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ABSTRACT

For the next generation of radio interferometric telescopes it is of paramount importance to
incorporate wide field-of-view (WFOV) considerations in interferometric imaging, otherwise
the fidelity of reconstructed images will suffer greatly. We extend compressed sensing tech-
niques for interferometric imaging to a WFOV and recover images in the spherical coordinate
space in which they naturally live, eliminating any distorting projection. The effectiveness of
the spread spectrum phenomenon, highlighted recently by one of the authors, is enhanced when
going to a WFOV, while sparsity is promoted by recovering images directly on the sphere.
Both of these properties act to improve the quality of reconstructed interferometric images. We
quantify the performance of compressed sensing reconstruction techniques through simula-
tions, highlighting the superior reconstruction quality achieved by recovering interferometric

images directly on the sphere rather than the plane.
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1 INTRODUCTION

Incorporating wide field-of-view (WFOV) contributions in the im-
ages reconstructed from radio interferometric observations is be-
coming increasingly important. Next generation radio interfer-
ometers, such as the Square Kilometre Array' (SKA; Carilli &
Rawlings 2004), will inherently observe very large fields of view
about the pointing direction of the telescope. Wide fields intro-
duce two important distinctions to standard interferometric imag-
ing: first, interferometric images are inherently spherical and planar
projections necessarily introduce distortions; and, secondly, non-
zero baseline components in the pointing direction of the telescope
must be taken into account. If these contributions are ignored, the
fidelity of reconstructed images will suffer greatly.

WFOV contributions have been considered by McEwen & Scaife
(2008) in simulating the visibilities observed by an interferometer.
Full-sky interferometric formalisms were derived using a number
of different signal representations, including representations in real,
spherical harmonic and wavelet spaces. Real and spherical harmonic
space representations were shown to be numerically infeasible for
simulating realistic observations, while a fast wavelet space method
was developed, reducing the computational cost considerably and
rendering realistic simulations feasible. However, the forward prob-
lem only was considered in this work. Very recently Carozzi &
Woan (2009) developed a generalized radio interferometric mea-
surement equation that is valid for partially polarized sources over
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a WFOV, however, this framework has not yet been applied in prac-
tice. The inverse WFOV imaging problem has traditionally been
tackled by faceting the sky into a number of regions which are suffi-
ciently small that standard Fourier imaging is possible (Cornwell &
Perley 1992). More recently, the w-projection algorithm has been
developed by Cornwell, Golap & Bhatnagar (2008) to incorporate
WFOV contributions by applying the modulating so-called w-term
that appears in the interferometric integral as a convolution in the
Fourier plane. This provides an order of magnitude speed enhance-
ment over traditional facet-based approaches. Nevertheless, both of
these methods recover planar images in the space of directional
cosines; this necessarily distorts the image. None of the current
methods recovers images in the spherical coordinate space in which
they live. In this paper we recover spherical interferometric images
parametrized by colatitude and longitude on the celestial sphere.
By recovering images defined directly on the sphere, and thereby
eliminating the distortion due to a projection to the plane, the per-
formance of reconstruction is enhanced. We develop reconstruction
algorithms in the context of the theory of compressed sensing.
Compressed sensing (Candes 2006; Candes, Romberg & Tao
2006a,b; Donoho 2006; Baraniuk 2007) is a recent development
in the field of information theory, which goes beyond the usual
Nyquist—Shannon sampling theorem. It relies on the fact than many
signals in nature are sparse (or approximately so) and may be
represented in a basis requiring many fewer non-zero coefficients
than the dimensionality of the signal itself. Compressed sensing
theory shows that a sparse signal may be recovered from many
fewer measurements than Nyquist—-Shannon sampling would sug-
gest and thus aims to merge data acquisition and compression. These
results also hold for signals that are approximately sparse only
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(i.e. signals which contain many coefficients of small but non-zero
value), so-called compressible signals.

The first application of compressed sensing to radio interferom-
etry was performed by Wiaux et al. (2009a), where the problem
of image reconstruction from incomplete visibility measurements
was considered. Wiaux et al. (2009a) demonstrated the versatility
of the approach, through the ability to incorporate additional signal
priors easily, and its superiority relative to standard interferomet-
ric imaging techniques, such as cLEan (Hogbom 1974). The spread
spectrum phenomenon, which arises by partially relaxing the small
field-of-view (FOV) assumption and including a first order w-term,
was introduced by Wiaux et al. (2009b), enhancing the performance
of image reconstruction for sparsity bases that are not maximally
incoherent with the measurement basis (see Section 2.2 for a review
of sparsity and measurement bases and their coherence). Further-
more, a compressed sensing based approach was developed and
evaluated by Wiaux, Puy & Vandergheynst (2010) to recover the
signal induced by cosmic strings in the cosmic microwave back-
ground, exploiting the sparse nature of line-like discontinuities due
to the string signal. All of these works consider uniformly random
and discrete visibility coverage in order to remain as close to the
theory of compressed sensing as possible. First steps towards more
realistic visibility coverages have been taken by Suksmono (2009)
and Wenger et al. (2010), who consider coverages due to specific
interferometer configurations but which remain discrete. These pre-
liminary works suggest that the performance of compressed sensing
reconstructions is unlikely to deteriorate significantly for more re-
alistic visibility coverages.

In this paper we generalize the compressed sensing imaging tech-
niques developed by Wiaux et al. (2009a,b) to a WFOV. To do so
we recover interferometric images defined directly on the sphere,
rather than a tangent plane. Recovering images in the space in which
the signal naturally lives eliminates any distortion due to projection.
Furthermore, projection effects also act to hamper the sparsity of
the signal (i.e. act to make it less sparse), impeding the performance
of compressed sensing based reconstruction. To remain close to the
theoretical compressed sensing framework we follow Wiaux et al.
(2009a,b) by considering uniformly random and discrete planar
visibility coverage. We also assume non-zero but constant baseline
components in the pointing direction of the telescope (i.e. non-zero
but constant w, where w is defined explicitly in Section 2.1), in
order to study the enhancement of reconstruction quality due to
the spread spectrum phenomenon. This assumption allows us to
discard considerations related to specific interferometer configura-
tions and to study the impact of the spread spectrum phenomenon
at light computational load. As we shall see, the effectiveness of
the spread spectrum phenomenon is improved in the WFOV setting
considered. Because of all of these considerations, the quality of
reconstruction on the sphere is enhanced considerably relative to
planar reconstructions.

The remainder of this paper is structured as follows. In Sec-
tion 2 we review radio interferometric imaging in the context of
compressed sensing. In Section 3 we generalize these techniques
to a WFOV. Simulations are presented in Section 4 to evaluate
the performance of the compressed sensing based reconstruction of
spherical images compared to planar images. Concluding remarks
are made in Section 5.

2 PLANAR INTERFEROMETRIC IMAGING

In this section we review radio interferometric imaging in the con-
text of compressed sensing. Radio interferometry is reviewed in the
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WFOV setting, before small FOV assumptions are discussed ex-
plicitly. A brief review of compressed sensing is given, highlighting
various reconstruction techniques and the importance of sparsity
and coherence on reconstruction performance. Finally, these frame-
works are merged and compressed sensing techniques for radio
interferometric imaging are discussed.

2.1 Radio interferometry

In order to image a region on the sky, all radio telescopes of an in-
terferometric array are oriented towards the same pointing direction
8¢ on the unit celestial sphere S?. The FOV observed by the interfer-
ometer is limited by the primary beam of the telescope A(t), where
the beam is defined relative to the pointing direction, i.e. T = § —§,
for arbitrary directions §. The sky intensity to be imaged x(t) is
defined in the same coordinates. The complex visibility measured
by each telescope pair of the interferometer is given by (Thompson
et al. 2001)

(b) = / A(r) x(2) e 2™ 4Q(), )
SZ

where dQ2(§) = sin6 dO dy is the usual rotation invariant measure
on the sphere and (0, ¢) denote the spherical coordinates of §, with
colatitude 6 € [0, 7t] and longitude ¢ € [0, 27r). The measured
visibility depends only on the relative positions between telescope
pairs, denoted in units of wavelengths by the baseline vector b = (u,
v, w). As the Earth rotates relative to the celestial sphere the inter-
ferometer tracks the source position as it traverses the sky, with each
position corresponding to a rotation of the baseline. In this manner,
visibility measurements are accumulated for various baselines, with
each antenna pair generating an elliptical track of baseline values
over the course of the observation. Visibility coverage is therefore
incomplete.

The beam and sky intensity are typically expressed in the same
Cartesian coordinate system as the baseline, which is centred on
the Earth and aligned with §¢. Consider the coordinates (I, m, n) of
§ in this system, noting n = n(l) = (1 — [|I]3)"/* with I = (I, m)
and [|/||3 = I> + m?. The primary beam and sky intensity may then
be seen as functions of /. Following this change of coordinates the
visibility integral of (1) reads

@
n(l)’

where u = (4, w) and we have noted that T = (I, n(l) — 1).
Through the change of coordinates the invariant measure on the
sphere becomes dQ(§) = n~'(I)d*l, where d®l =dldm is the
canonical invariant measure on the plane, and the integration is
now performed over the unit disc D?. Note that (2) remains general
and does not rely on any small FOV assumption. However, the
directional cosines I = (/, m) express a projection on to the equatorial
plane of the signal, which is inherently defined on the celestial
sphere. This projection is trivial in the continuous setting but will
become important once we reach the discrete setting required for
interferometric imaging.

Often small FOV assumptions are made, in which case it is con-
venient to represent the so-called w-term

y(u’ w) — /2 A(l) )C(l) efi27t[u-l+w(n(l)fl)] (2)
JD

C(|]) = e2ma-~/1-I1D) )
explicitly, from which it follows
d

yu, w) = / A x() C(I1]]2) e 2™ —. 4)
D? n(l)



1320 J. D. McEwen and Y. Wiaux

Two types of approximation regarding small FOVs are used to
relate (4) to the Fourier transform of the beam-modulated inten-
sity A()x(1). First, the assumption [[I||3 < 1 implies n(l) ~ 1,
so that the Jacobian term n~!' (I) is reduced to unity. Alterna-
tively, n=' (I) may be absorbed into the beam. Secondly, vari-
ous assumptions are made to approximate the w-term. A zeroth-
order approximation of the w-term is made by assuming ||/]|3 w
< 1, so that C(||Z||2) ~ 1. When incorporating both approxima-
tions, (4) reduces to the Fourier transform and standard Fourier
imaging may be used to recover images from measured visibili-
ties. Alternatively, a first-order approximation ||/ ||§ w <K 1 reduces
the w-term to C(|[I]|,) =~ ™I = C,(||I||,). This assumption
gives rise to the linear chirp modulation responsible for the spread
spectrum phenomenon (Wiaux et al. 2009b). Although not consid-
ered here, direction-dependent beam effects may also introduce a
phase modulation, which would provide an alternative source of the
spread spectrum phenomenon. Since we intend to consider WFOVs,
no small FOV assumptions will be made herein; we include the
Jacobian term n~!'() and consider the full w-term given by (3).

2.2 Compressed sensing

Compressed sensing (Candes 2006; Candes et al. 2006a,b; Donoho
2006; Baraniuk 2007) is concerned with the recovery of sparse or
compressible signals from a small number of measurements. The
signal to be recovered is defined by its Nyquist-Shannon sampling,
denoted by the vector x € CV, and is assumed to be sparse in some
orthogonal basis {¥;}<i<y, where ¥; € CV Vi. The signal may
then be represented by its coefficients @ € CV in this basis: x = Ve,
where ¥ € CV*V isthe N x N matrix with columns ¥ ;. Formally, x
is said to be sparse or compressible if &« contains K << N non-zero or
significant elements, respectively. Hereafter, we refer to enhancing
(hampering) sparsity as synonymous with decreasing (increasing)
the sparsity value K. Measurement of x is assumed to be made
by the projection on to measurement basis vectors {@, }1<,<uy, for
M measurements, belonging to an orthogonal sensing basis where
¢, € CV Vr. This is a very flexible framework which allows a
wide range of acquisition procedures to be modelled. The vector of
measurements y € CY may then be expressed by

y=&&x+n=>oVa +n, (®)]

where ® € CM*VN is the M x N matrix with rows ¢, and n €
CM represents noise. Compressed sensing suggests that x can be
recovered with a number of measurements M ~ K < N. However,
recovering x in this setting involves solving the inverse problem
(5), which becomes ill-posed for M < N.

Compressed sensing techniques are generally based on global
minimization problems, which are solved by greedy algorithms or
convex non-linear optimization algorithms. The ill-posed inverse
problem described above can be defined by a constrained optimiza-
tion problem explicitly regularized by a sparsity or compressibility
prior. This results in the basis pursuit (BP) denoizing problem,?
which consists of minimizing the ¢;-norm of the coefficients of the
signal in the sparsity basis |le|; under a constraint on the ¢;-norm
of the residual noise |y — ® Vea|,:

min ||«||; suchthat ||y — dVe|, <e. (6)
o

Recall that the ¢;-norm is simply given by the sum of the absolute
values of the elements of a vector ||| = ZlN:l |et; |, whereas the

2 In the absence of noise the problem is simply called BP.

£,-norm is the standard norm defined previously. The constraint €
may be related to a residual noise level estimator. Assuming in-
dependent identically distributed Gaussian noise, a residual noise
level estimator is given by twice the negative logarithm of the like-
lihood associated with the candidate reconstruction, which follows
a y2-distribution with 2M degrees of freedom. The measurement
constraint € may then be chosen to correspond to some (100p)th per-
centile of the x2-distribution, for 0 < p < 1 (Wiaux et al. 2009a).
The BP problem may be solved by the application of non-linear,
iterative convex optimization algorithms (e.g. Combettes & Pesquet
2007). If the solution of the optimization problem is denoted a*,
then the signal is reconstructed through the synthesis x*#* = Wa*.

The BP denoizing problem is appropriate for signals sparse or
compressible in a given basis. However, many signals in nature are
also sparse or compressible in the magnitude of their gradient, in
which case the total variation (TV) minimization problem applies
(Candes et al. 2006a). The TV problem involves replacing the ¢;-
norm sparsity prior in the BP problem with a prior on the TV norm
of the signal itself:

min ||x |ty such that |y — ®x|l> <e, (M
X

where the TV norm is defined by the ¢;-norm of the gradient
of the signal ||x|ltv = ||Vx|; (Rudin, Osher & Fatemi 1992;
Chambolle 2004). The TV problem may also be solved by the
application of non-linear, iterative convex optimization algorithms
(e.g. Chambolle 2004; Durand, Fadili & Nikolova 2010). The signal
is directly recovered from the solution to the optimization problem,
denoted x*TV.

Finally, we review the two fundamental criteria that drive the
performance of compressed sensing reconstructions. The first has
already been central to our discussion of compressed sensing: spar-
sity. The more sparse a signal the fewer measurements required to
recover it, or similarly, the better the reconstruction quality for a
given number of measurements. In addition, the matrix ® = dW¥
must satisty the restricted isometry property (RIP; Candes 2006;
Candes et al. 2006a,b) to ensure accurate recovery. It has been
shown that this property can be satisfied by acquiring random mea-
surements (i.e. random visibility coverage in the terminology of in-
terferometry), if the measurement and sparsity bases are incoherent.
Coherence is therefore the second criterion driving reconstruction
performance; as the coherence between the two bases increases, the
reconstruction performance degrades. Incoherence ensures that the
rows of & cannot sparsely represent the columns of W, ensuring
that signal content is sufficiently probed by random measurements.
Note that coherence is only defined strictly in the presence of a
sparsity basis, hence it cannot be studied for the TV problem (nev-
ertheless, approximate coherence arguments may still be made in
this setting to gain intuition). The mutual coherence between the
measurement and sparsity bases is defined by the maximum ab-
solute inner product of all combinations of their normalized basis
vectors:

(@, W) = max| (g, 1),

with the incoherence given by the reciprocal 1! (®, W). Note that
the Dirac and Fourier bases are maximally incoherent. The number
of measurements required to satisfy the RIP and ensure accurate
recovery satisfies the bound

M > cK u*(®, ¥)N log* N

for some constant ¢ (note that the bound is not tight). Although
useful for theoretical and intuitive considerations, the mutual co-
herence is a blunt numerical instrument as it captures only the most
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extreme inner product between the measurement and sparsity bases
(Tropp 2004). An alternative measure of coherence is given by the
cumulative coherence (Romberg 2009):
1/2

2

w(@, 1) = max [ 3|6, )]
iel

where I' represents the set of all sparsity basis vectors that con-
tribute to the signal of interest. The cumulative coherence is there-
fore signal dependent and incorporates sparsity information, which
renders it more robust than mutual coherence to departures from
the pure compressed sensing framework. The number of measure-
ments required for signal recovery may also be expressed in terms
of cumulative coherence and can be shown to evolve as (Romberg
2009; Rauhut 2010)

M ~v¥(®, ¥, T)N. ®)
2.3 Interferometric imaging

We express the interferometric framework discussed in Section 2.1
in a discrete setting which is amenable to the compressed sensing
reconstruction techniques discussed in Section 2.2, following the
approach taken by Wiaux et al. (2009a,b) previously. Although we
consider WFOV considerations we restrict ourselves to baselines
with constant w, thus restricting visibilities to a Fourier plane.? In
reality, w will vary and the impact of the spread spectrum phe-
nomenon will lie somewhere between the extreme cases that we
consider here. Nevertheless, this assumption allows us to probe
the expected impact of the spread spectrum phenomenon at light
computational load and to discard considerations related to specific
interferometer configurations. Considering the signal projected on
to the equatorial plane, we consider the I = (/, m) coordinate system
discretized on a uniform grid of N = N'/2 x N'/2 points I; € R? in
real space, with integer 1 < i < N, and the corresponding grid of
discrete spatial frequencies u; defined by Nyquist—-Shannon sam-
pling. The band-limited intensity and primary beam functions are
defined on the spatial grid and denoted by x, A € CV, respectively.
The complex w-term is also defined on this grid C € CV. Since the
w-term is complex, the Fourier transform of C(||Z]|2)A() x(I) does
not bear any specific symmetry in the Fourier plane, even for a real
beam and real source intensity. Following Wiaux et al. (2009a,b),
we assume that the spatial frequencies u probed by the interferome-
ter fall on the discrete grid points ;. The Fourier coverage provided
by the M spatial frequencies probed u,, with integer 1 < r <M, can
be identified by a binary mask in the Fourier plane equal to unity for
each spatial frequency probed and zero otherwise.* The visibilities
measured are denoted by the vector y € C¥, which may be affected
by complex noise n € CM.

The visibility integral (4) may be represented in this discrete
setting by the linear system

y=Qpx, +n, )
with
®,=WMFCA,

3 The w-projection algorithm (Cornwell et al. 2008) could be applied in fu-
ture to remove this restriction, although the extension of the spread spectrum
phenomenon to a varying w would need to be studied extensively.

4 Conventional gridding (Thompson et al. 2001) of the visibilities measured
at continuous spatial frequencies would result in a mask with non-binary
weights, which could be incorporated easily in the framework described
here.
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where Gaussian noise and a whitening operator have also been
included. The measurement matrix ®, € C**¥ identifies the com-
plete linear relation between the signal and the visibilities. The
matrix A € CV*V is the diagonal matrix implementing the primary
beam, with the Jacobian term n~!(I) due to the change to Carte-
sian coordinates absorbed. The matrix C € CV*¥ is the diagonal
matrix implementing the modulation by the w-term. The unitary
matrix F € CY*" implements the discrete Fourier transform. The
matrix M € R™*¥ is the rectangular binary matrix implementing
the mask that characterizes visibility coverage, containing one non-
zero value on each row only, at the index of the Fourier coefficient
corresponding to the spatial frequency probed by each interfero-
metric measurement. We also augment the measurement matrix by
a whitening operator W € R™*¥ (Wiaux et al. 2009a). Whitening
corresponds to dividing each measured visibility by the standard
deviation of the corresponding noise component so that the final
observed visibilities are then affected by independent identically
distributed Gaussian noise with unit variance. The subscript p is
used to denote the planar setting since we subsequently generalize
this framework to functions defined on the sphere (throughout sub-
scripts p and s are used to denote the plane and sphere, respectively).
For incomplete visibility coverage M < N, equation (9) defines an
ill-posed inverse problem, which we solve using the BP and TV
reconstruction approaches described in Section 2.2. Finally, let us
note that the compressed sensing framework is defined strictly for
orthogonal sparsity and sensing bases. The application of the w-term
modulation necessitates an upsampling operation in practice to en-
sure that the modulated signal is Nyquist—-Shannon sampled, which
breaks the orthogonality of the sensing basis. Compressed sensing
techniques for interferometric imaging therefore depart from the
theoretical compressed sensing framework but nevertheless have
been demonstrated to perform very well.

We conclude this section with a review of the spread spectrum
phenomenon. As discussed in Section 2.2, the coherence between
the measurement and sparsity bases is a key criterion affecting the
performance of compressed sensing based reconstructions. In the
interferometric setting described above the measurement basis can
essentially be identified with the Fourier basis, which will aid our
intuitive understanding of the spread spectrum phenomenon. In this
case, the mutual coherence is given by the maximum modulus of
the Fourier coefficient of the sparsity basis vectors. Consequently,
an operation that acts to reduce the maximum Fourier coefficient,
reduces the coherence and thus improves the quality of compressed
sensing reconstructions. Modulation by the w-term corresponds to
a norm-preserving convolution in the Fourier plane, spreading the
spectrum of the sparsity basis vectors and achieves exactly this.
Hence, the greater the frequency content of the w-term, the more
effective the spread spectrum phenomenon.

3 SPHERICAL INTERFEROMETRIC IMAGING

In this section we generalize the compressed sensing imaging tech-
niques developed by Wiaux et al. (2009a,b) to a WFOV. We recover
interferometric images defined directly on the sphere, rather than the
equatorial plane, which enhances the effectiveness of compressed
sensing reconstructions.

The measurement operator transforming the sky intensity defined
on the sphere to visibilities, consists of augmenting the usual inter-
ferometric measurement operator with an initial projection from the
sphere to the plane. This initial projection corresponds to a change
from spherical to Cartesian coordinates in much the same way (4)
is defined from (1). Similarly, the framework remains general and
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does not rely on any small FOV assumptions. Practically, however,
the projection which implements the change of variable is compli-
cated by the discrete setting and the desire to recover a regular grid
on the plane to allow the use of fast Fourier transforms (FFTs).> In
order to ensure information is not lost, we define the resolution of
the planar grid so as to support the maximum projected frequency
content of a band-limited signal on the sphere. Although our WFOV
framework still involves a projection to the plane, this is included in
the measurement operator, and so will be regularized when solving
the interferometric inverse problem. Moreover, we recover the sky
intensity directly on the sphere, where is it most sparse, and it is
the signal space that is important for the impact of sparsity on the
performance of compressed sensing reconstructions.

In the remainder of this section we first discuss considerations
relating to band-limited signals on the sphere and the plane, opera-
tors used to project the sphere to the plane in a discrete setting and
discrete gradient operators defined on the sphere (required for TV
reconstructions on the sphere). Finally, we define interferometric
imaging in the WFOV setting, while commenting on the impact of
sparsity, coherence and the spread spectrum phenomenon.

3.1 Band-limited signals

We require a regular grid on the plane to enable the application of
FFTs to reduce considerably the computational load of reconstruct-
ing images from visibility measurements. To ensure information is
not lost when projecting a signal from the sphere to the plane in this
discrete setting, we define a planar grid that supports a band limit
corresponding to the maximum projected frequency content of a
band-limited signal defined on the sphere. The maximum projected
frequency content arises at the extents of the FOV, where signal
content defined on the surface of the sphere is projected on to much
higher frequency content in the I = (/, m) plane. In the typical small
FOV setting the relationship between the band limit of a signal on
the sphere £, and its tangent plane uy,, is given by £, = 2
T Umax- In the WFOV setting simple geometric considerations at the
extent of the FOV lead to the relationship

Loax = 270 COS(QFOV/Z) Umax (10)

where 0oy denotes the angular opening of the FOV, corresponding
to a planar FOV of L = 2sin(froy/2). The band-limit relation is
now dependent on the size of the FOV. Note that for a WFOV a
higher band limit on the plane is required to support a given band
limit on the sphere, as expected intuitively, and as Opoy — 0 the
usual relationship for a small FOV is recovered.

Once the band limit of a signal is defined, on both the sphere and
the plane, sampling considerations then dictate the resolution of
the discrete grid required to accurately represent the signal. Conse-
quently, once the band limit of the signal on the sphere and the FOV
is set, the required band limit on the plane is determined through
(10), and the sampling resolutions of both the sphere and the plane
follow. The Nyquist—-Shannon sampling theorem on the plane states
that N,'/? = 2 umax L, where N,y is the number of samples on the
planar grid. The relationship between the number of samples within
the FOV on the sphere, Ny, and the harmonic band limit, £,,, de-
pends on the pixelization of the sphere adopted. We choose the
HEALPiX® pixelization of the sphere (Gérski et al. 2005) due to the

5 Fast algorithms have been developed to compute a discrete Fourier trans-
form on non-equispaced spatial frequencies (Potts, Steidl & Tasche 2001),
which could in principle be used to avoid explicit gridding.

6 http://healpix.jpl.nasa.gov/

Yp / ;\“i\

N
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Figure 1. Ratio of number of samples on the plane to the sphere (N, /Ny)
to sufficiently sample a band-limited signal defined on the sphere when
projected on to the plane (Orov is specified in degrees). Curves are plotted
for a HEALPiX pixelization of the sphere, with £, = kNide, for values k =3
(blue/dashed line); k = /3 7t/2 (black/solid line) and k = 2 (red/dot—dashed
line). To ensure a ratio of unity is obtained as Opoy tends to zero, we select
k = +/3 71/2 throughout this work.

equal area of each pixel element and its ubiquitous use in the as-
trophysical community. The resolution of the HEALPiX pixelization
is controlled by the parameter N4, Where the number of pixels at
a given resolution is specified by Ny = 12Nq.2. Functions that
are band limited on the sphere at £, can be resolved on a HEALPix
pixelization at a resolution corresponding to €;,,x = 3N, albeit
with integration errors’ (Hivon et al. 2010; since no exact quadra-
ture rule exists for HEALPiX). For the correspondence €,,x = 2Nige
integration errors are minimal (Hivon et al. 2010). Consequently,
harmonic transforms are typically performed for £,,,x = kNige, With
k ~ 2-3. In order to ensure that we do not favour either the plane or
sphere in our analysis, we choose k such that in the limit of a small
FOV, the number of samples on the plane and within the FOV on
the sphere are the same. It can be shown trivially that

Np 2k2 tanz(QFOV/Z)

Ny 3731 — cos(fov/2))

where £,,,x drops out of the expression. Consequently, we choose
the value k = +/371/2 to ensure

gFl)lvnloNp/Ns =1

The ratio N, /N is plotted in Fig. 1 for various values of k. Notice
how the ratio increases rapidly with the FOV. Naively, one might
expect the ratio of sparsities between the plane and sphere K, /K to
evolve in a similar manner, which would highlight the superiority
of spherical reconstructions compared to planar ones (this is neces-
sarily a very approximate prediction and the exact ratio of sparsities
will depend highly on the signal examined).

3.2 Projection operators

Now that discrete grids are defined on the sphere and the plane, it is
necessary to determine how to project a signal between these grids.
In the continuous setting this is trivial and simply corresponds to a
change of variable, however, the matter is complicated in practice
due to the discrete nature of the sampled signals.

7 Integration errors may be reduced by running the analysis iteratively.
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In order to project on to a regular grid on the plane, it is nec-
essary to re-grid the pixelization on the sphere to recover sample
values at spherical positions that project directly on to the planar
grid, as illustrated in Fig. 2. We perform a convolution on the sphere
to achieve this re-gridding. This convolutional re-gridding on the
sphere is similar to the re-gridding often performed when mapping
the visibilities observed at continuous coordinates to a regular grid,
also to afford the use of FFTs (Thompson et al. 2001). The interfer-
ometric measurement operator on the sphere is therefore augmented
by prepending a projection operator P that includes a spherical con-
volution followed by a project from the sphere to the tangent plane
I =(,m).

We consider three convolution kernels on the sphere: a box ker-
nel, corresponding to a nearest-neighbour interpolation; a sinc-like
kernel and a Gaussian kernel. The box kernel is well localized on
the sphere but has infinite support in harmonic space. The sinc-like
kernel corresponds to evaluating the spherical harmonic transform
of the sampled signal on the sphere, followed by evaluating the
signal value at the new sample position from its spherical harmonic
coefficients (we refer to this as a sinc-like kernel due to analogy
with the plane). This procedure results in a kernel that is well lo-
calized in harmonic space but has support in real space that entends
over the entire sphere. These two kernels represent the extremes
between spatial and harmonic space localization and each produces
ringing in the projected signal in the domain in which the kernel
is not well localized. We therefore seek a kernel that provides a
compromise between this trade-off and is reasonably well localized
in both space and frequency. In this paper we settle on a simple
Gaussian kernel, however, alternative kernels such as the spherical
equivalent of the Gaussian sinc or spheroidal functions could also
be considered (Thompson et al. 2001).

3.3 Gradient operators on the sphere

A discrete gradient operator must be defined on the sphere in order
to compute the magnitude of the gradient of a function to solve the

Ly

Figure 2. Projection of a sampled signal from the sphere to the plane. In
order to project on to a regular grid on the plane (to reduce significantly the
computational load of subsequent analyses through the use of FFTs), a re-
gridding operation is required. The value of the point on the plane (blue/dark
dot) is determined by convolving the points on the sphere (red/grey dots)
with a suitable kernel.
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TV minimization problem of (7) on the sphere. The discrete gradi-
ent operator on the plane is defined simply through finite differences
(Rudin et al. 1992; Chambolle 2004). However, it is not possible to
define a discrete spherical gradient operator on the HEALPiX pixeliza-
tion in this manner since sample positions do not lie on both rings of
constant latitude and rings of constant longitude (only equiangular
pixelizations of the sphere satisty this property). One alternative
is to consider the continuous gradient operator on the sphere, for
which the magnitude of the gradient of a function on the sphere f
reads

2 2
of 1 of
00 sin2f \ d¢p

IVifl =

which may be computed in harmonic space (Wandelt, Hivon &
Gorski 1998) to eliminate pixelization concerns. However, such an
approach requires a spherical harmonic transform, which necessar-
ily requires global support on the sphere and hence is non-local in
nature, and also is of high computational cost.

We define a discrete gradient operator on the sphere by analogue
with the continuous gradient but computed through finite differ-
ences. Convolutional re-gridding is performed to obtain samples on
the sphere at the positions required to compute finite difference val-
ues. The same Gaussian convolution kernel that is used to project
the sphere to the plane (as discussed in Section 3.2) is used. Such
an approach actually corresponds to computing the gradient of a
smoothed version of the original signal. However, the smoothing is
minimal in practice and numerical experiments have shown that the
discrete gradient defined in this manner is a good approximation to
the continuous gradient computed in harmonic space but does not
suffer from the global nature and high computational cost of the
spherical harmonic transform.

3.4 Interferometric imaging

We are now in a position to define explicitly the WFOV interfero-
metric imaging framework developed in this work. We attempt to
recover the sky intensity directly on the sphere x; € C™ by solving
the inverse problem

y=&x +n, (11
with
d,=WMFCAP.

The measurement operator on the sphere ®; € C**"s simply con-
sists of augmenting the operator on the plane &, by prepending
a projection from the sphere to the plane P, which incorporates a
convolutional re-gridding as discussed in Section 3.2. Careful con-
sideration is given to samplings on the sphere and plane to ensure
that the planar grid is sampled sufficiently to accurately represent
the projection of a band-limited signal defined on the sphere (as
discussed in Section 3.1). For incomplete visibility coverage the
inverse problem defined by (11) becomes ill posed. We solve this
ill-posed inverse problem in a compressed sensing framework by
solving the BP and TV minimization problems defined by (6) and
(7), respectively. In this work we consider the Dirac sparsity basis
on the sphere for BP reconstructions.

We expect the performance of compressed sensing reconstruc-
tions to be enhanced by recovering the sky intensity in the space
where it naturally lives (i.e. on the sphere), since we expect sparsity
to be reduced in this space. Furthermore, the effectiveness of the
spread spectrum phenomenon is enhanced by going to a WFOV. As
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discussed in Section 2.3, the greater the frequency content of the
w-term, the more effective the spread spectrum phenomenon. By
examining the w-term plotted in Fig. 3, we see that its frequency
content increases with distance from the origin. Consequently, the
larger the FOV, the higher the frequency content achieved by the
w-term and the more effective the spread spectrum phenomenon.
Moreover, a secondary enhancement arises by eliminating the first-
order assumption ||]|3w <« 1 made previously by Wiaux et al.
(2009b), since this assumption reduces the maximum frequency
content of the w-term achieved on a given FOV (the band limits of
the various w-terms are defined explicitly in Section 4.1). Finally,
we comment on the impact of mutual coherence on reconstruction
performance. Since we consider the Dirac sparsity basis, coherence
is optimal on the plane (recall that the Dirac and Fourier bases
are maximally incoherent). However, the projection of Dirac ba-
sis functions defined on the sphere to the plane does not result in
Dirac functions on the plane (due to the convolutional re-gridding).
Consequently, coherence in the spherical setting is suboptimal. The
spread spectrum phenomenon acts to increase incoherence only in
the case where it is not already maximally incoherence, thus we ex-
pect the spread spectrum phenomenon to be ineffective in the planar
setting but to improve reconstruction performance in the spherical
setting. For TV reconstructions, although a sparsity basis does not
exist, one may gain some intuition regarding the impact of coher-
ence by the following argument. For a piecewise constant signal
that is sparse in the magnitude of its gradient (i.e. has a gradient
defined by Dirac functions), the spectrum of the magnitude of its
gradient must be flat. The gradient operator in space essentially cor-
responds to a multiplication by frequency in Fourier space, hence
the original spectrum of the piecewise constant signal must evolve
as the inverse of frequency. Since this differs to the optimally in-
coherent spectrum which is flat, the coherence must be suboptimal
for TV reconstructions. We therefore expect the spread spectrum
phenomenon to provide improvements both on the sphere and plane
for TV reconstructions, with a greater enhancement expected on the
sphere due to the spatial spreading of the projection operator. In any
case, sparsity typically has a greater impact on the performance
of compressed sensing reconstructions than coherence. These con-
siderations pertaining to sparsity, mutual coherence and the spread
spectrum phenomenon lead us to expect an improvement in the per-

(a) Real part

(b) Imaginary part

Figure 3. Real and imaginary parts of the w-term modulation C(||Z|2) (for
wg = 1/+/2; see Section 4.1). Notice that the frequency content of the
w-term modulation increases with distance from the origin (image centre).
Consequently, for a WFOV the w-term modulation spreads the spectrum
more effectively, enhancing the performance of the spread spectrum phe-
nomenon. Dark and light regions correspond to positive and negative values,
respectively.

formance of compressed sensing reconstructions when recovering
interferometric images in the WFOV framework developed here.

4 SIMULATED RECONSTRUCTIONS

‘We evaluate the performance of the WFOV interferometric imaging
framework defined on the sphere, as outlined in Section 3, making
a direct comparison with planar reconstructions. After describing
the observational set-up, performance is quantified thoroughly in
a low-resolution setting on sets of simulations of sources with a
Gaussian profile. A more realistic setting at a higher resolution is
then considered, where reconstruction performance is evaluated on
a single simulated observation of Galactic dust emission.

4.1 Observational set-up

Simulated observations of real signals are made on the FOV defined
by the angular opening 0oy = 90°, corresponding to a planar FOV
of L = +/2. A real Gaussian primary beam is assumed, with full
width at half-maximum (FWHM) of one half of the field of view.
Random visibility coverage is considered, with visibility measure-
ments falling on the discrete planar grid of spatial frequencies u;.
‘We consider incomplete visibility coverage, with only 2-25 per cent
of the discrete visibilities measured (since we consider real signals,
measuring 50 per cent of the complex visibilities corresponds to a
number of measurements identical to the number of unknowns in
the real signal that we attempt to recover).

As discussed previously, although we consider a WFOV we re-
strict ourselves to the case of constant w. We parametrize the con-
tinuous w in terms of the discrete component wy, following the
parametrization used by Wiaux et al. (2009a) of w = wqN,'/?/L>.
The band limit of the modulating w-term C(||I||,) is given approxi-
mately by

co . wg Ny
T oL/ 1= (L)2)?

corresponding to its maximum instantaneous frequency. Under the
first-order small FOV assumption ||7]|3 w <« 1, the w-term reduces
to the linear chirp C;(||!||,) with approximate band limit

C(lw) wy Np 1/2
umax .
2L

Notice that the band limit for given non-zero values of w4, N, and
L is greater in the absence of the small FOV assumption, justify-
ing rigorously the secondary enhancement discussed in Section 3.4
of the spread spectrum phenomenon due to the WFOV. The band
limit of the spread signal is given by the sum of the original band
limit tmax = N,'/?/2L and the band limit of the w-term. Previously
Wiaux et al. (2009b) considered the linear chirp C;(||/||,) and the
value wy = 1, corresponding to spreading by a factor of 2. We
also consider spreading by a factor of 2, but since we consider the
exact w-term C(||Z]|,), this corresponds to a value of wy = 1/ V2.
The corresponding continuous w is of the same order as the max-
imum visibility measurements in # and v, i.e. W = um,y, hence
it is an appropriate value to consider when studying the spread
spectrum phenomenon. Note that in the absence of a WFOV, the
value of w considered by Wiaux et al. (2009b) to achieve the same
spreading was a factor of 2/L greater than uy,,. Since the band
limit of the original signal is doubled due to modulation by the
w-term, to avoid aliasing we apply an upsampling operator to in-
crease the resolution of the planar grid by a factor of 2 prior to
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application of the modulation (upsampling is performing by zero-
padding in the Fourier domain). In the subsequent analysis we con-
sider the exact w-term C(||l||,), with values of wq = {0, l/ﬁ}
to highlight the effectiveness of the spread spectrum pheno-
menon.

Instrumental noise is also added to the simulated visibili-
ties. Independent identically distributed Gaussian noise is as-
sumed with variance o, = 10707, where o3 is the variance
of the visibilities in the absence of noise and w-term modula-
tion. The added instrumental noise results in observed visibili-
ties at a signal-to-noise ratio (S/N) of S/N, = 10logo(0}/07) =
30dB.

4.2 Gaussian sources

The WFOV interferometric imaging framework is evaluated thor-
oughly in this section on simulated observations of Gaussian
sources. These simulations are first described, before we anal-
yse their sparsity properties. Reconstruction performance is then
evaluated both in the spherical and planar settings. Finally, recon-
struction performance is compared to calculations of cumulative
coherence.

4.2.1 Simulations

In order to perform a thorough evaluation, we analyse sets of simu-
lations of Gaussian sources of various size, with each set containing
30 simulations, for all variations of reconstruction procedures (BP
and TV reconstructions on the plane and the sphere, both with
and without application of the spread spectrum phenomenon) and
for various visibility coverages. Because of the large number of
simulated reconstructions, we restrict these simulations to a low
resolution. We consider a HEALPiX resolution parameter of Ngq4. =
32, corresponding to a harmonic band limit of £,,,x = 88. The re-
maining parameters defining the resolution of the simulations then
follow from the considerations discussed in Section 3.1; we find
Ny = 1740, o = 19.6 and N, = 58 x 58 = 3364. The size of the
Gaussian kernel in the convolutional re-gridding of the projection
operator, defined by its standard deviation op, is chosen to ensure
that the kernel is well sampled. Since a kernel with small support is
required, a local tangent plane approximation is made to relate its
Fourier size to its spatial size through o = (2mop)~!. We ensure
20 is within the band limit supported by the planar grid, resulting
in the kernel size op = 0.02 rad.

For each simulation, 10 Gaussian sources of the same size are laid
down at random positions within the FOV and with random ampli-
tudes Ag € [0.5, 1.0]. For each set of 30 simulations, source objects
of a different size are considered, with sizes defined by the standard
deviation of the Gaussian source o's € {0.01, 0.02, 0.04, 0.10} rad.
For some cases the standard deviation of the source is smaller than
the pixel size, hence the Gaussian sources are not necessarily well
sampled on the spherical grid. However, this is of no concern since
the simulated signals are defined by their discrete version and no
contact is subsequently made with the continuous representation
from which they originate. To simulate compact Gaussian objects
on the sphere we use the coms (McEwen, Hobson & Lasenby 2008)
and s2 (McEwen et al. 2007) packages.® Random visibility cover-
ages are considered with only « € {2, 4, 6, 10, 15, 20, 25} per cent
of the discrete visibilities measured.

8 http://www.jasonmcewen.org/
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4.2.2 Sparsity

We perform tests to determine whether our hypothesis holds that
sparsity is reduced by going to the space in which the signal in-
herently lives. Although sparsity levels will depend highly on the
signal considered, since each set of Gaussian simulations has simi-
lar properties we expect sparsity levels to be reasonably consistent
over the set of simulations. We therefore average the sparsities mea-
sured over the set of 30 simulations for each source size and also
provide an indication of their spread.

Since the signals analysed are compressible rather than exactly
sparse, we require a measure of compressibility. We construct such
a measure as follows. For the BP problem, we first order the coef-
ficients of the signal in the sparsity basis, which in the case of the
Dirac sparsity basis that we adopt corresponds to simply ordering
the sampled signal values. We then set the smallest coefficient to
zero and measure both the sparsity of the resultant signal and also
the S/N of the original signal relative to the error between the origi-
nal and resultant signal. We set the next smallest coefficient to zero
and repeat these two measurements, repeating the procedure until
all signal values are set to zero. Following this approach we build
a curve of sparsity against S/N. For the TV problem, we repeat the
same procedure but in the space of the magnitude of the gradient of
the signal, rather than a sparsity basis.

Sparsity measurements are computed for the signal on the sphere
and its projected version on the plane in order to make compar-
isons. Curves are plotted in Fig. 4 for the two extreme source sizes
(curves for intermediate source sizes are essentially interpolations
between these extremes). Sparsity is clearly enhanced on the sphere.
Moreover, the ratio of sparsities between the plane and sphere
(Kp/K;) does indeed approximately follow the ratio of the number of
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(a) Dirac sparsity for og = 0.01 (b) TV sparsity for og = 0.01
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(c) Dirac sparsity for og = 0.10 (d) TV sparsity forog = 0.10
Figure 4. Imposed sparsity of simulations of Gaussian sources as a function
of the S/N of the original compressible signal compared to the imposed
sparse signal (as explained in the text). Curves correspond to the mean of 30
simulations, while shaded regions show one standard deviation confidence
intervals. Curves are plotted for the signal defined on the sphere (red/dot—
dashed line) and for its projected version on the plane (blue/solid line).
Sparsity is clearly enhanced on the sphere.
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samples between the plane and sphere (N,/N; ~ 1.9 for Oroy =
90°), as predicted naively in Section 3.1. Although sparsity will
always be highly dependent on the signal under investigation, we
have at least demonstrated for Gaussian sources that the sparsity of
the signal is indeed enhanced on the sphere.

4.2.3 Reconstruction performance

We evaluate reconstruction performance in the WFOV setting by
recovering interferometric images directly on both the sphere and
the plane, in order to make a direct comparison. Furthermore, we
consider BP and TV reconstructions, both with and without ap-
plication of the spread spectrum phenomenon. It is of particular
interest to see whether our predictions are demonstrated through
reconstruction quality.

The measurement constraint € is defined by the level p = 0.99 (as
described in Section 2.2) and we solve the BP and TV minimization
problems using the algorithms derived by Combettes & Pesquet
(2007) and Durand et al. (2010), respectively. For the low-resolution
simulations performed here, the computation time required to solve
the optimization problems are typically of the order of 1 min on a
standard laptop with a 2.66 GHz Intel Core 2 Duo processor with
4 GB of memory.

The quality of reconstruction is measured by the S/N of the orig-
inal signal relative to the difference between the original and recon-
structed signal, defined explicitly by S/N; = 10log4(0; /0] _,.),
where oxzs is the variance of the original signal x, and crfrx; is the
variance of the discrepancy signal x, — x}. Since the sky intensity
to be recovered lives inherently on the sphere, we consider the S/N
defined on the sphere. It is therefore necessary to lift the image re-
constructed on the plane to the sphere in order to make a comparison.
We do this through a projection operator that is the direct analogue
of the operator P that projects the sphere to the plane, using an iden-
tical kernel in the convolutional re-gridding. We then compare S/Nj,
measured on the sphere, for both the spherical- and planar-based
reconstructions. Fig. 5 shows reconstruction quality measured by
S/N; for various visibility coverages, averaged over the 30 simula-
tions for each source size. Reconstruction quality in the spherical
setting is clearly superior to the quality of planar reconstructions.
However, for sources of small size, lifting the planar reconstruc-
tion to the sphere introduces error and limits the effectiveness of
the reconstruction. Before discussing reconstruction performance
in more detail, we consider the S/N defined on the plane.

We also examine the S/N defined on the plane by S/N, =
lOlogm(szp /Ufp—x;;)’ where axzp and szpfx; are the variances of
the original and discrepancy signals on the plane, respectively. To
compute S/N,, for interferometric images recovered on the sphere,
the spherical reconstructions are projected on to the plane by the
projection operator P. Fig. 6 shows reconstruction quality measured
by S/N, for various visibility coverages, averaged over the 30 sim-
ulations for each source size. The superiority of reconstructions
on the sphere is again clear. Even if one were interested in planar
reconstructions, superior reconstruction quality is achieved by first
recovering interferometric images on the sphere, before projecting
the recovered spherical image to the plane. In any case, we advocate
the direct use of spherical reconstructions since signal content is not
distorted by any projection.

The reconstruction performance observed in Figs 5 and 6 is now
discussed in more detail and related to the predictions that we made
through intuitive reasoning. For BP reconstructions, the improve-
ment in spherical reconstruction quality due to the spread spectrum

phenomenon is apparent, whereas the spread spectrum phenomenon
is clearly ineffective on the plane. For TV reconstructions, the spread
spectrum phenomenon is effective both on the sphere and the plane,
although the enhancement on the sphere is slightly larger than that
on the plane. Also note that the variance of reconstruction quality
(as indicated by the size of the error bars) is reduced by the spread
spectrum phenomenon in the cases where it is effective. This effect
was also observed by Wiaux et al. (2009b). Notice that the per-
formance of BP reconstructions drops as the size of the Gaussian
sources increase due to the corresponding increase in sparsity value.
However, this is not the case for TV reconstructions. Although TV
reconstructions do not perform as well for signals that are extremely
sparse in the Dirac basis, they are more stable as sparsity varies and
are certainly superior for reconstructing diffuse signal content. In
summary, all of our intuitive predictions are indeed manifest in
the reconstruction quality observed and the superiority of recon-
structing the sky intensity directly on the sphere in the WFOV
interferometric imaging framework that we develop is clear.

4.2.4 Comparison of performance with sparsity and coherence

Although mutual coherence is a useful measure for theoretical and
intuitive considerations, it is not well suited to numerical computa-
tion (as discussed in Section 2.2). Cumulative coherence is a more
robust measure of coherence and thus is more suitable for numerical
evaluation. Furthermore, cumulative coherence is signal dependent
and incorporates sparsity information. We therefore use cumula-
tive coherence to study the combined sparsity and coherence of
the interferometric imaging framework in the context of Gaussian
sources and relate this to the reconstruction performance presented
in the previous section. However, we may only study cumulative
coherence in the presence of a sparsity basis, thus the analysis and
discussion here is restricted to BP reconstructions only.

In a strict compressed sensing framework with orthogonal mea-
surement and sparsity bases and in the absence of noise, the number
of measurements required to reconstruct a signal accurately from
incomplete random measurements evolves as (8). The square of
the normalized cumulative coherence v+/N provides an approx-
imate relative measure of the number of measurements required
to recover a signal, or similarly, the quality of the reconstruction
performance for a given number of measurements. Although the
interferometric imaging framework we consider differs from the
theoretical compressed sensing framework, the normalized cumu-
lative coherence nevertheless provides a measure of the impact of
sparsity and coherence on reconstruction performance.

We compute cumulative coherences for all of the sets of Gaussian
simulations, averaging over the 30 simulations for each source size.
Normalized cumulative coherences are computed on the plane and
sphere, denoted vy(wa)\/ N, and vy(wa)/ N, respectively, both in
the presence (wqg = 1/ ﬁ) and absence (wq = 0) of the spread spec-
trum phenomenon. Results are displayed in Table 1. Four insights
can be made by studying the coherence values reported in Table 1.
First, the coherences on the plane are not significantly altered in
the presence of the spread spectrum phenomenon, indicating that
the spread spectrum phenomenon is likely to be ineffective in im-
proving reconstruction performance in this setting. Secondly, the
coherences on the sphere are reduced by application of the spread
spectrum phenomenon, indicating that the spread spectrum phe-
nomenon is likely to be effective in this setting. Thirdly, we note
that coherences on the sphere are always lower than the correspond-
ing values on the plane, highlighting the superiority of spherical
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Figure 5. Reconstruction quality for simulated Gaussian sources measured by the S/N defined on the sphere (S/N;). Each row of panels corresponds to
Gaussian sources of a given size. The first column of panels shows a typical simulation of Gaussian sources on the sphere. The remaining columns of panels
show reconstruction quality, with the second column illustrating the performance of BP reconstructions, while the third column illustrates the performance of
TV reconstructions. Curves are plotted for reconstructions performed on the sphere (red/diamonds) and on the plane (blue/circles), both in the absence (solid
lines) and presence (dashed lines) of the spread spectrum phenomenon. Reconstruction quality is averaged over 30 simulations for each source size and error
bars corresponding to one standard deviation are shown.
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Figure 6. Reconstruction quality for simulated Gaussian sources measured by the S/N defined on the plane (S/Nj,). Each row of panels corresponds to Gaussian
sources of a given size. The first column of panels shows a typical simulation of Gaussian sources projected on to the plane. The remaining columns of panels
show reconstruction quality, with the second column illustrating the performance of BP reconstructions, while the third column illustrates the performance of
TV reconstructions. Curves are plotted for reconstructions performed on the sphere (red/diamonds) and on the plane (blue/circles), both in the absence (solid
lines) and presence (dashed lines) of the spread spectrum phenomenon. Reconstruction quality is averaged over 30 simulations for each source size and error
bars corresponding to one standard deviation are shown.
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Table 1. Normalized cumulative coherences, on the plane and sphere, of simulations of Gaussian sources for various size os. Coherences values computed
both in the presence (wg = 1/+/2) and absence (wq = 0) of the spread spectrum phenomenon are displayed. Normalized coherence differences between the
presence and absence of the spread spectrum phenomenon are computed on the plane and sphere (with A, and A denoting, respectively, the coherence for
wq = 0 subtracted from the coherence for wyq = 1/+/2). In addition, normalized coherence differences between the plane and sphere are also computed, with
A(wg) = vp(wd)\/ Fp — vs(wq)+/Ns. Quoted values correspond to the mean of 30 simulations, with errors corresponding to one standard deviation. Notice
that coherence differences are more stable than coherence values over the simulations. These measures incorporate both the impact of sparsity and coherence
on reconstruction performance (with lower values indicating superior performance).

Source Plane Sphere Difference
os vp(wa)y/ Ny vs(wa)/Ny A(wyg)
wg =0 wdzﬁ Ap wg =0 wdzﬁ Ay wg =0 wdzﬁ
0.01 8.14 £0.72 8.31 £0.78 0.17 £0.10 5.07 £0.52 4.69 +£0.55 —0.38 £ 0.06 —3.08 £0.23 —3.62+£0.25
0.02 11.05 £ 0.95 11.17 £ 1.00 0.12 + 0.08 8.23 +£0.83 7.64 +0.88 —0.59 +0.08 —2.82+0.15 —3.53+0.16
0.04 1632 £ 1.19 16.36 + 1.23 0.05 £ 0.05 13.85 £ 1.17 12.84 £ 1.25 —1.01 £0.11 —2.46 £ 0.07 —3.52+0.13
0.10 2232 +£0.25 22.33 +£0.25 0.01 £ 0.01 19.79 £ 0.25 18.23 £0.25 —1.73 £ 0.03 —2.53+£0.02 —4.12+£0.05

reconstruction. Fourthly, we note that cumulative coherences in-
crease with source size, indicating that reconstruction performance
should reduce. All of these findings verify our intuitive expectations
and are consistent with the reconstruction performance presented
in the previous section.

4.3 Galactic dust

Now that the WFOV interferometric imaging framework developed
in this paper has been evaluated thoroughly, in this section we
simply illustrate the reconstruction, at a higher resolution, of a
more realistic simulation of Galactic dust emission. The simulation
is first described, before reconstruction performance is evaluated.

4.3.1 Simulation

For this higher resolution simulation we consider the 94-GHz map
of predicted submillimeter and microwave emission of diffuse in-
terstellar Galactic dust (Finkbeiner, Davis & Schlegel 1999, here-
after referred to as the FDS map). This predicted map is based on
the merged Infrared Astronomy Satellite (IRAS) and Cosmic Back-
ground Explorer-Diffuse Infrared Background Experiment (COBE-
DIRBE) observations produced by Schlegel, Finkbeiner & Davis
(1998). An undersampled version of the FDS map is available from
the Legacy Archive for Microwave Background Data Analysis’
(LAMBDA) in the HEALPiX pixelization at resolution N = 512.

We consider the same observational set-up discussed in Sec-
tion 4.1, focusing on the FOV centred on Galactic coordinates
(I, b) = (210°, —20°). The full-sky FDS map and the FOV con-
sidered are illustrated in Fig. 7. We downgrade the original FDS
map to a resolution of N4 = 128 for our simulated observations,
corresponding to a harmonic band limit of ¢, = 348. All other
resolution parameters follow once the harmonic band limit on the
sphere and the size of the FOV are chosen; we find Ny = 28 560,
Umax = 78.4 and N = 214 x 214 =45796. The size of the Gaussian
kernel in the convolutional re-gridding of the projection operation
is chosen by the same condition as before, resulting in the value op
= 0.004 rad. Random visibility coverage is again considered, with
only 25 per cent of the discrete visibilities measured. Note that the
incomplete visibility coverage creates a very challenging setting for
the recovery of a realistic, diffuse image.

9 http://lambda.gsfc.nasa.gov/
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Figure 7. FDS map of predicted submillimeter and microwave emission of
diffuse interstellar Galactic dust. The FOV of angular opening 6roy = 90°
and centred on Galactic coordinates (, b) = (210°, —20°) is considered for
simulating interferometric observations. In panel (a) the FOV is located near
the Galactic plane towards the left edge of the image.

4.3.2 Reconstruction performance

All of the reconstruction techniques discussed previously are ap-
plied to reconstruct the FDS map on the sphere (i.e. BP and TV
reconstructions in the spherical and planar settings, both with and
without application of the spread spectrum phenomenon). The same
optimization algorithms and measurement constraint level p consid-
ered previously are applied. For these high-resolution simulations,
the computation time required to solve the optimization problems
are typically of the order of 15 min on the same machine described
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previously. The results presented in Section 4.2 indicate that for dif-
fuse signals the S/N measured on the sphere (S/Nj) is not adversely
affected significantly by lifting planar reconstructions to the sphere.
Because of the diffuse nature of the underlying signal (and also
since it is inherently defined on the sphere), we therefore measure
reconstruction quality by S/N; only.'® Note that for such signals
the S/N metric is not a perfect measure of reconstruction quality
and a visual inspection remains important. The diffuse nature of
the FDS map and the results presented previously suggest that the
TV reconstruction on the sphere in the presence of spread spectrum
phenomenon will be most effective.

Reconstructed spherical interferometric images of the FDS map
are displayed in Fig. 8, with S/N; of each recovery also specified.
The quality of BP reconstructions is relatively poor (as expected
since the FDS map is not particularly sparse in the Dirac basis),
and a significant difference between planar and spherical recon-
structions is not readily apparent. Spherical reconstructions show
greater detail than the planar reconstructions, particularly within
the centre of the FOV, but suffer near the extremes of the FOV
since the signal is poorly constrained here due to the low magni-
tude of the primary beam. Planar reconstructions also suffer from
this effect, however, it is not as apparent in reconstructed spherical
images since a small degree of smoothing is performed in the pro-
jection operator when lifting the reconstructed planar signal to the
sphere. The quality of reconstruction is improved considerably for
the TV case, again as expected since the diffuse FDS map is much
sparser in the magnitude of its gradient than it is in the Dirac basis.
Spherical reconstructions again show greater detail than the planar
reconstructions, however, in the absence of the spread spectrum
phenomenon S/Nj is in fact lower for the spherical reconstruction.
On visual inspection the spherical reconstruction is clearly supe-
rior as structure of much finer detail is reconstructed, highlighting
the weakness of the S/N metric. In any case, the superiority of
the spherical reconstruction is clearly apparent for the TV recon-
struction when the spread spectrum phenomenon is present, both
through visual inspection and comparison of S/Nj. This is the most
effective reconstruction technique for the FDS map for both pla-
nar and spherical reconstructions, as expected. Comparing the most
effective reconstruction on the plane and sphere, recovering the
sky intensity directly on the sphere improves reconstruction quality
from 13.7 to 19.3 dB.

5 CONCLUSIONS

Incorporating WFOV contributions when reconstructing interfero-
metric images is becoming increasingly important, particularly for
next generation interferometers, such as the SKA and upcoming
pathfinder telescopes. If these contributions are ignored, the fidelity
of reconstructed images may suffer. In this paper we have extended
the compressed sensing interferometric imaging techniques devel-
oped by Wiaux et al. (2009a,b) to a WFOV. In doing so, we recover
interferometric images defined directly on the celestial sphere. We
augment the usual measurement operator with a projection from
the sphere to the plane, which essentially corresponds to a change
from Cartesian to spherical coordinates. Practically, however, the

10 Although we only quote S/N measured on the sphere, the S/N measured on
the plane (S/Np) were also examined. Corresponding S/N values do change
marginally, nevertheless the conclusions drawn remain the same regardless
of whether S/N; or S/Nj, is examined.

projection is complicated by the discrete setting and careful consid-
eration is given to the sampling of signals on the sphere and plane
to ensure that the planar grid is sufficiently sampled to support the
maximum projected frequency content of a band-limited signal on
the sphere. Although a projection is incorporated in this framework,
it is included in the measurement operator and thus is regularized
when solving the interferometric inverse problem. Moreover, it is
the space where recovery is performed that drives the performance
of compressed sensing reconstructions, through sparsity and coher-
ence considerations. The framework remains general and does not
rely on any small FOV assumptions.

The effectiveness of the spread spectrum phenomenon is en-
hanced when going to a WFOV, while sparsity is promoted by
recovering images directly on the sphere. These predictions have
been verified by numerical tests and are also manifest in reconstruc-
tion performance. Low-resolution simulations of Gaussian sources
were considered to quantify reconstruction performance thoroughly.
Interferometric images were recovered directly on the sphere and
the plane in order to make comparisons. For simulated images ex-
tremely sparse in the Dirac basis, BP reconstructions were shown
to perform very well. However, as Dirac sparsity was reduced the
quality of BP reconstructions fall, while the quality of TV recon-
structions remained relatively stable. For diffuse images, TV recon-
structions were shown to be superior since such signals are much
more sparse in the magnitude of their gradient than in the Dirac
basis. In all cases, the superior quality of recovering interferometric
images directly on the sphere was clear. A simulation of diffuse in-
terstellar Galactic dust was then performed to demonstrate WFOV
reconstruction techniques in a more realistic, higher resolution set-
ting. For the diffuse FDS map considered, TV reconstruction on
the sphere in the presence of the spread spectrum phenomenon
was most effective, as expected. For this case, reconstruction qual-
ity was improved from 13.7dB for the planar reconstruction to
19.3 dB when recovering the interferometric image directly on the
sphere.

The compressed sensing techniques developed for interferomet-
ric imaging by Wiaux et al. (2009a,b), and extended here to a
WFOV, remain somewhat idealized. Random visibility coverage is
assumed, with the spatial frequencies probed by the interferometer
also assumed to fall on discrete grid points. Furthermore, to study
the spread spectrum phenomenon a constant w is assumed. These
restrictions have been necessary to remain as close to the theory of
compressed sensing as possible during the development and eval-
uation of interferometric imaging techniques. In reality, however,
w will not be constant and the performance of the spread spectrum
phenomenon will lie between the extreme cases that we have consid-
ered of w = 0 and w = u,.¢. Extensions to realistic and continuous
visibility coverage and their impact on compressed sensing based
interferometric imaging are now of considerable importance. In
general, compressed sensing addresses imaging by optimizing both
reconstruction and acquisition, while we have essentially focused on
reconstruction only. The possibility of optimizing the configuration
of interferometers to enhance the spread spectrum phenomenon for
compressed sensing reconstruction is an exciting avenue of research
at the level of acquisition. In addition, direction-dependent beam ef-
fects may also provide an alternative source of the spread spectrum
phenomenon. All of these issues should be studied in future works.
Furthermore, the performance of other sparsity bases on the sphere,
such as scale discretized wavelets (Wiaux et al. 2008), should also
be studied. Next generation radio interferometers will inherently ob-
serve very large fields of view, thus WFOV interferometric imaging
techniques, such as the compressed sensing techniques developed
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Figure 8. Reconstructed spherical interferometric images of the FDS map. The first column of panels shows images of planar recoveries lifted to the sphere,
while the second column shows images recovered on the sphere directly. Reconstructions both in the presence (wg = 1/+/2) and absence (wq = 0) of the
spread spectrum phenomenon are displayed.
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in this paper and the future research outlined here, are of increasing
importance to ensure that the fidelity of reconstructed images keeps
pace with the capabilities of new instruments.
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