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S U M M A R Y
This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-
element method (FEM). The key novel aspect of the introduced algorithm is the use of auto-
matic mesh refinement techniques for both forward and inverse modelling. These techniques
alleviate tedious and subjective procedure of choosing a suitable model parametrization. To
avoid overparametrization, meshes for forward and inverse problems were decoupled. For cal-
culation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm
based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM
fields for each frequency were calculated using independent meshes in order to account for
substantially different spatial behaviour of the fields over a wide range of frequencies. An
automatic approach for efficient initial mesh design in inverse problems based on linearized
model resolution matrix was developed. To make this algorithm suitable for large-scale prob-
lems, it was proposed to use a low-rank approximation of the linearized model resolution
matrix. In order to fill a gap between initial and true model complexities and resolve emerging
3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within
this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined
in the neighborhoods of points with the largest variations. A series of numerical tests were
performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement
based on the model resolution estimates provides an efficient tool to derive initial meshes
which account for arbitrary survey layouts, data types, frequency content and measurement
uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve
features on multiple scales while keeping number of unknowns low. However, such meshes
exhibit dependency on an initial model guess. Additionally, it is demonstrated that the adaptive
mesh refinement can be particularly efficient in resolving complex shapes. The implemented
inversion scheme was able to resolve a hemisphere object with sufficient resolution starting
from a coarse discretization and refining mesh adaptively in a fully automatic process. The
code is able to harness the computational power of modern distributed platforms and is shown
to work with models consisting of millions of degrees of freedom. Significant computational
savings were achieved by using locally refined decoupled meshes.

Key words: Inverse theory; Electrical properties; Electromagnetic theory; Geomagnetic
induction.

1 I N T RO D U C T I O N

Magnetotellurics (MT) is an electromagnetic (EM) method of geo-
physics aimed at studying the electrical conductivity distribution in
the interior of the Earth. To date, it is widely used on local, regional
and even continental scales for a large variety of engineering and
academic purposes (Berdichevskii & Dmitriev 2008; Chave & Jones
2012). The ultimate goal is to reconstruct the 3-D conductivity dis-
tribution given a limited number of EM field measurements. This
requires solving an inverse problem. Despite the recent progress in

solving these problems—thanks to the advances in computational
science—it remains very challenging problem from the numerical
and computational points of view (Newman 2014). This becomes
particularly relevant for 3-D inverse problems which constitute the
main focus of this study. Because of large number of unknowns,
they are mostly formulated in form of a minimization problem
and solved numerically using derivative-based optimization meth-
ods, such as conjugate gradient, quasi-Newton or Gauss–Newton
(Nocedal & Wright 1999).
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Since inverse problems are inherently ill-posed (Tikhonov &
Arsenin 1977), their numerical solution remains an expert task
and depends not only on quality of data and amount of a priori
information at hand, but also on one’s level of expertise. The lat-
ter introduces some degree of subjectivity due to the necessity to
choose an initial model, its parametrization and a number of vari-
ables, such as regularization parameter, error floors and possibly
other weighting coefficients (Tietze & Ritter 2013; Lindsey & New-
man 2015), which optimal values are often not available or difficult
to determine in practice. While appropriate methods for choosing
these variables can be found in literature (Hansen 1998; Griesbaum
et al. 2008; Egbert 2012), the problem of a model parametrization in
geo-electromagnetic inverse problems remains largely unexplored.

In most situations, an appropriate model parametrization is not
known a priori. Considering its large impact on inversion (Lindsey
& Newman 2015), there is a demand for methods which help choose
a suitable model parametrization. In finite-dimensional partial dif-
ferential equation (PDE)-constrained optimization, discretization
of the state, adjoint and parameter variables is required (Biegler
et al. 2007; Bangerth 2008). For the specific case of MT inversion,
state and adjoint variables are EM fields governed by Maxwell’s
equations with the plane wave and specific point dipole excitations,
respectively (Pankratov & Kuvshinov 2010). Parameter variable
is a quantity being recovered, that is electrical conductivity or its
transformation (Kim & Kim 2011). In many inversion codes, the
same pre-determined mesh is used to represent all three. This may
result in overparametrization of the parameter variable or under-
parametrization of the state/adjoint variable. On the one hand, state
and adjoint meshes have to be sufficiently fine in order to facilitate
accurate EM responses. On the other hand, parameter spatial res-
olution is inherently limited. Therefore, if the same mesh is used
to discretize a parameter variable, then more unknowns increase
ambiguity. Larger ambiguity can only be handled by adding more
data or strengthening regularization. One remedy for this is to de-
couple state, adjoint and parameter meshes. For instance, Commer
& Newman (2008) and (Haber & Schwarzbach 2014) showed that
such decoupling is extremely beneficial in handling large-scale EM
inverse problems. Similarly, Günther et al. (2006) used decoupled
tetrahedral meshes to gain efficiency in DC geo-electric inversion.
Further, if some a priori information about an imaged target is
known, ad hoc parametrizations can be used to substantially reduce
the number of unknowns and hence ambiguity (Day-Lewis et al.
2007; Li et al. 2011; Commer et al. 2014).

Decoupling state, adjoint and parameter grids can be particularly
advantageous in a combination with local mesh refinement on un-
structured and non-conforming meshes. This offers an opportunity
to carry out adaptive mesh refinement of the grids using individ-
ual criteria. The latter is an important aspect, attributed to the fact
that different requirements are imposed on the meshes: a state and
adjoint meshes have to provide accurate EM responses, whereas
parameter mesh should adequately represent imaged subsurface
structure. As a result, development of the automatic methods for
obtaining such meshes would alleviate the burden of choosing a
mesh in inverse problems and reduce ambiguity.

Existence of optimal error-estimators for Maxwell’s equations
(Bürg 2013), and efficient automatic adaptive refinement strategies
and solvers (Ren et al. 2013; Grayver & Bürg 2014) make the prob-
lem of finding optimal state and adjoint variable meshes practically
feasible. For MT inversion one typically deals with data at fre-
quencies which span over many orders of magnitude. This prompts
using individual meshes for each frequency and performing adap-

tive mesh refinement for them independently. Altogether, decou-
pling state, adjoint and parameter meshes allows reducing number
of unknowns in inversion, whereas using goal-oriented adaptive
local mesh refinement for each frequency independently ensures
calculation of accurate MT responses within reasonable amount
of computational time. Of note is the recent work by Key (2012)
who used goal-oriented mesh refinement strategy (Key & Ovall
2011) for constructing optimal state variable meshes in his 2.5-D
geo-electromagnetic inversion code.

Parameter variable mesh can be refined as well. In contrast to
refinement of the state or adjoint variable meshes discussed in the
previous paragraph, it is not immediately clear which refinement
strategy shall be used for a parameter mesh. A good refinement
strategy should eventually allow to converge to the true solution.
There is, however, no unique solution to an ill-posed discrete inverse
problem. Nevertheless, many authors addressed this problem, show-
ing that the idea of adaptive mesh refinement in inverse problems is
feasible. In medical imaging, Bangerth (2008) and Li et al. (2014)
used adaptive finite-element method (FEM) to substantially reduce
computational time and dimensionality of the problem. Similarly,
Beilina et al. (2014) used a rigorously elaborated method for adap-
tive mesh refinement in inverse problems arising from time-domain
wave scattering. Haber et al. (2007) discussed several practical as-
pects and demonstrated that adaptive meshes are efficient in the
context of 3-D DC geo-electric inversion. These works share few
common aspects. Specifically, the approaches suggest performing
several inversion iterations until a local minimum is reached and
no further progress is observed, then a parameter mesh is refined in
regions where solution exhibits some irregularity. These regions are
typically detected by inspecting gradient of a parameter variable or
similar quantities.

Yet another important aspect is the initial mesh design. Since
survey layouts are often not regular, data uncertainties vary among
stations and due to rapid spatial attenuation of EM fields, model
resolution varies in different parts of the model (Grayver et al. 2014).
Using uniform grids in this case will likely result in unnecessarily
large number of unknowns in inversion. This is particularly true
for MT inversion with data sets usually consisting of measurements
at a wide range of frequencies, resulting in substantially different
spatial resolution lengths. Initial mesh should account for these
factors. Local mesh refinement offers the means for addressing this
problem. For instance, Schaefer et al. (2011) used adaptive meshes
to perform global surface wave tomography. They refined mesh in
regions with more rays and let the mesh to be coarse in those part,
which are not well constrained by data. In full-waveform inversion,
Fichtner et al. (2013) used locally refined meshes to account for
uneven distribution of seismic stations.

The main goal of this paper is to develop and study automatic
adaptive mesh refinement methods in the context of 3-D MT inver-
sion. Using FEM, a consistent derivation is presented and a num-
ber of practical aspects related to the implementation of a parallel
and distributed 3-D inversion code are covered. General formal-
ism given in this work was adopted from the formulation presented
by Bangerth (2008). Although in some ways similar, this work
presents new distributed implementation of the adaptive FEM in-
verse solver tailored to geo-electromagnetic imaging applications.
In addition, several different variations of the parameter mesh re-
finement are offered and tested on a series of relevant models. To au-
thor’s knowledge, this is the first study that implements and demon-
strates all these techniques in the context of geo-electromagnetic
imaging.
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2 F O R M U L AT I O N O F T H E P RO B L E M

2.1 Forward modelling

2.1.1 Governing equations

Electromagnetic fields in 3-D settings are governed by the following
complex-valued PDE equation augmented with the homogeneous
Neumann boundary conditions

∇ × (μ−1∇ × Es) + iωσEs = −iω(σ − σ 0)E0 in �,

n × μ−1∇ × Es = 0 on ∂�, (1)

where � ⊆ R
3 is some bounded domain, ω angular frequency,

Es : � → C
3 a scattered complex-valued electric field and

σ : � → R+ denotes real-valued electrical conductivity; μ is as-
sumed to be magnetic permeability of free space, but in general is
not limited to that choice; σ 0 is the conductivity of a 1-D background
model; E0 known background field and n is an outward-pointing
normal vector on ∂�. The total field is calculated as E = E0 + Es .

In this work, a real-valued analogue of the eq. (1) was solved.
Namely, inserting Es := Es

R + iEs
I into (1) and splitting the result,

yields a system of two coupled real-valued equations

∇ × (
μ−1∇ × Es

R

) − ωσEs
I = ω(σ − σ 0)E0

I in �

∇ × (
μ−1∇ × Es

I

) + ωσEs
R = −ω(σ − σ 0)E0

R in �

n × μ−1∇ × Es
R = 0 on ∂�

n × μ−1∇ × Es
I = 0 on ∂�. (2)

The magnetic field H is calculated from E by employing Faraday’s
law.

In MT, responses such as impedance tensor are typically in-
verted. Using notations Ex1, Ey1, Hx1, Hy1 and Ex2, Ey2, Hx2, Hy2 for
horizontal components of the electric and magnetic fields for the
two orthogonal polarizations, impedance tensor Z is expressed as
(Berdichevskii & Dmitriev 2008)(

Ex1 Ex2

Ey1 Ey2

)
=

(
Zxx Zxy

Z yx Z yy

)(
Hx1 Hx2

Hy1 Hy2

)
. (3)

2.1.2 Discretization using finite elements

Eq. (2) was discretized using the FEM. To this end, domain � is rep-
resented using a mesh T

s consisting of non-overlapping hexahedral
cells. Let an electric field Es be from a space of 3-D vector func-
tions with well-defined curl. The discrete version of this space is
constructed using Nédélec finite elements (Monk 2003). After rep-
resenting Es in terms of Nedelec basis functions and multiplying
the second equation in the system (2) by −1 to preserve symmetry,
it can be written as a system of linear equations(

C −M

−M −C

)(
Es

R

Es
I

)
=

(
sR

−sI

)
, (4)

where C, M and s are the discrete curl-curl, mass and right-hand
side (RHS) terms. For a detailed derivation and verification of the
numerical scheme, the reader is referred to Grayver & Bürg (2014)
and (Grayver & Kolev 2015). Note that eqs (1)–(2) deal with contin-
uous variables, whereas in eq. (4) discrete counterparts were used.
For brevity, notation above omits this difference.

2.1.3 Solver

Many factors affect numerical properties of the system (4), mak-
ing it difficult to solve (Schwarzbach 2009; Ernst & Gander 2011).
Grayver & Bürg (2014) presented a robust solver that can also scale
to large problems. In this context, robustness means an ability of
a method to preserve its performance for a wide range of model
settings such as frequency, conductivity contrasts, locally-refined
and/or stretched grids, whereas scalability allows taking advantage
of modern distributed computational platforms when solving large-
scale problems. Following this approach, system (4) is solved by
using FGMRES method (Saad 2003) with the optimal block diago-
nal preconditioner

A =
(

B 0

0 B

)
, (5)

where B = C + M is real and symmetric. Application of A−1 to a
vector requires solution of two systems with system matrix B. For
large-scale problems, B−1 can be efficiently approximated by means
of auxiliary space preconditioning (Hiptmair & Xu 2007; Kolev &
Vassilevski 2009). For problems of moderate size and multiple RHS
vectors, however, a direct solver outperforms auxiliary space pre-
conditioner. For MT modelling, two solutions for orthogonal source
polarizations and a dual problem (if the goal-oriented error estima-
tor is used; see Section 2.1.4) are needed. Due to the homogeneous
boundary conditions (1), the system matrix in eq. (4) remains the
same for all RHS vectors. Therefore, direct solvers are efficient
since they compute solutions for multiple RHS vectors virtually at
the cost of a single matrix factorization. As a result, a hybrid precon-
ditioner was used: for problems with number of degrees of freedom
(DoFs) less than a prescribed threshold, a distributed direct solver
was utilized for approximating B−1, whereas for larger problems the
auxiliary space preconditioner was more efficient. In this work, this
threshold was set to 900 000 DoFs based on the scalability analysis
presented in Grayver & Bürg (2014).

2.1.4 Goal-oriented error estimator

To obtain accurate EM responses, adaptive mesh refinement has
been used. Starting from a coarse mesh T

s
0, eq. (2) was solved

on a series of automatically refined meshes. For every subsequent
mesh T

s
i , a subset of cells with the most inaccurate solution is

identified (Ainsworth & Oden 2000) and refined. For a numerical
solution F = FR + iFI and all cells K ∈ T

s
i , error indicators ηK (F)

are calculated as follows:

ηK (F)2 := ηR,K (F)2 + ηJ,K (F)2, (6)

where residual-based and jump-based terms are given by

ηR,K (F)2 := h2
K

∥∥∇ × (
μ−1∇ × F

) + iωσF − s
∥∥2

L2(K )
, (7)

and

ηJ,K (F)2 : = 1

2

6∑
e=1

he

(‖[ne × (μ−1∇ × F)]‖2
L2(e)

+ ‖[ne · (iωσF − s)]‖2
L2(e)

)
. (8)

Here, hK := diam(K ) is the diametre of the hexahedra K, e an inte-
rior face of K, he := diam(K ) diametre of a face. Square brackets
[·] denote the jump of the quantity across element boundaries. The
physical meaning of these terms is discussed in Grayver & Bürg
(2014).
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To facilitate accuracy of EM fields at receiver positions, dual-
weighted or goal-oriented error estimators (Ainsworth & Oden
2000; Bangerth & Rannacher 2003) can be used. These approaches
help avoid refinement in regions where inaccuracy of a solution does
not significantly affect EM fields at receivers, and were shown to
be efficient in geo-electromagnetic modelling (Key & Ovall 2011;
Ren et al. 2013). In this work, a goal-oriented error estimator similar
to the one presented in Ren et al. (2013) was implemented. Along
with numerical solution of eq. (2), a dual problem with fictitious
sources placed at the receiver locations is solved. Denoting the dual
solution by ED , the error indicator used to mark cells for refinement
is given by

η2
K := ηK (Es)2ηK (ED)2. (9)

Finally, a fixed fraction θ ∈ (0, 1] of cells T ⊆ T
s with the largest

error indicators is selected. These cells are then refined through
bisection in all three dimensions. The procedure is repeated until
a predefined error level is attained or the number of maximum
cycles nmax is reached, or number of degrees of freedom exceeds a
prescribed threshold.

To derive MT transfer functions in 3-D settings, EM fields for
two orthogonal source polarizations are calculated. Since forward
modelling problem was formulated using homogeneous boundary
conditions, system matrix and numerous related data structures re-
main identical for both polarizations as long as the mesh remains
the same. To avoid time and memory overhead associated with the
assembling and storing two matrices, the same mesh was used for
both polarizations. Therefore, a subset of cells marked for refine-
ment at every refinement cycle was formed as a union T = T1 ∪ T2

of the subsets identified for two polarizations individually.

2.2 Inversion

Inverse problem is formulated in form of a non-linear optimization
problem

min
m∈W

F(m), (10)

with

F(m) := 1

2

∥∥ f (m) − dobs
∥∥2

C−1
d

+ β2

2
‖L(m − ma)‖2

L2(�) , (11)

where dobs ∈ R
Nd is a vector of observed data, Cd data covariance

matrix, m ∈ W parameter variable. In this work, m is given by the
log-bounded transformation of the electrical conductivity m = ν(σ )
(Kim & Kim 2011). Forward operator f (m) : W → R

Nd calculates
MT responses for the given vector of parameters.W = {v ∈ L2(�)}
is a space of piecewise-constant functions defined in domain �.
Regularization term consists of the regularization parameter β ≥ 0,
a priori model ma ≥ 0, and L : W → W is a Laplace-like operator.
Regularization helps mitigate effects of poorly constrained data-
term and narrow a class of feasible solutions.

To discretize eq. (11), let domain � be represented by a mesh
T

m and Wm ⊂ W be a space of piecewise-constant functions on it.
Nm = dim(Wm) is the number of cells in T

m .
Usually, some cells of T

m are kept fixed in inversion (such as
air, sea or padding cells). To account for this, a projector matrix
D ∈ R

Na×Nm is introduced with Na being a number of active cells.
The active set is a subset of cells from T

m which get updated. Matrix
D maps a vector defined for all cells in T

m onto an active set of cells.
To find a solution of the eq. (10), Gauss–Newton method was

utilized. This requires solving a system of linear equations for the

nth model update:(
JT

n C−1
d Jn + β2L

)
δmn = −JT

n C−1
d (f(mn) − dobs)

− β2L(mn − ma), (12)

where L = DL̃DT is a finite-difference approximation of Laplace
operator with homogeneous Neumann boundary conditions on ac-
tive cells of T

m . Details regarding its discretization on unstructured
and non-conforming meshes are covered by Haber et al. (2007)
and Schwarzbach & Haber (2013). Jacobian matrix Jn = J̃nDT ∈
R

Nd ×Na is the derivative of the discrete forward operator f(mn) with
respect to the parameter variable on active cells. See Pankratov &
Kuvshinov (2010) and Egbert & Kelbert (2012) for an elaborated
description of its structure. New model is obtained as a sum of the
current model and scaled update mn+1 = mn + αδmn , where 0.1 <

α ≤ 1 is a step-length (Nocedal & Wright 1999). To allow the inver-
sion to leave a local minimum, an increase in the objective function
is accepted if a suitable α > 0.1 cannot be found.

The regularization parameter β is calculated at every iteration as
a ratio of the spectral radii of the data and regularization related
operators:

βn = γ
‖C−1/2

d Jn‖2
2

‖L‖2
, (13)

where 0 ≤ γ ≤ 1 is a user-defined relative scaling. See Grayver et al.
(2013) for a discussion of this approach to calculate regularization
parameter.

System (12) was solved using CGLS iterative solver (Hansen
1998). Thus, matrix J is never formed explicitly, rather matrix-
vector products are calculated by solving Nf state and adjoint prob-
lems with Nf being the number of frequencies in a data set (Egbert &
Kelbert 2012). System (12) is solved approximately using Nit < Na

iterations, hence introducing additional regularization because of
implicit filtering of eigenvectors corresponding to small eigenval-
ues (Haber 1997).

2.2.1 Decoupling state, adjoint and parameter meshes

As outlined in the introduction, decoupling state, adjoint and pa-
rameter meshes provides additional flexibility and opens the door
for using specific adaptive mesh refinement criteria for state, adjoint
and parameter variables.

In attempt to keep technical complexity feasible and computa-
tional time low, a number of requirements on meshes were imposed:

(i) State mesh T
s was used for solving corresponding adjoint

problem. This significantly reduces amount of computations since
all linear operators remain the same for both state and adjoint vari-
ables. Moreover, error indicator (9) used to refine state mesh is
essentially a product of the estimated errors for the forward and ad-
joint variables, thus it aims at finding a mesh that reduces error for
both variables simultaneously. This permits using the same mesh
without significant accuracy penalties for either of problems.

(ii) At nth inversion iteration, a separate state meshes T
s
n,i i =

1 . . . N f were constructed for each frequency and refined indepen-
dently. This enables building optimal meshes for each frequency
independently using automatic goal-oriented mesh refinement (see
Section 2.1.4). This is particularly efficient since different frequen-
cies can be calculated in parallel.

(iii) Any state mesh T
s
n,i can be obtained from the parameter

mesh T
m
n by the hierarchical refinement. In other words, an ini-

tial coarse state mesh always coincides with the parameter mesh
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and optionally gets refined to calculate EM fields accurately. Such
hierarchical representation greatly simplifies implementation, espe-
cially in distributed memory environments.

Let us elaborate on the second point here. While building Nf state
meshes may seem more expensive than using the same mesh for all
frequencies, it is rather difficult to find a single mesh that would re-
solve EM fields at all frequencies equally well. Commonly, MT data
sets incorporate responses at frequencies ranging over 6–8 orders
of magnitude. Therefore, a single mesh would need to be refined
everywhere where a solution for any frequency exhibits non-smooth
behaviour (e.g. across conductivity contrasts). For different frequen-
cies the rate of solution variability is different throughout the mod-
elling domain. Therefore, it is highly unlikely that regions where
the mesh would have to be refined, and degree of refinement will
coincide for all frequencies. As a result, one either has to choose a
very fine mesh incurring computational overburden or compromise
accuracy. Since neither is favourable, using independent meshes for
each frequency is an adequate alternative. The only downside of
this decision is a slightly more complicated implementation due to
extra bookkeeping. For the cases when densely spaced frequencies
or a big number of controlled sources (e.g. in CSEM) are given,
one can group them in order to reduce computational complexity
(Key & Ovall 2011).

To solve eq. (12), products of a vector with sensitivity matrix J or
its transpose are required. Due to the matrix-free formulation used
in this work, these products entail solution of Nf state or adjoint
equations. Recall that for ith frequency, mesh T

s
i is typically finer

than the corresponding parameter mesh T
m for which the sensitivity

matrix J has to be defined eventually. This requires constructing a
transfer operator Pi : Wm → Ws

i that takes a variable defined on
T

m and maps it onto T
s
i . Taking this into account and using block

structure of the sensitivity matrix (Egbert & Kelbert 2012) allows
to write

Jv =
N f

‖
i = 1

Ji Pi D
T v

JT u =
N f∑
i=1

DPT
i JT

i u, (14)

where symbol ‖ denotes vector concatenation. Sensitivity matrix
for the ith frequency Ji is calculated on the mesh T

s
i and acts

on the space Ws
i . Structure of the corresponding transfer ma-

trix Pi ∈ R
dim(Ts

i )×Nm generally depends on a parameter variable
space W and geometric relation between T

i
s and T

m . Exploiting a
piecewise-constant basis of m and the fact that T

s
i is obtained from

T
m by hierarchical refinement, the values for cells of T

m which
were refined in T

s
i are simply weighted sums of the values from

all terminal children, rendering projection operator to be a sparse
matrix with zeros and ones.

It should be understood that all objects introduced above also
depend on an iteration number n. Unless unclear from the context,
this index is omitted to avoid notation clutter.

2.2.2 Initial parameter mesh design

Model resolution is a function of data uncertainty, survey layout,
conductivity distribution and governing PDE equations. Depending
on these factors, some regions of the model are better constrained
than others. Therefore, it is desirable for an initial parameter mesh
T

m
0 to reflect the actual model resolution in some way. One can

design such mesh manually using some heuristic rules such as skin
depth. This, however, may become a tedious task and result in a
mesh that is still too fine or coarse. The goal of this section is to
develop an automatic approach to choose an initial parameter mesh
T

m
0 such that it takes into account all mentioned factors.
Recall that for non-linear inverse problems, in the vicinity of a

model m, model resolution is characterized by the resolution matrix
Rm (Menke 1984; Kalscheuer & Pedersen 2007). Before stating this
matrix, first let

C−1/2
d J = USVT = (

Ur U0

) (
Sr 0

0 0

)(
VT

r

VT
0

)
(15)

be the singular value decomposition (SVD) of the weighted Jacobian
matrix. Here, r denotes the rank of the matrix, S ∈ R

Nd ×Na contains
singular values on the main diagonal; matrices U ∈ R

Nd ×Nd and
V ∈ R

Na×Na represent left and right singular vectors, respectively,
and are orthonormal. Further, let C−1/2

d Jr = Ur Sr VT
r be the SVD

of the weighted Jacobian restricted to the range of the matrix. Then,
the resolution matrix is given by

Rm = (
Vr S2

r VT
r

)−1
JT

r C−1
d Jr = (

Vr S2
r VT

r

)−1
Vr S2

r VT
r = Vr VT

r .

(16)

Note that this matrix does not involve regularization, thus spec-
ifying how model is constrained by data alone. Each row of this
matrix is a point-spread function (Alumbaugh & Newman 2000;
Grayver et al. 2014) quantifying how much a model parameter is
influenced by all other model parameters. This information can be
used to design an initial parameter mesh. Generally, calculation of
this matrix is prohibitive. Nevertheless, since JT

r C−1
d Jr is a compact

operator (Bui-Thanh & Ghattas 2012), its low-rank approximation
can be build efficiently. Because resolution estimates are merely
used as an indicator for mesh refinement, a relative quantity is suf-
ficient. Therefore, the main diagonal of Rm was used as a measure
of resolution (Vasco et al. 2003; Zhang & Thurber 2007).

Low-rank SVD can be obtained by computing l � r singular
vectors corresponding to the largest singular values. In this work,
the following low-rank approximation of the main diagonal of Rm

was computed

diag(Rm) ≈ rm =
l∑

k=1

(vk)2, (17)

where singular vectors vk were calculated using thick-restart Lanz-
cos bidiagonalization algorithm (Wu & Simon 2000). Since singular
vectors are unit vectors, elements of rm range between zero and one
with those closer to one indicating well-resolved model parameters.

Using these estimates, the following automatic initial mesh re-
finement algorithm was implemented:

(i) Choose a starting model m0 and an initial coarse mesh T
m
0

(ii) Calculate rm using eq. (17)
(iii) Select a subset of �εNa� (0 < ε < 1) maximal elements of

rm and refine corresponding cells of T
m
0 .

(iv) If necessary, go to Step (ii) and repeat refinement.

So far, the choice of subspace dimension l has not been discussed.
Note that

(rm) j =
(

l∑
k=1

(vk)2

)
j

≤
(

n∑
k=1

(vk)2

)
j

∀n : l < n ≤ r. (18)

This means resolution gets enhanced as subspace dimension in-
creases, that is more singular vectors are added into the sum (17).
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In practice, factors such as data uncertainties and discretization er-
rors limit the subspace dimension when calculating a model update
(Alumbaugh & Newman 2000; Grayver et al. 2014). Therefore, it
is reasonable to choose l to be on the same order as the subspace
dimension used to solve eq. (12).

Several practical aspects need to be clarified. First of all, the in-
troduced approach relies on a starting model m0 and the constructed
mesh may vary for different models. However, a good starting model
is vital when solving inverse problems using derivative-based meth-
ods and thus is required anyway. Following the conventional inver-
sion workflow, several starting models should be tested. The other
issue arises by recalling that the matrix Rm is valid only in some
vicinity of the model m0 and estimated resolution is usually lower
than the one given by non-linear analysis for conductive structures
(Kalscheuer & Pedersen 2007). One could possibly overcome this
issue by recalculating resolution estimates after several iterations
and adjusting mesh accordingly or using adaptive mesh refinement
as explained in the next section.

2.2.3 Adaptive parameter mesh refinement

Parameter variable vector m is updated iteratively by solving eq. (12)
and performing line-search. To account for updating structure and
better resolve emerging contrasts, parameter mesh can be refined in
the neighborhood of points where parameter variable varies most.
For this purpose, the following adaptive mesh refinement algorithm
was implemented:

(i) Choose a starting model m0 and initial coarse parameter mesh
T

m
0 in the domain �.
(ii) Optional: Use algorithm from Section 2.2.2 to refine T

m
0 on

the basis of linearized model resolution estimates.
(iii) Construct initial state variable meshes T

s
i = T

m
0 , ∀i =

1..N f .
(iv) Calculate predicted data for the current model using adaptive

goal-oriented mesh refinement (see Section 2.1.4). Check if any of
the stopping conditions are met: n ≥ nmax or δ(f(mn) − dobs) ≤ ε,
where nmax is a maximum number of Gauss-Newton iterations, ε

target data misfit. If yes, terminate inversion.
(v) Update model mn+1 = mn + αδmn using Gauss-Newton al-

gorithm (see equation 12).
(vi) Stop updating model mn if optimization is stagnated and no

further progress can be made on the current mesh. To detect this,
check if step-length α < 0.1 or sufficient reduction in misfit is absent
for several iterations. Otherwise set n = n + 1 and go to Step (iv).

(vii) Calculate spatial derivative of the current model g =
|∇(mn − ma)| and refine a fraction ε ∈ (0, 1) of cells for which
g is the largest.

(viii) Construct new state meshes using refined parameter mesh
obtained at the previous step and interpolate mn on it. Set n = n + 1
and go to Step (iv).

While there is generally no guarantee that this strategy will con-
verge to the true solution, it has multiple advantages when com-
pared to the conventional inversion using a pre-determined mesh:
(i) at the beginning the parameter mesh is coarse and iterations take
less computational time; (ii) coarser mesh reduces ambiguity and
acts as additional regularization; (iii) parameter mesh automatically
accounts for gradually updating model structure; (iv) state/adjoint
meshes are refined independently to deliver accurate EM responses
without affecting number of unknowns in inversion.

In practice, a modification of the aforementioned approach may
become necessary. Namely, after every mesh refinement, the param-
eter vector mi can be reset to the initial guess m0 interpolated on

the refined mesh. This means that once the parameter mesh gets re-
fined, Gauss–Newton inversion is started anew. While at first glance
this may seem as a loss of efficiency, such a decision is justified. If
some artefacts appear on a coarser mesh due to the lack of spatial
resolution, the inversion needs to suppress them after refinement.
If these artefacts become too severe, they can potentially destroy
convergence. In this case, it is better to start anew using a refined
mesh even at the cost of a longer runtime. For a particular study, it is
recommended to test both approaches and choose one that delivers
a better result.

3 I M P L E M E N TAT I O N

The presented algorithm has been implemented in a distributed
manner to harness the computational power of the modern clusters.
The code is parallelized over frequencies and modelling domain. In
other words, given Nf frequencies, the code can run on nNf CPUs,
where n ≥ 1. For n = 1 this corresponds to parallelization over
frequencies only. For n > 1, EM fields for each frequency were cal-
culated using n Message Passing Interface (MPI) processes. In this
case, the workload for each frequency is distributed approximately
uniformly among n MPI processes by partitioning meshes into n
subdomains. The outer inversion loop used all nNf MPI processes.
For the implementation of the forward modelling and distributed
mesh handling deal.II and p4est libraries (Bangerth et al. 2011;
Burstedde et al. 2011) were used. PETSc (Balay et al. 2013) and
SLEPc libraries (Hernandez et al. 2005) were used for distributed
linear algebra operations and low-rank SVD. For the distributed di-
rect solver and auxiliary space preconditioning, MUMPS (Amestoy
et al. 2006) and hypre (Kolev & Vassilevski 2009) libraries were
employed. All third-party libraries and the forward modelling im-
plementation were shown to handle very large problems with up
to 108–109 unknowns, rendering implemented inversion scheme
scalable and suitable for solution of large-scale inverse problems.

4 N U M E R I C A L E X P E R I M E N T S

The main purpose of this work is to introduce adaptive mesh refine-
ment techniques for large-scale geo-electromagnetic inverse prob-
lems. In this section, a number of tests aim to demonstrate efficacy
of the presented framework using 3-D MT inversion as an example.
The results are divided into two parts as follows: first, the method-
ology for a priori parameter mesh design using linearized model
resolution estimates as derived in Section 2.2.2 is tested, followed
by a demonstration of the adaptive parameter mesh refinement al-
gorithm from Section 2.2.3.

Several parameters were identical for all experiments. Electrical
conductivity of the air layer was set to 10−8 S m−1. Normalized
relative residual was set to 10−8 when solving eq. (4). For linear
problems originating in Jacobian matrix-vector products, slightly
higher value of 10−6 was used. Experiments showed that these val-
ues keep computational time relatively low while preserving suf-
ficient accuracy. To avoid inverse crime, all synthetic data were
generated using different and much finer meshes than those in in-
version. Full impedance tensor Z (Berdichevskii & Dmitriev 2008)
was inverted. To solve system (12), 25 iterations were performed to
reach a normalized residual of 10−3.

4.1 Initial parameter mesh design

To gain some insight into how model resolution estimates can be
used to steer mesh refinement, several simple tests were performed.
For these tests, low-rank SVD with l ≥ 40 in eq. (17) was calculated
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Figure 1. (a–d) Low-rank approximations of the main diagonal of the linearized model resolution matrix for a homogeneous halfspace of 0.01 S m−1 on a
series of adaptively refined meshes using the algorithm from Section 2.2.2. At each subsequent cycle, 25 per cent of the cells with the largest resolution were
refined. Positions of the receiver stations are denoted by the white rectangles. Vertical sections are plotted for x = 0 m.

using thick-restart Lanzcos bidiagonalization algorithm. It is impor-
tant to use an algorithm with some restart and/or reorthogonalization
strategy since accuracy of the classic Lanzcos bidiagonalization al-
gorithm in finite precision arithmetic deteriorates rapidly (see Zhang

& Thurber (2007) and references therein). Accuracy of the calcu-
lated low-rank SVD decomposition can be controlled by using a
posteriori error bounds (Saad 2011). Numerous tests showed that
the error of 0.1 per cent was sufficient to get reasonable resolution
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Figure 2. (a, c) Low-rank approximations of the main diagonal of the linearized model resolution matrix for a homogeneous half-spaces of 0.1 and 1 S m−1,
respectively. (b, d) After two cycles of adaptive refinement using the algorithm from Section 2.2.2 (cf. Fig. 1c). Positions of the receiver stations are denoted
by the white rectangles. Vertical sections are plotted for x = 0 m.
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Figure 3. (a and b) Resolution estimates for the homogeneous half-space and non-uniform site distribution on the initial and adaptively refined meshes. (c and
d) Same as (a and b), but for the uniform 3-D survey layout. In this case, however, error floors of 30 per cent were set for the half of the receivers located to the
north of x = 0, whereas error floors of 3 per cent were used for the second half. Positions of the receiver stations are denoted by the white rectangles.
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Figure 4. (a and b) Resolution estimates for the quarter-space using full impedance tensor on the initial and adaptively refined meshes. (c and d) Same as
(a and b), but with vertical magnetic transfer functions included. Positions of the receiver stations are denoted by the white rectangles. Conductivity and
boundary of the vertical contrast are given in (a).
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Figure 5. Horizontal sections through the synthetic model at (a) z = 350 m, (b) z = 2500 m and (c) vertical section for x = 0. White rectangles indicate
receiver positions.

estimates. In fact, the value of 0.1 per cent was the upper bound.
In all considered cases, majority of the singular vectors had much
smaller error. Finally, full impedance tensor at all receiver stations
and 24 frequencies uniformly distributed on a logarithmic scale in
the frequency range of 10−3–103 Hz was used.

Fig. 1 displays a series of adaptively refined meshes using the
algorithm from Section 2.2.2. The main diagonal of the linearized
model resolution matrix rm was approximated for a homogeneous
half-space of 0.01 S m−1 and 256 receiver stations shown with
white rectangles. Starting from the coarse mesh with 980 cells,
25 per cent cells (ε = 0.25) with the largest resolution were refined
at every subsequent step. Since every refined cell creates eight new
cells and becomes inactive itself, value of ε = 0.25 results in roughly
2.5 times more cells upon each refinement. Accordingly, after two
refinement steps, a mesh with 7406 cells (Fig. 1c) was obtained with
the smallest cell size approximately equal to the distance between
stations. The last refinement step shown in Fig. 1(d) indicates that
singular vectors become rather localized and therefore the obtained
mesh is likely overparametrized. Clearly, resolution decays rapidly
as the distance from receivers increases, indicating that the model
in these regions is poorly constrained by the data. Therefore, it is
sufficient to have coarser mesh there. These intuitive expectations
are well fulfilled by the algorithm. It is important to reiterate that
the linearized resolution estimates are lower than realistic ones and
taking into account a potential need to compensate for small near-
surface heterogeneties, one may still prefer a finer mesh.

Resolution estimates rm depend on an underlying conductivity
model. To investigate this dependence, Figs 2(a and b) and Figs 2(c
and d) illustrate mesh refinement for the homogeneous halfspaces of
0.1 and 1 S m−1 , respectively. As anticipated, resolution drops with
increasing conductivity of the model because EM fields attenuate
faster. However, resolution patterns among three models exhibit

many similarities and since a fixed number of cells is refined at
every step, the final meshes look similar and have virtually the
same number of cells. Therefore, for this refinement strategy, the
dependence of the refined mesh on an initial model is moderate.
It is a pattern of the resolution distribution that matters most. For
real data with no good starting model available this behaviour is
advantageous. On the other hand, if one wants to adjust mesh more to
the actual values of the calculated resolution estimates rm , a different
refinement strategy can be used. For instance, a minimal subset of
cells, which account for a prescribed fraction of the total quantity
(i.e.

∑
i r i

m) can be selected and refined at every step (Bangerth
2002). Considering that every real data set creates new challenges,
it is difficult to say in advance which strategy will perform better.

So far, idealistic site distribution and constant data uncertainty
were used. Since this is hardly realizable in practice and the model
resolution matrix highly depends on both survey layout and data un-
certainties, two more scenarios were studied. Figs 3(a and b) show
resolution estimates for a homogeneous half-space of 0.1 S m−1

and the corresponding adaptively refined mesh for a non-uniform
distribution of stations. As expected, refined mesh accommodates
survey layout properly by keeping a coarser mesh in regions without
stations. In addition to receiver layout and conductivity distribution,
resolution is also affected by data uncertainties via data covariance
matrix in the eq. (15). Generally, higher uncertainties in data deteri-
orate resolution. Figs 3(c and d) display resolution estimates on an
initial coarse and adaptively refined meshes for a 3-D survey where
receivers located to the north and south of x = 0 were assigned error
floors of 30 per cent and 3 per cent, respectively. Clearly, receivers
with higher uncertainties exhibit lower resolution and hence the
mesh remains coarse in their neighbourhood.

In case an initial model is not a homogeneous half-space, res-
olution estimates will reflect contained structures and gear mesh
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Figure 6. (a) Final model for the mesh with cell boundaries matching edges of the true objects. (b) Final model for the coarse mesh with cell boundaries not
coincident with the edges of the true objects. (c and d) Final models for the meshes which were adaptively refined using resolution estimates. Numbers of
active cells (i.e. parameter unknowns) are 2100, 420, 1596, 6062 for (a–d), respectively. Horizontal sections are shown at z = 350 and z = 2500 m.

refinement accordingly. Figs 4(a and b) show resolution estimates
for the initial and adaptively refined meshes using a quarter-space
model. When using impedance tensor only, the more resistive part
gains higher resolution estimates. Because of the sharp vertical
conductivity contrast, this model produces large vertical magnetic
transfer functions (VTF). Including them in calculations produced
meshes shown in Figs 4(c and d). Interestingly, VTF changes
resolution distribution and now area around conductivity contrast
gains higher resolution which affects mesh refinement accordingly.

Finally, it is worth noting that the linearized model resolution
matrix is based on the sensitivity, which in turn is an integral quan-
tity. Therefore, resolution is proportional to a cell volume. Other
conditions being equal, bigger cells get higher resolution estimates
as can be inferred from the results shown in Figs 1–4.

To demonstrate the utility of the algorithm, inversion of the model
shown in Fig. 5 was performed. The model consists of the homoge-
neous background of conductivity 0.1 S m−1 and three rectangular
objects: shallow 3 × 4 × 0.3 km object of conductivity 0.002 S m−1

located at the depth of 0.2 km and two deeper objects of conduc-

tivity 1 and 0.002 S m−1, each of size 7 × 4 × 4.5 km located
at the depth of 1.5 km. Data at 169 receivers were generated for
16 frequencies evenly spaced on the logarithmic scale in the range
of 0.001–100 Hz. This results in 21 632 real-valued data measure-
ments for inversion. Two percent random Gaussian noise was added
to the data. Lower and upper bounds of the conductivity were set
such that 0.0001 ≤ σ ≤ 10 throughout the imaged volume. Error
floors of 0.01|ZxyZyx|1/2 were adopted. State and adjoint equations
were solved on automatically refined meshes using goal-oriented
error estimator. At every iteration, four refinement cycles with θ =
0.1 were performed to reduce initial error approximately 10 times
(see Section 2.1.4 for more details). The starting model was the
homogeneous half-space of 0.1 S m−1.

Fig. 6(a) illustrates final model obtained for a parameter mesh in
which cell boundaries coincide with the edges of the true anomalous
objects. The quality of the obtained image is very good with both
positions and conductivities of the anomalous objects well resolved.
The inversion was run using 48 MPI processes, corresponding to
three MPI processes per frequency. The parameter mesh for this test
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Figure 7. Adaptively refined state meshes for the model shown in Fig. 6(a) for the frequencies of (a) 0.001 and (b) 100 Hz. Colour depicts distributed mesh
partitioning. White rectangles denote receiver positions.

Figure 8. Data misfit versus iteration number for the inversion runs shown
in Fig. 6. Note corresponding numbers of unknowns (i.e. active cells in the
parameter mesh) in the legend.

T
m has only 2100 active cells and remained fixed throughout inver-

sion. Refined state and adjoint meshes T
s contained more cells. In

Fig. 7, these meshes for the lowest and highest frequency and the
final model from the Fig. 6(a) are shown. They were obtained using
automatic adaptive goal-oriented error estimator from Section 2.1.4.
These meshes have approximately 70 000 cells each, resulting in a
system of eqs (4) with roughly 500 000 unknowns. In Fig. 7, colour
indicates different subdomains of the partitioned mesh. For a given
frequency, each of the three subdomains was assigned to a single
MPI process such that the workload is approximately uniformly dis-
tributed for all 16 frequencies. As anticipated, refined meshes differ
significantly. Namely, for higher frequency of 100 Hz refinement is

mostly concentrated in the near-surface part. This is attributed to
the fact that EM fields for higher frequencies attenuate faster and
hence deeper parts of the model do not affect EM responses at the
receivers.

In the previous test, cell edges coincided with boundaries of
the true objects. Even though this mesh is different from the one
that was used to generate data and inverse crime is thus avoided,
the inversion gets a priori information that is generally unavailable
when working with real data. In order to avoid this situation, a coarse
mesh in which cell edges do not match with object boundaries was
taken instead. Fig. 6(b) shows the final model on this mesh with 420
active cells. While deep objects were recovered with some success,
the shallower resistor is completely missed. To improve the image
quality, a single cycle of the adaptive refinement using resolution
estimates obtained with conservatively chosen l = 150 was applied
to the coarse mesh and the final model on the refined mesh is shown
in Fig. 6(c). The refined mesh has 1596 active cells and enables
inversion to resolve shallow object reasonably well, although deeper
objects are still poorly imaged. Performing one more refinement step
produces a mesh with 6062 active cells and Fig. 6(d) shows the final
model. Now both the shallow and deep objects are well resolved.
While this mesh results in more parameter unknowns than the one
from Fig. 6(a), it was obtained automatically, starting from a very
coarse mesh without making any assumptions on potential objects’
geometry and positions. Fig. 8 summarizes progress of the data
misfit over iterations for all four inversion runs. Finer parameter
meshes deliver models with better data fit due to additional degrees
of freedom.

Table 1 summarizes computational resources required for the
inversion shown in Fig. 6(d) with an inversion run on a struc-
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Table 1. Computational time and memory required per inversion it-
eration for a uniformly and adaptively refined meshes.

Uniformly refined Adaptively refined

# of parameter cells 98 560 8766
# of active cells 32 760 6062
Memory per core (Gb) 2.2 0.2
Timer per iteration (min) 70 6

tured parameter mesh that is uniformly refined two times in the
subsurface. Observed significant reductions in CPU time and
memory are due to the difference in parameter space dimen-
sions which influence size of the corresponding state and adjoint
problems.

For demonstration of the mesh refinement algorithm, previous
inversions were run using the true background as a starting model.
However, like the mesh in which cell edges coincide with boundaries
of the true objects, the true background is unavailable in practice,
too. Therefore, two more tests were performed with starting mod-
els being homogeneous half-spaces of 0.2 and 0.01 S m−1 for the
same data set. As in the previous tests, two adaptive mesh refine-
ment cycles were performed using resolution estimates based on
the corresponding starting models. Fig. 9 displays the final con-
ductivity models. For both cases, inversion converged in few itera-
tions. As could be anticipated, when starting from more conductive
model, the conductor gets resolved better, whereas starting from
more resistive background enables resolving resistive objects bet-
ter. Overall, quality of the image remained good despite the starting
models differed from the true background. More important here is
that the mesh refinement algorithm performed well for both cases
by delivering meshes which were suitable to resolve subsurface
structure.

4.2 Adaptive mesh refinement

While initial mesh design based on resolution estimates offers a
very useful tool in practice, the adaptive mesh refinement may fur-
ther improve models when working with real-world data. The main
reason for this is that initial and true models may have substantially
different complexities. Even if an initial mesh was refined using

Figure 10. Dublin Test Model 2. A plain view (top) and a section view
(bottom) show a 0.1 S m−1 hemisphere of the radius 5 km embedded in the
0.003(3) S m−1 half-space. Positions of the receivers are shown with white
rectangles. Receiver 10 and 18 are indicated with arrows.

resolution estimates, it might be incapable of capturing all fea-
tures of the true model sufficiently well. Adaptive parameter mesh
refinement strategy derived in Section 2.2.3 helps alleviate this limi-
tation. For demonstration, Dublin Test Model 2 (DTM2) was chosen
(Miensopust et al. 2013). The true model and receiver stations dis-
tribution are shown in Fig. 10. Spherical objects pose a challenge for

Figure 9. Final models for the meshes which were adaptively refined using resolution estimates. Starting models were homogeneous half-spaces of 0.2 and
0.01 S m−1 for (a) and (b), respectively. Horizontal sections are extracted at z = 350 and z = 2500 m.
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Figure 11. Inversion of DTM2 using automatic adaptive parameter mesh refinement. Plane views at the surface and section views along the centre show
conductivity models and the corresponding parameter meshes at the iterations where stagnation in inversion was detected. The numbers of active cells (i.e.
unknowns in inversion) are 108, 255, 724, 1837, 4721, 12162 for (a–f), respectively. Positions of receivers are shown with the white rectangles.

conventionally used cell-based model parametrizations. One could
use unstructured meshes to represent such geometry very accurately
with a moderate number of finite elements, but in inversion it is not
known a priori which mesh to choose. Therefore, even codes which
support unstructured meshes will struggle. The easiest solution is
to choose a uniformly fine parameter mesh. However, this results in
over-parametrization and increases computational demands as was
discussed earlier.

Data for DTM2 model was calculated at 49 receivers (shown with
white rectangles in Fig. 10) and 24 periods ranging from 0.01 to
5600 seconds using a refined mesh with 543 332 elements. In total,
9408 real data values were used in inversion. Random two percent
Gaussian noise was added to the data. The inversion was started

from a homogeneous halfspace of 300 �m using a coarse parameter
mesh consisting of only 108 active cells. Once it is detected that no
further progress can be made on a current parameter mesh, it was
refined in the neighbourhood of points where parameter varies most
(see Section 2.2.3 for details). For this study, 20 per cent of cells
with the largest parameter variations were refined. Conductivity
lower and upper bounds were set such that 0.0005 ≤ σ ≤ 1. State
and adjoint equations were solved on automatically refined meshes
using goal-oriented error estimator. Four refinement cycles with
θ = 0.1 were performed at every iteration to reduce initial error
10 times.

Plots in Figs 11(a–e) show conductivity models at the iterations
at which inversion could no longer make any progress and therefore
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Figure 12. Final conductivity models for the parameter meshes with (a) 4721 and (b) 12 162 active cells, and the rms of 1.2 and 1.16, respectively. Location
of the true hemisphere is outlined using the black line. Positions of receivers are shown with the white rectangles.

mesh has been refined. Note that the conductivity model from the
Fig. 11(e) corresponds to the 35th iterations and produces an rms
of 1.2, but inversion still runs further and after one more refinement
a model which delivers rms of 1.16 is obtained (Fig. 11f). These
models without grid lines are displayed in Fig. 12. Already for
the model with only 4721 active cells, the hemisphere is resolved
remarkably well (cf. with inversion results in figure 8 in Miensopust
et al. (2013)). Taking into account that this model was obtained by a
fully automatic approach starting from a very coarse mesh with 108
active cells, the adaptive mesh refinement for this inverse problem
appeared to be very efficient.

Fig. 13 illustrates data misfit and corresponding number of un-
known parameter values (i.e. active cells) versus iteration. Inspec-
tion of this plot indicates that as inversion gets stuck, a current mesh
is refined and minimization algorithm is then capable to make fur-
ther progress. Surprisingly, already on the coarsest mesh, numerical
scheme reduced data misfit eight times. After that, it took inver-
sion much longer to resolve smaller scale features of the object.
Generally, these observations are in a very good agreement with
other related studies (Haber et al. 2007; Bangerth 2008; Beilina
et al. 2014; Li et al. 2014).

Fig. 14 displays apparent resistivities and phases for all
impedance tensor components for two sites indicated with arrows
on the Fig. 10 (cf. figure 9 in Miensopust et al. 2013). Overall,

good fit has been achieved for all components and frequencies with
slight deterioration for diagonal elements. The latter is anticipated
taking into account that diagonal elements are more challenging to
fit (Berdichevskii & Dmitriev 2008).

Adding more active cells in inversion results in better resolved
small-scale structures. With this, state meshes also contain more
cells and generally more unknowns were generated to model EM
responses accurately. This is visible in the Fig. 15, which shows
numbers of degrees of freedom for the state meshes at each inversion
iteration. Since independent adaptively refined meshes are used for
each frequency, there is no fixed number. Instead, numbers for all
frequencies are plotted with circles. This figure also plots timer
per iteration. As can be seen, first iterations proceed much faster
since much fewer degrees of freedom were used. During the last
iterations, the number of unknowns in state and adjoint problems is
around one million. The total runtime for this test was eight hours
when using 48 CPU cores.

As can be identified from Fig. 15, number of degrees of free-
dom may vary significantly for different frequencies. Further-
more, these meshes typically have very different refinement pat-
terns. For instance, Fig. 16 depicts state meshes from 30th in-
version iteration after four refinement cycles using goal-oriented
error estimator were performed. In contrast to the low frequency
mesh, for higher frequency of 100 Hz, regions that are far from
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Figure 13. Data misfit (solid line) and number of inversion unknowns (dash-dot line) versus iteration number for DTM2 model.
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Figure 14. Comparison of the noise-contaminated forward (circles) versus inversion (crosses) responses for DTM2 model at two observation sites indicated
in Fig. 10 by arrows.

Figure 15. Number of Nédélec degrees of freedom on the adaptively refined state/adjoint meshes at each inversion iteration for DTM2 (circles) and timer per
iteration in seconds (triangles). Since independent meshes are used for all frequencies, each circle denotes the value for one of 24 frequencies.
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Figure 16. Adaptively refined state meshes at the 30th inversion iteration for the frequencies of (a) 0.001 and (b) 100 Hz. Plane views (top) are shown at the
surface. Section views (bottom) are given for x = 0. Positions of receivers are shown with the white rectangles.

receivers remained coarse since they do not affect accuracy at re-
ceivers due to higher attenuation rates of the corresponding EM
fields.

5 C O N C LU S I O N S

Large-scale geo-electromagnetic inversion based on adaptive FEM
has been presented. In contrast to the conventional 3-D inver-
sion workflow where a model parametrization is chosen a priori,
this study investigated the use of automatic adaptive mesh refine-
ment techniques for state, adjoint and parameter variables. Decou-
pling state, adjoint and parameter meshes gave an opportunity to
choose them independently and use different refinement criteria.
This avoids unnecessary fine inversion models without compromis-

ing accuracy of the calculated PDE solutions and was realized in
a very efficient manner by using hierarchical mesh refinement. To
capture different spatial characteristics of the EM fields over a wide
range of frequencies, state meshes for all frequencies have been re-
fined independently by using the fully automatic goal-oriented error
estimator that was capable to deliver accurate solutions for forward
and adjoint problems at low computational cost. The presented
experiments show that computational savings can be significant
when using adaptively refined meshes. These savings come primar-
ily from opportunity to use smaller state/adjoint problems. While
derivative-based optimization methods have little convergence
penalty associated with additional parameter variables, performance
of stochastic algorithms such as MCMC depends on parameter
space dimension a lot. Therefore, applications requiring uncertainty
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quantification will additionally benefit from representing parameter
variables using coarser meshes.

Adaptive mesh refinement was shown to offer an elegant tool
to mitigate—at least to some extent—the problem of a model
parametrization. Refinement strategy based on model resolution
estimates produces meshes taking into account survey layouts,
specifics of transfer functions being inverted, frequency content and
data uncertainty. Low-rank approximation of the linearized model
resolution matrix was used to derive these estimates. Even with an
adaptively constructed initial mesh, some more refinement can be
desirable to adjust the mesh according to an emerging subsurface
conductivity structure. This was done by using adaptive parameter
mesh refinement based on spatial derivative of the updating pa-
rameter. Good results were obtained for DTM2 model in which
a hemisphere object was well imaged starting from a very coarse
mesh. The presented results were found to be in a good agreement
with similar approaches from other applications of inverse imaging.

Although this work has covered multiple important aspects, there
is a potential to further improvement. For instance, other criteria for
initial mesh design which reduce dependence on an initial model
or encompass nonlinearity of the inverse operator may appear to
have some advantages. This creates a challenge, however, since
such criteria need to be computationally tractable for 3-D problems.
Further, while the decision to refine mesh by inspecting the spatial
derivative of the parameter variable is indeed adequate, it lacks
rigorous theoretical background at the moment. In other words, it
is not guaranteed that by using this criterion, inversion converges to
the right solution. More theoretical work is therefore necessary in
the future. Application of this numerical scheme to the real data will
certainly serve as a good check for the presented approach. Results
on this will be reported in the next part.
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