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S U M M A R Y
Ground motion prediction is an essential element in seismic hazard and risk analysis. Em-
pirical ground motion prediction approaches have been widely used in the community, but
efficient simulation-based ground motion prediction methods are needed to complement em-
pirical approaches, especially in the regions with limited data constraints. Recently, dynamic
rupture modelling has been successfully adopted in physics-based source and ground motion
modelling, but it is still computationally demanding and many input parameters are not well
constrained by observational data. Pseudo-dynamic source modelling keeps the form of kine-
matic modelling with its computational efficiency, but also tries to emulate the physics of
source process. In this paper, we develop a statistical framework that governs the finite-fault
rupture process with 1-point and 2-point statistics of source parameters in order to quantify the
variability of finite source models for future scenario events. We test this method by extracting
1-point and 2-point statistics from dynamically derived source models and simulating a num-
ber of rupture scenarios, given target 1-point and 2-point statistics. We propose a new rupture
model generator for stochastic source modelling with the covariance matrix constructed from
target 2-point statistics, that is, auto- and cross-correlations. Our sensitivity analysis of near-
source ground motions to 1-point and 2-point statistics of source parameters provides insights
into relations between statistical rupture properties and ground motions. We observe that larger
standard deviation and stronger correlation produce stronger peak ground motions in general.
The proposed new source modelling approach will contribute to understanding the effect of
earthquake source on near-source ground motion characteristics in a more quantitative and
systematic way.

Key words: Earthquake dynamics; Earthquake ground motions; Computational seismology;
Statistical seismology.

1 I N T RO D U C T I O N

Predicting ground motion characteristics for future earthquakes is
an essential element in seismic hazard and risk analysis. Empirical
prediction approaches have been widely used for these purposes
because they are directly constrained by observed data (e.g. Abra-
hamson et al. 2008). However, their prediction capability is limited,
especially in near-source regions for large events, where only lim-
ited data constraints are available. Simulation-based ground motion
prediction approaches have become more popular due to a better
understanding about earthquake source and wave propagation pro-
cesses as well as increased high-performance computing capability.
Physics-based computational approaches provide many interesting
insights into finite source processes and their effects on near-source
ground motion characteristics, which may also provide guidance
in parametrizing empirical ground motion prediction models in a
more physical manner.

Spontaneous dynamic rupture modelling has been successfully
adopted in physics-based source and ground motion modelling for
the last couple of decades (e.g. Andrews 1976; Day 1982; Olsen
et al. 1997; Oglesby et al. 1998; Dalguer et al. 2008; Ripperger
et al. 2008; Shi & Day 2013). The finite-faulting process in dynamic
modelling is governed by first-order physical principles acting on
the fault, such as stress and frictional behaviour. This physical basis
enables us to generate physically self-consistent spatiotemporal evo-
lution of finite source models. On the other hand, dynamic rupture
modelling is computationally expensive, especially for large events
that are typically embedded in a large computational domain. In
addition, we may need to simulate a number of such rupture scenar-
ios to cover a broad range of possible input parameters, which are
generally poorly constrained by observations.

In this context, pseudo-dynamic source modelling has been in-
troduced to retain the computational efficiency of kinematic source
modelling, while simultaneously emulating source physics inferred

1770 C© The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.

mailto:song@sed.ethz.ch


Stochastic finite source modelling 1771

Figure 1. Quantifying the likelihood of rupture scenarios. (a) Non-zero, but uniform probability is assigned to physics-based (physically acceptable) rupture
scenarios. Zero probability is assigned to non-physical rupture scenarios. (b) Non-uniform probability distribution within the physics-based rupture scenarios.

from rupture dynamics and observations (Guatteri et al. 2004; Liu
et al. 2006; Schmedes et al. 2010; Song & Somerville 2010; Mena
et al. 2012). However, it is still an open question how to construct
an entirely self-consistent and statistically robust framework of the
finite source process using the pseudo-dynamic approach. The key
is to unravel in detail how exactly the rupture process determines
ground motion characteristics, that is, how space–time correlations
of kinematic source parameters affect near-field shaking and its spa-
tial variability. In this paper, we extend and improve the concept of
pseudo-dynamic source modelling, aiming for such a self-consistent
statistical framework for physics-based source and ground motion
modelling.

This study builds on previous work by Song & Somerville (2010),
who propose a pseudo-dynamic source modelling method based on
cross-correlation structures between kinematic source parameters,
including both zero- and non-zero-offset correlations. Here, we ex-
tend their work as follows: (1) the concept of 1-point statistics
(Song & Dalguer 2013) is included in both source characterization
and modelling, (2) a new stochastic source modelling tool, based
on the Cholesky factorization of a covariance matrix, is introduced
in addition to the sequential Gaussian simulation with the kriging
method (Song & Somerville 2010), (3) we compute ground motions
using pseudo-dynamically generated source models, and quantita-
tively compare them with dynamically generated ground motions to
investigate how statistical elements in the pseudo-dynamic source
modelling influence ground motion characteristics.

2 S O U RC E C H A R A C T E R I Z AT I O N

2.1 Statistical framework for the finite source process

Given a target magnitude, many parameters are needed to charac-
terize a finite-fault rupture model for ground motion simulation,
such as rupture dimension (length and width), hypocentre location,
heterogeneity of kinematic rupture parameters, etc. If we make the
ergodic assumption, namely, that future events share finite source
characteristics of past events, at least in a statistical sense, we may
constrain some parameters for scenario events by studying past
earthquakes. In classical kinematic source modelling, certain com-
ponents of finite source models are simulated based on simple as-
sumptions because they are not well constrained by data. In fact,
this limitation applies to the temporal source parameters, such as
rupture speed, slip velocity and slip duration, although these pa-
rameters play a significant role in determining near-source ground
motion characteristics (Graves et al. 2008).

In this study, we extend pseudo-dynamic source modelling by
formulating the finite source process in a statistical framework. The

concept of pseudo-dynamic source modelling can be explained in
a probabilistic sense, as illustrated in Fig. 1(a). We assign non-zero
probability to physics-based rupture scenarios, and zero probability
to non-physical rupture scenarios. By assigning zero probability to
non-physical rupture scenarios, they are excluded from the source
modelling. The range of admissible rupture scenarios then needs
to be sampled evenly to properly scan the parameter space. For
example, if one solid blue circle in Fig. 1(a) represents 100 physi-
cally acceptable rupture scenarios, we may perform physics-based
source and ground motion modelling with those 300 rupture scenar-
ios represented with the solid blue circles, but 100 rupture scenarios
represented by the open solid circle are not taken into account in the
modelling, which implies that seismic hazard and risk analysis based
on these ground motion simulation results may not be complete if
the next event happens from the open blue circle, and it produces
much different ground motion characteristics from events from the
solid blue circles. It is very challenging to cover the entire range of
physically plausible rupture models for scenario events especially
when we are limited in fully understanding earthquake source pro-
cess. However, even given a subset of physics-based source models,
it greatly helps to sample the space efficiently if we have a consistent
statistical framework that governs the target physics-based source
models.

We may assign non-uniform probability to the range of physi-
cally acceptable rupture scenarios (Fig. 1b), depending on the level
of knowledge and information about target source models. In other
words, we quantify the variability and relative likelihood of rup-
ture scenarios within the non-zero probability region. If we could
predict every aspect of the rupture process in a future event in a
fully deterministic sense, the probability density function (PDF) in
Fig. 1(b) would become the Dirac delta function. The earthquake
rupture process is a high-dimensional problem, but we adopt a uni-
variate domain to illustrate the efficiency of developing a statistical
framework in finite source modelling.

Song & Somerville (2010) and Song & Dalguer (2013) propose
to characterize the rupture process in the framework of 1-point and
2-point statistics. As illustrated in Fig. 2, we assign one random field
to each source parameter. For example, X(u) is assigned to slip at lo-
cation, u, and Y(u) is assigned to rupture velocity at location u. If we
consider a fault plane discretized in M × N subfaults, then there are
M∗N random variables for each source parameter. If we consider
p source parameters, we may need to constrain a p∗M∗N dimen-
sional PDF to define the random field model. In practice, however,
we are often limited to constraining 1-point and 2-point statistics.
1-point statistics represents each marginal PDF (mPDF) from the
original multivariate PDF. In other words, it controls the variability
of each source parameter at any given subfault patch. A classical
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Figure 2. 2-D distribution of random variables assigned to each source parameter on a planar fault, that is, X(uij) and Y(uij) are random variables that represent
one of source parameters, such as slip, rupture velocity, slip velocity and slip duration. uij is a location vector and h is a separation vector between two random
variables. Random variables, X and Y, have their own univariate (1-point) probability density function (PDF) at a given subfault patch, and 2-point correlation
structures can also be inferred as a function of h (fig. 4 in Song & Dalguer (2013)).

form of empirical ground motion prediction equation (GMPE) is
a good example of 1-point statistics in ground motion prediction
because the variability of ground motion intensity measures at any
given location (or at any given source-to-site distance) are defined
by the median and standard deviation in the log-normal distribution.
2-point statistics comprises autocorrelation in the spatial distribu-
tion for a single parameter, and cross-correlation between source
parameters, which can be implemented in the covariance (or corre-
lation) matrix of the multivariate Gaussian PDF. See also Song &
Somerville (2010) and Song & Dalguer (2013) for more details.

2.2 1-point and 2-point statistics in dynamically generated
source models

1-point and 2-point statistics of earthquake source parameters, de-
fined in Section 2.1, are generally not well constrained despite in-
creased numbers of finite source rupture images of past events. The
scaling of mean slip with earthquake size has been relatively well
studied (Somerville et al. 1999; Mai & Beroza 2000). The power
spectrum of slip distribution (2-point autocorrelation of slip) is also
constrained by kinematic source models (Somerville et al. 1999;
Mai & Beroza 2002). Lavallee & Archuleta (2003) and Lavallee
et al. (2006) examined 1-point statistics of earthquake slip from
kinematic source models, while Song et al. (2009) investigated
cross-correlation structures from kinematic source models. Graves
& Pitarka (2010) adopted empirical relations, constrained by pre-
vious studies, to derive temporal source parameters in source mod-
elling.

Earthquake source models generated from dynamic rupture sim-
ulations may help to constrain the 1-point and 2-point statistics
of earthquake ruptures, which can then be used to build a new
stochastic modelling approach. Dalguer & Mai (2011, 2012) sim-
ulated 360 dynamic rupture models, with varying faulting style
and under different normal stress conditions, assuming linear slip-
weakening friction (Andrews 1976; Day 1982). Their database of
simulated earthquakes, in the magnitude range between Mw 5.5
and 7.0, includes three different source mechanisms (normal, re-
verse, strike-slip), surface-rupturing and buried events, considering

both depth-dependent and constant normal stress. Fine space–time
sampling in the dynamic rupture calculations (dx = 0.1 km; dt =
0.008 s) generates high-resolution spatial data of the rupture pro-
cess, as well as synthetic near-source seismograms, with a nominal
maximum resolved frequency up to 3 Hz (Dalguer & Mai 2011,
2012). The hypocentre location varies on the fault for each event,
but it is chosen to be on a patch of high pre-stress. Additional param-
eters for the geometry of rupture models are summarized in Table 1.
The top of the subsurface events is placed at 5 km depth. There are 3
km wide buffer zones that surround the targeted rupture dimension
(see Table 1). The slip-weakening distance smoothly increases from
0.3 to 5 m in the buffer to ensure smooth rupture termination at the
fault edges. The dynamic rupture models and near-source ground
motions have been generated using the Support Operator Rupture
Dynamics code, developed by Ely et al. (2008, 2009). Baumann &
Dalguer (2013) evaluated the compatibility of the ground motion
generated by dynamic rupture simulations with empirical GMPEs.

Fig. 3 shows one set of kinematic source parameters from this
database of dynamic rupture models, for three different types of
buried events, for example, normal (Mw 6.5), reverse (Mw 6.7)
and strike-slip (Mw 6.6), with depth-dependent normal stress.
Since these kinematic source parameters are derived by solving
the elasto-dynamic equations of motion with a given initial stress
field and friction law, we expect physical self-consistency between
the simulated kinematic source parameters. Both 1-point and 2-
point statistics can then be extracted from the given source mod-
els. Fig. 4(a) shows 1-point statistics extracted from the normal
event (Fig. 3a), assuming stationarity in terms of 1-point statis-
tics, which means that a mPDF is the same for each source
parameter at any given subfault patch. All three distributions
seem to follow a non-Gaussian distribution, especially for slip
and peak slip velocity, suggesting general non-Gaussian proper-
ties of earthquake source parameters. However, note the strong
depth-dependency of 1-point statistics (Fig. 4b), which is particu-
larly pronounced for slip and peak slip velocity. This pattern is also
clearly observed in Fig. 5, in which we examine a PDF after di-
viding rupture area into several layers with depth. We conclude
that for source models with strong depth-dependency, incorrect
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Table 1. Geometric parameters for dynamically derived source models.

Normal Reverse Strike-slip

Rupture dimension∗ (length/width) 24 km/15 km 24 km/15 km 30 km/12 km
Dip angle 60◦ 45◦ 90◦

∗The initial rupture area is surrounded by 3-km thick buffer zones that add additional 6
km rupture length in both along-strike and along-dip directions.

Figure 3. Kinematic source parameters derived from dynamic rupture modelling for three target events (Dalguer & Mai 2012). The moment magnitude varies
between 6.5 and 6.7 for these events (Normal: Mw 6.5, Reverse: Mw 6.7, Strike-slip: Mw 6.6). The initial nucleation zone and small slip area near the fault
boundary are not considered in the following statistical analysis for all source parameters and coloured in dark blue.

statistical inference can follow if stationarity is assumed and only
a single PDF for the entire rupture area is inferred (as in Fig. 4a).
The depth-dependency of 1-point statistics for certain source pa-
rameters reflects the depth-dependency of normal stress assumed
in dynamic modelling. It may be realistic since the normal stress,
consequently frictional strength, is expected to change with depth
and it may also be constrained by investigating kinematic source
models for past events. 1-point statistics extracted from two other
events (e.g. reverse and strike-slip) in Fig. 3 are presented in Figs
S1–S4.

We also extract the 2-point auto- and cross-correlation structures
from the same event (Fig. 6). Autocorrelation structures are more
elongated in the along-strike direction for slip and peak slip ve-
locity, while they are more elongated in the along-dip direction for
rupture velocity. We also detect significant correlations between
all three pairs of source parameters. Points of maximum correla-
tion are located at or near zero-offset points for this rupture. The
cross-correlation structures are also elongated in the along-strike
direction. 2-point correlation structures for other two events (e.g.
reverse and strike-slip) are presented in Figs S5 and S6.

To obtain an overall understanding of the possible correlation
structure in such dynamic rupture models, we extract 2-point statis-
tics from 203 events (6.5 ≤ Mw ≤ 7.0) in the database, excluding
157 events with Mw < 6.5 for the data set of 360 events, since the
chosen artificial initial nucleation may affect the rupture process of
small-to-moderate size events more strongly. The cross-correlation
coefficients extracted from the 203 events reveal strong correlation
between all three pairs of source parameters (Fig. 7a). We do not
claim that a few hundred events used in our analysis adequately
sample the whole space of finite source models, but the emerg-
ing correlation structures for the selected number of events is an
encouraging fact.

Correlation coefficients at zero-offset points are shown in
Fig. 7(b). Although the lower tails are slightly stretched further to-
wards smaller correlation values in Fig. 7(b), there are no significant
differences between two panels in Fig. 7, because the correlation
maximum points are located near the zero-offset points for most
of the 203 source models. As we see in Fig. 8, response distance
(RD) is relatively small for most events (RD < 3 km). We use
the term, RD, defined in Song & Somerville (2010), to provide a
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Figure 4. 1-point statistics of kinematic source parameters extracted from the normal event in Fig. 3. (a) Marginal probability density function for three-source
parameters with stationarity assumption. (b) Depth-dependency of 1-point statistics. The solid and dashed blue lines denote mean and 1-sigma range at the
given depth, respectively. The red and cyan dashed lines indicate the perturbation of 1-point statistics we used in ground motion modelling. The red dashed
lines indicate that the 1-sigma range (blue dashed lines) is stretched out by a factor of 2 with respect to the solid blue line. The cyan dashed lines indicate that
it is compressed by half.

physical interpretation of the lag distance in cross-correlation struc-
tures. Due to rupture propagation effects, particularly in long strike-
slip events, the lag distance may be relatively large. It may require
further studies to confirm the physical origin of the lag distance, but
at least for several large strike-slip events, we have observed that
this offset distance is quite significant, ∼10 km (Song & Somerville
2010; Song & Dalguer 2013).

3 S O U RC E M O D E L L I N G

Once a finite-fault earthquake source is characterized by a PDF,
we can generate a number of rupture scenarios by drawing samples
following the target PDF, that is, Monte Carlo sampling. Song &
Somerville (2010) propose a sequential Gaussian sampling method
with the simple kriging, which is commonly used in the commu-
nity of geostatistics (Goovaerts 1997; Deutsch & Journel 1998). In
this paper, we adopt a stochastic modelling scheme based on the
Cholesky factorization of the covariance matrix, constructed by the
1-point and 2-point statistics of kinematic source parameters. A brief
description of the stochastic modelling procedure is given in Ap-
pendix A. It is important to note that this method aims to reproduce
the target 1-point and 2-point statistics, not the entire multivariate
PDF. However, we claim that it is still possible to constrain a major

portion of the random field model using 1-point and 2-point statistics
only.

Stochastic source modelling with the covariance matrix may have
several advantages over the Fourier transform-based approaches
(Mai & Beroza 2002; Guatteri et al. 2004; Liu et al. 2006; Bizzarri
2010; Graves & Pitarka 2010; Andrews & Barall 2011). First of
all, auto- and cross-correlation structures are implemented in the
modelling simultaneously. According to the autocorrelation theo-
rem (Bracewell 2000), the Fourier transform of the autocorrelation
function (ACF) is the power spectral density (PSD); therefore, it is
equivalent to characterize 2-point autocorrelation either with ACF
or with PSD. However, as far as cross-correlation is concerned,
we may be in a different situation. If the correlation maximum is
shifted from zero-offset point, the corresponding information is not
reflected in the amplitude spectrum, but in the phase spectrum.
This implies that we cannot characterize certain types of cross-
correlation structures by considering only the amplitude spectrum.
In contrast, in our proposed stochastic modelling approach, both
auto- and cross-correlation structures for all source parameters are
jointly implemented in the covariance matrix. In addition, our mod-
elling approach does not require regular grid spacing, which may
be useful in case finer gridding near the Earth surface is required.
Moreover, it does not require stationarity (appendix D in Song &
Somerville (2010)), hence different correlation structures can be



Stochastic finite source modelling 1775

Figure 5. Marginal probability density functions (mPDF) obtained for four different depth ranges for the normal event in Fig. 3. Note that the mPDF changes
significantly with depth.

applied to different parts of the faulting area. The discrete Fourier
transform assumes regular gridding and stationarity in general.

3.1 Modelling examples

Once we are given the 1-point and 2-point statistics for a certain
event, we generate finite source rupture scenarios by stochastic
modelling. Figs 4–6 reveal that the extracted 1-point and 2-point
statistics show complex structures, partially due to estimation un-
certainty. In this study, we decide to develop a relatively simple sta-
tistical model that captures the main characteristics of 1-point and
2-point statistics. We may increase the level of complexity in our tar-
get model later. For the 1-point statistics, we assume a Gaussian dis-
tribution for all three parameters, and implement depth-dependent
mean and standard deviation. For the 2-point statistics, we adopt a
simple exponential function as given in eq. (1). We also constrain
both correlation length (ax and az) and RD (RDx and RDz) by fit-
ting the exponential function (eq. 1) against empirically obtained
auto- and cross-correlation structures (Figs 6, S5 and S6) using an
unconstrained non-linear minimization (Nelder–Mead) method:

ρ(h) = exp

(
−

√
((hx − RDx )/ax )2 + ((hz − RDz)/az)

2

)
,

h = (hx , hz). (1)

Thus, we have five different model parameters to characterize the
2-point statistics, for example, four parameters in eq. (1) and ρmax for
cross-correlation. Each parameter has six independent components
because we consider three source parameters.

Although we extract correlation structures from about 200 events,
we decided to work with 3 events presented in Fig. 3 in terms of
source and ground motion modelling. While the final goal of our
work is to develop a more generalized version of pseudo-dynamic
source models, considering a wide range of events, this is beyond
the scope of the current study in which we focus on the proof of
concept. We also think that it is important to carefully examine the
performance of the new modelling approach based on a small set of
events, before developing a generalized model. Another simplifica-
tion in our modelling is to keep the same slip in pseudo-dynamic
source models as the one in the dynamic models. In a more general
set-up, we may simulate slip heterogeneity, using the autocorrela-
tion structure of earthquake slip. However, constraining slip allows
us to more directly investigate how temporal source parameters are
controlled in the new pseudo-dynamic source modelling method.
One of the major issues in the pseudo-dynamic source modelling
is how to link slip with temporal source parameters in kinematic
modelling and produce the temporal source parameters compatible
with dynamic rupture models (Guatteri et al. 2004).

Table 2 shows the five model parameters computed for three
events in Fig. 3 for 2-point statistics. We plug them into the rup-
ture model generator (RMG) and simulate the spatial distribution of
kinematic source parameters. Fig. 9 shows pseudo-dynamic source
models obtained by stochastic modelling for the normal event in
Fig. 3. Pseudo-dynamic source models for both reverse and strike-
slip events are presented in Figs S7 and S8, respectively. Source
models in the left column are derived from spontaneous dynamic
rupture modelling; the next three columns show the first three source
models generated by stochastic modelling, given the same target 1-
point and 2-point statistics. In total, we simulate 30 pseudo-dynamic
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Figure 6. 2-point correlation structure extracted from the normal event in Fig. 3(a). The diagonal blocks indicate the autocorrelation of each source parameter
and the off-diagonal blocks indicate the cross-correlation between source parameters.

source models for each type of event, but we display only the
first three events. The same hypocentre from the dynamic rupture
model is used in pseudo-dynamic source models. We may constrain
hypocentre locations in generalized pseudo-dynamic modelling,
based on a correlation study between hypocentre and earthquake
slip (Mai et al. 2005). Stochastic modelling simulates the local rup-
ture velocity, and the corresponding rupture time at each point on
the fault plane is then computed using the simulated rupture ve-
locity, assuming a straight line of rupture propagation between the
hypocentre and each subfault patch. This approximation is valid if
rupture speed variations remain small and localized.

All three rupture models generated by stochastic modelling share
certain common features. For example, high and low rupture-
velocity zones are approximately colocated between dynamically
and pseudo-dynamically generated source models because of posi-
tive correlation between them. Peak slip velocity shows high values
at the range of 10–15 km in the along-dip direction in both mod-
els because of the depth-dependency of 1-point statistics. Overall
we observe that, given the fixed slip, we can successfully repro-
duce temporal source parameters compatible with the ones gen-
erated by dynamic modelling, using 1-point and 2-point statistics
extracted from the dynamically generated source models. On the
other hand, the three pseudo-dynamically generated source models
are not identical. They show a certain level of variability, which
we may call aleatory uncertainty in source modelling. Although
we have complete information about our target 1-point and 2-point
statistics, stochastic modelling produces variability for each indi-
vidual random realization and it cannot be predicted with improved

knowledge and data. If we have estimation uncertainty in our 1-
point and 2-point statistics, we can call it epistemic uncertainty in
pseudo-dynamic source modelling.

4 G RO U N D M O T I O N M O D E L L I N G

We generate three-component synthetic seismograms (effective up
to 3 Hz) at 168 locations (Fig. 10) for both the dynamic ruptures
and the pseudo-dynamic source models. The pseudo-dynamically
generated finite source models are combined with pre-computed
Green’s functions (Zhu & Rivera 2002). We apply the slip velocity
function (SVF) proposed by Liu et al. (2006) to characterize the slip-
rate evolution at each point on the fault. Other types of SVFs, such
as triangular, boxcar, modified Yoffe function (Tinti et al. 2005a),
can be applied, and will affect the radiated wavefields, but this is
beyond the scope of this study.

It is an open question how to validate our pseudo-dynamic source
modelling methods. We may compare ground motions generated by
pseudo-dynamic source modelling with recorded ground motions
for real events, and investigate how closely the pseudo-dynamic
method predicts recorded waveforms, at least in a statistical sense.
We may also compare pseudo-dynamically generated ground mo-
tion data with empirical GMPEs, and investigate how well it re-
produces ground motion intensity and their variability. However,
this type of validation analysis requires a comprehensive study that
covers a wide range of events. Sometimes it is not easy to define
objective validation criteria. In this paper, we focus on analysing
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Figure 7. Cross-correlation coefficients extracted from 203 events in the dynamic rupture model database. The magnitude ranges between 6.5 and 7.0. The
database includes various types of events, such as strike-slip versus dip-slip, surface versus subsurface rupture and depth-dependent versus independent stress
field in dynamic modelling. (a) Maximum correlation coefficients, (b) correlation coefficients at zero offset (h = 0).

the sensitivity of ground motions to each statistical element of the
pseudo-dynamic source model. Once we perturb a certain statistical
element in the pseudo-dynamic source model, we will investigate
how it affects ground motions. Such a detailed sensitivity analy-

sis will provide more direct physical intuitions about the relations
between pseudo-dynamic source parameters and ground motions,
which could be used as a basis for more comprehensive validation
studies.
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Figure 8. Response distance (RD).

Table 2. Input parameters for 2-point statistics of three target events.

Normal Reverse Strike-slip

ax

⎛
⎝ 11.4 3.2 11.3

0.8 4.6
9.6

⎞
⎠

⎛
⎝ 6.4 6.2 21.6

2.7 14.4
12.7

⎞
⎠

⎛
⎝ 5.8 5.7 9.3

5.4 16.3
10.0

⎞
⎠

az

⎛
⎝ 1.5 1.2 1.3

2.2 0.7
1.2

⎞
⎠

⎛
⎝ 2.2 1.9 2.1

1.3 1.8
2.5

⎞
⎠

⎛
⎝ 2.0 1.1 1.4

2.1 1.9
1.3

⎞
⎠

ρmax

⎛
⎝ 1 0.53 0.86

1 0.62
1

⎞
⎠

⎛
⎝ 1 0.63 0.73

1 0.66
1

⎞
⎠

⎛
⎝ 1 0.50 0.89

1 0.61
1

⎞
⎠

RDx

⎛
⎝ 0 0 −1

0 0
0

⎞
⎠

⎛
⎝ 0 −1 −2

0 0
0

⎞
⎠

⎛
⎝ 0 0 −1

0 0
0

⎞
⎠

RDz

⎛
⎝ 0 0 0

0 0
0

⎞
⎠

⎛
⎝ 0 0 1

0 0
0

⎞
⎠

⎛
⎝ 0 −1 −1

0 0
0

⎞
⎠

Note: Unit for all parameters except ρmax is killometres. And all matrices
should be symmetric.

We generate 30 earthquake scenarios by stochastic modelling for
each target event in Fig. 3, to account for the aleatory uncertainty in
source modelling. Since we consider three dynamically generated
source models (e.g. normal, reverse, strike-slip), there are in total
90 pseudo-dynamically generated source models, given the target
1-point and 2-point statistics (Figs 4, 6, S1, S3, S5 and S6). In
addition, we construct seven new sets of pseudo-dynamic source
models that are linked to perturbation of 1-point statistics, and seven
new sets that are linked to perturbation of 2-point statistics. So we
have 1350 pseudo-dynamically generated source models (= 90 ×
(14 + 1)), including the original pseudo-dynamic source model.
Then we compare ground motions generated from all 15 sets of
pseudo-dynamic source models in a statistical sense. Note that all
these pseudo-dynamic rupture models are constructed using the
stochastic parameters listed in Table 2.

Fig. 11 shows ground motions obtained by both dynamic and
pseudo-dynamic source modelling at five selected points (Fig. 10).

We observe that pseudo-dynamically generated ground motions
quite well reproduce the dynamically generated ground motions.
Since our stochastic modelling generates temporal source parame-
ters of the pseudo-dynamic source models, we do not expect that
the former fit the latter completely, in a deterministic sense. The
difference in the three waveforms in colour (red, blue and green)
indicate variability in ground motions caused by variability in three
pseudo-dynamic source models in Fig. 9. The variations in the re-
sulting ground motions seem to remain small at all five locations.
This implies that 1-point and 2-point statistics are relatively strong
constraints in the random field model. Thus, if we fix one source
parameter (e.g. slip in Fig. 9), we can control the other parameters
in a very narrow range of random model space with the conditional
PDF, constructed from the given 1-point and 2-point statistics and
the fixed parameter.

We now compare dynamically generated ground motions with
pseudo-dynamically generated ground motions after perturbing the
1-point and 2-point statistics. We compute the difference of peak
ground velocity (PGV) in natural log-scale at the 168 stations, com-
pute the corresponding mean and standard deviation and average
over 30 randomly simulated events. This procedure combines both
intraevent and interevent variability. If the computed mean is above
0, the pseudo-dynamically generated PGVs are on average larger
than, and hence overpredict, the dynamically generated PGVs. If it
is below 0, the former underpredicts the latter. The standard devi-
ation reveals whether this pattern of over- and underprediction is
consistent for all stations. For example, if pseudo-dynamically gen-
erated ground motions overpredict dynamically generated ground
motions by 50 per cent at all stations uniformly, the standard devia-
tion will be zero although the mean is 0.4 (= ln(1.5)). On the other
hand, the standard deviation can be large if the pattern of over- and
underprediction changes significantly station by station, while the
mean may still be close to zero.

Perturbation of 1-point statistics: Using dynamic rupture mod-
elling with multiple set of initial random stress, Song & Dalguer
(2013) demonstrate that the standard deviation of source param-
eters might affect near-source source ground motion characteris-
tics significantly. However, the standard deviation of most source
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Figure 9. Pseudo-dynamic source models obtained from stochastic modelling with given 1-point and 2-point statistics for the normal event in Fig. 3(a). The
first column shows dynamically generated kinematic source parameters from Fig. 3(a). The next three columns show three different pseudo-dynamic source
models produced given the same 1-point and 2-point statistics. We may consider it aleatory uncertainty in source modelling.

parameters is still poorly constrained by data, and rarely considered
explicitly in most source-modelling studies. To address this prob-
lem, we perturb the depth-dependent standard deviation of both
rupture velocity and peak slip velocity (Fig. 4b), and regenerate
seven different sets of pseudo-dynamic source models. Six of them
are generated by increasing or decreasing the standard deviations of
both temporal source parameters by a factor of 2, as illustrated with
red and cyan dashed lines in Fig. 4(b). We also generate a pseudo-
dynamic source model by removing the depth-dependency of the
1-point statistics and adopting averaged mean and sigma for the en-
tire rupture area, irrespective of depth. Both depth-dependent mean
and standard deviation of earthquake slip and depth-dependent
mean of rupture velocity and peak slip velocity remain unchanged
for this set of seven pseudo-dynamic source models. 2-point statis-
tics, that is, auto- and cross-correlation matrices, are also kept
the same. Several pseudo-dynamic source models are presented
in Fig. S9 after perturbing their 1-point statistics. If we increase the
standard deviation, data values above and below mean are stretched
in opposite directions. Since higher peak values occur after these
perturbations, we expect significant changes in the resulting ground
motion intensities, particularly in terms of their peak values near
the source.

We present ground motion waveforms obtained by different types
of perturbation of 1-point statistics at five selected points (Fig. S10).

Fig. 12 shows the three components of ground motion for the mod-
elling results with eight different versions of pseudo-dynamic source
models after the perturbation of 1-point statistics. Fig. 12(a) re-
veals that an increase in the standard deviation of temporal source
parameters produces stronger ground motions (red and magenta),
compared to ground motions (blue line) generated by the original
pseudo-dynamic source model. Decrease in the standard deviation
generates weaker ground motions (green and cyan). It is interesting
to see that pseudo-dynamic source model with depth-independent
1-point statistics produce weaker ground motions (black line). How-
ever, we do not observe a clear pattern in terms of standard devia-
tion after perturbing 1-point statistics. This experiment shows that
larger standard deviation of source parameters produces stronger
peak ground motions. Given the fact that the 1-point variability of
source parameters is poorly constrained, our results strongly sug-
gest that the 1-point variability of source parameters deserves more
attention in finite source modelling.

Perturbation of 2-point statistics: It is even more interesting to
compare ground motions after perturbing 2-point statistics. Fig. 13
shows several examples of the correlation structure after perturba-
tion of 2-point statistics. Fig. 13(a) shows the original correlation
matrix used in producing pseudo-dynamic models (Fig. 9). We may
remove all cross-correlation structures (Fig. 13b), or we may keep
some of them and remove others (Figs 13c and d). Since we have
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Figure 10. The location of 168 stations with the surface projection of the rupture dimension of one target event. Red circles indicate five selected stations,
whose waveforms are shown in Fig. 11.

three cross-correlation structures, we have eight different sets of
cross-correlation matrices as labelled in Fig. 14. The corresponding
autocorrelation matrices (diagonal blocks in Fig. 13) and 1-point
statistics are retained while perturbing cross-correlation matrices.

We present several pseudo-dynamic source models and corre-
sponding ground motion waveforms at the five selected stations in
Figs S11 and S12, respectively, after the perturbation of 2-point
statistics. Fig. 14 clearly shows that correlation produces stronger
ground motions. Interestingly, we observe two separate types of
ground motion behaviour, especially for dip-slip events. Once we
include the correlation between slip and rupture velocity (red and
magenta), they are grouped together with the blue line. If we do not
include it, it is grouped with the black line. This pattern may tell us
something about how each component of the cross-correlation ma-
trix shapes ground motion characteristics. The group with the blue
line also shows smaller standard deviation as shown in Fig. 14(b),
implying that the prediction pattern of pseudo-dynamic source mod-
els could be less random if correlations are included. This sensitivity
analysis of ground motions to each element of 1-point and 2-point

statistics of source parameters will help to understand the effect of
finite source process on near-source ground motion characteristics
more quantitatively and systematically.

5 D I S C U S S I O N

The statistical framework for finite source modelling proposed in
the paper can be considered either pseudo-dynamic RMG or ex-
tended earthquake rupture forecast model. The former is linked
to earthquake source physics, and the latter is linked to statisti-
cal seismology and probabilistic seismic hazard analysis. We em-
phasize that these two viewpoints are closely related, and in fact
complement each other efficiently. Physics-based source modelling
has already been used in simulation-based seismic hazard analy-
sis (Graves et al. 2011), enabling us to select rupture scenarios
in the non-zero probability area in Fig. 1(a). However, this ap-
proach may still not satisfy all additional requirements to fully quan-
tify the variability of finite source models as addressed in Fig. 1.
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Figure 11. Comparison of waveforms obtained by both dynamic and pseudo-dynamic modelling at five selected stations in Fig. 10. Three different waveforms
(in colour) are generated by three pseudo-dynamic source models in Fig. 9. Waveforms are shifted vertically for better visual comparison. Numbers at the
beginning of each waveform indicate peak ground velocity (PGV).

This motivates the need for constructing a statistical framework to
simulate the finite-fault source process. Our improved understand-
ing about earthquake source physics will help to constrain input
parameters better in the stochastic model.

The sensitivity analysis of ground motions to each statistical el-
ement of the pseudo-dynamic source modelling helps to quantify
the effect of earthquake source on ground motions. We find that
larger standard deviation and correlation between source parame-
ters produce stronger peak ground motions (Figs 12a and 14a). In

particular, the sensitivity analysis with perturbations in the cross-
correlations efficiently demonstrates the effect of source parameter
correlations on ground motions. We expect that fully correlated
kinematic source parameters produce coherent source radiation,
consequently stronger ground motions. On the contrary, less cor-
related source parameters produce less coherent rupture behaviour,
and hence weaker ground motions (Olsen et al. 2009). We may need
a more comprehensive study that includes the number of dynamic
source models (203 events in Fig. 7). However, even initial tests
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Figure 12. Comparison of pseudo-dynamically generated ground motions against dynamically generated ground motions after perturbing a certain element of
1-point statistics in pseudo-dynamic source models. (a) Mean of ln(pgv_pseudo/pgv_dyna) for 168 stations, (b) Standard deviation of ln(pgv_pseudo/pgv_dyna)
for 168 stations. Mean and standard deviation are also averaged for 30 randomly simulated events by stochastic modelling.

Figure 13. Perturbation of 2-point statistics. Three off-diagonal blocks are perturbed sequentially.
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Figure 14. Comparison of pseudo-dynamically generated ground motions against dynamically generated ground motions after perturbing a certain element of
2-point statistics in pseudo-dynamic source models. (a) Mean of ln(pgv_pseudo/pgv_dyna) for 168 stations, (b) Standard deviation of ln(pgv_pseudo/pgv_dyna)
for 168 stations. Mean and standard deviation are also averaged for 30 events.

with three target events in Fig. 3 efficiently illustrate the effect of
1-point and 2-point statistics of source parameters in ground motion
modelling.

Although we successfully demonstrate the efficiency of the new
pseudo-dynamic source modelling method with three events in
Fig. 3, our final goal is to develop a pseudo-dynamic source model
that covers the entire range, or at least a wider range of model space,
as conceptually illustrated in Fig. 1. This pilot study considers 203
events in Fig. 7, but we will expand our source model space, consid-
ering, for example, different friction laws, stress regimes, complex
fault geometry, etc., in dynamic modelling. We may also analyse ex-
isting kinematic source models of past events if they are sufficiently
well resolved. In this generalization procedure, one of the main is-
sues we need to address is whether there are consistent structures of
source statistics (1-point and 2-point statistics) for a wide range of
events, or whether we can at least classify them into several differ-
ent categories. If the source statistics fluctuate significantly for each
type of events, it may be more difficult to derive a narrow range of
random model space in Fig. 1.

This study utilizes low-frequency ground motion intensity mea-
sures, for example, PGV. We plan to generate high-frequency (HF)
ground motions in following studies, using the heterogeneity of
source parameters produced by target 1-point and 2-point statistics
in a similar way. Pulido & Dalguer (2009) generate HF ground mo-
tions with kinematic source models, derived from dynamic rupture
modelling, assuming that the HF ground motions are generated from
abrupt changes of rupture speed (Madariaga 1977). In particular, it
would be interesting to investigate a frequency-dependent response
of ground motions to each statistical element of our pseudo-dynamic
source modelling approach. We may also need to consider more fine
detailed structure of 1-point and 2-point statistics at this stage, in-
cluding non-Gaussian 1-point statistics and additional correlation
models for 2-point statistics.

Since most parameters in the framework of 1-point and 2-point
statistics are poorly constrained by data, it remains a challenging
task to construct a stochastic model in which all components are ad-
equately characterized. Dynamic rupture modelling provides good
resources for constraining certain aspects of 1-point and 2-point

statistics, in particular, cross-correlation structures (Schmedes et al.
2010; Song & Somerville 2010). It is also helpful to investigate the
relations between 1-point and 2-point statistics of earthquake source
and ground motions in dynamic modelling (Song & Dalguer 2013).
Future work will include the correlation structures from dynamic
rupture modelling that have been constrained by kinematic source
inversion results (Tinti et al. 2005b; Causse et al. 2013). Additional
constraints between kinemetic and dynamic source parameters may
be derived from theoretical arguments of fracture mechanics (e.g.
Gabriel et al. 2012, 2013), although these are likely to provide
only general relations and upper/lower bounds, but not the spatial
characteristics of rupture parameters.

There are several advantages of covariance matrix-based stochas-
tic source modelling over the Fourier transform-based approaches.
However, one technical difficulty in covariance matrix-based meth-
ods is to ensure a positive-definite covariance matrix, (e.g. Goovaerts
1997; Song & Somerville 2010). If the covariance matrix is not posi-
tive definite, the Cholesky factorization cannot be applied. Here, we
resolve this problem by performing an eigenvalue decomposition
to remove the negative eigenvalues. However, the additional step of
eigenvalue decomposition increases the computational demands if
the covariance matrix is large. A potential avenue for a computa-
tionally more efficient source modelling approach could be devised
by applying a coregionalization technique (Goovaerts 1997).

6 C O N C LU S I O N S

We demonstrate that finite-fault earthquake ruptures can be ef-
ficiently characterized by 1-point and 2-point statistics of kine-
matic source parameters. We develop a stochastic source modelling
method to generate a number of rupture scenarios, following a
certain target 1-point and 2-point statistics. This covariance matrix-
based source modelling method has several advantages over Fourier
transform-based approaches. Finite source modelling with 1-point
and 2-point statistics enables us to better quantify earthquake source
effects on near-source ground motion characteristics. In our ground
motion sensitivity analysis, we show that both larger standard
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deviation and correlation between source parameters produce
stronger peak ground motions. We also find that appropriate con-
sideration of correlation between source parameters is important
in physics-based source modelling to capture ground motion vari-
ability. Our proposed statistical framework for generating earth-
quake rupture scenarios improves simulation-based ground motion
prediction, and consequently may help to achieve more accurate
seismic hazard analysis, in particular, in the near-source region of
moderate-to-large earthquakes where data constraints, and hence
ground motion prediction schemes, are limited.
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A P P E N D I X A : S T O C H A S T I C M O D E L L I N G P RO C E D U R E

(1) Determine a set of macroscopic source parameters, such as magnitude, rupture length/width, hypocentre.
(2) Determine a set of target 1-point and 2-point statistics of kinematic source parameters, that is, mean, standard deviation, correlation

length, maximum cross-correlation coefficient, RD.
(3) Construct a covariance matrix (�), based on the target 1-point and 2-point statistics (see Appendix B for details).
(4) Construct a set of random distributions that reproduce the target covariance matrix in (3), by following two-step approaches described

below. It is straightforward to show that X follows N(µ, σ ) if Z follows N(0, I) (see Appendix C for proof):

(a) Perform the Cholesky factorization (� = L LT ),
(b) Perform random sampling (x = L z + μ).

(5) Transform 1-point statistics if necessary. Currently, 1-point statistics of source parameters follows the Gaussian distribution because the
random sampling in (4) is performed with the assumption of the multivariate Gaussian distribution, but it can be transformed to non-Gaussian
distributions. This transform will break the multi-Gaussian distribution, but the target covariance matrix will be preserved as long as the
transformed distribution has a monotonically and smoothly increasing cumulative density function. See appendix A in Song & Dalguer (2013)
for the transformation of 1-point statistics.

(6) Implement derived kinematic source parameters in a specific form of slip velocity function in order to obtain a complete description of
finite source process, that is, spatiotemporal evolution of slip or slip velocity function (s(u, t), or ṡ(u, t)).

A P P E N D I X B

Once target auto- and cross-correlations are specified, the covariance matrix, �, is filled as shown in equations below. Let us assume that the
covariance matrix, �, contains auto- and cross-correlation structure for two-source parameters. For example, X is assigned to earthquake slip
and Y is assigned to rupture velocity, respectively,

� =
⎛
⎝ �X X �XY

�Y X �Y Y

⎞
⎠ , (A1)

�XX and �XY are filled in this way,

�X X = σ 2
X

⎛
⎜⎜⎜⎜⎜⎝

1 ρ(X (u11), X (u12)) . . . ρ(X (u11), X (uM N ))

ρ(X (u12), X (u11)) 1 . . . ρ(X (u12), X (uM N ))

. . .

ρ(X (uM N ), X (u11)) ρ(X (uM N ), X (u12)) . . . 1

⎞
⎟⎟⎟⎟⎟⎠

. (A2)

Once the separation vector, h = upq − ui j , is determined by two location vectors, it is straightforward to obtain correlation coefficients in
the matrix, �XX, from a target correlation model (i.e. eq. 1 and model parameters in Table 2). Note that ρ(X (ui j ), X (upq )) should have the
same value as long as the separation vector, h = upq − ui j , is the same since the correlation is defined as a function of h as shown in eq. (1):

�XY = σXσY

⎛
⎜⎜⎜⎜⎜⎝

ρ(X (u11), Y (u11)) ρ(X (u11), Y (u12)) . . . ρ(X (u11), Y (uM N ))

ρ(X (u12), Y (u11)) ρ(X (u12), Y (u12)) . . . ρ(X (u12), Y (uM N ))

. . .

ρ(X (uM N ), Y (u11)) ρ(X (uM N ), Y (u12)) . . . ρ(X (uM N ), Y (uM N ))

⎞
⎟⎟⎟⎟⎟⎠

. (A3)

Please note that the diagonal components in the cross-correlation matrix may not be one in certain cases. The correlation maximum can
also be placed in the off-diagonal elements in the cross-correlation matrix.
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A P P E N D I X C

Because E{Z} = 0, E{X} = µ + L0 = µ. Also, since Cov(Z) = I, and Cov(μ) = 0, Cov(X) = Cov(µ + LZ) = LILT = �.
If random vector, Z, follows the multivariate Gaussian distribution, its linear transformation (X = LZ + µ) will follow the multivariate

Gaussian distribution. We already prove that E{X} = µ and Cov(X) = �, respectively.
You can also see appendix B.5 in Aster et al. (2005, pp. 264–265).

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online version of this article:

Figure S1. 1-point statistics of kinematic source parameters extracted from the reverse event in Fig. 3. (a) Marginal probability density
function for three-source parameters with stationarity assumption. (b) Depth-dependency of 1-point statistics. The solid and dashed blue lines
denote mean and 1-sigma range at the given depth, respectively.
Figure S2. Marginal probability density functions (mPDF) obtained for four different depth ranges for the reverse event in Fig. 3.
Figure S3. 1-point statistics of kinematic source parameters extracted from the strike-slip event in Fig. 3. (a) Marginal probability density
function for three-source parameters with stationarity assumption. (b) Depth-dependency of 1-point statistics. The solid and dashed blue lines
denote mean and 1-sigma range at the given depth, respectively.
Figure S4. Marginal probability density functions (mPDF) obtained for four different depth ranges for the strike-slip event in Fig. 3.
Figure S5. 2-point correlation structure extracted from the reverse event in Fig. 3(b).
Figure S6. 2-point correlation structure extracted from the strike-slip event in Fig. 3(c).
Figure S7. Pseudo-dynamic source models obtained from stochastic modelling with given 1-point and 2-point statistics for the reverse event
in Fig. 3(b). The rest is the same with Fig. 9.
Figure S8. Pseudo-dynamic source models obtained from stochastic modelling with given 1-point and 2-point statistics for the strike-slip
event in Fig. 3(c). The rest is the same with Fig. 9.
Figure S9. Pseudo-dynamic source models after the perturbation of 1-point statistics.
Figure S10. Waveforms at five selected stations in Fig. 10 after the perturbation of 1-point statistics.
Figure S11. Pseudo-dynamic source models after the perturbation of 2-point statistics.
Figure S12. Waveforms at five selected stations in Fig. 10 after the perturbation of 2-point statistics (http://gji.oxford
journals.org/lookup/suppl/doi:10.1093/gji/ggt479/-/DC1).
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