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Background. Immune responses are complex traits influenced by genetic and environmental factors. We pre-
viously reported that genetic factors control early antibody responses to vaccines in Gambian infants. For the
present study, we evaluated the determinants of the memory phase of immunoglobulin G (IgG) responses.

Methods. Antibody responses to tetanus toxoid (TT), measles vaccines, and environmental antigens (total IgG
levels) were measured in 210 Gambian twin pairs recruited at birth. Intrapair correlations for monozygous and
dizygous pairs were compared to estimate the environmental and genetic components of variations in response.

Results. In contrast to antibody responses measured in infants at age 5 months, 1 month after immunization,
no significant contribution of genetic factors to anti-TT antibody and total IgG levels was detected at age 12
months. Genetic factors controlled measles antibody responses in 12-month-old infants, which indicates that the
increasing influence of environmental determinants on anti-TT responses was not related to the older age of the
children but, rather, to the time elapsed since immunization. Environmental factors also predominantly controlled
affinity maturation and the production of high-avidity antibodies to TT.

Conclusions. Genetic determinants control the early phase of the vaccine antibody response in Gambian infants,
whereas environmental determinants predominantly influence antibody persistence and avidity maturation.

The immunization of young infants is required to pre-

vent infectious diseases in early life, but its effectiveness

is impeded by the immaturity of the infant immune

system [1–3]. Young infants produce significantly lower

antibody responses to T cell–independent and most T

cell–dependent vaccine antigens than do older children

or adults [4–9]. Therefore, the induction of protective
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immunity in early life generally requires the adminis-

tration of multiple doses of primary vaccine. Unfor-

tunately, antibody responses to vaccines administered

during the first year of life are of shorter duration than

those elicited in adults, even after several doses of vac-

cine. This may result in short-term protection and re-
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quire the administration of booster doses of vaccines as soon

as the second year of life [10–14].

The capacity of young infants to develop high-avidity anti-

body responses to vaccines has not yet been fully characterized.

Avidity maturation results from the combined effects of somatic

hypermutation and a process of antigen-driven selection [15–

17]. Somatic mutations in immunoglobulin genes mature dur-

ing the first year of life, and evidence for selection has been

observed only after 6 months of age [18, 19]. After Neisseria

meningitidis infection, infants produce antibodies of lower avid-

ity than those produced by older children [20]. Similarly, fewer

mutations have been observed in immunoglobulin genes of B

cells harvested after rotavirus infection in infants, compared

with adults [21]. In contrast, high-avidity antibodies are in-

duced by the immunization of infants with polysaccharide con-

jugate vaccines [22–25], and an adult-like process of avidity

maturation to complex vaccine antigens has been demonstrated

in murine models of neonatal immunization [26].

Immune responses are inherited as complex quantitative

traits, with variation resulting from genetic and environmental

factors. Twin studies are a powerful method with which to

quantify the relative contribution of genetic and environmental

factors to any phenotype. Genetic effects are revealed if the con-

cordance for a phenotype is higher within monozygous (MZ)

twin pairs, who are genetically identical, than within dizygous

(DZ) twin pairs, who share, on average, 50% of their genes. We

previously reported that host genes play a predominant role in

the control of early primary antibody responses to vaccine an-

tigens in Gambian infants [27]. The present analysis was un-

dertaken in the same study population, for the evaluation of the

respective role of genetic and environmental determinants in (1)

long-term persistence and (2) the avidity maturation of antibody

responses in infants.

We assessed antibody responses to a protein antigen, tetanus

toxoid (TT), in a population of Gambian infant twins immunized

at 2, 3, and 4 months of age [27]. We compared titers and the

avidity of anti-TT antibodies present during the early (5 months)

and late (12 months) phase of the vaccine response in MZ and

DZ twins, to define whether these were influenced by mainly

genetic or environmental determinants. We selected TT because

it is sufficiently immunogenic for antibody responses to persist

in most 12-month-old infants, in contrast to diphtheria toxoid

(data not shown). In addition, environmental exposure to Clos-

tridium tetanii does not influence TT-specific antibodies [28], in

contrast to the likely exposure of Gambian infants to pertussis,

Haemophilus influenzae type b, or hepatitis B virus. Between 5

and 12 months of age, the persistence and avidity maturation of

TT-specific antibodies is therefore driven solely by the late de-

velopment of the primary immune response and/or by exposure

to non–TT-specific factors. The antibody response to measles

vaccine given at 9 months of age was also assessed when infants

were 12 months old, to allow the distinction between the influ-

ence of the age at sampling and of the postimmunization period

on the factors controlling infant antibody responses. In devel-

oping countries, immunization with the live attenuated measles

vaccine is recommended at age 9 months, to avoid the inhibitory

effect of maternal antibodies [29]. Studies have suggested that

immunization during infancy could be associated with a more-

rapid waning of anti-measles antibodies and with an increased

risk of disease during the teen years [11, 13, 14]. Vaccine failure

is observed in 2%–5% of measles-vaccine recipients, and this

may involve genetic factors [29, 30]. Finally, we measured total

serum IgG levels, to compare the influence of genetic and en-

vironmental factors on nonvaccine antigens.

SUBJECTS, MATERIALS, AND METHODS

Study population. The study was conducted in The Gambia

and was approved by the Gambian government and the Medical

Research Council Ethics Committee. Twin pairs were enrolled

at birth at the Royal Victoria Hospital (the referral hospital in

the capital, Banjul) or at 1 of 2 health centers (Serrekunda and

Fajikunda) in the same district. Exclusion criteria were death

of 1 or both twins at or shortly after birth, residence outside

the study area, and bacille Calmette-Guérin (BCG) vaccine hav-

ing been administered to the infants in the hospital before their

enrollment in the study. Informed consent was obtained from

parents, and demographic data—including ethnicity, family his-

tory, and maternal health during pregnancy—were collected by

interview. Enrolled twins were examined within 3 days after birth,

and birth weight, length, and gestational age [31] were recorded.

Twins were monitored monthly until they were 5 months old

and then when they were 9 and 12 months old; they were vac-

cinated in accordance with the Expanded Programme on Im-

munization schedule (World Health Organisation). BCG vaccine

(0.05 mL; Statens Serum Institut) was administered intradermally

at birth (or at age 1 month if either twin weighed !2.5 kg). A

combination diphtheria, tetanus, and whole-cell pertussis vaccine

(Aventis Pasteur) in which H. influenzae type b vaccine (ActHIB;

Aventis Pasteur) was diluted was administered intramuscularly

(im) at age 2, 3, and 4 months. Measles vaccine (Aventis Pasteur)

was administered im at age 9 months. Blood samples were col-

lected at birth (umbilical cord blood) and when infants were 2,

5, and 12 months old.

Zygosity determination. The zygosity of same-sex pairs

was determined genetically by typing 10 microsatellite markers,

as described elsewhere [32]. Twin pairs with identical genotypes

for all markers were classified as being MZ.

Antibody assays. Concentrations of total serum IgG and

antibody to TT were measured as described elsewhere [27]. The

avidity (defined for complex antigens as the antigen binding

capacity resulting from the addition of all epitope-specific af-

finities) of TT-specific IgG antibodies was determined by ELISA
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Table 1. Antibody response to tetanus toxoid (TT) and measles vaccine and total IgG concentrations in monozygous (MZ) and dizygous
(DZ) twins.

Measurement Age, months

MZ DZ

PbNo.a Geometric mean (95% CI) No.a Geometric mean (95% CI)

Anti-TT antibody concentration, mIU/mL 5 100 3236 (2575–4065) 320 3329 (2967–3736) .87
12 86 465 (375–578) 247 455 (396–523) .89

IgG antibody concentration, mg/mL 5 100 8.76 (8.19–9.37) 319 8.97 (8.58–9.37) .66
12 88 11.36 (10.6–12.2) 258 10.72 (10.3–11.2) .29

Anti-measles antibody concentration, mIU/mL 12 92 1111 (879–1406) 244 1146 (987–1330) .86

NOTE. CI, confidence interval.
a No. of individual twins in whom antibody responses were successfully measured.
b Obtained by linear regression of log-normal antibody response, with zygosity as the explanatory variable, adjusting for clustering of response within twin pairs.

elution using ammonium thiocyanate (NH4SCN) as a chao-

tropic agent, as described elsewhere [26]. Results are expressed

as the avidity index (AI), the concentration of thiocyanate re-

quired to elute 50% of antibodies [26], and as proportions of

high-avidity (% HA) antibodies, which was defined for this an-

tigen as the proportion of antibody molecules that remain bound

to the plates at NH4SCN concentrations 13 mol/L. Concentra-

tions of antibody to measles vaccine were determined by hem-

agglutination-inhibition assay [33]. Antibody concentrations be-

low the assay cutoff were arbitrarily given a value of one-half the

cutoff value for the determination of geometric mean titers.

Statistical analysis. Differences in logarithmic antibody re-

sponses between MZ and DZ twin pairs were analyzed with Stata

software (version 8.1; StataCorp), using linear regression with

adjustment for the nonindependence of twin pairs. Intra–twin

pair correlations were calculated separately for MZ and DZ twins,

using Pearson’s correlation coefficient. Heritability (the genetic

contribution to the total phenotypic variation in the population)

was estimated using structural equation modeling, implemented

in Mx GUI (version 1.3.65) [34, 35]. Briefly, the total population

variance observed for a given phenotype results from the sum

of (1) genetic variance, (2) common environmental variance

caused by the effects of environmental factors shared within

families, and (3) unique environmental variance specific to each

individual. Genetic factors increase correlations within MZ twin

pairs, common environmental factors increase intrapair corre-

lations for both MZ and DZ twin pairs, and unique environ-

mental factors will decrease intrapair correlations for both MZ

and DZ twin pairs.

We compared models that allowed for additive genetic (A),

common environmental (C), and unique environmental (E)

contributions to phenotypic variation. The results below pre-

sent heritability under the ACE model—unless the AE model

fitted as well as the ACE model ( )—generally reflected inP 1 .1

lower DZ correlations, and the CE model fitted significantly

worse than the ACE model ( ). In this case, heritabilityP ! .1

under the AE model is shown. Similarly, the CE model was the

final model if it fitted as well as the ACE model ( ) andP 1 .1

the AE model fitted significantly worse than the ACE model

( ). Point estimates and 95% confidence intervals (CIs) forP ! .1

heritability under the final model are presented.

RESULTS

A total of 560 twin pairs were identified between March 1998

and May 2000; of these, 345 (62%) were eligible for the study.

The reasons for ineligibility were as follows: death of 1 or both

twins at or shortly after birth (92), residence outside the study

area (101), and BCG vaccine having been administered in the

hospital before enrollment (22). Of the 345 eligible pairs, 297

(86%) were enrolled. Reasons for nonenrollment were refusal

(22) and no traceable address (26). All twin pairs were breast-

fed and lived together for the duration of the study. Of the 297

twin pairs enrolled, zygosity data were available for 217 (59 MZ

and 158 DZ). Of these, 179 pairs (43 MZ and 136 DZ) were

studied at age 2 months, 210 pairs (50 MZ and 160 DZ) were

studied at age 5 months, and 175 pairs (46 MZ and 129 DZ)

were studied at age 12 months. There were no significant dif-

ferences in sex, ethnic group, gestational age, birth weight, or

birth center between MZ and DZ twin pairs. Parity was higher

in DZ than in MZ twin pairs (4.5 vs. 3.6; ).P p .02

Environmental determinants influence the persistence of

anti-TT antibodies. Figure 1 (top) shows the geometric mean

anti-TT antibody levels in a subgroup of 259 infant twins who

could be tested at ages 2, 5, and 12 months. The administration

of TT vaccine at ages 2, 3, and 4 months induced high levels

of anti-TT antibodies, as measured at age 5 months. Between

ages 5 and 12 months, anti-TT antibody levels decreased 7-fold.

The levels of anti-TT antibodies at ages 5 and 12 months were

similar in MZ and DZ twins (table 1). Intrapair correlations of

anti-TT antibody levels within MZ and DZ twin pairs and her-

itability are shown in table 2. As reported elsewhere [27], the

levels of anti-TT antibodies at age 5 months were significantly

more correlated within the MZ twin pairs than within the DZ

twin pairs, and the final model included additive genetic and

environmental factors. The heritability of anti-TT antibodies at
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Table 2. Pairwise correlations and heritabilities for antibody
responses to tetanus toxoid (TT) and measles vaccine and total
IgG concentrations.

Antibody
Age,

months

r (no.)
Heritability
(95% CI), %

Final
modelMZ DZ

Anti-TT 5 0.83 (50) 0.56 (160) 45 (18–70) ACE
12 0.67 (43) 0.56 (123) 33 (0–66) ACE

IgG 5 0.74 (50) 0.54 (159) 79 (69–86) AEa

12 0.66 (44) 0.66 (129) 0 CEb

Anti-measles 12 0.74 (45) 0.45 (123) 62 (27–83) ACE

NOTE. Significant heritabilities are given in bold type. ACE, additive genetic
plus common environmental plus unique environmental model; AE, additive
genetic plus unique environmental model; CE, common environmental plus
unique environmental model; CI, confidence interval; DZ, dizygous; MZ,
monozygous.

a Heritability under the ACE model, 66% (95% CI, 35%–85%).
b Heritability under the ACE model, 0% (95% CI, 0%–25%).

Figure 1. Antibody response to tetanus toxoid (TT) in infants. Infant
twins were immunized with TT at 2, 3, and 4 months of age. Anti-TT
antibody levels were measured by ELISA when infants were 2, 5, and 12
months old. Antibody avidity was measured when infants were 5 and 12
months old by ELISA elution with thiocyanate as a chaotropic agent. The
avidity index (AI) represents the concentration of thiocyanate required to
elute 50% of the antibodies, and the percentage of high-avidity (% HA)
antibodies is the proportion of antibody molecules bound to the plates at
thiocyanate concentrations 13 mol/L. The figure shows geometric mean
and 95% confidence intervals of antibody responses measured in a sub-
group of infant twin pairs from whom antibody and antibody data were
available for 2, 5, and 12 months of age. * vs. age 2 months;P ! .001
** vs. age 5 months. ND, not done.P ! .001

age 5 months was statistically significant (45% [95% CI, 18%–

70%]) (table 2). At age 12 months, however, the correlation of

anti-TT antibody levels had decreased in MZ twin pairs, and no

significant influence of genetic determinants was detected. To

verify that this difference was not related to the smaller group

studied at age 12 months, heritability of antibody titers at age 5

months was estimated in the subgroup of MZ and DZ twin pairs

for whom data were available at age 12 months. In this subgroup

of infants, anti-TT antibody levels at age 5 months were signif-

icantly more correlated within MZ twin pairs ( ) thanr p 0.85

within DZ twin pairs ( ), which resulted in significantr p 0.61

heritability (36% [95% CI, 9%–63%]).

Predominant influence of environmental determinants on

total IgG levels at age 12 months. To evaluate whether the

predominant influence of environmental determinants in the

control of anti-TT antibody responses at age 12 months was

specific to TT, the relative influence of genetic versus environ-

mental factors on total IgG concentrations at ages 5 and 12

months was estimated. MZ and DZ twins had similar IgG levels

at ages 5 and 12 months (table 1). As expected, total IgG levels

had increased between ages 5 and 12 months. As reported else-

where [27], a high heritability of total IgG levels was detected at

age 5 months (table 2). In contrast, correlations of IgG levels

were identical in MZ and DZ twin pairs at age 12 months, which

resulted in no detectable heritability, because the final model at

age 12 months included only common and unique environ-

mental factors. Similar estimates of heritability of IgG levels at

ages 5 and 12 months were obtained using the ACE model (table

2). Again, the difference between results at ages 5 and 12 months

was not related to the smaller group studied at age 12 months—

IgG levels measured at age 5 months in MZ and DZ twin pairs

for whom data were available at age 12 months were more cor-

related in MZ ( ) than in DZ ( ) twin pairs, re-r p 0.74 r p 0.54

sulting in significant heritability (36% [95% CI, 3%–65%]).

Thus, genetic determinants significantly influence early infant

antibody responses, whereas environmental factors play a pre-

dominant role at age 12 months.

Predominant role of genetic factors in the primary antibody

response to measles vaccine. The predominant role of envi-



1602 • JID 2006:193 (1 June) • Marchant et al.

Table 3. Avidity of anti–tetanus toxoid antibodies in monozygous (MZ) and dizygous (DZ) twins.

Avidity parameter Age, months

MZ DZ

PbNo.a Geometric mean (95% CI) No.a Geometric mean (95% CI)

Avidity index 5 100 1.50 (1.44–1.58) 97 1.52 (1.46–1.59) .77
12 73 2.22 (2.14–2.30) 203 2.23 (2.18–2.27) .89

Proportion of high-avidity antibodies 5 98 0.12 (0.11–0.14) 95 0.12 (0.11–0.14) .97
12 71 0.22 (0.20–0.26) 202 0.24 (0.23–0.25) .49

NOTE. CI, confidence interval.
a No. of individual twins in whom antibody responses were successfully measured.
b Obtained by linear regression of log-normal antibody response with zygosity as the explanatory variable, adjusting for clustering of response within twin pairs.

Table 4. Pairwise correlations and heritabilities for avidity of anti–tetanus toxoid antibodies.

Avidity parameter
Age,

months

r (no.)
Heritability

(95% CI), %
Final

modelMZ DZ

Avidity index 5 0.53 (50) 0.41 (48) 25 (0–67) ACE
12 0.35 (36) 0.39 (101) 0 CEa

Proportion of high-avidity antibodies 5 0.42 (49) 0.39 (46) 20 (0–64) ACE
12 0.58 (35) 0.34 (100) 25 (0–65) ACE

NOTE. ACE, additive genetic plus common environmental plus unique environmental model; CE, common
environmental plus unique environmental model; CI, confidence interval; DZ, dizygous; MZ, monozygous.

a Heritability under the ACE model, 0% (95% CI, 0%–39%).

ronmental determinants in anti-TT and total IgG responses ob-

served at age 12 months could be related to the increasing age

of the infants and/or to the time elapsed after immunization. To

evaluate the influence of age on the relative role of genetic and

environmental factors, we estimated the heritability of the an-

tibody response to measles vaccine, administered at age 9 months,

in 12-month-old infants. MZ and DZ twins showed similar an-

tibody responses to measles vaccine (table 1). As shown in table

2, correlations of anti-measles antibody levels were higher within

MZ than within DZ twin pairs, resulting in significant heritability

(62% [95% CI, 27%–83%]). Thus, genetic factors control the

induction of measles antibodies in 12-month-old infants, which

suggests that the influence of environmental determinants on

anti-TT and total IgG responses at age 12 months does not reflect

the age of the child at time of sampling but, rather, the time

since immunization.

Predominant role of environmental factors in the avidity

maturation of anti-TT antibodies. We next assessed the re-

spective roles of genetic and environmental factors in the avidity

maturation of anti-TT antibodies. Protection against tetanus

toxin, as assessed by in vitro tests, correlates with the recognition

of the toxin-binding site, with a striking influence of antibody

affinity. Thus, the maturation of antitoxin responses is essential

to reach the affinity threshold that is required for effective toxin

neutralization [36]. Figure 1 (middle and bottom) shows the geo-

metric mean AI and % HA for anti-TT antibodies measured at

ages 5 and 12 months in a subgroup of 135 MZ and DZ twin

pairs from whom sufficient serum was available. Anti-TT AI and

% HA antibodies significantly increased between ages 5 and 12

months, demonstrating efficient avidity maturation. This avidity

maturation process was similar in MZ and DZ twin pairs (table

3). Correlations of AI and % HA antibodies measured at ages 5

and 12 months were similar within MZ and DZ twin pairs,

resulting in no significant heritability (table 4). The final model

for the 12-month AI data included only common and unique

environmental factors. Similar estimates of heritability of AI at

age 12 months were obtained using the ACE model (table 4).

Thus, environmental factors play a predominant role in the con-

trol of anti-TT avidity maturation in infants.

DISCUSSION

Immune responses are complex traits influenced by genetic and

environmental factors. We previously reported that genetic de-

terminants play a central role in the control of early primary

IgG responses to vaccines in young infants [27]. In the present

article, we show that the relative role of environmental deter-

minants predominates during the late phase of IgG responses.

The persistence and avidity maturation of TT-specific anti-

bodies in Gambian infants is driven by the late development

of the primary immune response and/or by exposure to non–

TT-specific factors [28]. Whereas significant heritability of IgG

responses to TT was detected in 5-month-old infants immu-

nized at ages 2, 3, and 4 months, we observed that environmental

factors predominantly controlled anti-TT IgG levels in infants

12 months old. Although this analysis could not be extended to
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other vaccine antigens, a similar difference was observed with

total IgG levels: genetic factors control total IgG titers at age 5

months, whereas environmental factors play a predominant role

in the responses to nonvaccine antigens at age 12 months. Unlike

exposure to TT, exposure to nonvaccine antigens cannot be con-

trolled, and we cannot formally exclude the possibility that the

reduction in the heritability of total IgG levels is partly related

to an increased discordance of exposure within twin pairs. How-

ever, this possibility is not supported by the fact that twins were

raised together for the duration of the study and by the high

and identical correlations of total IgG levels measured in MZ

and DZ twin pairs at age 12 months (table 2), which indicates

an important role of environmental factors.

To our knowledge, this is the first longitudinal study of the

determinants of IgG responses in humans. Previously published

twin studies of vaccine responses were cross-sectional and there-

fore could not evaluate the determinants of antibody persistence

[30, 37, 38]. The predominant role of environmental determi-

nants in anti-TT responses observed at age 12 months could have

been related to the increasing age of the infants or to the time

since immunization. The observation that the early IgG response

to measles vaccine is predominantly controlled by genetic de-

terminants confirmed that the influence of environmental factors

on anti-TT responses at age 12 months reflects the time since

immunization. This suggests that distinct factors influence the

early-effector and late-memory phases of IgG responses. Among

the factors that could be particularly important in the control

of early antibody responses are innate immune response genes.

The observation that genetic factors play a predominant role

in the control of antibody response to measles vaccine is in

keeping with data reported by Tan et al. [30]. The identification

of the genes involved may help in the development of more-

effective measles vaccines inducing higher early antibody re-

sponses [27]. The role of genetic factors in the control of anti-

measles antibody persistence and avidity maturation should be

examined.

The mechanisms leading to the persistence of antigen-spe-

cific antibodies are not fully understood. The postimmuniza-

tion period is characterized by a rapid decrease in antibody

levels that presumably reflects the interruption of antibody pro-

duction by short-lived antibody-secreting cells. This is followed

by a second period, during which antigen-specific antibody

levels decrease with slower kinetics. The antibody persistence

could result from long-lived plasma cells having reached ap-

propriate survival niches within the bone marrow [39–41]. Al-

ternatively, antibody production may be sustained by antigen-

specific or bystander reactivation of memory B cells [42, 43].

A number of environmental factors could influence the per-

sistence of IgG vaccine responses in infants. It is tempting to

postulate that exposure to microorganisms plays an important

role. Between ages 5 and 12 months, maternal antibodies dis-

appear, and infants are exposed to a large number of micro-

organisms. These microorganisms could either favor antibody

persistence through the bystander activation of memory B cells

or favor antibody decline by inducing the differentiation of

plasma cells competing for a restricted number of niches within

the bone marrow. We cannot exclude that this influence would

be more marked in tropical environments. For example, Plas-

modium falciparum malaria drives immunoglobulin production

to high levels, results in a more-rapid turnover of IgG in Gam-

bian adults, and may diminish the persistence of meningococcal

vaccine antibodies [14, 44–47]. However, immune responses

to TT vaccine are robust even in malaria-infected African chil-

dren [48], and the shorter duration of infant antibody responses,

compared with those in adults, has been observed worldwide

[10–12, 14, 49, 50].

In the present study, we also demonstrate that the induction

of high-avidity antibodies to TT takes place within a few months

after early infant immunization. The detection of high-avidity

antibody responses to infant TT immunization are in keeping

with our previously published results showing adult-like pro-

cesses of avidity maturation to TT and other protein antigens

in infant mice [23]. These data also complement studies that

have indicated that high-avidity antibody responses can be in-

duced by glycoconjugate vaccines in human infants [19, 20, 22,

24]. Thus, the lower affinity of antibodies measured after infant

rotavirus [21] or N. meningitidis [20] infections, compared with

those after adult infections, is likely to reflect differences in the

time since first exposure rather than an impaired somatic mu-

tation/antigen-driven B cell selection process. The affinity mat-

uration process of TT-specific antibodies during the first year

of life is essentially controlled by nongenetic factors. This could

be the consequence of several different mechanisms. Somatic

hypermutation is a random phenomenon and, as such, could

lead to the generation of a diversity of centrocyte populations

that is not primarily programmed by genetic determinants. In

addition, the selection of centrocytes producing high-affinity

antibodies is mediated by their interactions with follicular den-

dritic cells (FDCs) bearing antigens and with helper CD4+ fol-

licular T lymphocytes [51]. Microbial antigens could either

promote the production of high-affinity antibodies by com-

peting at the level of FDCs for presentation to centrocytes or

favor the production of low-affinity antibodies through the

bystander activation of centrocytes. Although significant pos-

itive correlations were observed between the % HA anti-TT

antibodies and total IgG levels at age 12 months ( [95%r p 0.14

CI, 0.02–0.27]; ), in accordance with the hypothesis ofP p .02

a positive competitive influence at the FDC level, further studies

will be required to explore this hypothesis and to eventually

identify the environmental factors involved. This represents a

novel and important objective for the improvement of vaccine

efficacy in young children.
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THE MEDICAL RESEARCH COUNCIL GAMBIA
TWIN STUDY GROUP

The members of the Medical Research Council Gambia Twin

Study Group are A. Allen, W. Banya, D. Jackson Sillah, K. P. W.

J. McAdam, M. Mendy, and J. Vekemans (The Medical Research

Council Laboratories, The Gambia); K. Jobe (Gambian Expanded

Programme on Immunisation, Department of State for Health,

Banjul, The Gambia); S. Bennett (Medical Research Council

Tropical Epidemiology Unit, London School of Hygiene and

Tropical Medicine, London, United Kingdom); P. Aaby (Danish

Epidemiology Science Centre, Statens Serum Institut, Copen-

hagen, Denmark); J. C. Stockton, (Department of Medicine, Uni-

versity of Cambridge, United Kingdom); and G. Cadau and P.

Valenti (World Health Organisation, Collaborative Centre for

Neonatal Vaccinology, University of Geneva, Switzerland).
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