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ABSTRACT
We use the recently completed one billion particle Via Lactea II � cold dark matter simulation
to investigate local properties like density, mean velocity, velocity dispersion, anisotropy,
orientation and shape of the velocity dispersion ellipsoid, as well as the structure in velocity
space of dark matter haloes. We show that at the same radial distance from the halo centre, these
properties can deviate by orders of magnitude from the canonical, spherically averaged values,
a variation that can only be partly explained by triaxiality and the presence of subhaloes. The
mass density appears smooth in the central relaxed regions but spans four orders of magnitude
in the outskirts, both because of the presence of subhaloes as well as of underdense regions
and holes in the matter distribution. In the inner regions, the local velocity dispersion ellipsoid
is aligned with the shape ellipsoid of the halo. This is not true in the outer parts where the
orientation becomes more isotropic. The clumpy structure in local velocity space of the outer
halo cannot be well described by a smooth multivariate normal distribution. Via Lactea II
also shows the presence of cold streams made visible by their high 6D phase space density.
Generally, the structure of dark matter haloes shows a high degree of graininess in phase space
that cannot be described by a smooth distribution function.

Key words: methods: N-body simulations – methods: numerical – galaxies: haloes – galaxies:
kinematics and dynamics – galaxies: structure – dark matter.

1 IN T RO D U C T I O N

Spherical averaging is a commonly used method to describe the
characteristics of dark matter haloes that form by gravitational col-
lapse in a cosmological environment. For example, one of the basic
characteristics of a dark matter halo is its spherically averaged
density profile which can be well described by a smooth function
within resolved scales (e.g. Navarro, Frenk & White 1996; Moore
et al. 1998; Diemand et al. 2005; Diemand, Kuhlen & Madau 2007;
Diemand et al. 2008; Stadel et al. 2008). Other examples include
the velocity dispersion and anisotropy profiles.

Consider a set of observers at a given distance from the halo centre
and capable of measuring local properties of the halo (e.g. density,
velocity dispersion and velocity anisotropy). In a smooth, spher-
ically symmetric halo, these measurements would yield identical
values, up to statistical fluctuations. However, it is well known that
dark matter haloes that form in pure dark matter simulations, which
neglect possible baryonic effects in the centre, are in general triax-

�E-mail: mzemp@umich.edu
†Hubble Fellow.

ial: close to prolate in the central part and becoming rounder in the
outskirts of the halo (e.g. Dubinski & Carlberg 1991; Katz 1991;
Allgood et al. 2006; Bett et al. 2007; Kuhlen, Diemand & Madau
2007). Such a shape variation obviously leads to a significant vari-
ance in local properties compared to the spherically averaged value
at a given radius (Knebe & Wießner 2006). In addition, haloes have
a high level of subhaloes which also effect results of local mea-
surements. But local deviations from a smooth model go beyond
these shape- and subhalo-driven variations, as we demonstrate in
this paper. For example, overdensities are expected due to the pres-
ence of subhaloes, but we also find underdense regions, which are
unexpected in a smooth triaxial background halo with subhaloes
(see Section 3.2).

One aim of this paper is to quantify the degree of variation be-
tween local and spherically averaged values for key quantities such
as the density and velocity dispersion. A better understanding of the
local variations of these properties is essential in order to obtain a
better description of the phase space structure of dark matter haloes
and their formation process.

Such local variations can have profound consequences. For ex-
ample, in dynamical models of dark matter haloes and galaxies it
is often assumed that most properties are just a function of radius
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(e.g. Dehnen & McLaughlin 2005; Baes & van Hese 2007; Van
Hese, Baes & Dejonghe 2009). From the work presented here, it
becomes clear that this is not a valid assumption for the anisotropy
(see Section 3.5) and a lot of information is smeared out by spher-
ically averaging. Models based on simple analytical forms of the
distribution function, which are also used for generating N-body
realizations of dark matter haloes and galaxies (e.g. Kazantzidis,
Magorrian & Moore 2004; Zemp et al. 2008; Zhang & Magorrian
2008), often have the property that the local bulk motion is zero and
the velocity distribution function is similar to a smooth multivariate
normal distribution (if it is not even deliberately set to a multivariate
normal distribution as in Hernquist (1993)). Both of these charac-
teristics are not valid in the outskirts of dark matter haloes that form
in a hierarchical cosmological context (see Sections 3.3 and 3.7).
As we see, most of these effects are not taken into account in cur-
rent dynamical models of dark matter haloes and galaxies and they
will be a challenge to be modelled with more realistic distribution
functions.

In addition, it is also important to quantify these variations locally
at the Earth’s position within the Galaxy in order to interpret results
from present and future direct dark matter detection experiments on
Earth (e.g. Moore et al. 2001; Stiff, Widrow & Frieman 2001; Helmi,
White & Springel 2002; Stiff & Widrow 2003; Kamionkowski &
Koushiappas 2008; Vogelsberger et al. 2008; Fairbairn & Schwetz
2009). While small subhaloes contribute significantly to the indirect
detection signal (e.g. Diemand, Kuhlen & Madau 2006; Kuhlen,
Diemand & Madau 2008) and infall caustics have no significant
effect (Diemand & Kuhlen 2008), it is also worthwhile to investigate
whether additional lumpiness from tidal debris might enhance the
annihilation rate (see Section 3.2).1

Also, recent results from surveys like the Sloan Digital Sky
Survey and Radial Velocity Experiment need a better understanding
of the structure of the outer halo. There is a lot of known structure in
the Galactic stellar halo like, for example, the Sagittarius stream, the
Monoceros stream or the Virgo overdensity (e.g. Martı́nez-Delgado
et al. 2007; Casetti-Dinescu et al. 2008; Cole et al. 2008). Obvi-
ously, these features are baryonic, but stars are collisionless too,
and it is probable that these features originate from infalling dark
matter dominated objects.

In general, a more detailed picture of the phase space structure
of dark matter haloes is needed in order to understand and model
their properties that are set by the hierarchical formation process.
This work is a further important step towards that aim.

Here, we present a study of the distribution of these properties as a
function of galactocentric distance of a Milky Way size dark matter
halo with data from the Via Lactea II (VL2) project (Diemand et al.
2008). In Section 2, we give a summary of the simulation data used
in this study and present the results in Section 3. We then discuss our
results and present the conclusions in Section 4. In Appendix A, we
give a comparison of the results with lower resolution simulations
and different definitions of locality.

2 SI M U L AT I O N A N D DATA

For the analysis presented here, we used data from the VL2 simula-
tion (Diemand et al. 2008) which simulates the assembly of a Milky

1 After submitting this work, an independent, analytic study of this question
(Afshordi, Mohayaee & Bertschinger 2008) has appeared. Our simulation
results agree that such an enhancement is rather small (see Section 3.2).

Way size cold dark matter (CDM) halo within a �CDM universe.
The initial conditions at a starting redshift of z = 104.3 consist
of a 40 comoving Mpc periodic box and were generated with a
modified, parallel version of GRAFIC2 (Bertschinger 2001). We use
the traditional method of refining a region of interest with a large
number of particles and leaving the rest on lower resolution so that
we correctly account for the large-scale tidal forces (Katz & White
1993; Bertschinger 2001). In total, the simulation consists of more
than 109 high-resolution particles with a mass of mp = 4098 M�
and a gravitational softening length of 40 pc. We used the Wilkinson
Microwave Anisotropy Probe (WMAP) 3-yr cosmological param-
eters (Spergel et al. 2007) with �M,0 = 0.238, ��,0 = 0.762 and
H0 = 73 km s−1 Mpc−1, σ 8 = 0.74 and ns = 0.951.

The time evolution until redshift z = 0 was performed with the
parallel tree-code PKDGRAV2 (Stadel 2001). PKDGRAV2 uses a fast
multipole expansion technique in order to calculate the forces with
hexadecapole precision and a time-stepping scheme that is based on
the true dynamical time of the particles with an accuracy parameter
of ηD = 0.06 (Zemp et al. 2007; Stadel & Zemp, in preparation).
The simulation used close to 106 CPUh on the Jaguar Cray XT3
supercomputer at the Oak Ridge National Laboratory.2

Throughout the paper, we only use data from the z = 0 snapshot.
We present all quantities in physical units and in a coordinate system
centred on the particle with the deepest potential within the dark
matter halo. A detailed discussion of the VL2 simulation at z = 0 can
be found in Diemand et al. (2008) and we report here only the main
characteristics. The radius r200b, where the enclosed density is 200
times the mean matter density (background), is r200b = 402.1 kpc
and contains a total mass of M200b = M(r200b) = 1.917 × 1012 M�.
The maximum circular velocity of the halo is vcmax = 201.3 km s−1

and reached at the radius rvcmax = 59.83 kpc. We determine the
shape of the halo at 20 kpc by diagonalizing the shape tensor3 S
with elements

Sij ≡
∑

k mk(xk)i(xk)j∑
k mk

(1)

through an iterative procedure that adapts to the local shape as
described in Katz (1991) so that the summation over the particles
only contains those within the triaxial ellipsoid. We then rotate the
whole halo so that the long axis is the x-axis, the intermediate axis
is the y-axis and the short axis is the z-axis. The resulting axis ratios
at 20 kpc are b/a = 0.6154 and c/a = 0.5227, where a ≥ b ≥
c are the square roots of the eigenvalues of the shape tensor. Of
course, a dark matter halo is not a rigid body and the axis ratios
as well as their orientations can change with radius, with haloes
typically becoming rounder in their outer part. The orientation of
the principle axis is constant with radius (to within a few degrees)
between 20 and 400 kpc.

2 http://www.ornl.gov
3 Often the tensor S is incorrectly denoted as the inertia tensor. However, the
tensor S does not give the correct relation between the angular momentum
vector L and the angular velocity vector ω which is given by L = Iω, where
Iij ≡ ∑

k mk[r2
k δij −(xk)i (xk)j ] is the correct definition of the inertia tensor.

Of course, the tensors I and S have the same eigenvectors since they differ
only by a diagonal tensor with one eigenvalue of algebraic multiplicity of 3.
Though, the eigenvalues of S and I are obviously different and have entirely
different meanings.
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3 LOCAL PROPERTIES

3.1 Procedure

In order to measure local properties of the dark matter halo, we
chose the following procedure. We consider six distinct distances:
8, 25, 50, 100, 200 and 400 kpc from the halo centre. At each
distance, we randomly sample Nsample = 104 spheres with a radius
rsph(r) depending only on the distance and chosen to include O(103)
particles. Specifically, we set rsph(8 kpc) = 0.5 kpc and calculate the
radii at other distances by

rsph(r) = rsph(8 kpc) 3

√
ρ(8 kpc)

ρ(r)
, (2)

where ρ(r) is the measured spherically averaged density at radius
r. The number of sampling spheres is large enough so that even at
400 kpc the whole sky, as seen from the centre of the galaxy, is
covered more than once. A summary of the characteristics of the
shells at different distances from the galactic centre is given in
Table 1. In order to save space, in most cases we only show the
plots for 8, 25, 100 and 400 kpc in the following analysis.

Table 1. Summary of shell properties.

r kpc 8 25 50 100 200 400
ρ M� pc−3 1.056 × 10−2 1.304 × 10−3 3.148 × 10−4 5.243 × 10−5 7.020 × 10−6 1.079 × 10−6

rsph kpc 0.5 1.004 1.612 2.930 5.728 10.69
〈Msph〉 M� 5.555 × 106 5.600 × 106 5.557 × 106 5.791 × 106 5.566 × 106 6.014 × 106

ρ̃ M� pc−3 1.059 × 10−2 1.305 × 10−3 3.140 × 10−4 5.364 × 10−5 7.084 × 10−6 1.094 × 10−6

ṽr km s−1 −0.2116 −1.075 −0.2053 −4.207 −2.975 9.285
ṽϕ km s−1 0.7794 2.946 −8.476 −0.1219 0.6685 9.969
ṽϑ km s−1 −0.3097 −0.8743 0.7920 −4.188 4.331 −12.52
σ̃tot km s−1 239.5 246.2 219.1 187.8 147.5 122.2
σ̃r km s−1 144.1 158.5 145.3 125.9 98.99 73.03
σ̃ϕ km s−1 143.1 145.4 129.4 109.8 83.36 76.23
σ̃ϑ km s−1 127.0 119.9 100.9 85.82 70.86 61.62
β̃ 1 0.1188 0.2938 0.3620 0.3872 0.3893 0.09919
α̃a

◦ 0.1480 4.633 3.164 4.893 16.18 37.31
α̃b

◦ 1.121 5.596 3.577 13.06 16.53 48.12
α̃c

◦ 1.117 3.166 3.532 12.80 5.159 31.24
T̃ 1 0.6308 0.4893 0.5066 0.3894 0.6017 0.6091
σ ρ̄ M� pc−3 2.746 × 10−3 6.748 × 10−4 2.005 × 10−4 7.436 × 10−5 1.603 × 10−5 5.748 × 10−6

σ v̄r km s−1 5.681 14.03 16.71 23.24 26.47 30.57
σ v̄ϕ km s−1 6.077 11.45 19.44 28.22 27.08 36.59
σ v̄ϑ km s−1 4.474 11.54 13.96 19.52 20.91 29.13
σ σ̄tot km s−1 6.745 9.491 8.780 12.27 15.60 21.20
σ σ̄r km s−1 7.013 6.405 7.724 11.22 13.60 18.72
σ σ̄ϕ km s−1 10.77 11.04 12.23 13.84 14.71 20.81
σ σ̄ϑ km s−1 11.42 16.21 15.17 14.75 16.86 17.79
σ β̄ 1 0.2059 0.1509 0.1165 0.1863 0.2534 0.8370
σ ᾱa

◦ 7.244 22.61 24.29 23.76 23.25 23.43
σ ᾱb

◦ 7.990 22.65 24.84 24.12 19.91 22.37
σ ᾱc

◦ 6.249 17.83 22.77 22.67 23.25 23.03
σT 1 0.1692 0.2208 0.2075 0.1931 0.2038 0.2036
f subhalo 1 0.01060 0.05870 0.09630 0.1739 0.2492 0.2779
f empty 1 0 0 5.000 × 10−4 9.000 × 10−4 1.500 × 10−3 2.120 × 10−2

Gρ̄ 1 0.1415 0.2813 0.3384 0.3761 0.3828 0.6193

Rows are: galactocentric distance r, spherically averaged density, radius of spheres, ensemble averaged mass in spheres, spherically averaged
value of density in shell, mean radial velocity, mean ϕ-velocity, mean ϑ-velocity, total velocity dispersion, radial velocity dispersion, ϕ-velocity
dispersion, ϑ-velocity dispersion, anisotropy parameter, angle between long axis of shape ellipsoid and long axis of velocity ellipsoid, angle
between intermediate axis of shape ellipsoid and intermediate axis of velocity ellipsoid, angle between short axis of shape ellipsoid and
short axis of velocity ellipsoid and triaxiality parameter of the velocity dispersion ellipsoid. Further, we have the ensemble dispersions of the
above-mentioned quantities. The last three rows are the fraction of spheres that are affected by subhaloes, the fraction of empty spheres and the
Gini coefficient for the probability density functions of the local mean density.

In order to assess the influence of the triaxial shape of the halo,
we also consider three subsets of spheres whose centres lie within
a cone of 20◦ along the long (x), the intermediate (y), respectively,
the short (z) axis, i.e. spheres that fulfil the condition:

|esph · ek| > cos(20◦) with k = x, y or z, (3)

where esph is the unit vector in galactocentric coordinates towards
the centre of the sphere and ek is the unit vector along the x-, y-,
respectively, z-axis. It is expected that each subset contains approx-
imately 6 per cent of the total number of spheres and the actual
numbers lie within the statistical range. The slightly twisted shape
of the dark matter halo has only a small influence on the subsets
along the different axes at different distances r since the deviations
of the eigenvector directions are only a few degrees which is small
compared to the cone opening angle of 20◦.

Furthermore, we consider the subsample of spheres that are af-
fected by subhaloes. We take a group catalogue of the VL2 simula-
tion that contains all subhaloes with a peak circular velocity greater
than 2 km s−1, of which there are 26 182 within 500 kpc. These
groups are identified by a friends-of-friends method in phase space
(6DFOF) as described in Diemand et al. (2006). By a density profile
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fitting algorithm, we determine a size rsh for each subhalo. A sphere
with centre at location xsph is then deemed affected by a subhalo if
the criterion

|xsph − xsh,k| ≤ rsph + rsh,k (4)

is fulfilled for any subhalo k with radius rsh,k and centred at xsh,k ,
i.e. the subhalo k at least partially overlaps the sphere. We give the
fraction of spheres that are affected by subhaloes in Table 1. This
fraction increases with distance from the centre of the galaxy, reach-
ing a value of approximately 28 per cent at 400 kpc. The fraction
of subhalo-affected spheres is a lower limit since more subhaloes
would survive in higher resolution simulations at all distances from
the centre of the galaxy.

Throughout this paper, we use the following notation scheme:
quantities calculated by averaging over particles within a sphere
are denoted by q̄, quantities calculated by averaging over particles
within a shell from r − rsph(r) to r + rsph(r) are denoted by q̃ and
averages over the ensemble of Nsample spheres at radius r are denoted

Figure 1. Probability density functions of the local density ρ̄ at different galactocentric distances r normalized by the spherically averaged value ρ̃ (solid
line/grey). Additionally, we plot the subsamples along the different axes of the triaxial halo: x-axis sample (dash–dotted line/blue), y-axis sample (long-dashed
line/red) and z-axis sample (short-dashed line/orange). We also plot the subhalo-affected sample (long-short-dashed line/green). The ensemble average 〈ρ̄〉
over the spheres is marked with a solid black square and the standard deviation range 〈ρ̄〉 ± σ (ρ̄) is marked with a solid black hexagon. The shell value ρ̃ is
marked with an open black circle.

by 〈q̄〉, where we also might use indices in order to denote ensemble
averages over only subsets of the spheres, for any given quantity q.

3.2 Local densities

In Fig. 1, we plot the probability density function of the local
mean density ρ̄ within the spheres in logarithmic scale. The local
density is simply defined by the mass within a sphere divided by the
volume of the sphere. In the central region, the structure of the halo
looks pretty smooth in density. At 8 kpc, we find a maximum total
spread of a factor of ±2 in local density with a standard deviation
of σ (ρ̄)/ρ̃ ≈ 0.26. This is due to the triaxiality of halo since the
underdense spheres lie along the z-axis and the overdense spheres
along the x-axis. In the outer part of the halo, however, the smooth
picture does not apply. For example at 200 and 400 kpc, underdense
regions are found away from the short axis and the distributions
of the subsamples along the other axes are broader than in the
centre of the halo. The possible range in densities at 400 kpc is
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close to four orders of magnitude with a peak probability at around
0.5 ρ̃(400 kpc), i.e. the typical value for the local densities is below
the spherical average value. Beyond 100 kpc, the standard deviation
becomes larger than the mean value, e.g. at 400 kpc σ (ρ̄)/ρ̃ ≈ 5.3.

Naively, one would expect a decrease in the density variation due
to the shape in the outskirts of the halo, since its shape becomes
rounder further out. However, this is exceeded by the steeper fall
off of the density profile in the outskirts of the dark matter halo. The
actual density contrast between the mean local density of the x-axis
sample and the mean local density of the z-axis, Cρ ≡ 〈ρ̄〉x/〈ρ̄〉z,
increases from Cρ(8 kpc) = 2.353 to Cρ(400 kpc) = 14.72.

It is also striking that there are no high-density spikes from sub-
haloes in the central region. This is just an artefact of our rather
conservative definition of locality (i.e. the large size of the spheres).
There are only very few surviving and well-resolved subhaloes
within 8 kpc in VL2. The subhaloes that survive close to the centre
are small and compact due to tidal mass loss so that with our still
relatively large definition of locality, their contribution to the mass
of the spheres is small. By decreasing the size of the spheres, the
extremes of the distribution become more populated (see also Ap-
pendix A). With higher resolution, one expects more subhaloes to
survive which are even more compact. But one would also decrease
the size of the spheres that define locality in our scheme. Hence,
it is not clear what the outcome of these two competing effects
would be. From simple analytical models, one expects some con-
tribution from these small haloes (Kamionkowski & Koushiappas
2008) though the details depend on their volume filling factor.

While high peaks from subhaloes are expected, underdense re-
gions away from the short axis of the shape ellipsoid are surprising.
In order to further investigate these underdensities, we repeated the
measurement of local properties with spheres of four times smaller
radii, i.e. rsph/4. In these spheres, one would expect on average ap-
proximately 21 particles in the inner region. We then simply count
the small spheres that contain no particles and calculate from that
the fraction of empty spheres (given in Table 1). Assuming the
balls-in-bins statistics (see Appendix B for more details), the prob-
ability of getting empty spheres is given by pempty(21) = e−21 =
7.583 × 10−10. Hence, one would not expect to find any sphere of
size rsph/4 that is completely empty. The fact that approximately
2 per cent of all these smaller spheres at 400 kpc are empty shows
clearly that the outskirts of dark matter haloes are far from smooth in
a position space. Of course, to some degree this is due to the triaxial
shape as actually most of the empty spheres in the outskirts are in
low-density regions along the z-axis. Taking the lower density into
account, one would expect approximately six particles per sphere
in the z-axis sample at 400 kpc. The probability of getting empty
spheres is pempty(6) = e−6 = 2.479 × 10−3. The measured fraction
of empty spheres in the z-sample is f empty,z = 6.656 × 10−2 which
is still clearly much higher.

We quantify this further with a statistical indicator that measures
inequality: the Gini coefficient. The Gini coefficient is defined as
G ≡ 1–2A, where A is the area under the Lorenz curve of the
probability distribution (Lorenz 1905; Gini 1912). For the discrete
probability density functions of the local mean density, this results
in

G(ρ̄) = 1 −
∑Nsample

i=1 pi(ρ̄)(Si + Si−1)

SNsample

(5)

with

Si ≡
i∑

j=1

ρ̄ pj (ρ̄) (6)

S0 ≡ 0 and

pi(ρ̄) ≡ Pi(ρ̄)
 log(ρ̄/ρ̃) (7)

with 
 log(ρ̄/ρ̃) being the bin width in logarithmic scale. The range
of the Gini coefficient is between 0 and 1. A Gini coefficient of
0 means that all the spheres have equal density whereas a Gini
coefficient of 1 means that all the mass is in one sphere. As can be
seen in Table 1, the Gini coefficient increases with galactocentric
distance showing again that the outskirts of dark matter haloes have
a clumpy structure.

This clumpy structure is due to the hierarchical build up of dark
matter haloes by accretion of subhaloes. These subhaloes leave tidal
streams along their orbits when they are falling into the host halo. In
the outer parts of the halo, we find many overlapping streams locally
(see also Section 3.7) that originate from the many subhaloes that
passed a certain region. Combined with the long local dynamical
time-scale in the outskirts of haloes which inhibits effective mixing,
this leads to the clumpy structure and large spread in density we see
on small local scales in the outer parts of dark matter haloes.

The tidal debris can have an effect on the local dark matter
annihilation (Afshordi et al. 2008). We can quantify this by the
boost factor B ≡ 〈ρ̄2〉/〈ρ̄〉2. We can only say something about
the local boost factors since by averaging over a spherical shell,
the boost factor would be mainly driven by the triaxiality. The
biggest effect is expected in the outskirts of the halo since there
we find the highest degree of clumpiness. In order just to measure
the influence of the debris structure and exclude the effect of the
subhaloes, we only include spheres that are not subhalo affected
and get values from Bz,nosh(400 kpc) = 1.319 to Bx,nosh(400 kpc) =
3.196. This is in agreement with Afshordi et al. (2008) who get of
O(1) for the boost factor originating in the structure of the debris. If
we include the subhalo-affected sample, we get values in the range
from By(400 kpc) = 6.046 to Bx(400 kpc) = 16.15 locally, showing
that even in the outer halo most of the clumpiness comes from the
subhaloes themselves and not from their more diffuse tidal debris.

Generally, all the probability density function plots in this paper
are lower limits for a possible real variation of local properties in
nature since numerical effects due to numerical under-resolving
(even in VL2) lead to artificial heating, smoothing and, in general,
loss of structure. A more detailed discussion of numerical effects
follows in Appendix A.

3.3 Local mean velocities

In this section, we investigate the properties of the local mean ve-
locities, which we calculate by number-weighted averages within
the spheres. For this purpose, we split the velocity vector field in a
radial, azimuthal (ϕ defined as the angle in the xy plane from the
x-axis) and a polar (ϑ defined as the angle form the z-axis) com-
ponent so that the unit vectors denote a right-handed system with
er ∧ eϕ = eϑ . In Figs 2 and 3, we plot the probability density func-
tions for the radial, respectively, ϕ-component of the velocity field
in linear scale; omitting the plot for the mean ϑ-velocity as it does
not show qualitatively different features than the mean ϕ-velocity.

Often it is assumed that bulk velocities in dark matter haloes
are zero. Again, this is approximately true in the central part.
The standard deviation of the local mean radial velocity is about
4 per cent of the shell-averaged radial velocity dispersion. In the
outer parts, not even the spherically averaged values are zero (see
also Table 1) and the local bulk velocities reach up to twice the
values of the local velocity dispersion. At 400 kpc, the dispersion of
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Figure 2. Probability density functions of v̄r at different galactocentric distances r normalized by the spherically averaged radial velocity dispersion σ̃r. We
plot the same subsamples as in Fig. 1 and use the same notation.

the mean radial velocity exceeds 40 per cent of the shell-averaged
radial velocity dispersion.

At different radii, one can see two populations of spheres: one
that is infalling and the another one that is moving outwards. This
is best seen along the x-axis but often the two populations are
too much smeared out. Such a distribution naturally arises from a
cosmological infall pattern and has been seen before in numerical
simulations (Diemand & Kuhlen 2008).

A similar picture emerges from the mean ϕ- and ϑ-velocities
with a comparable spread of the probability density distributions at
a given distance as for the mean radial velocities. We find that the
subpopulation of spheres along the long axis have a narrower and
more centrally peaked distribution in mean ϕ- and ϑ-velocities than
the subpopulations along the short and intermediate axes indicat-
ing some degree of coherent tangential flow around the short and
intermediate axes.

The distribution of the subhalo-affected sample of spheres is
always much broader than the total sample, and it contributes most
to the extremes (both high and low) of the overall distribution. This
indicates that the subhalo population as a whole is kinematically

hotter than the background, in agreement with earlier studies by
Diemand, Moore & Stadel (2004). Indeed we find subhaloes in the
inner halo that have a speed of around 500 km s−1 ≈ 3.5 σ r(8 kpc).

In the inner region, we find that the subhalo-affected sample is
skewed towards negative radial velocities (i.e. infalling spheres) and
positive ϕ-velocities. The skew in radial velocity is a signature of the
tidal disruption process: we see these subhaloes on their last infall
before they either are completely disrupted or lose so much mass
that they do not contribute much to the sphere-averaged properties
anymore on their way out since they are now much more compact
and less massive.

All this conclusively show that the traditional notion of a dark
matter halo with no local bulk velocities is an inaccurate description
for structures that form in cosmological simulations, especially in
the outer parts of haloes.

3.4 Local velocity dispersions

In Figs 4–6, we plot the probability density functions of the lo-
cal total, radial and ϕ-velocity dispersion. We omit the figure for
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Figure 3. Probability density functions of v̄ϕ at different galactocentric distances r normalized by the spherically averaged ϕ-velocity dispersion σ̃ϕ . We plot
the same subsamples as in Fig. 1 and use the same notation.

the ϑ-velocity dispersion since it shows a similar behaviour as the
ϕ-velocity dispersion. The local velocity dispersion is given by
σ̄ 2

k = v2
k − v̄2

k for k = r, ϕ or ϑ and σ̄ 2
tot = σ̄ 2

a + σ̄ 2
b + σ̄ 2

c , where
σa , σb, respectively, σc are the values of the dispersions in the eigen-
coordinate system of the local dispersion ellipsoid (see Section 3.6
for more details).

We see that the local velocity dispersion has strong underlying
variations. Whereas the central part only has variations on the few
per cent level with respect to the spherically averaged value [e.g. at
8 kpc, we have σ (σ̄r)/σ̃r ≈ 0.05], one can find regions in the
outer part of the halo that deviate by approximately an order of
magnitude in velocity dispersion and at 400 kpc we have for example
σ (σ̄r)/σ̃r ≈ 0.25.

The total velocity dispersion shows the most compact probability
density function when measured with respect to the spherically
averaged value, i.e. σ (σ̄tot)/σ̃tot is smaller than σ (σ̄k)/σ̃k for k = r,
ϕ or ϑ and the distributions peak generally around the spherically
averaged value.

Interestingly, we find that regions in the centre along the long
axis are colder (i.e. σ̄tot is smaller) than spheres along the interme-

diate or short axes. This trend is not observed in the outskirts of
the halo. We also find that along the long axis, the radial veloc-
ity dispersions are higher and the tangential velocity dispersions
are low in the inner region of the halo. This is due to the pro-
late shape and orientation of the local velocity dispersion ellipsoid
and is discussed in more detail in Section 3.6. In general, we find
that the distributions of velocity dispersions for the two tangential
velocity components are much broader along the short axis than
along the long and intermediate axes. The subhalo-affected sample
shows a less peaked distribution in velocity dispersions than the
total sample. In the regions with enough subhaloes, the distribution
is skewed towards lower dispersions for all velocity components.
This is, of course, due to the lower internal velocity dispersion in
subhaloes.

It remains to be seen if these empirical trends of velocity dis-
persion with orientation are universal for dark matter haloes or if
they depend on the detailed hierarchical build-up history of every
individual halo. Nevertheless, it is clear that the degree of chaotic
motion can strongly vary locally and deviate by substantial factors
from the spherically averaged value.
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Figure 4. Probability density functions of the total velocity dispersion σ̄tot at different galactocentric distances r normalized by the spherically averaged value
σ̃tot. We plot the same subsamples as in Fig. 1 and use the same notation.

3.5 Local anisotropy parameter

In Fig. 7, we plot the probability density function of the local
anisotropy parameter β̄ within the spheres. The local anisotropy
parameter is given by

β̄ = 1 − 1

2

σ̄ 2
t

σ̄ 2
r

, (8)

where σ̄ 2
t = σ̄ 2

ϕ + σ̄ 2
ϑ is the tangential velocity dispersion squared

and where we neglect the correlation term.
This form of the anisotropy parameter is often used but has some

problems since the following assumptions which are hidden in this
expression are, in general, not fulfilled: (i) v2

ϕ = v2
ϑ , (ii) v̄r = v̄ϕ =

v̄ϑ = 0 and (iii) cov (vϕ , vϑ ) = 0. These three conditions are only
approximately fulfilled in the central part of a halo and certainly
not in the outskirts. One should therefore see the expression for β̄

as a definition for a local anisotropy so that a comparison with the
previous work is possible.

We find that the radial anisotropy of the velocity dispersion tensor
in our halo increases with radius (see also Table 1), in agreement
with previous studies (see e.g. Cole & Lacey 1996; Colı́n, Klypin &
Kravtsov 2000; Fukushige & Makino 2001; Diemand et al. 2004;

Hansen & Moore 2006). In the central part, we find that regions
along the long axis are preferentially on radial orbits, whereas re-
gions along the short axis are tendentially on tangential orbits. This
effect disappears at larger radii. It can be understood as a direct
consequence of the variation of the orientation of the local velocity
dispersion ellipsoid discussed in Section 3.6.

The probability densities peak, in general, close to the spherical
average value except at 400 kpc where it is peaked towards highly
radial anisotropies. This is especially true for the subprofiles of
the y- and z-axis sample whereas the x-axis sample peaks around
β̄ = 0. With increasing distance also, the spread in local anisotropy
becomes larger and can vary from close to perfectly radial to close
to perfectly tangential. By inspecting the subhalo-affected sample,
we find that this sample is skewed towards tangential values of β̄ at
galactocentric distances with enough subhaloes.

3.6 Local velocity dispersion ellipsoid

In each sphere, we also calculate the local velocity covariance ten-
sor, also know as the velocity dispersion tensor, � given by

�ij ≡ (vi − v̄i)(vj − v̄j ). (9)
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Figure 5. Probability density functions of radial velocity dispersion σ̄r at different galactocentric distances r normalized by the spherically averaged value σ̃r.
We plot the same subsamples as in Fig. 1 and use the same notation.

By diagonalizing �, the velocity dispersions in the eigencoordi-
nate system are given by the square roots of the eigenvalues of the
velocity covariance tensor. These velocity dispersions in the eigen-
coordinate system define the local velocity dispersion ellipsoid and
are sorted by σ̄a ≥ σ̄b ≥ σ̄c. We name the appropriate eigenvectors
accordingly, e.g. eσa

etc.
First, we check the orientation of the local velocity dispersion

ellipsoid. For this purpose, we calculate the angles between the
eigenvectors of the velocity covariance tensor and the appropriate
shape axis given by

ᾱa = arccos(ex · eσa
), (10)

ᾱb = arccos(ey · eσb
), (11)

ᾱc = arccos(ez · eσc
). (12)

In Figs 8 and 9, we plot the probability density function of ᾱa and
ᾱb, respectively. We do not show the figure for ᾱc since it shows
a qualitatively similar behaviour as for ᾱb. We also plot the curve,

which is proportional to sin(ᾱk), that corresponds to an isotropic
distribution.

We observe that in the inner regions the local velocity dispersion
ellipsoid is close to perfectly aligned with the shape ellipsoid since
all angle probability density functions peak sharply at small angles.
This effect is most prominent for the major axis subsample, which
has a very tight and sharp distribution around small angles ᾱk for
all k, and less so for the intermediate and short axes, which in some
cases show a broader spread towards larger angles. The general
alignment of the local velocity dispersion ellipsoid with the shape
of the dark matter halo nicely explains the observed behaviour
of the anisotropy parameter β̄, for which we mainly found radial
orbits along the x-axis, isotropic orbits along the intermediated
y-axis and tangential orbits along the z-axis. The further out we
go, the more isotropic the different angle distributions become.
However, at nearly all distances from the galaxy centre, we find
that smaller angles are slightly more probable than in a perfectly
isotropic distribution.

Interesting is the behaviour of the different subsamples further
out. The alignment with the shape seems to be best along the
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Figure 6. Probability density functions of ϕ-velocity dispersion σ̄ϕ at different galactocentric distances r normalized by the spherically averaged value σ̃ϕ . We
plot the same subsamples as in Fig. 1 and use the same notation.

x-axis. Only in the outskirts of 400 kpc, this subsample distribution
becomes more and more isotropic for all angles. The subsamples
along the other two axes show even in the inner part a broader dis-
tribution that does not follow the overall distribution. For example,
the z-axis sample shows a distribution peaked around large angles
for ᾱb and ᾱc for intermediate distances around 50 and 100 kpc,
whereas the ᾱa distribution is mildly peaked towards small angles
at 50 kpc (not shown in figure). In other words, only the long axis
seems to be slightly aligned with the long axis of the shape ellip-
soid whereas the intermediate and short axes are perpendicular to
the corresponding shape axes. In general, the subhalo sample shows
a rather isotropic distribution although it also tends to be aligned
with the shape ellipsoid in the inner part of the halo.

Globally, we expect such an alignment from the tensor virial
theorem (Binney & Tremaine 1987) and such a correlation has pre-
viously been found in cosmological N-body simulations, e.g. in
Allgood et al. (2006). If we calculate the velocity dispersion el-
lipsoid for all the particles in the shell, we also find a very tight
alignment of this shell dispersion ellipsoid with the shape ellipsoid
(see e.g. Figs 8 and 9). Only in the outer parts at 400 kpc, we get
a deviation from that behaviour. But, in principle, we do not ex-
pect that the tensor virial theorem holds locally. It seems that the

alignment of the local velocity dispersion ellipsoid with the shape
ellipsoid only holds in relaxed and well-mixed regions – the central
region of the VL2 halo. Hence, this local alignment might just be
a numerical artefact since the central region is too relaxed due to
numerical under-resolving if compared to the true degree of relax-
ation in reality. But an alignment of the local dispersion ellipsoid
with the shape is also found in observations. For example, galaxies
from the SAURON survey that were dynamically modelled with the
Schwarzschild technique also show such a correlation (Cappellari
et al. 2007).

Furthermore, we calculate the shape of the local velocity dis-
persion ellipsoids which we measure with the triaxiality parameter
(Franx, Illingworth & de Zeeuw 1991) defined by

T ≡ σ̄ 2
a − σ̄ 2

b

σ̄ 2
a − σ̄ 2

c

. (13)

Ellipsoids are called oblate if 0 ≤ T ≤ 1/3, triaxial if 1/3 < T <

2/3 and prolate if 2/3 ≤ T ≤ 1. In Fig. 10, we plot the probability
density function of the triaxiality parameter in linear scale.

The total probability density function shifts from a peak in the
oblate region (e.g. at 25 kpc) via a peak in the triaxial region (e.g. at
100 kpc) to a more prolate shape at 400 kpc. Only the innermost
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Figure 7. Probability density functions of the local anisotropy parameter β̄ at different galactocentric distances r. We plot the same subsamples as in Fig. 1
and use the same notation.

region at 8 kpc does not follow this overall trend. Interesting is
again the distribution of the different subsamples. The shape of the
velocity dispersion ellipsoids along the x-axis generally peaks in the
prolate region although the distribution becomes broader towards
oblate shapes further out. The y-axis sample has in the inner region
a rather oblate shape which drifts via triaxial (e.g. at 100 kpc) to a
prolate distribution in the outskirts of the halo. Completely different
is the behaviour of the z-axis sample: at 8 kpc, its distribution is
peaked in the prolate region then drifts via the triaxial region at
25 kpc to a oblate distribution at 50 kpc (not shown in the figure).
Then, it swings back via a rather triaxial shape to a prolate shape
again at 400 kpc. The shape of the shell-averaged velocity dispersion
tensor does not fully follow the trend of the overall distribution and
is, in general, not close to the peak of the total probability density
function.

At the moment, it is not clear what the underlying cause for these
shape and orientation variations with galactocentric distance is and
if these trends are universal. Further numerical investigations are
necessary.

3.7 Local velocity space

We now turn to a closer look at the local velocity space structure. For
this purpose, we present 3D visualizations of the velocity structure
within spheres cut out along the y-axis, with radii given by rsph(r)
from Table 1.

Fig. 11 shows the positions and velocity vectors for every particle
within these spheres (first and third row) for all six galactocentric
distances we investigated. We also plot the location of the particles
in the local velocity space (second and fourth row). The colour (and
length in position space) encodes the magnitude of the velocity
vector. The big white arrow in the centre of the position space plots
points towards the galactic centre whereas the black cube in the
centre of the local velocity space plots marks the origin. For the
velocity space plots, we split the velocity vector field in a radial-
(x-axis), a ϕ- (y-axis) and a ϑ-component (z-axis).

These spheres have been selected to be free of subhaloes. There-
fore, one would not expect to see clumpy structure in the phase space
of these spheres. In the inner spheres, no velocity space structure
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Figure 8. Probability density functions of the angle ᾱa at different galactocentric distances r. We plot the same subsamples as in Fig. 1 and use the same
notation.

is apparent. The orientation of the velocity vectors appears random
and the actual velocity distribution can be well fit by a multivariate
normal distribution (the different velocity dispersion components
are given in Table 1). But further out, there is evidence for locally
coherent motion, visible as groups of vectors with the same colour
pointing in the same direction. This is even clearer in the velocity
space plots, which exhibit an increasing degree of clumpiness the
further out one goes. At 400 kpc, for example, there are only a bit
more than a dozen clumps in velocity space and no smooth com-
ponent at all. Obviously, a smooth multivariate normal distribution
would not provide a good fit. This is evidence that the outer part
of the halo is built up from a collection of large-scale streams from
the tidal disruption of infalling subhaloes. But so too is the smooth
component in centre, in that it also likely consists of an overlap of
many, many streams. The central limit theorem then guarantees that
the resulting distribution in the centre closely resembles something
like a multivariate normal distribution (Helmi, White & Springel
2003) or a generalization thereof (Hansen et al. 2006).

In Fig. 12, we show the central region of VL2: the sphere has
a radius of 50 kpc. We plot the position space density (left-hand

panel) and the true phase space density (right-hand panel) calculated
with ENBID4 (Sharma & Steinmetz 2006). It is important here to
calculate the true phase space density in 6D and not the commonly
used pseudo-phase space density ρ/σ 3 (where σ is the velocity
dispersion), since in the latter information in velocity space is lost
by averaging over the particles in local position space, instead of
calculating the density in local velocity space directly from the
particles. We only show the top five to six orders of magnitude in
position and phase space density, in order not to overload the two
pictures.

Many cold streams are clearly visible in the central region. Al-
though these cold streams only contribute a few per cent to the local
mass density, their velocity dispersion is just a few km s−1, result-
ing in a very high phase space density for these particles. These
streams are not visible in traditional density or density-squared pic-
tures and can only be revealed by visualizing the true phase space
density. VL2 seems to be the first structure formation simulation

4 http://sourceforge.net/projects/enbid/
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Figure 9. Probability density functions of the angle ᾱb at different galactocentric distances r. We plot the same subsamples as in Fig. 1 and use the same
notation.

with sufficient resolution to reveal these streams in phase space,
since previous lower resolution runs did not show such phase space
features. Also subhaloes are better visible due to their higher con-
trast in phase space density. Approximately 2000 peaks are seen
in the central 50-kpc sphere phase space density image. The high
contrast makes the phase space density the ideal method of finding
subhaloes.

From our findings, it is obvious that also the central region shows a
huge amount of additional structure aside from the expected subhalo
density peaks. A more detailed discussion about streams and their
properties will follow in a future publication.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we present a study of local properties of the VL2 dark
matter halo. Commonly, characteristics of dark matter haloes are
described by spherically symmetric profiles. Here, we show that
locally, at a fixed galactocentric distance, these properties can vary
by orders of magnitude from their canonical, spherically averaged
values. For example, while the density is smooth in the centre; in

the outskirts, the density range spans four orders of magnitude. This
is due to the presence of both subhaloes and underdense regions or
holes in the matter distribution. The widespread assumption that
there are no bulk flows is only warranted in the central region,
where we also find the local velocity dispersion ellipsoid to be
aligned with the shape ellipsoid of the halo. Neither of these findings
holds in the outer parts of the halo, where particles exhibit bulk
motions and a more isotropic distribution of the velocity dispersion
ellipsoid’s orientation is found. The local velocity space structure
can, in general, not be well described by a smooth multivariate
normal distribution, at least not in the outer parts of the halo. A
qualitatively new feature in VL2 is the detection of streams that are
made visible only through their true 6D phase space density.

Such variations of local properties are due to both the triaxial
shape of the dark matter halo and its generally clumpy structure in
phase space. We find that the phase space structure of a dark matter
halo shows a significant departure from the canonical picture of a
smooth background density profile with subhaloes in position space
and multivariate normal distributions in velocity space. Spherically
averaged quantities do not adequately describe properties of the
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Figure 10. Probability density functions of the triaxiality parameter T at different galactocentric distances r. We plot the same subsamples as in Fig. 1 and use
the same notation.

dark matter halo at a given galactocentric distance – especially not
the wealth of structure we find locally – since a lot of information
gets smeared out by spherically averaging. In general, dark matter
haloes show a high degree of graininess – clumps in phase space –
which will probably show up at even smaller scales that now seem to
be smooth in future simulations with higher resolution. Therefore,
a smooth and featureless distribution function does not accurately
describe dark matter haloes that form in a cosmological structure
formation simulation.

We find several correlations between the shape ellipsoid and the
local velocity dispersion ellipsoid. It is unclear at the moment to
what degree our findings are universal or how these correlations
depend on the hierarchical build up history.

Knebe & Wießner (2006) earlier estimated analytically the effect
of a triaxial halo shape on the variance of the local density. Their
values of the dispersion normalized to the spherically averaged value
for a halo with a similar triaxiality correspond quite good with our
values in the centre of the halo but we get much higher dispersion
values (larger than the mean) in the outskirts of the halo. This
difference is due to their assumption of a smooth triaxial density

profile and we get a higher scatter due to the presence of subhaloes
and underdense regions.

For dark matter direct detection experiments, it is essential to
know the local dark matter properties at 8 kpc. The spherically
averaged value for the density in VL2 is ρ̃(8 kpc) = 1.056 ×
10−2 M� pc−3 = 0.4008 GeV c−2 cm−3, close to 0.3 GeV c−2 cm−3

which is often used as a canonical value in the literature
(Kamionkowski & Kinkhabwala 1998; Particle Data Group 2008).
But as we have shown here, this value can vary locally. One
of the large uncertainty factors is the missing information about
the orientation of the disc with respect to the dark matter halo.
There are different claims from observations and theory about a
possible alignment of the angular momentum axis of the disc with
the shape axes of the halo (see e.g. Navarro, Abadi & Steinmetz
2004; Bailin et al. 2005; Sharma & Steinmetz 2005, and references
therein), so that a clear answer is not possible at the moment. But
often it is claimed that the angular momentum axis of the disc and
the short axis (z) tend to be aligned (Bailin et al. 2005) which would
mean that the disc would lie preferentially in the xy plane in our coor-
dinate system. An additional problem is that we measure these local
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Figure 11. Positions of particles within the selected spheres along the y-axis with velocity vector attached (first and third row) as well as the corresponding
location of the particles in the local velocity space (second and fourth row). The colour in both cases is given by the magnitude of the velocity vector.
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Figure 12. Central sphere of radius 50 kpc where we calculated the position space density (left-hand panel) and the true phase space density (right-hand panel)
with ENBID. Approximately 2000 peaks from the subhaloes within that radius are visible in both pictures but the contrast of subhaloes is higher in the phase
space density picture. In the phase space, pictures are also large-scale dark matter streams visible which were formed by tidal mass loss of infalling subhaloes.
These streams are not visible in the traditional position space density picture.

properties within a sphere of rsph(8 kpc) = 500 pc radius but for
dark matter detection experiments more a scale of 1 au = 4.848 ×
10−6 pc = 9.696 × 10−9 rsph (8 kpc) is relevant and it is not clear
what the local properties of the dark matter distribution on a 1 au
scale are or how one could reasonably extrapolate that over eight
orders of magnitude – especially considering the highly non-linear
numerical effects mentioned above and in the appendix that affect
the local phase space structure. Also the missing baryonic physics
in VL2 like adiabatic contraction, stellar disk and bulge, inspiralling
compact objects like black holes etc. can modify the central dark
matter structure in either way. Therefore, it is still not clear what
the detailed structure of the dark matter locally is.
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A P P E N D I X A : C O M PA R I S O N S

In this section, we investigate the influence of different definitions
of locality and numerical resolution on our local estimates.

A1 Definition of locality

Our definition of locality is somewhat arbitrary. If the region is too
big then local properties get smeared out by the averaging procedure
and if the region is too small then statistical fluctuations become
important. Hence, we chose the size of our spheres so that they
contain O(103) particles as in similar previous work (Moore et al.
2001; Helmi et al. 2002). Exactly: an average density sphere of
radius 1 rsph contains 1356 particles. In order to see the effect of
different choices for our local estimate, we repeated the exercise
from Section 3 with spheres of different radii of the following size:
1/4 rsph, 1/2 rsph and 2 rsph, with a corresponding increase or de-

crease in the number of particles sampled per sphere. The resulting
Poisson scatter ranges from ∼22 per cent for the smallest spheres
(1/4 rsph) to ∼1 per cent for the largest spheres (2 rsph) if we take
the spherical-averaged density as a reference. By only looking at
the lowest density along the z-axis, we get a range of ∼41 per cent
for the smallest spheres to ∼1.7 per cent for the largest spheres.

In Fig. A1, we present the effect of the different definitions of
locality on the local density distribution and see that they show the
expected result. The regions that contain eight times more particles
are, of course, smoothed to a higher degree so that the resulting
spread in the probability distribution function is a bit reduced. In
a similar way, the spread for the eight times smaller spheres is
increased. But the different definitions of locality mainly affect the
rare outliers on the tails of the distribution. By reducing to 64 times
less particles, the extremes of the distribution become much more
populated, which is mostly due to the increased Poisson scatter and
to a lesser extend due to increased graininess on the smaller probed
scales.

Any size of a sphere that contains at least a few hundred particles
would be fine for a definition of locality, indicating that our choice
is a rather conservative choice and the resulting variances of the
different distributions from the previous sections are lower limits.
The probability density functions for the other characteristics show
the same effects as the function of locality definition as the one
discussed here for the density.

A2 Influence of resolution

We compare the results from VL2 to a medium resolution simulation
(VL2m) of the same halo. In the medium resolution run, the particle
mass was a factor of 64 higher than in the high-resolution run.
Therefore, in order to probe local properties with approximately the
same number of particles, spheres with 3

√
64 = 4 times larger radii

were used.
In Fig. A2, we show the probability density functions of the local

density for the medium and high-resolution run for different sizes
of the spheres. In general, the rarer peaks at the low and high end of
the distribution are missing in the medium resolution run when one
compares spheres with equal number of particles in both simulations
(i.e. VL2 with 1 rsph and VL2m with 4 rsph) since the low-resolution
run resolves less substructure and it is smoothed over a four times
larger scale. When comparing spheres of equal physical size in both
runs, then the low-resolution run shows a broader distribution due
to additional Poisson noise.

The lack of high-density peaks in the low-resolution simulation
is due to numerical effects. Less subhaloes survive in the medium
resolution run since the subhaloes are resolved with fewer particles
and more easily tidally disrupted. This leads to the effect that a
larger region in the centre is smooth in lower resolution runs. The
higher the resolution, the smaller this apparently smooth region is.

Additionally, the higher degree of numerical artefacts (e.g. heat-
ing, relaxation etc.) in the medium resolution run smears out
streams. For example, no dark matter streams are visible in the
inner 50 kpc in phase space density maps of the medium resolution
of VL2 and the peak phase space densities of the subhaloes are
much lower than the values from the high-resolution run.

It is not clear at the moment to what degree the dark matter
streams in the high-resolution run are broadened by artificial heating
in the simulations. Of course, there are also real dynamical heating
sources, such as dark matter subhaloes or baryonic structures like
a stellar disc, a bulge or gas clouds (see e.g. Ibata et al. 2002;
Siegal-Gaskins & Valluri 2008).
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Figure A1. Probability density functions of the local density ρ̄ at different galactocentric distances r for different definitions of locality normalized by the
standard spherically averaged value ρ̃ given in Table 1. An average density sphere of radius 1 rsph contains 1356 particles. The 1/4 rsph probability density
function is significantly broadened by Poisson noise.

Material that ends up in the central regions of dark matter haloes
originates from early forming haloes (Diemand, Madau & Moore
2005) and was accreted into the main halo early on (Helmi et al.
2002). One therefore expects a higher degree of phase mixing due to
the early accretion and short time-scales in the centre. Nevertheless,
it is not clear if the smooth appearance of the central regions in
VL2 is entirely due to efficient phase mixing: The small, early
progenitors that build up the central dark matter halo of VL2 are
under resolved and therefore too low numerical resolution might
appear as an efficient phase mixing.

APPENDIX B: BALLS-IN-BINS STATISTICS

Lets try to solve the following problem. We have n bins and balls
are thrown randomly into the bins. What is the probability p(k, l) of
finding bins that contain k balls after throwing l balls?

The probability of a ball hitting a bin is given by ph = 1/n and
the probability of missing a bin is given by pm = 1 − ph = 1 − 1/n.
Obviously, we have p(0, 0) = 1, p(k, 0) = 0 for k > 0 and p(k, l) =

0 for k > l. After throwing l − 1 balls, we can write

p(k, l) = pmp(k, l − 1) + php(k − 1, l − 1). (B1)

This is a recursion formula that allows us now to construct the
general form of p(k, l). By setting p(−1, l) = 0 for all l, we get for
the non-zero values for the first few values of l

p(0, 1) = pm (B2)

p(1, 1) = ph (B3)

p(0, 2) = p2
m (B4)

p(1, 2) = 2pmph (B5)

p(2, 2) = p2
h (B6)

p(0, 3) = p3
m (B7)

p(1, 3) = 3p2
mph (B8)
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Figure A2. Probability density functions of the local density ρ̄ for different resolutions of VL2 normalized by the spherically averaged value ρ̃ for the
high-resolution run given in Table 1. An average density sphere of radius 1 rsph contains 1356 particles in VL2, and 21 particles in VL2m. This means the
1rsph measurements in the VL2m simulation are rather noisy.

p(2, 3) = 3pmp2
h (B9)

p(3, 3) = p3
h (B10)

and so on. It becomes obvious that the general pattern is given by a
binomial distribution

p(k, l) =
(

l

k

)
pl−k

m pk
h (B11)

=
(

l

k

) (
1 − 1

n

)l−k (
1

n

)k

. (B12)

We are specifically interested in the case of getting empty bins
(or spheres in our case), i.e. k = 0. This results in

pempty(λ) ≡ p(0, l) =
(

1 − 1

n

)l

=
(

1 − 1

n

)nλ

, (B13)

where λ = l/n is the expectation value of balls per bin. We can
simplify this in the large n limit to

pempty(λ) = lim
n→∞

[(
1 − 1

n

)n]λ

= e−λ (B14)

which we use to estimate the expected fraction of empty bins or
spheres.
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