by introducing the partitioning coe¤cient az:

T 'zDS1
~(1{az)T 'z , T 'zDS2

~azT 'z . (30)

The full vertical boundary tractions can now be expressed via the vertical dynamic function and partitioning coe¤cient az. Using
eqs (13), (16) and (28),

TzDS1
~{Rz{e2(az{1)T 'z ,

TzDS2
~Rzzoze2azT 'z .

(31)

The partitioning in eqs (30) can be illustrated by the following examples. If az~1, the bottom boundary condition is satis¢ed
completely by an inexact pressure pro¢le (eq. 13) and T 'zDS1

~0. On the other hand, it becomes impossible to satisfy the upper
boundary condition using inexact pro¢les and T 'z~T 'zDS2

. Setting az~0 leads to T 'zDS2
~0, which satis¢es the upper vertical boundary

condition by approximate pro¢les (eqs 13 and 17). Note that, in the case of a stress-free upper surface, Rz represents the sum of the
lithostatic pressure with a minus sign and small variations (*e2) due to the partitioning coe¤cient.
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Summarizing these examples, the setting of the partitioning coe¤cient to 0 or 1 completely satis¢es the upper or bottom vertical
boundary condition, respectively, by the simpli¢ed pro¢les expressed by eqs (13) and (17). Values of the partitioning coe¤cient
between 0 and 1 imply satisfying of the boundary condition to di¡erent degrees by approximate stress pro¢les. Note that there is no
restriction on the partitioning coe¤cient being negative or larger than 1, since the main need to satisfy the boundary conditions is
accomplished on the basis of two approximation levels, independent of partitioning.

The partitioning coe¤cient, az, represents the degree of freedom in the level of generality applied in this work. It is not clear
which boundary condition should have preference in partitioning of the general case. Hence this coe¤cient should be de¢ned for
problems with particular geometry, rheology and boundary conditions.

3 RHEOLOGY-DEPENDENT FORMULATION

3.1 Depth pro¢les of velocities

Creep rheology assumes that the deviatoric part of the stress tensor depends on the strain rates via viscosity. The viscosity function
k~k(x, y, z) is not assumed to be constant here and can depend on a number of variables:

qij~k
Loi
Lxj

z
Loj
Lxi

� �
, qzz~2k

Loz
Lz

, e2 . qiz~k e2 . Loz
Lxi

z
Loi
Lz

� �
. (32)

The creep rheology and incompressibility constrain the depth pro¢les of the velocities:

Loi
Lz

~e2 . qiz
k

{
Loz
Lxi

� �
,

Loz
Lz

~{
Loi
Lxi

.

(33)

Depth integration yields

oi~Vize2Ri .
�z
S1

1
k
dz'{e2

�z
S1

Loz
Lxi

dz'zqi . (34)

The set of new variables involved in eq. (34), Vi and Vz are the set of kinematic integration functions,

Vi(x, y)~oi(x, y, S1(x, y)) ,

Vz(x, y)~oz(x, y, S1(x, y))
(35)

and

qi~e2 .
�z
S1

1
k

�z'
S1

LP
Lxi

{
Lqij
Lxj

� �
dz@

� �
dz' . (36)

Note that while the stresses are the same order of magnitude throughout the thin sheet, the velocity and viscosity may have large
variations. Therefore, the e2 terms are kept, but eq. (36) is reduced to

qi&{e2 .
�z
S1

1
k

�z'
S1

L
Lxi

�z''
S1

o dz'''
� �

dz@
� �

dz'{e2 .
�z
S1

(z'{S1)
k

dz' .
LRz

Lxi
{e2 .

�z
S1

1
k

�z'
S1

L
Lxk

(2keik)z
L

Lxi
(2kekk)

� �
dz@

� �
dz' , (37)

where P is eliminated using eq. (13), and

eij~
1
2

LVi

Lxj
z

LVj

Lxi

� �
, (38)

where eij is the basal plane strain rate related to the horizontal velocity components applied on the boundary S1. From the
incompressibility constraint,�z
S1

Loz
Lxi

dz'~
LVz

Lxi
(z{S1){

�z
S1

L
Lxi

�z'
S1

Loj
Lxj

dz@
� �

dz'

&
LVz

Lxi
(z{S1){

�z
S1

L
Lxi

�z'
S1

e¬ jj dz@
� �

dz' , (39)
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where

e¬ ij~eijz
e2

2
L

Lxj

�z
S1

dz'
k

.Ri

� �
z

L
Lxi

�z
S1

dz'
k

.Rj

� �� �
(40)

is the partly `corrected' eij. Medvedev & Podladchikov (1999) conducted systematic experiments to check the robustness of these
approximations. The qij component of the stress tensor is related to velocity by

qij~k
Loi
Lxj

z
Loj
Lxi

� �

~k
L

Lxj
Vize .

�z
S1

1
k
dz' .Ri{e2

�z
S1

Loz
Lxi

dz'zqi

� �
zk

L
Lxi

Vjze .
�z
S1

1
k
dz' .Rj{e2

�z
S1

Loz
Lxj

dz'zqj

� �
. (41)

Using eqs (37) and (39) as simplifying assumptions and eqs (38) and (40) for the notation convention, eq. (41) can be rewritten as

qij~2keij{e2k
L

Lxj
LVz

Lxi
(z{S1)

� �
z

L
Lxi

LVz

Lxj
(z{S1)

� ��
{

L
Lxj

�z
S1

1
k

�z'
S1

L
Lxk

(2keik)z
L

Lxi
(2kekk)

� �
dz@

� �
dz'

� �

{
L

Lxi

�z
S1

1
k

�z'
S1

L
Lxk

(2kejk)z
L

Lxj
(2kekk)

� �
dz@

� �
dz'

� �
z

L
Lxj

�z
S1

L
Lxi

�z'
S1

e¬ kkdz@
� �

dz'
� �

z
L

Lxi

�z
S1

L
Lxj

�z'
S1

e¬ kkdz@
� �

dz'
� �

z
L

Lxj

�z
S1

1
k
dz' .Ri

� �
z

L
Lxi

�z
S1

1
k
dz' .Rj

� �
{

L
Lxj

�z
S1

(z'{S1)
k

dz' .
LRz

Lxi

� �
z

L
Lxi

�z
S1

(z'{S1)
k

dz' .
LRz

Lxj

� �

{
L

Lxj

�z
S1

1
k

�z'
S1

L
Lxi

�z''

S1

odz'''

 !
dz@

 !
dz'

 !
{

L
Lxi

�z
S1

1
k

�z'
S1

L
Lxj

�z''
S1

odz'''
� �

dz@
� �

dz'
� ��

. (42)

Finally, the expression for horizontal stresses can be given in a form in which each term is presented by the multiplication of a
`coe¤cient' (which depends on the geometry, rheology, density distributions and all coordinates) and a `key unknown function'
(a kinematic or dynamic integration function, which is independent of depth):

qij~2keij{2J�
L2Vz

LxiLxj
zJj

LVz

Lxi
zJi

LVz

Lxj
{2Gjkeik{2G�k

Leik
Lxj

{2Gj�
Leik
Lxk

{2G��
L2eik

LxjLxk

{2Gikejk{2G�k
Lejk
Lxi

{2G�i
Lejk
Lxk

{2G��
L2ejk

LxiLxk
z2(Fij{Gji{Gji)ekkz2(Fi�{G�i {Gi�)

Lekk
Lxj

z2(Fj�{G�j {Gj�)
Lekk
Lxi

z2(F��{2G��)
L2ekk
LxiLxj

zD�
LRi

Lxj
z

LRj

Lxi

� �
zDiRjzDjRi

{2Dì ���
L3Rk

LxiLxjLxk
{2Dì i��

L2Rk

LxjLxk
{2Dì j��

L2Rk

LxiLxk
{2Dì ��k

L2Rk

LxiLxj
{2Dì i�k

LRk

Lxj
{2Dì j�k

LRk

Lxi
{(Dì ij�zDì ji�)

LRk

Lxk

{(Dì ijkzDì jik)Rk{2E�
L2Rz

LxiLxj
{Ei

LRz

Lxj
{Ej

LRz

Lxi
{Qij{Qji . (43)
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Here the coe¤cients are

Di~e2 . k
L

Lxi

�z
S1

1
k
dz'

� �
,

Dì ijk~e4 . k
L

Lxi

�z
S1

L
Lxj

�z'
S1

L
Lxk

�z@
S1

1
k
dz'''

� �
dz@

� �
dz'

� �
,

Ei~e2 . k
L

Lxi

�z
S1

z'{S1� �
k

dz'
� �

,

Fij~e2 . k
L2

LxiLxi
(z{S1)2

2

 !
,

Gij~e2 . k
L

Lxi

�z
S1

1
k

�z'
S1

Lk
Lxj

dz@
� �

dz'
� �

,

Ji~e2 . k
L

Lxi
(z{S1) ,

Qij~e2 . k
L

Lxi

�z
S1

1
k

�z'
S1

L
Lxj

�z''
S1

odz'''
� �

dz''
� �

dz'
� �

.

(44)

Each index in these coe¤cients refers to di¡erentiation with respect to the horizontal coordinate with the same index. The remaining
coe¤cients in eq. (43) can be obtained by skipping the di¡erentiation operator corresponding to the `star' index position, e.g.

G�j~e2k .
�z
S1

1
k

�z'
S1

Lk
Lxj

dz@
� �

dz' . (45)

Note that the position of the `star' index is insigni¢cant in the evaluation of coe¤cients Dì and F and signi¢cant only for G. For
all j and k,

Dì �jk~Dì j�k~Dì jk� , Dì ��k~Dì �k�~Dì k�� , F�j~Fj� , G�j=Gj� . (46)

Eqs (43) and (44) play a signi¢cant role in the force balance treatment presented by eqs (26) and (27), hence the meaning of each type
of term has to be explained.

The term keij represents the lowermost level of approximation and is the term common to all thin-sheet models. It refers to the
boundary velocity in the SS approach, to an independence of velocity on depth in the PS approach, and is treated as a horizontal
force component in the FP approach. The terms G represent di¡erent in£uences of horizontal gradients in the boundary velocity on
stress due to vertical variations of viscosity (via eqs 37 and 40). The in£uence of interaction between vertical and horizontal velocities
via incompressibility (eqs 33, 34, 39 and 40) is represented by F related terms. Terms related to coe¤cients J represent the horizontal
gradient in the vertical velocity in the expression for shear stress (eq. 33). The terms G, F and J are signi¢cant when dynamic
boundary conditions are used in particular problems with velocities as unknowns. High-order derivatives of velocity allow realistic
solutions even for short wavelengths in this kind of problem.

The terms D represent the in£uence of basal shear stresses Ri on variations in velocity (eq. 34).Dì terms indicate the correction
of the strain rate along the basal plane for kinematic functions (eq. 40). The necessity of Dì terms can be illustrated by setting
the velocity on the bottom boundary to zero. In this case the vertical velocity would not a¡ect the stress balance if Dì terms are
neglected.

Terms E andQ represent di¡erent degrees of the in£uence of gravity on depth variations of the horizontal stresses due to vertical
strati¢cation of the rheology. E terms refer to the interaction of averaged lithostatic pressure and vertical strati¢cation of viscosity.
Q terms represent corrections of E terms due to density variations (eqs 36 and 37).

Previously, only the terms keij (in the SS, PS and FP approaches), DRi (in the SS approach) and JVz (in the FP approach) were
employed in thin-sheet approximations. All the other terms represent second- and third-order approximations with respect to e.
However, including them allows more realistic solutions because they can play a signi¢cant role in balancing forces.

The coe¤cients (44) illustrate the assumption about the dependence of viscosity on all coordinates since they involve the
derivatives of viscosity with respect to the horizontal coordinates and integration with respect to the vertical coordinate. Possible
non-linearity in creep rheology (e.g. power law creep) can be resolved by iterations during numerical calculations without additional
analytical investigations.

Horizontal stresses are presented in the form of eq. (43) to simplify the averaging of horizontal stresses and their moments in
the thin-sheet force balance in eqs (26) and (27). The form presented in eq. (43) allows averaging by the integration of only the
coe¤cients in eqs (44) (for averaged stresses) or by integrating these coe¤cients multiplied by a centred vertical coordinate zc
(for averaged moments).

The equations of this section were checked using Maple codes created for symbolic derivations on a computer.
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3.2 Closed system of equations for a thin sheet

The system of eqs (26) and (27) together with the expression for the horizontal components of the stress tensor (eq. 43) and the
boundary conditions in eqs (29) and (31) represent the closed system of equations for our extended thin-sheet approximation. There
are three `key' unknown functions for each dimension. This results in nine key unknown functions of (x, y) in total:

(a) kinematic5 Vx(x, y) Vy(x, y) Vz(x, y) ;

(b) dynamic5 Rx(x, y) Ry(x, y) Rz(x, y) ;

(c) dynamic5 Tx(x, y) Ty(x, y) T 'z(x, y) .

(47)

Therefore, at our chosen level of approximation, we can satisfy two boundary conditions on the horizontal boundaries (i.e. all
required) and the depth-averaged force balance, eqs (26)^(27). These three conditions in each direction close the system.

The horizontal derivatives remaining in eqs (26)^(27) allow the depth-averaged lateral boundary conditions to be satis¢ed.

3.3 Operator form of extended thin-sheet approximation equations

After substitution of the horizontal stresses eq. (43), the system of eqs (26)^(27) can be written in operator form:

L4
ij [Vj ]zL3

iz[Vz]zLì
4
ij [Rj ]zLì

3
iz[Rz]zTi~Öi(x, y) ,

L5
zj [Vj ]zL4

zz[Vz]zLì
5
zj [Rj ]zLì

4
zz[Rz]z

L
Lxj

( zcTj )zT 'z~Öz(x, y) .
(48)

The remaining key dynamic functions in eq. (47) can be reconstructed via the partitioning of eqs (28)^(31). The right-hand function
Ö does not depend on any key function. The Ln is the di¡erential operator of order n and is linear with respect to its argument
indicated in square brackets. These operators can be described (for {r, t}~{x, y, z}) as

Ln
rt~

Xn
k~1

Xk
l~1

artkl(x, y)
Lk

LxlLy(k{l) ,

Lì
n
rt~

Xn
k~0

Xk
l~1

brtkl(x, y)
Lk

LxlLy(k{l) .

(49)

Here coe¤cients a and b can be evaluated via substitution of expressions (43) and (44) into the thin-sheet system of eqs (26)^(27) for
plane stress components and collecting relevant terms, e.g.

axx44~{16G��z4F��, bxx44~{4Dì ��� . (50)

The system of eqs (48) can be completed by kinematic conditions such as changes in horizontal and vertical velocities across the
whole thickness of the sheet (from eqs 34 and 2), which in operator form are

oi DS2
S1

~M2
ij [Vj ]zM1

iz[Vz]zMì
2
ij [Rj ]zMì

1
iz[Rz]zÖki(x, y) ,

ozDS2
S1

~M3
zj [Vj ]zM2

zz[Vz]zMì
3
zj [Rj ]zMì

2
zz[Rz]zÖkz(x, y) ,

(51)

where the operators M have a similar form to L in eq. (49) but di¡erent coe¤cients (from eqs 34 and 2).

3.4 Simpli¢ed case of a well-strati¢ed lithosphere

The system (26), (27) and (43) can be simpli¢ed for the case of the well-strati¢ed lithosphere, a situation common in geodynamical
applications involving gravity. Compared to our previous treatment this case is characterized by lateral gradients of density and
viscosity that are so low that they can be neglected, together with variations in the position of the basement S1. These simpli¢cations
result in the disappearance of all coe¤cients (43)^(44) which contain derivations with respect to horizontal coordinates (i.e. only
coe¤cients which have `stars' as indices are recognized as signi¢cant). The reference level w can be de¢ned as £at so that its horizontal
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gradients will fall out of the equations. The system then becomes

Lqij
Lxj

z
Lqjj
Lxi

z
L

Lxi
(RzHzo)zTi~0 , (52)

L2zc . qkj
LxkLxj

z
L2zc . qkk
LxjLxj

z
L2

LxjLxj
(MozzcRz)z

L
Lxj

(zcTj)zT 'z~0 , (53)

qij~2keij{2G��
L

Lxk
Leik
Lxj

z
Lejk
Lxi

� �
z2(F��{2G��)

L2ekk
LxiLxj

{2J�
L2Vz

LxiLxj
zD�

LRi

Lxj
z

LRj

Lxi

� �
{2Dì ���

L3Rk

LxiLxjLxk
{2E�

L2Rz

LxiLxj
, (54)

zcqij~2zckeij{2zcG��
L

Lxk
Leik
Lxj

z
Lejk
Lxi

� �
z2(zcF��{2zcG��)

L2ekk
LxiLxj

{2zcJ�
L2Vz

LxiLxj
zzcD�

LRi

Lxj
z

LRj

Lxi

� �

{2zcDì ���
L3Rk

LxiLxjLxk
{2zcE�

L2Rz

LxiLxj
. (55)

Note that when this simpli¢ed system is applied to the 2-D case, it has the same properties as the full system (26), (27) and (43) with
respect to the linear analyses presented in Medvedev & Podladchikov (1999).

4 BOUNDARY CONDITIONS: SOME EXAMPLES

Let us consider some examples of possible boundary conditions to illustrate the closed nature of our governing equations.
(a) Applying dynamic boundary conditions to both horizontal boundaries results in a system with dynamic terms as knowns

and Vi, Vz as unknowns. The governing system can be represented, analogously to eq. (48), as

L4
ij [Vj ]zL3

iz[Vz]~Ö(a)
i (x, y) ,

L5
zj [Vj ]zL4

zz[Vz]~Ö(a)
z (x, y) .

(56)

Here Ö(a)
i includes the in£uence of known dynamic boundary conditions in addition to the common case Öi from eq. (48). Note

that satisfaction of vertical boundary condition includes the partitioning procedure, therefore Ö(a)
i includes its dependence on

the partitioning coe¤cient az. The velocity ¢eld through the model domain is reconstructed via eq. (34) and the incompressibility
constraint after kinematic integration functions (Vi and Vz) are de¢ned by eqs (56). Boundary movements are de¢ned by eqs (3)^(2).

To illustrate the character of eq. (56), we present its simpli¢cation. As the following equations are derived only for illustration,
most numerical coe¤cients, indices and summations have been dropped. The in£uences of rheological and boundary gradients are
assumed to be insigni¢cant in this crude investigation. The leading terms in the asymptotic treatment in eq. (56) can be presented by
the system

k(!2(Vx)z3!x(div(V ))){J�!2(!x(Vz))~ . . . ,

k(!2(Vy)z3!y(div(V ))){J�!2(!y(Vz))~ . . . ,

4(zck)!2(div(V )){zcJ�!2(!2(Vz))~ . . . ,

(57)

where

!2~
L2

Lx2
z

L2

Ly2

 !

is the Laplacian operator within the horizontal plane,

div(V )~
LVx

Lx
z

LVy

Ly

� �
is the divergence operator within the horizontal plane, and !x~L/Lx is the X projection of the gradient operator. We identify
the system of eqs (57) as a PS-like system by analogy with the governing equations of England & McKenzie (1983). Indeed, for a
single-layer system with constant viscosity, after ignoring the vertical balance and J� terms in the horizontal force balance, the ¢rst
two eqs of (57) becomeX andY projections of eq. (17) of England &McKenzie (1983) for a power-law exponent n~1 (our notation):

!2(Vx)~{3!x(div(V ))z . . . ,

!2(Vy)~{3!y(div(V ))z . . .
(58)

(for details see Medvedev & Podladchikov 1999).
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The di¡erence in our treatment is that we include the in£uence of the vertical velocityVz. This leads to our three-equation system
instead of the two governing equations in the PS model. This di¡erence represents a higher level of approximation because horizontal
projections of velocity can vary with depth.

The choice of w~S1 leads to J�~(e2zck). If the X - and Y -related equations from the system of eqs (57) are di¡erentiated with
respect to x and y respectively, multiplied by (zck) and subtracted from the vertical balance equation multiplied by k, we then obtain
the following equation:

[(zck)
2
{(zc . (zck))] .!2(!2(Vz))~ . . . , (59)

which represents the equation with Vz as an asymptotically leading unknown function. The expression in square brackets illustrates
the signi¢cance of internal rheological distribution.

Consider deformations in a two-layer system caused by a horizontal stress, p, which initiates a constant strain rate throughout
an unperturbed £owing system. We can consider the total horizontal velocity for the 2-D (x, z) case as Vx~V 'x{p . x/(4k), where
V 'x is a small perturbation of mean £ow. If the lower layer is much less viscous and bounded by a compensation level, eq. (59) can
be rewritten after extension by an extra term (referring to variations of averaged viscosity in eqs 57) and after the evaluation of
coe¤cients as

kuh
3
u

3
L5S2

L4xLt
zp

L2S2

L2x
~ . . . . (60)

This represents eq. (6-181) of Turcotte & Schubert (1982) with our notation (index u indicates properties of the upper layer).
See Medvedev & Podladchikov (1999) for a detailed derivation.

(b) Mixed boundary conditions set at horizontal boundaries: kinematic boundary conditions on the lower boundary, S1, and
dynamic boundary conditions on the upper boundary, S2. This case is characterized by setting one dynamic and one kinematic
condition for each dimension. This allows the exclusion of one dynamic key function (eq. 47) for each dimension.Velocities Vi andVy

are the prescribed boundary velocities. The system (26)^(27) reconstructs the unknown dynamic key functions and can be written in
the form of eq. (48):

Lì
4
ij [Rj ]zLì

3
iz[Rz]{Ri~Ö(b)

i (x, y) ,

Lì
5
zj [Rj ]zLì

4
zz[Rz]{

L
Lxj

((S1{w)Rj){
Rz

az
~Ö(b)

z (x, y) .
(61)

Here the Ö(b)
i include the in£uence of known kinematic and dynamic boundary conditions in addition to the common case of Öi

from eq. (48). The velocity ¢eld through the model domain can be reconstructed via eq. (34) together with the incompressibility
constraint after dynamic integration functions (Ri) have been de¢ned by eqs (61). Movements of the boundaries are de¢ned by
eqs (3)^(2).

A simpli¢cation similar to that performed to obtain eq. (57) allows an illustration of governing equations:

{RxzH!x(Rz)~{!x( o )z . . . ,

{RyzH!y(Rz)~{!y( o )z . . . ,

(zcD�)!2(div(R)){
1
az

(Rzzo)~{!2(Mo)z . . . ,

(62)

where the reference surface is chosen as w~S1. This system is similar to that used in the SS approach. The leading terms on the
right-hand sides of eqs (62) are written to emphasize the signi¢cance of gravity.

We follow Ellis et al. (1995) and demonstrate their variation of the SS approach. Consider a system of two layers with constant
densities and viscosities subjected to a prescribed horizontal velocity along the base, Vi(x, y). The upper surface is stress free, the
upper layer viscosity, ku, is much larger than the lower layer viscosity, kb. If we assume the velocity pro¢le suggested in the work cited
(i.e. the upper layer has a velocity pro¢le independent of depth, oi(x, y), while the lower layer has a linear (Couette) velocity pro¢le),
the horizontal dynamic functions up to the leading asymptotic terms can be written as

Ti~{Ri~{
kb

hb
(oi{Vi) ,

qij~2keijzD�
LRi

Lxj
z

LRj

Lxi

� �
z . . . ~kuhu

Loi
Lxj

z
Loj
Lxi

� �
z . . . .

(63)

Here the second equation is obtained by evaluating the coe¤cients in eq. (43) and neglecting insigni¢cant terms due to the
condition kb%ku. By substituting eqs (63) into eqs (61) and extracting the leading terms, the horizontal force balance in the system
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of eqs (62) can be extended, after simpli¢cation of the vertical balance (Rz~{o), to

2
L

Lxi
hu

Loi
Lxi

� �
z

L
Lxj

hu
Loi
Lxj

z
Loj
Lxi

� �� �
{

kb

hbku
(oi{Vi)~

1
ku

L
Lxj

(Ho{o ) . (64)

This represents eq. (13) of Ellis et al. (1995) without corrections due to Airy isostasy on the right-hand side. The full asymptotic
analysis of this model is presented in Medvedev & Podladchikov (1999).

The main di¡erence between the two approaches (ETSA and SS) at the level of simpli¢cation considered is in the vertical force
balance. In contrast to the SS approach, the ETSA recognizes the signi¢cance of gradients in vertical force balance. Substitution of
the ¢rst two eqs of (62) into the vertical balance gives

H(zcD�)!2(!2(Rz)){
1
az

(Rzzo)~!2( o{Mo)z . . . . (65)

(c) Mixed boundary conditions set at horizontal boundaries: kinematic for tangential X and Y projections, and dynamic
boundary conditions for the normal Z projection. This case is characterized by setting two dynamic conditions on the Z direction.
This allows the assignment of vertically oriented dynamic key functions using partitioning eqs (28)^(31). Setting two kinematic
conditions does not allow the de¢nition of two key functions for each horizontal dimension in eq. (47) because two of them are
dynamic and cannot be assigned directly by the kinematic boundary condition. To resolve this problem, the horizontal velocity
pro¢le, eq. (51), is treated as a governing equation and should be solved simultaneously with system equations (26)^(27)
(not sequentially as in cases a and b). The velocities Vi and Vy are prescribed along the boundary S1. The total system can be written
in operator form:

L3
iz[Vz]zLì

4
ij [Rj ]zTi~Ö(c)

i (x, y) ,

L4
zz[Vz]zLì

5
zj [Rj ]z

L
Lxj

(zcTj)~Ö(c)
z (x, y) ,

M1
iz[Vz]zMì

2
ij [Ri]~Ö(c)

ki (x, y) .

(66)

A simpli¢cation similar to that performed to obtain eq. (57) illustrates the character of the governing equations. The kinematic
equation in the system of eqs (66) allows the crude assignment of Ri by boundary tractions. The remaining equations can be
simpli¢ed to

TxzJ�!2(!x(Vz))~ . . . ,

TyzJ�!2(!y(Vz))~ . . . ,

H div(T )zzcJ�!2(!2(Vz))~ . . . ,

(67)

The vertical force balance is then in the form of the bending equation. Substitution of the two ¢rst equations into the vertical
balance gives

(zcJ�{HJ�)!2(!2(Vz))~ . . . . (68)

Ribe (1996) investigated the buoyancy-driven £ow of a hot mantle plume (of thickness S(x) and density o) bounded by a
lithosphere (of thickness b(x) and density o) on level z~{b, and bounded by a stable asthenosphere (with density om) on level
z~{(bzS). Kinematic boundary conditions assume zero horizontal velocities on both boundaries (top and bottom) of the
plume. Neglecting vertical motion of the boundaries renders the crude system of eqs (67) trivial and it is only necessary to specify Rx

in this 2-D case. Airy isostasy (the dynamic vertical boundary condition) gives Rz~om(L{b{S), where L~const refers to a
lithosphere-free isostatic level in the mantle. Substitution of this condition into the kinematic equation in eqs (66) and ignoring
topography gives

Rx~
*oS
2

. L
Lx

(bzS) . (69)

Substitution of the dynamic integration functions into the velocity pro¢le eq. (34) gives the channel £ow in Ribe (1996), expressed as

ox(x, z)~{
*oS
2

(zzbzS)(zzb)
L
Lx

(bzS) , (70)

with the di¡erence in sign resulting from us taking the Z-axis in the opposite direction.
(d) Mixed boundary conditions set at horizontal boundaries: dynamic boundary conditions for tangential X and Y projections,

and all kinematic boundary conditions set for normal Z projection. This case is characterized by setting dynamic conditions in two
horizontal directions, which allows the assignment of horizontally oriented dynamic key functions using eqs (29). Setting two
kinematic conditions on the vertical direction requires integration of the incompressibility condition in the form of eq. (51).Velocity
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Vz is prescribed along the lower boundary. The governing system to de¢ne unknown key functions Vx(x, y), Vy(x, y) and T (1)
z is

L4
ij [Vj ]zL3

iz[Rz]~Ö(d)
i (x, y) ,

L5
zj [Vj ]zL4

zz[Rz]z*T 'z~Ö(d)
z (x, y) ,

M3
zj [Vj ]zMì

2
zz[Rz]~Ö(d)

k (x, y) .

(71)

The simpli¢cation equivalent to that leading to eq. (57) shows the type of governing equations. The vertical force balance assigns the
function T (1)

z . The horizontal force balance and kinematic equations (71) can be presented in the form

k(!2(Vx)z3!x(div(V )))zH!x(Rz)~{!x( o )z . . . ,

k(!2(Vy)z3!y(div(V )))zH!y(Rz)~{!y( o )z . . . ,

H div(V )z(E�k{1)!2(Rz)~{ozDS2
S1

z . . . .

(72)

This system is similar to the 2-D Stokes system of equations for compressible £uids.

5 DISCUSSION AND CONCLUSIONS

5.1 Complications

The asymptotic treatment presented in this paper results in eqs (26)^(27). After substitution of expressions for the horizontal
components of the stress tensor eq. (43) with coe¤cients (44) the system becomes cumbersome, especially in comparison with the
initial equations (5)^(6) and with previous thin-sheet approximations. However, there are several points of note.

First, all kinds of terms in equations were investigated for their necessity. As a result, several insigni¢cant terms were dropped.
By comparison, the bending equation (6-189) in Turcotte & Schubert (1982) refers to the fourth-order derivative of vertical velocity
with respect to the horizontal coordinate. This is the precise derivative of the vertical force balance eq. (27).

Second, this kind of complexity is usual in the high-order asymptotic description of continua.We can refer to thin elastic plate
theory as a close analogue of our investigations based on creep rheology [see Timoshenko & Woinowsky-Krieger (1959) and the
recent paper by VanWees & Cloetingh (1994)].

Third, the long equations do not complicate numerical treatment. For each type of boundary condition, the ETSA results in a
system of 2-D equations which can be solved using standard numerical recipes.

Fourth, the applications of the ETSA to particular problems with speci¢c 3-D geometries and rheological properties simpli¢es
the system, as demonstrated by the example discussed in Section 3.4.

5.2 Vertical force balance

This equation is the main complexity discussed in the previous paragraph. However, the vertical force balance in the form of eq. (27)
preserves the bending moments and allows realistic behaviour, including a description of the characteristic wavelengths developed
by instabilities. This is demonstrated in the accompanying work (Medvedev & Podladchikov 1999) and by previous analyses based on
the full equations (e.g. Ramberg 1970a).

The vertical force balance represents the principal di¡erence between the ETSA and previous generations of thin-sheet
approximations based on the PS and SS models. The simplest schemes were used mainly to described vertical force balance such as
Airy isostasy. The complications of this balance (especially in forms that preserve moments of forces in the equations) were not
recognized as signi¢cant for the description of creep in thin sheets by most previous authors. This conclusion is correct on the level
of generality of previous thin-sheet approximations. However, we present a high-order asymptotic treatment which requires a
high-order asymptotic correction to the simple vertical force balance.

Note that preservation of the bending moments was not a target during derivation of the vertical force balance. Depth
integration in the form of eq. (12) determines the form of the vertical force balance.

5.3 Free parameters

The present form of the ETSA contains two free parameters: the partitioning coe¤cient, az, and a reference surface for calculating
moments, w.

The asymptotic derivation of the ETSA was performed at two levels: the low-level approximation contains the approximate
depth pro¢les of stresses (eqs 13^17), whereas the high level contains the integrated corrections (eqs 27^28). Each level introduces one
integration function per dimension (Ri, Rz on the low level, and Ti, Tz on the high level). The relations between these integration
functions and boundary tractions are not trivial and require redistribution (partitioning) of exact boundary conditions between the
two levels of approximation (eqs 28^31). The analysis showed that the redistribution of vertical projections of boundary tractions can
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be performed up to one free parameter, az (eq. 30). The value of this partitioning coe¤cient is related to the degree to which one of
the boundary conditions on the low level of approximation is satis¢ed (see eqs 30 and 31 and the following discussion). Increasing the
degree of satisfaction for one boundary condition leads to a decrease of that degree for another boundary. Therefore, the choice of
partitioning coe¤cient represents a preferential choice of one of the boundary conditions. However, it is not obvious which
boundary condition should have preference in partitioning in the general case. Hence, this coe¤cient should be de¢ned for problems
with particular geometry, rheology and boundary conditions (see Medvedev & Podladchikov 1999). Note that partitioning of
boundary conditions results in small (*e2) variations in equations and plays a role only if the thin sheet has a highly uneven
distribution of mechanical properties (Medvedev & Podladchikov 1999).

The reference surface of stress moments introduced by eq. (12) introduces another degree of freedom in the ETSA. Simple
algebra shows that the results of the ¢nal system of the thin-sheet force balance (eqs 26^27) are independent of w. However, the
choice of the reference surface, w, can change the form of the vertical force balance (eq. 27). The position of the reference surface can
be chosen to be appropriate for intended applications of the ETSA.

Analytical investigations require simpli¢cation of the equations. The simplest expressions of coe¤cients resulted from the
application of w~S1 (see Medvedev & Podladchikov 1999). This reduces the number of coe¤cients by a factor of about 2. This
simpli¢cation becomes even more signi¢cant if the basement is considered to be stable (S1~const).

Another type of simpli¢cation is similar to that used in thin elastic plate models (Kooi & Cloetingh 1992). The reference surface
is chosen so as to eliminate intraplate stress moments from the bending equation. An application to our model results in the leading
terms of X-related key functions vanishing by choosing w so that coe¤cient zck or zcD is equal to 0. If, in addition, the high-order
derivative terms were neglected, the governing system would separate into independent equations. Eq. (26) then describes unknown
functions related to the horizontal plane, while eq. (27) de¢nes Z-related unknowns.We did not investigate the details of this kind of
simpli¢cation, but suspect that it can restrict descriptions of the evolution of instabilities.

For the purpose of numerical treatment, the system of governing equations can be simpli¢ed by choosing the position of the
reference surface to reduce the singular (&1) terms (coe¤cients). These terms can appear if a viscosity contrast is essential to
the study of layered systems.

Another approach is suggested by asymptotic theory (Nayfen 1981) and requires the choice of w by dropping the highest-order
derivative of unknown functions in the vertical force balance. After presenting the equations in operator form as eqs (48)^(50), this
requires w to be a solution of equations of the type

azx5j~0 or azx5j~0 . (73)

This simpli¢es the numerical treatment and makes the asymptotic treatment more balanced.

5.4 Internal strati¢cation

In contrast with previous approaches and full solutions, there is no necessity to specify internal boundary conditions. The continuity
of stresses and velocities across internal (rheological) boundaries comes automatically as part of the uni¢ed technique presented
by the ETSA. This allows a simple description of complicated layered models. The only complication is the evaluation of
coe¤cients (44). Even for the case in which viscosity depends on unknown functions (e.g. power law rheology) the same equations
can be investigated numerically by adding iteration procedures.

5.5 Rheology variations

Although creep rheology was applied in this work, other rheologies can be used with the ETSA, but this is beyond the scope of this
paper. Applications to a viscoelastic rheology are sketched here merely to demonstrate the potential of the ETSA.

The force balance presented in Section 3 does not depend on rheology, hence changes are required only to the equations in
Section 4. Assuming incompressibility, rheological relations eqs (32) can be changed for a Maxwell viscoelastic material to

qij
k

z
1
!

L
Lt

(qij)~
Loi
Lxj

z
Loj
Lxi

,
qzz
k

z
1
!

L
Lt

(qzz)~
Loz
Lz

,
qiz
k

z
1
!

L
Lt

(qiz)~
Loz
Lxi

ze{2 Loi
Lz

(74)

(after Turcotte & Schubert 1982) for fi, jg~fx, yg. Here !(x, y, z) is the elastic shear modulus. The ¢nite di¡erence discretization of
time derivatives gives

L
Lt

(qkl)~
1
*t

(qkl{qoldkl ) . (75)

Here qoldkl is the value of stress from the previous time step and *t is the iteration step. Hence the depth pro¢le of the horizontal
velocity, eq. (34), can be corrected for a viscoelastic rheology by changing viscosity, k, to keff~[k{1z(!*t){1]{1 and adding an

ß 1999 RAS,GJI 136, 567^585

583Extended thin-sheet approximationöI



extra term referring to qoldkl :

ovei ~o(34)i Dk?keff
{

1
*t

�z
S1

qoldiz

!
dz' . (76)

Here index ve denotes application of the viscoelastic rheology. Changes in the expression for the horizontal stresses, eq. (41), refer to
the new de¢nition of horizontal velocities, eq. (76), and the new de¢nition of current stress (from eqs 74 and 75):

qveij ~keff
Lovei
Lxj

z
Lovej
Lxi

� �
zgeffq

old
ij , (77)

where fi, jg~fx, yg and geff~(1z*t . !/k){1. The corrections of eq. (43) can be described by

qveij ~q(43)ij Dk?keff
{

keff

*t
L

Lxj

�z
S1

qoldiz

!
dz'

 !
z

L
Lxi

�z
S1

qoldjz

!
dz'

 !" #
zgeffq

old
ij . (78)

The corrections presented in eqs (76) and (78) refer to the rheological parameter ! and the stress tensor qold known from the previous
time step. Hence the introduction of this rheology does not require fundamental changes in the general treatment of the ETSA.

5.6 The ETSA versus previous techniques

Existing techniques for modelling 3-D lithospheric structures are direct 3-D numerical treatments and di¡erent types of thin-sheet
approximations. The results of direct 3-D calculations demonstrate their great potential (e.g. Braun 1993; Braun & Beaumont 1995).
However, the very complex numerical techniques and the need for very powerful computing equipment limits this method.
The simplicity of the previous generation of thin-sheet approximations allowed simple explanations for a wide variety of litho-
spheric deformations [England & Jackson (1989), Bird (1989) and Royden (1996) are among a long list of successful applications of
thin-sheet models]. However, the simplicity of thin-sheet approximations to date restricts their use.

We have presented a new, extended thin-sheet approximation, with the aim of combining the advantages of existent techniques
and broadening their applications. The 2-D system of equations presented here does not increase the systems governing the previous
generation of thin-sheet approaches in any fundamental way. On the other hand, the equations developed here can handle all likely
boundary conditions and increase the accuracy of applications over a wide range.

The crude derivations of the equations governing previous approaches (Section 4) show that the ETSA represents the general
approach and that most previous thin-sheet approaches can be derived by simpli¢cations of our new approach taking account of
their speci¢c boundary conditions.

ACKNOWLEDGMENTS

Prof. C. J. Talbot is thanked for initiating and encouraging this work and improving its structure and presentation. The
authors thank D. McKenzie, H. Zeyen, A. Poliakov, D. Yuen and two anonymous reviewers for helpful discussions and
suggestions that improved the manuscript. This work was supported by an Uppsala University PhD Fellowship to SM.

REFERENCES
Aouvac, J.P. & Burov, E.B., 1996. Erosion as a driving mechanism

of intracontinental mountain growth, J. geophys. Res., 101,
17 747^17 769.

Artyushkov, E.V., 1973. Stress in the lithosphere caused by crustal
thickness inhomogeneities, J. geophys. Res., 78, 7675^7708.

Artyushkov, E.V., 1974. Can the Earth's crust be in a state of isostasy?,
J. geophys. Res., 79, 741^752.

Biot, M.A., 1961, Theory of folding of strati¢ed viscoelastic media and
its implications in tectonics and orogenesis, Geol. Soc. Am. Bull.,
72, 1595^1620.

Bird, P., 1989. New ¢nite element techniques for modelling
deformation histories of continents with strati¢ed temperature-
dependent rheology, J. geophys. Res., 94, 3967^3990.

Bird, P., 1991. Lateral extrusion of lower crust from under high topo-
graphy, in the isostatic limit, J. geophys. Res., 96, 10 275^10 286.

Bird, P. & X. Kong, 1994. Computer simulations of California
tectonics con¢rm very low strength of major faults, Geol. Soc. Am.
Bull., 106, 159^174.

Braun, J., 1993. Three dimensional numerical modeling of com-
pressional orogenies; thrust geometry and oblique convergence,
Geology, 21, 153^156.

Braun, J. & Beaumont, C., 1995. Three dimensional numerical
experiments of strain partitioning at oblique plate boundaries:
implications for contrasting tectonic styles in the southern Coast
Ranges, California, and central South Island, New Zealand,
J. geophys. Res., 100, 18 059^18 074.

Buck, W.R., 1991. Modes of continental lithospheric extension,
J. geophys. Res., 96, 20 161^20 178.

Buck, W.R. & Sokoutis, D., 1994. Analogue model of gravitational
collapse and surface extension during continental convergence,
Nature, 369, 737^740.

Burov, E.B. & Diament, M., 1992. Flexure of the continental litho-
sphere with multilayered rheology, Geophys. J. Int., 109, 449^468.

Burov, E.B. & Diament, M., 1995. The e¡ective elastic thickness (Te) of
continental lithosphere: what does it really mean?, J. geophys. Res.,
100, 3905^3927.

Cloetingh, S. & Burov, B., 1996. Thermomechanical structure of
European continental lithosphere: constraints from rheological
pro¢les and EET estimates, Geophys. J. Int., 124, 695^723.

De Bremaecker, J.-C., 1977. Is the oceanic lithosphere elastic or
viscous?, J. geophys. Res., 82, 2001^2004.

Dubois, J., Launay, J., Recy, J. & Marshall, J., 1977. New Hebrides
trench: subduction rate from associated lithospheric bulge, Can. J.
Earth Sci., 14, 250^255.

ß 1999 RAS, GJI 136, 567^585

584 S. E. Medvedev and Yu. Yu. Podladchikov



Ellis, S., Fullsack, P. & Beaumont, C., 1995. Oblique convergence of
the crust driven by basal forcing: implication for length-scales of
deformation and strain partitioning in orogens, Geophys. J. Int.,
120, 24^44.

England, P., 1983. Constraints on extension of continental lithosphere,
J. geophys. Res., 88, 1145^1152.

England, P. & Jackson, J., 1989. Active deformation of the continents,
Ann. Rev. Earth. planet. Sci., 17, 197^226.

England, P. & Houseman, G., 1986. Finite strain calculations of
continental deformation, 2, Comparison with the India-Asia
collision zone, J. geophys. Res., 91, 3664^3676.

England, P. & McKenzie, D., 1982. A thin viscous sheet model for
continental deformation, Geophys. J. R. astr. Soc., 70, 295^321.

England, P. & McKenzie, D., 1983. Correction to: a thin viscous sheet
model for continental deformation, Geophys. J. R. Astr. Soc., 73,
523^532.

England, P., Houseman, G. & Sonder, L.J., 1985. Length scales for
continental deformations in convergent, divergent, and strike-slip
environments: Analytical and approximate solutions for a thin
viscous sheet model, J. geophys. Res., 90, 3551^3557.

Fletcher, R.S., 1977. The shape of single layer folds at small but ¢nite
amplitude, Tectonophysics, 39, 593^606.

Fowler, A.C., 1993. Boundary layer theory and subduction, J. geophys.
Res., 98, 21997^22 005.

Houseman, G. & England, P., 1986. Finite strain calculations of con-
tinental deformation. 1. Method and general results for convergent
zones, J. geophys. Res., 91, 3651^3663.

Houseman, G. & England, P., 1993. Crustal thickening versus lateral
expulsion in the Indian-Asian continental collision, J. geophys.
Res., 98, 12 233^12 249.

Huppert, H.E., 1982. The propagation of two-dimensional and
axisymmetric viscous gravity current over a rigid horizontal surface,
J. Fluid Mech., 121, 43^58.

Huppert, H.E., Shepard, J.B., Sigurtsson, H. & Sparks, R.S.J.,
1982. On lava dome growth, with application to the 1979 lava
extrusion of the Soufriere of St.Vincent, J.Volc. Geotherm. Res., 14,
199^222.

Jones, C.H., Unrih, J.R. & Sonder, L.J., 1996. The role of gravitational
potential energy in active deformation in the southwestern United
States, Nature, 381, 37^41.

Karner, G. & Watts, A.B., 1983. Gravity anomalies and £exure of the
lithosphere at mountain ranges, J. geophys. Res., 88, 10 449^10 477.

Kaufman, P.S. & Royden, L.H., 1994. Lower crustal £ow in exten-
sional settings: constraints from the Halloran Hills region, eastern
Mojave Desert, California, J. geophys. Res., 99, 15 723^15 739.

Kooi, H. & Cloetingh, S., 1992. Lithospheric necking and regional
isostasy at extensional basins 2. Stress-induced vertical motions and
relative sea level changes, J. geophys. Res., 97, 17 573^17 591.

Lobkovsky, L.I. & Kerchman, V.I., 1991. A two-level concept of
plate tectonics: application to geodynamics, Tectonophysics, 199,
343^374.

Lyon-Caen, H. & Molnar, P., 1983. Gravity anomalies of the southern
Tibet basin, Geophys. Res. Lett., 11, 1251^1254.

McKenzie, D., Ford, P.G., Lui, F. & Pettengil, G.H., 1992. Pancake-
like domes on Venus, J. geophys. Res., 97, 15 967^15 976.

McNutt, M., Diament, M. & Kogan, M.G., 1988.Variations of elastic
plate thickness at continental thrust belts, J. geophys. Res., 93,
8825^8838.

Medvedev S.E., 1993. Computer simulation of sedimentary cover
evolution, in Computerized Basin Analysis: the Prognosis of Energy
and Mineral Resources, pp. 1^10, eds Har¡, J. & Merriam, D.F.,
Plenum, New York.

Medvedev S.E. & Podladchikov, Yu.Yu., 1999. New extended
thin-sheet approximation for geodynamic applicationsöII. Two-
dimensional examples, Geophys. J. Int., 136, 586^608 (this issue).

Mikhailov,V.O., Myasnikov,V.P. & Timoshkina, E.P., 1996. Dynamics
of the upper cover of the Earth evolution caused by extension or
compression, Phys. Solid Earth, 6, 30^37 (in Russian).

Miyamoto, H. & Sasaki, S., 1997. Simulating lava £ows by an improved
cellular automata method, Computer Geosci., 23, 183^292.

Myasnikov, V.P., Mikhailov, V.O. & Timoshkina, E.P., 1993.
Interaction of mantle and rheologically layered upper cover of
the Earth, Dok. Akad. Nauk, Phys. Solid Earth, 330, 771^773
(in Russian).

Nayfen, A.H., 1981. Introduction to Perturbation Techniques, Willey,
New York.

Ramberg, H., 1970a. Folding of laterally compressed multilayers in the
¢eld of gravity, 1, Phys. Earth planet. Interiors., 2, 203^232.

Ramberg, H., 1970b. Folding of laterally compressed multilayers in the
¢eld of gravity, 2, Numerical examples, Phys. Earth planet. Inter., 4,
83^120.

Ranalli, G., 1994. Nonlinear £exure and equivalent mechanical
thickness of the lithosphere, Tectonophysics, 240, 107^114.

Ribe, N.M., 1996. The dynamics of plume-ridge interaction 2.
O¡-ridge plumes, J. geophys. Res., 101, 16 195^16 204.

Royden, L., 1996. Coupling and decoupling of crust and mantle in
convergent orogens: implications for strain partitioning in the crust,
J. geophys. Res., 101, 17 679^17 705.

Schlichting, G., 1968. Boundary Layer Theory, McGraw-Hill, New
York.

Sleep, N.H., 1996. Lateral £ow of hot plume material ponded at
sublithospheric depths, J. geophys. Res., 101, 28 065^28 083.

Sleep, N.H., 1997. Lateral £ow and ponding of starting plumematerial,
J. geophys. Res., 101, 10 001^10 012.

Smith, R.B., 1975. Uni¢ed theory of the onset of folding, boudinage
and mullion structure, Geol. Soc. Am. Bull., 86, 1601^1609.

Sobouti, F. & Arkani-Hamed, J., 1996. Numerical modelling of
the deformation of the Iranian Plateau, Geophys. J. Int., 126,
805^818.

Sonder, L.J. & England, P., 1986. Vertical averages of rheology of the
continental lithosphere: relation to thin sheet parameters, Earth
planet. Sci. Lett., 77, 81^90.

Sonder, L.J., England, P. & Houseman, G.A., 1986. Continuum
calculations of continental deformation in transcurrent environ-
ments, J. geophys. Res., 91, 4797^4810.

Talbot, C.J., Medvedev, S., Alavi, M., Shahrivar, H. & Heidari, E,
1998. Salt extrusion rates at Kuh-e-Jahani, Iran: June 1994 to
November 1996, in preparation.

Timoshenko, S.P. &Woinowsky-Krieger, S., 1959.Theory of Plates and
Shells, McGraw-Hill, New York.

Turcotte, D.L. & Schubert, G., 1982. Geodynamics ^ Applications
of Continuum Physics to Geological Problems, John Willey,
New York.

Van Wees, J.D. & Cloetingh, S., 1994. A ¢nite-di¡erence technique to
incorporate spatial variations in rigidity and planar faults into 3-D
models for lithospheric £exure, Tectonophysics, 266, 343^360.

Vilotte, J.P., Daigniers, M. & Madariaga, R., 1982. Numerical
modelling of interplate deformation: simple mechanical models of
continental collision, J. geophys. Res., 87, 10 709^10 728.

Vilotte, J.P., Madariaga, R., Daigniers, M. & Zienkiewicz, O., 1986.
Numerical study of continental collision: in£uence of buoyancy
forces and an initial sti¡ inclusion, Geophys. J. R. astr. Soc., 84,
279^310.

Westaway, R., 1993. Forces associated with mantle plumes, Earth
planet. Sci. Lett., 119, 331^348.

Zanemonetz, V.B., Kotyolkin, V.D. & Myasnikov, V.P., 1974. The
dynamics of lithospheric motion, Phys. Solid Earth, 10, 306^311.

Zanemonetz, V.B., Mikhailov, V.O. & Myasnikov, V.P., 1976.
Mechanical model of block folding formation, Phys. Solid Earth,
12, 631^635.

ß 1999 RAS,GJI 136, 567^585

585Extended thin-sheet approximationöI


