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ABSTRACT

Motivation: Fluorescence recovery after photobleaching (FRAP) is a

functional live cell imaging technique that permits the exploration of

protein dynamics in living cells. To extract kinetic parameters from

FRAP data, a number of analytical models have been developed.

Simplifications are inherent in these models, which may lead to inex-

haustive or inaccurate exploitation of the experimental data. An ap-

pealing alternative is offered by the simulation of biological processes

in realistic environments at a particle level. However, inference of kin-

etic parameters using simulation-based models is still limited.

Results: We introduce and demonstrate a new method for the infer-

ence of kinetic parameter values from FRAP data. A small number of in

silico FRAP experiments is used to construct a mapping from FRAP

recovery curves to the parameters of the underlying protein kinetics.

Parameter estimates from experimental data can then be computed

by applying the mapping to the observed recovery curves. A bootstrap

process is used to investigate identifiability of the physical parameters

and determine confidence regions for their estimates. Our method

circumvents the computational burden of seeking the best-fitting par-

ameters via iterative simulation. After validation on synthetic data, the

method is applied to the analysis of the nuclear proteins Cdt1, PCNA

and GFPnls. Parameter estimation results from several experimental

samples are in accordance with previous findings, but also allow us to

discuss identifiability issues as well as cell-to-cell variability of the

protein kinetics.

Implementation: All methods were implemented in MATLAB R2011b.

Monte Carlo simulations were run on the HPC cluster Brutus of ETH

Zurich.
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1 INTRODUCTION

The development of modern microscopy systems coupled with

advances in fluorescent protein technology and sophisticated

computational methods have made it possible to visualize,

track and quantify fluorescent molecules within living cells.

Functional live cell imaging techniques, such as fluorescence re-

covery after photobleaching (FRAP), are increasingly used by

biology laboratories to explore the dynamic behavior of proteins

in vivo (Reits and Neefjes, 2001). During a typical FRAP experi-

ment, molecules tagged with a fluorescent protein (such as the

Green Fluorescent Protein—GFP) in a subcellular region are

irreversibly bleached by a short laser pulse. Then, the recovery

of the fluorescence due to unbleached molecules moving into the

bleached region is measured by standard time-lapse microscopy.

Analysis of this recovery data aims at providing information

regarding the diffusion and binding of the bleached molecules,

reflecting biomolecular interactions within the cell (Phair and

Misteli, 2001).
Conventional quantitative FRAP analysis focuses on param-

eters associated with the shape of the recovery curve (e.g. value

of plateau and half-maximal recovery time), easily estimated

using curve-fitting techniques (Phair and Misteli, 2001;

Rapsomaniki et al., 2012). However, this approach provides a

limited understanding of protein kinetics and is heavily depend-

ent on the experimental setup, especially on the time frame of

observation (Bancaud et al., 2010). To estimate the kinetic par-

ameters of the underlying molecular processes, including associ-

ation and dissociation constants, relative size of mobile and

immobile pools and protein diffusion rates, model-based quan-

titative FRAP analysis is necessary (Phair et al., 2004).
Modeling approaches traditionally rely on developing stream-

lined models of the diffusion, binding and photobleaching pro-

cesses to derive approximate closed-form expressions of

fluorescence recovery. The parameters yielding recovery curves

that correspond best to the data are chosen as the most likely

explanation of the underlying protein kinetics (Mueller et al.,

2010). Over the past years, a variety of models have been pro-

posed, broadly classified into diffusion models, reaction models

and reaction-diffusion models, depending on the phenomenon

considered dominant (Sprague and McNally, 2005). It has also

been observed (Tardy et al., 1995) that the FRAP recovery curve

is composed of two phases: a first phase with fast dynamics,

where the recovery is mainly attributed to diffusion (diffusion

regime), and a second phase with slower dynamics, where the*To whom correspondence should be addressed.
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recovery is regulated by binding and unbinding events (turnover
regime).
Models giving rise to a sum of exponential terms have been

extensively used for quantitative analysis. In the reaction models
domain, exponential expressions are derived through compart-
mental modeling approaches pioneered in (Jacquez, 1996), where

the presence of one or two exponential terms is dictated by the
number of binding sites. An alternative compartmental modeling
approach is proposed in (Carrero et al., 2003), which again re-

sults in a theoretical curve with two exponential terms. Here, the
coefficients of the terms are non-linear functions of all physical
parameters (diffusion coefficient, binding/unbinding rates) of the

underlying molecular kinetics.
The derivation of explicit (parametric) expressions for FRAP

curves relies on simplifying assumptions about cellular/nuclear

geometry [2D (Carrero et al., 2003), 3D (Beaudouin et al., 2006)],
nature of diffusion [isotropic (Ellenberg et al., 1997) or aniso-
tropic (Sbalzarini et al., 2006)], binding site number [one

(Beaudouin et al., 2006) or many (Sprague et al., 2004)] and
distribution [homogeneous (Sprague et al., 2004) or heteroge-
neous (Beaudouin et al., 2006)], to name a few. The accuracy

of these approximations is, however, difficult to determine.
Furthermore, it has been shown that different models or different
parameter sets of the same model can fit FRAP curves equally

well. Indeed, contrasting estimates of the kinetic parameters of
even the same molecule species have been reported in various
studies (Mueller et al., 2010). At the same time, the use of aver-

ages of several cell profiles is common practice in traditional
FRAP analysis, which may mask the underlying biological in-
formation contained in single-cell measurements.

In the past years, the availability of computational resources
of ever-increasing power has stimulated modeling and simulation
of molecular mobility and interactions at a particle level and

within realistic environments (Cowan et al., 2009; Farla et al.,
2004; Houtsmuller et al., 1999; van Royen et al., 2009).
Stochastic hybrid models, coupling continuous diffusion dy-

namics with discrete (random) interaction events and providing
a realistic account of the complexity of the cellular environment,
can be built and simulated in reasonable time (Cinquemani et al.,

2008). Analysis of the fit between simulated and experimental
recovery curves allows one to (in)validate hypotheses on the
values of kinetic parameters. Unfortunately, in this context, a

parameter inference method cannot be obtained easily by numer-
ical optimization of the fit, as the repeated simulation of the
system for iteratively refined values of the parameters is compu-

tationally demanding. To account for this, existing simulation-
based methods propose the a priori creation of a large dataset of
simulated FRAP curves for varying combinations of kinetic par-

ameter values, obtained by gridding the parameter space (van
Royen et al., 2009). Parameter inference from experimental
data is then performed by searching in the dataset the simulated

curve that fits best the experimental one, thus forcing the esti-
mates to take values on the grid of simulated parameters.
In this article, we propose an alternative approach for the

inference of the kinetic properties of proteins within living
cells. The key idea and novelty of our method is the construction
of a mapping from recovery curves to the parameters of the

underlying molecule kinetics. The method is based on the numer-
ical simulation of a stochastic hybrid model of protein diffusion

and binding in a realistic setup at a particle level (Cinquemani

et al., 2008). It assumes that FRAP recovery curves are repre-

sented through a sum-of-exponentials. Then, a relatively small

number of simulations for different physical parameter values is

used to train an Artificial Neural Network (ANN) implementing

the required mapping of physical parameters to the parameters

of FRAP recovery curves. Given an experimentally determined

recovery curve, inference of the underlying kinetic parameters

then simply amounts to fitting the data with a sum-of-exponen-

tial curve and feeding the obtained recovery parameters to the

mapping. In addition, a bootstrap process is used to compute

confidence intervals on the parameter estimates. Through the a

priori construction of the mapping, our method circumvents the

burden of resimulating the model iteratively every time a param-

eter estimate is sought. Unlike existing methods, our method

provides interpolation within the range of parameters of the

simulated curves. This allows us to reduce the number of simu-

lations required and yet provide estimates that are not biased

toward values fixed a priori. At the same time, the bootstrap

process allows us to investigate the identifiability of the physical

model parameters. We validate the proposed method first in

silico and then through the analysis of in vivo data for the nuclear

proteins Cdt1, PCNA and GFPnls. Our method predicts behav-

ior in accordance with earlier findings (Essers et al., 2005;

Mortusewicz and Leonhardt, 2007; Roukos et al., 2011; Xouri

et al., 2007) and provides elements for the discussion of cell-to-

cell variability.

2 METHODS

2.1 Model description

We briefly outline the stochastic hybrid model of FRAP experiments,

thoroughly presented in (Cinquemani et al., 2008). An outline of the

stochastic model is shown in Figure 1, where black boxes represent the

Bleaching state

Physical
parameters

Photobleaching
parameters

Model of FRAP
experiment

Position
Binding state

Simulated FRAP curve

Model of particle diffusion
and binding

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

time (s)

N
or

m
al

iz
ed

Fl
uo

re
sc

en
ce

In
te

ns
ity

Fig. 1. Above: Outline of the stochastic hybrid model of FRAP experi-

ments. Below: An example simulated curve for a diffusion coefficient of

2 mm2=s, a bound fraction of 25% and a residence time of 3 s. A 20 s

experiment is simulated with time step 0.068 s leading to 302 FRAPmeas-

urements; the approximation parameter (h) used was 0.1mm
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model of particle diffusion and binding and green boxes the model of the

photobleaching process.

Protein diffusion and binding are modeled at a particle level, by taking

into account explicitly the stochastic nature of diffusion and binding

events. For the purposes of this article we have tailored the model to

the case of nuclear proteins binding to chromatin and assume that there

are no interactions between different particles, i.e. all molecules diffuse

and bind independently. In addition, we consider for simplicity that dif-

fusion is isotropic and space-homogeneous and binding and unbinding

propensities are uniform over the nucleus. Generalizations of the model

are also possible, so that its use is extended for other cases.

We describe the cell nucleus as a 3D ellipsoid with imper-

meable boundaries, containing N copies of a protein. Let

piðtÞ=½xiðtÞ yiðtÞ ziðtÞ�
T, with i=1; . . . ;N denote the position of molecule

i at time t. At each time, every particle is either bound or unbound.

Bound molecules do not move, while diffusion of unbound molecules is

described by a Brownian motion process through the following stochastic

differential equation:

dpiðtÞ=�IdWiðtÞ+dRiðpiðtÞÞ ð1Þ

where W(t) is a 3D Wiener process with zero mean and covariance equal

to the identity matrix I, �40 and RðpðtÞÞ is a process that reflects the

molecules back into the nucleus when they would cross the boundaries. In

the context of biological systems, the diffusion coefficient of a particle,

denoted as D with units mm2=s, is associated with a particle’s mean square

displacement over time. It can be shown (see Section S1.1 of the

Supplementary material) that the diffusion coefficient is related to �

through the following equation:

D=�2=2: ð2Þ

Transitions of a molecule between bound and unbound states are

modeled as random events with propensities �bind � 0 for binding and

�release � 0 for unbinding (These propensities are equivalent to the asso-

ciation and dissociation rates kon and koff, often found in the biochemical

reaction literature.). Let F 2 ½0; 1� denote the average bound fraction, i.e.

the expected fraction of the population of molecules that are bound at

any given time. Similarly, let T be the residence time (in seconds), i.e. the

time a molecule spends on average in the bound state. Then one has

�release=1=T; ð3Þ

�bind=�release=F=ð1� FÞ: ð4Þ

That is, �bind and �release determine F and T, and vice versa.

We note here that traditional FRAP analysis involves assessing the

immobile fraction (defined as the fraction of bleached molecules that

remain in the bleached region at the end of the experiment) and the

half-maximal recovery time (denoted as t1=2 and defined as the time at

which fluorescence intensity within the bleached region equals half of the

maximal intensity). Although related, the immobile fraction should not

be confused with the bound fraction F defined here; while the first is

associated with permanent interactions manifested as plateau values51

at the end of the experiment and depends on the duration of observation,

the latter describes transient as well as permanent interactions depending

on the value of the residence time and is not affected by experimental

setup. Similarly, t1=2 should not be confused with the residence time T, as

the first also depends on the speed of diffusion while the second does not.

Unlike immobile fraction and half-maximal recovery time, our physical

parameters D, F and T explicitly characterize the behavior of the protein

of interest and do not depend on experimental settings. For more infor-

mation on this see Section S2.1 of the Supplementary material.

Overall, the above model results in N independent continuous-time

switching diffusions, each describing the position and mobility

state of one particle over time. A discrete approximation allows for

numerical implementation and simulation of the continuous model.

The approximation method is based on the idea of gridding both the

state-space and time according to a gridding parameter h40. Standard

results in stochastic analysis (Kushner and Dupuis, 1992) show that the

approximate process converges in distribution to the original process as

h! 0. The value of h heavily influences the time needed for simulation,

with smaller values (thus greater resolution) leading to longer simulation

times. For practical purposes, our numerical investigation

(Supplementary material, Section S1.2) suggests that the approximation

is sufficiently accurate for h=0:1 mm, as no differences in the statistical

properties of the resulting simulations are noticed when h is decreased

further.

A model of FRAP experiments over an experimental period ½0; t� in-

volves the model of protein diffusion and binding described above to-

gether with a stochastic description of the bleaching process. To model

the labeling of proteins with fluorescent tags, we use an additional dis-

crete state (bleaching state) associated to every particle and we assume

that initially (pre-bleach time interval) all particles fluoresce. Bleaching is

carried out by a continuous laser pulse over a predefined time interval

½t�; t
�� � ½0; t� (bleaching interval) in a predefined 3D region inside the

nucleus (bleaching region). Following experimentations with various

shapes of the bleaching region (see Section S1.4.1 of the Supplementary

material), we currently approximate it as a sphere of a fixed radius, pos-

itioned in the center of the nucleus. To model the bleaching process, we

assume that all particles that enter the bleaching region during the bleach-

ing interval will get bleached with a probability that is proportional to the

time spent in the bleaching region and �bleach, a constant related to the

photobleaching efficiency. The value of �bleach, associated with the inten-

sity of the laser pulse, was determined empirically, so that the bleaching

pattern resembles that of experimental data (more details in Section S1.3

of the Supplementary material).

The fluorescence profile inside the bleaching region, denoted by y(t), is

obtained by a count of the fluorescent particles inside the region at each

measurement time t 2 ft1; . . . ; tMg � ½0; t�. For normalization purposes,

the total number of fluorescent proteins over the whole nucleus, denoted

by Y(t), is also recorded at measurement times. The effects of varying the

size of the bleaching region and of positioning the bleaching region near

the boundaries were also investigated (see Sections S1.4.2 and S1.4.3 of

the Supplementary material). Experimental assessment of the simulation

procedure was performed by comparison with real data in (Cinquemani

et al., 2008).

2.2 Parameter inference method

Let us associate every recovery curve with a vector of parameters

p=ð�; �; �; �Þ taking values in P � R
4
�0. The value of p for a given

curve is determined by fitting the model

zpðtÞ=1� �e��t � �e��t ð5Þ

to that curve. Details about the fitting process are given in Section 2.2.2;

for the moment, we simply assume that every curve corresponds to a

single value of p, and that different curves correspond to different

values of p. Let � � R
3
�0 be the set of all possible physical parameter

vectors 	=ðD;F;TÞ, where D, F and T denote diffusion coefficient,

bound fraction and residence time, respectively. In accordance with our

stochastic model, several recovery curves, i.e. several parameter values

p 2 P, correspond to the same 	. The region of P associated with a given 	

could be obtained by repeated simulation of the model. Alternatively,

given one recovery curve with parameters p0, a cluster of parameters p

[denoted as Cðp0Þ] approximating this region is obtained by bootstrap-

ping, i.e. by resampling a family of curves from the p0 fitting residuals.

This strategy applies both to simulated and experimental recovery curves.

In the former case, only one simulation of the stochastic model is

required, with great computational savings (one simulation takes one

to several minutes, depending on 	 and the experimental period of

interest).
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We can now outline our inference method. The procedure, depicted in

Figure 2, is organized in two processes: (i) training process: build a map-

ping from recovery curves to physical parameters using simulated curves,

i.e. from P to � and (ii) estimation process: apply the mapping to experi-

mental curves for which an estimate of 	 is sought. During the training

process (left panel of Fig. 2), we first extract several values of 	 randomly

distributed over �. For each of these values we simulate the model once

to get a reference recovery curve, fit the curve with a parametrized func-

tion of the form (5) and perform bootstrapping to get a cluster of par-

ameters p. These clusters and the corresponding values of 	 are used to

train an ANN that maps P into �. During the estimation process (right

panel of Fig. 2), given an experimental recovery curve, we fit the model of

equation (5) to get p̂ and perform bootstrapping to get a cluster of par-

ameters Cðp̂Þ. Then, the mapping constructed during the training process

is applied to p̂ as well as to every element in the cluster, which yields an

estimate of 	 (from p̂) and a confidence region around it in the form of a

cluster of points in � (from the cluster of points in P). The accuracy of

the method clearly depends on a number of factors and will be discussed

based on numerical simulation in Section 3.1. The details of the procedure

are given next.

2.2.1 Simulation of FRAP curves To generate recovery curves that

represent different FRAP behaviors, we first select randomly n combin-

ations of physical parameter values 	1; . . . ; 	n in the set

�=½0;D� � ½0; 1� � ½0;T�: ð6Þ

Each parameter vector 	i; i=1; . . . ; n is then used to simulate a single

FRAP curve yiðtÞ along with the total nuclear fluorescence intensity YiðtÞ

from time 0 to time t. The resulting sample recovery profiles are normal-

ized using the double normalization process described in (Phair et al.,

2004), also used for experimental recovery curves. Normalized recovery

curves ziðtÞ are defined as follows: for all measurement times

t 2 ft1; . . . ; tMg,

ziðtÞ=½yiðtÞ=yi��=½Y
iðtÞ=Yi

��;

where y� and Y� are, respectively, the time averages of y(t) and Y(t) over

the pre-bleach period ½0; t��. Background fluorescence subtraction, usu-

ally carried out on real data before normalization, is not needed for

simulated data. Division by total fluorescence corrects for loss of fluor-

escence due to the photobleaching step, as well as for fluctuations in the

fluorescence intensity during the time course of the experiment, due e.g.

to acquisition bleaching or fluctuations in laser intensity. Division by pre-

bleach intensities corrects for differences across cells or experiments in the

starting intensity in the bleach region relative to the overall nuclear in-

tensity. Such differences may be caused by different cell or bleaching

geometries. A direct effect of this normalization process is that, as

t!1, the normalized curve will rise to plateau values of 1, as fluores-

cence will progressively become again homogeneous over the whole nu-

cleus. For more details on this and the implications in parameter

estimation, see Section S1.4 of the Supplement.

2.2.2 Curve fitting Consider the vector of parameters p=ð�; �; �; �Þ
2 P and the parametric curve zpðtÞ defined in equation (5). We use the

two-term exponential equation because of its ability to fit well both re-

gimes (diffusive and reaction) typically observed in FRAP curves. The

constant term of zpðtÞ was set to 1 to reflect the fact that, under full

recovery (t!1), normalized FRAP curves are expected to plateau to

1 (see Section 2.2.1 above). We fit each (simulated or experimental) curve

z(t) as follows. Let rpðtÞ denote the residuals rpðtÞ=zðtÞ � zpðtÞ, with

t= tm, m=1; . . . ;M. The vector p̂ 2 P we associate with the curve is

defined as the solution of the following optimization problem:

minimize
XM

m=1

rpðtmÞ
2 with respect to p 2 P

subject to�4� and 1� �� � � 0:

The first constraint disambiguates the role of the two exponential terms

and ensures that the first exponential accounts always for the diffusive

(fast recovery) regime. For biological consistency and numerical stability,

the second constraint ensures that the fitted curve never goes below zero

over the whole post-bleach period (including the time between t� and the

first measurement after it). To solve the resulting non-linear constrained

optimization problem, we use the global optimization algorithm OQNLP

(Ugray et al., 2006), implemented in MATLAB as the GlobalSearch

function.

2.2.3 Bootstrapping Next, we obtain uncertainty clusters using a sto-

chastic approach based on bootstrapping (Efron et al., 1986). For each

simulated (or experimental) curve z(t), consider the fitted curve zp̂ ðtÞ and

the fitting residuals rp̂ ðtÞ, which we assume to be identically distributed. A

new artificial FRAP curve is obtained by bootstrap sampling (sampling

with replacements) of the fitting residuals rp̂ ðt1Þ; . . . ; rp̂ ðtMÞ and adding

them to the fitted curve zp̂ ðt1Þ; . . . ; zp̂ ðtMÞ. This step is repeated l times

and results in l artificial curves, which can be seen as local perturbations

of the initial simulated (or experimental) curve, subject to the same

amount of noise. Then, by fitting the resulting l artificial FRAP curves

as in Section 2.2.2, we construct a cluster Cðp̂Þ of l parameters p. This

cluster serves as a local estimate of the sensitivity of the p vectors due to

noise and process randomness.

2.2.4 Neural network training We construct a simple function-fitting

ANN, trained by gradient descent using the Levenberg–Marquardt algo-

rithm, as implemented in the MATLAB Neural Network toolbox. The

ANN’s architecture is described by an input vector of four features (the

entries of the parameter vector p), one hidden layer of 25 neurons and 1

output vector of 3 output elements (the entries of 	). The dataset used for

training and testing the ANN comprises the n triplets ð	i; p̂i;Cðp̂iÞÞ, with

i=1; . . . ; n, where each 	i is one combination of kinetic parameters,

sampled as described in Section 2.2.1, p̂i is the fit of the corresponding

Fig. 2. Outline of the parameter inference method. Left: Training pro-

cess, executed for many kinetic parameter combinations to generate the

desired mapping. Right: Estimation process, executed once per experi-

mental curve to infer kinetic parameters. The methods used for fitting and

bootstrapping are common for the training and estimation processes
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simulated trajectory ziðtÞ determined as in Section 2.2.2 and Cðp̂iÞ is the

uncertainty cluster computed from p̂i as in Section 2.2.3. The input vec-

tors of the ANN are scaled to [–1 1] and the hyperbolic tangent sigmoid is

used both as a transfer and activation function. In this way the output

range of the ANN is implicitly bounded to [–1 1]. By transforming back

to the initial scaling, the output range is bounded to the search space as

expressed in (6), preventing the prediction of parameter estimates that

lack biological meaning.

The dataset is divided in two subsets: The first (90% of the triplets) is

used during the learning phase and the second (the remaining 10% of the

triplets) is used as an external test set for a posteriori independent assess-

ment of the generalization ability of the trained ANN (ability to predict 	
from p for triplets not used in the learning). During the learning phase,

the learning dataset is iteratively and randomly partitioned in a training

subset (70% of the total triplets) and a validation subset (20%). In each

iteration, the training set is used to adjust the network’s internal param-

eters by specifying each 	i as the output of p̂i and of all parameters in the

corresponding cluster Cðp̂iÞ. The validation set is used to evaluate the

training process, which continues until a termination criterion is met

(more details in Section S2.3 of the Supplementary material). On execu-

tion of this procedure, one gets an ANN that implements the desired

mapping 	̂ : P! �.

2.2.5 Implementation We performed a round of 100 Monte Carlo

simulations, using as input the physical parameter vectors 	i, obtained

by random sampling in the �-space as described in Section 2.2.1. For the

purposes of this study, D was sampled in the interval [0, 50] mm2=s by
sampling � uniformly in the interval [0, 10] and using equation (2). T was

sampled uniformly in the interval [0, 25] s. To account for the cases of

proteins that portray only a diffusive behavior, 10 more 	 vectors were

added to the dataset with F=0 and D drawn at random in [0, 50] mm2=s

(note that T is irrelevant in this case). The total of n=110 in silico

experiments were simulated; in all cases, the nucleus was represented as

an ellipsoid with semi-principal axes of length 5, 4 and 4mm, the bleach-

ing region as a sphere of radius 2mm, positioned in the center of the

nucleus and the number of particles N was set to 50 000.

Approximation parameter h was set to 0.1mm for the reasons ex-

plained in Section 2.1. Fifty pre-bleach and 250 post-bleach measure-

ments were taken at 0.066 s time intervals and bleaching was attained

by a single bleach pulse of 0.066 s. For the above setting, simulation

times vary in the order of hours and depend heavily on the choice of

the input vector 	i (for example, fast diffusion demands greater approxi-

mation resolution, leading to longer simulation times). The respective

simulated curves were fitted as described in Section 2.2.2, yielding 110

p vectors. Following the bootstrap process of Section 2.2.3, l=100 arti-

ficial curves were created for each simulated curve and subsequently fitted

to obtain the clusters CðpiÞ.

2.2.6 Parameter estimation from experimental data Parameter in-

ference for an experimental curve is done by repeating the same steps as

for the training part, as shown in Figure 2. More specifically, for every

given curve yobs we proceed as follows:

(1) Normalize the curve to get zobs (Section 2.2.1);

(2) Fit zp to zobs and get p̂obs (Section 2.2.2);

(3) Compute the cluster Cðp̂obsÞ by bootstrapping (Section 2.2.3);

(4) Get the estimate of 	 by feeding p̂obs to the ANN, yielding 	̂ðp̂obsÞ;

(5) Get the uncertainty of the estimate 	̂ by feeding the elements of

Cðp̂obsÞ to the ANN, yielding f	̂ðpÞ : p 2 Cðp̂obsÞg.

2.3 Cell culture and FRAP experiments

MCF7 cells were grown in Dulbecco’s modified Eagle’s medium with

20% fetal bovine serum at 37�C and 5% CO2 and were transiently

transfected with Cdt1-GFP, PCNA-GFP or GFPnls as described in

(Roukos et al., 2011). FRAP experiments were performed on a Leica

SP5 confocal microscope, equipped with a 63� 1.4NA oil immersion

lens and FRAP booster. During experiments, cells were plated on Ibidi

30mm diameter glass-bottom dishes in phenol red-free CO2-independent

medium (Invitrogen) and maintained at 37�C and 5% CO2. Bleaching of

GFP was accomplished on a defined region of interest of 2mm radius

within the cell nucleus. Fifty pre-bleach images were recorded with 4%

laser power of the 488nm line at 40% argon laser intensity, and bleaching

was attained by a single bleach pulse of 0.066 s using the 488 and 496nm

laser lines combined at maximum power. After bleaching, 250 images

were recorded at 0.066 s time intervals with 4% laser power of the

488nm line. Raw data were double normalized using the easyFRAP

software (Rapsomaniki et al., 2012). For FRAP experiments after

DNA damage, cells were ultraviolet (UV) irradiated for 10 s (moderate

UV dose) using a CL-1000 Ultraviolet Crosslinker UVP and incubated

for 1 h before the FRAP experiment.

3 RESULTS AND DISCUSSION

3.1 Performance assessment of the inference method

We first evaluate the performance of the proposed inference

method using simulated data. To assess the predictive perform-

ance of the ANN in a way that is independent of the specific

choice of the test set, we applied a procedure of external k-fold

cross-validation. During this process, we repeat the construction

of the ANN as described in Section 2.2.4, but for iterative and

complementary partitions of the n triplets into learning and test-

ing data. More specifically, the n=110 triplets are randomly

partitioned into k=10 subsets (each one of size n=k=11) of

which one is set aside as the independent test set and the remain-

ing ones are used as the learning set of the ANN. This process is

repeated k=10 times, so that all k subsets are iteratively used as

a test set. Note that, for this choice of k, in any iteration the

learning and test set represent, respectively, 90 and 10% of the

triplets.
In Figure 3 boxplots of the prediction residuals (true minus

predicted parameter values) for all k=10, disjoint test sets are

plotted. Each boxplot corresponds to all l=100 cluster points of

the n=k=11 test samples, i.e. to 1100 prediction residuals. We

can see that the ANN’s performance for different choices of the

training and the test set is comparable, leading to the conclusion

that the network training is relatively insensitive to the specific

choice of the training data. This fact is crucial for the reliability

of our method, which is based on a small simulated dataset.

Furthermore, the distribution of the prediction residuals indi-

cates that parameter estimates are effectively unbiased and loca-

lized with high confidence near the true parameter values.

3.2 Inference of kinetic parameters from FRAP experi-

mental data

The proposed parameter inference method was used for the ana-

lysis of DNA licensing protein Cdt1 and DNA replication/repair

protein PCNA. GFP-tagged Cdt1, GFP-tagged PCNA following

whole-cell UV irradiation as well as a GFPnls protein were ex-

pressed in MCF7 cells and analyzed by FRAP. A total of 14

GFPnls, 16 Cdt1-GFP and 13 PCNA-GFP FRAP curves were

analyzed. In Figure 4, the individual FRAP curves (normalized

data) for each cell as well as their respective means are shown.
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A preliminary analysis of Figure 4 reveals that the different

proteins are characterized by markedly different behaviors, both

in terms of average behavior (Fig. 4, right) and in terms of vari-

ability (Fig. 4, left). Several conclusions can be drawn from the

mean curves of Figure 4; the observations that GFPnls exhibits a

fast and full recovery, Cdt1-GFP a slow but ongoing recovery

and PCNA-GFP a partial recovery hint to their underlying kin-

etics. The parameter inference method was used to draw esti-

mates of diffusion coefficient, bound fraction and residence

time of the three protein species from each curve individually,

thus obtaining 14 GFPnls, 16 Cdt1-GFP and 13 PCNA-GFP

initial estimates. For each of these, the uncertainty clusters

were also computed. The results are shown graphically in

Figure 5; numerical values are reported in Supplementary

Tables S3–S5.

3.2.1 Predictions agree with known protein behaviors A first ob-
servation from Figure 5 is that estimates associated with different

proteins localize in different regions of the physical parameter

space �, separable even by visual inspection. GFPnls estimates

are located in the area close to zero bound fraction and zero

residence times, indicating a purely diffusive behavior.

Estimates for Cdt1-GFP are located in a subspace of � where

the residence time varies in the order of seconds and the bound

fraction varies up to 40%, indicating transient interactions (scan-

ning behavior) coupled to diffusion. Finally, estimates for

PCNA-GFP are saturated in the area of higher residence

times, suggesting longer immobilization coupled to diffusion

for PCNA following UV irradiation. These results agree with

qualitative and quantitative analysis of the behavior of these

proteins in earlier work (Essers et al., 2005; Mortusewicz and

Leonhardt, 2007; Roukos et al., 2011; Xouri et al., 2007).

3.2.2 Estimation of PCNA residence time In agreement with the

expectation of a non-negligible fraction of PCNA molecules with

longer residence times, predictions for the latter saturate onto the

side of � corresponding to T. Motivated by this, we repeated the

estimation process for PCNA-GFP by training the ANN with a

new simulated dataset, for which the values of T are exponen-

tially distributed in the range [0, 1000] s. As shown in Figure 6,

the resulting estimates of T for PCNA-GFP appear to localize in
much higher residence times of up to 15min. At the same time,

the expansion of the search space allowed for a better estimation

of bound fraction (values of F vary around 50%, which is sup-

ported by the biological expectations) and reconfirmed the esti-

mates of D (numerical values reported in Supplementary Table

S6). Estimates for the other proteins remained largely unchanged

(results not shown), albeit with slightly worse accuracy, which is

expected because the much larger search space is explored by the

same number of simulated curves.
Regardless of the choice of T, a further limitation concerning

the accuracy of the estimation of T comes from the fact that large

values of T (high residence times) are in general difficult to re-

solve based on the short time span of the experiment (recoveries

were followed for 18 s in this dataset). In these cases, longer

FRAP experiments would facilitate a more accurate estimation.

Simulation results presented in Section S2.2 of the Supplement

show that the sensitivity of the recovery curves to different values

of T decreases with T itself, and becomes marginal as T gets

larger. This sensitivity depends as well on the other physical par-

ameters; in particular it increases with D and F. The latter can be

explained considering that for molecules with a higher bound

fraction, unbinding events participate more in the recovery,

and thus for increasing values of T there is a more noticeable

difference in the curves.

3.2.3 Cell-to-cell variability For all three proteins, cell-to-cell
variability of the FRAP curves indeed finds its counterpart in

the variability of the kinetic parameter estimates, as captured by

the different locations of clusters in the � space. We observe that

clusters corresponding to different GFPnls curves are relatively

concentrated (Fig. 5), whereas in the case of Cdt1-GFP (Fig. 5)

and PCNA-GFP (Fig. 6) the clusters are more spatially dis-

persed, indicating higher cell-to-cell heterogeneity. In particular

for Cdt1-GFP, the cluster estimates for bound fraction and resi-

dence times seem to vary significantly, roughly with inverse pro-

portionality. Because the cells are not synchronized and Cdt1 is a

cell cycle regulator, this relation may be owing to changes in the

binding behavior of Cdt1. During the cell cycle, non-specific
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scanning for binding sites of a larger percentage of Cdt1 mol-
ecules could be followed by a more permanent binding of less

molecules.
We also notice that variability of FRAP curves may be decep-

tive: visual inspection of Cdt1 and PCNA curves (Fig. 4, left)
suggests a similar amount of cell-to-cell variability, as individual

curves seem to spread apart similarly. However, the estimation
process reveals a completely different pattern of variability of the
Cdt1 and PCNA kinetics, the latter being essentially confined to

variable residence times.

3.2.4 Identifiability Finally, we note that both the spread and

shape of the estimation clusters is an indication of the identifia-
bility of the underlying kinetic parameters on a single-cell level.
In particular, as observed in Figure 5, Cdt1-GFP clusters are

relatively symmetrical and concentrated around the estimates
of the experimental curve, suggesting that their parameters are
identifiable. On the other hand, most PCNA-GFP clusters

(Fig. 6) are fairly concentrated in the directions of diffusion
and bound fraction, but spread along the dimension of residence
time. This is clearly revealed by the confidence intervals reported
in Supplementary Table S6 and points to practical identifiability

issues concerning this parameter. Inherent difficulties with iden-
tifying PCNA residence times can be explained in the light of the
discussion in Section 3.2.2.

These findings also show that the sensitivity of FRAP curves,
hence the uncertainty of the resulting estimates, is non-uniform
over � and depends on the actual underlying kinetic parameters.

Furthermore, through the construction of the bootstrap clusters,
our method allows us to expose identifiability issues, such as
when curves are explained by multiple sets of physical param-

eters. Less clear, but perhaps more intriguing, is whether and
how this uncertainty links with the different features of cell-
to-cell variability discussed above for the different proteins.

This fact is only partially uncovered in the present analysis and
deserves future investigation.

4 CONCLUDING REMARKS

In this work, we have proposed a novel kinetic parameter infer-

ence method for the quantitative analysis of FRAP data. Our

method constructs off-line a mapping between parameters of the

FRAP curves and the parameters of an underlying kinetic model.

Once this mapping is available, it can be used for inexpensive

parameter inference on many FRAP datasets. Thanks to nor-

malization, the same mapping can, to some extent, be applied to

varying experimental setups.
Quantitative validation using simulated experiments showed

that the method is capable of reconstructing kinetics that were

not directly explored via simulation with a reasonable accuracy

at an affordable computational cost. When applied to experi-

mental FRAP data for different proteins and from different

cells, estimation results were found to be in agreement with exist-

ing knowledge. Analysis of the results from individual cells also

showed the potential of the method in the study of cell-to-cell

variability of protein kinetics and emphasized the importance of

single-cell rather than mean recovery curves in this type of

analysis.

Through this work, several open problems in FRAP quanti-

tative analysis have emerged. Identifiability and sensitivity of

kinetic parameters is a critical issue, which we partially address

here by a local analysis based on bootstrapping. On the one

hand, a straightforward generalization of the method, based on

the use of repeated simulations of the same kinetic parameters at

a learning stage, may improve the information on local sensitiv-

ity of FRAP curves and resulting estimation uncertainty.

However, more work needs to be done so that global informa-

tion on parameter identifiability is available. Whatever the mod-

eling and estimation method used, quantitative validation of

modeling and estimation on experimental data is of critical im-

portance. A big step toward this end would be the availability of

benchmark datasets of real experimental data along with accur-

ate and accessible information on the underlying parameter

values.
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