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ABSTRACT
We describe and test an updated version of radiation-hydrodynamics in the RAMSES code, that
includes three new features: (i) radiation pressure on gas, (ii) accurate treatment of radiation
diffusion in an unresolved optically thick medium, and (iii) relativistic corrections that account
for Doppler effects and work done by the radiation to first order in v/c. We validate the
implementation in a series of tests, which include a morphological assessment of the M1
closure for the Eddington tensor in an astronomically relevant setting, dust absorption in an
optically semithick medium, direct pressure on gas from ionizing radiation, convergence of
our radiation diffusion scheme towards resolved optical depths, correct diffusion of a radiation
flash and a constant luminosity radiation, and finally, an experiment from Davis et al. of the
competition between gravity and radiation pressure in a dusty atmosphere, and the formation of
radiative Rayleigh–Taylor instabilities. With the new features, RAMSES-RT can be used for state-
of-the-art simulations of radiation feedback from first principles, on galactic and cosmological
scales, including not only direct radiation pressure from ionizing photons, but also indirect
pressure via dust from multiscattered IR photons reprocessed from higher-energy radiation,
both in the optically thin and thick limits.
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1 IN T RO D U C T I O N

Recent years have seen great advances in the theory of galaxy evo-
lution, in part thanks to the insight gained from hydrodynamical
simulations. Among the clearest messages to come out of the sim-
ulations is the necessity for feedback to regulate galaxy evolution.
Without it, the galaxies are too massive and compact compared to
observations (e.g. Suginohara & Ostriker 1998; Balogh et al. 2001).
While the inclusion of feedback from supernovae (SN) and active
galactic nuclei (AGN) has helped to relieve this so-called overcool-
ing problem, overcompact galaxies remain an issue in cosmologi-
cal simulations (Scannapieco et al. 2012, though see Schaye et al.
2015). This can partly be traced directly to numerical overcooling,
due to the lack of resolution and/or the details of the hydrodynami-
cal solver (e.g. Creasey et al. 2011; Dalla Vecchia & Schaye 2012;
Keller et al. 2014).

Part of the problem may also be the lack of alternative feedback
mechanisms in simulations, such as cosmic rays (e.g. Pfrommer
et al. 2007; Booth et al. 2013; Hanasz et al. 2013; Salem & Bryan
2014), or radiation (e.g. Gayley, Owocki & Cranmer 1995; Murray,
Quataert & Thompson 2005; Krumholz & Matzner 2009).
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Radiation feedback in particular has been employed in a number
of recent simulation works to improve galaxy evolution models
and quench star formation rates (e.g. Oppenheimer & Davé 2006;
Brook et al. 2012; Agertz & Kravtsov 2014; Hopkins et al. 2014).
However, even if those simulations are successful in reproducing a
set of observations, it remains unclear and debated whether radiation
feedback is effective, and how it works in detail.

Radiation typically heats the gas it interacts with, and though the
heating is relatively gentle compared to AGN and SN feedback, it
may well give an important boost to those other feedback mecha-
nisms (e.g. Pawlik & Schaye 2009). Radiation pressure may also
be an important feedback mechanism on its own, stirring up the
gas in the interstellar medium (ISM) and even generating outflows.
Here, direct pressure from ionizing radiation can play a role (e.g.
Haehnelt 1995; Wise et al. 2012; Ceverino et al. 2014), although
recent works have relied more on the boost in radiation pressure
that can be gained by reprocessed multiscattered infrared (IR) radi-
ation, which could in particular be a major feedback mechanism in
optically thick ultraluminous IR galaxies, or ULIRGS (e.g. Murray,
Quataert & Thompson 2010; Thompson et al. 2015). This last men-
tioned multiscattering feedback mechanism in particular has been
under debate in the recent literature. Observationally there is not a
lot of evidence for radiation feedback from star formation, though
recent observations of stellar nurseries hint that its effect on the ISM
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is mild and mostly in the form of heating (Lopez et al. 2014). It is
likely though that the nature of the radiation feedback mechanism
depends heavily on the environment, mainly the optical thickness
of the galactic gas.

It does not help that most simulations that invoke some form
of radiation feedback do so with pure hydrodynamics (HD), us-
ing subgrid models and approximations instead of the radiation-
hydrodynamics (RHD) needed to model radiation feedback from
first principles.

This is understandable, as radiative transfer (RT) is both com-
plex and costly due to the usually much shorter inherent time-scales
and large number of computational dimensions. RHD is still young
compared to the more mature field of HD in galaxy evolution, but in
the last decade or so, increased computational power and the devel-
opment of new approaches and algorithms has finally made RHD
a feasible prospect in astronomical and cosmological simulations
(e.g. Petkova & Springel 2009; Krumholz, Klein & McKee 2011;
Pawlik & Schaye 2011; Wise & Abel 2011; Jiang, Stone & Davis
2012; Skinner & Ostriker 2013; Norman et al. 2015).

Recently, in Rosdahl et al. (2013, hereafter R13), we presented an
implementation of RHD in the cosmological code RAMSES (Teyssier
2002), that we call RAMSES-RT. This work focused on ionizing radi-
ation and its interaction with hydrogen and helium via ionization
heating, which is indeed one of the possibly relevant physical mech-
anisms in radiation feedback. However, we still neglected radiation
pressure in that work, which is cited by many of the aforementioned
works as being the main ‘culprit’ in radiation feedback.

In this paper, we describe a step towards simulating radiation
feedback in galaxy evolution simulations from first principles, with
the additions to RAMSES-RT of radiation pressure and reprocessed
dust-coupled multiscattered radiation. Our new features include a
novel approach to modelling IR radiation trapping, that describes
accurately both the optically thin and thick regimes, a feature that
does not come naturally in RT implementations, which usually work
well in one regime but not the other.

This paper is split into two main sections, describing the method
details (Section 2) and then verification tests (Section 3). In the
methods section, we begin in Section 2.1 by presenting the basic
moment RHD equations to be solved, focusing on the new aspects
of the radiation force and radiation-dust coupling in the optically
thick regime. Then, in Section 2.2, we recall the main ingredients
of our existing RHD solver, and in Section 2.3 we detail the addi-
tion of the radiation pressure and IR–dust interaction. Concluding
the methods section, we present in Section 2.4 our innovative ap-
proach to modelling the propagation of IR radiation correctly in
both the optically thin and thick limits. The rest of the paper is
dedicated to tests of our implementation, starting with qualitative
tests of radiation field morphology in the optically thin and thick
limits (Sections 3.1 and 3.2), going on to test the direct momentum
transfer from photons to gas (Section 3.3), the correct diffusion of
radiation in the optically thick limit (Sections 3.4–3.6), and, finally,
comparing our code directly to another RHD implementation in a
previously published experiment of the competition between radia-
tion pressure and gravity, for which most of our new additions are
quite relevant (Section 3.7). In the appendix we describe relativistic
corrections to our implementation, the details of which are omitted
from the main text for clarity.

2 M E T H O D S

RHD has been partially implemented in RAMSES-RT (R13), which
is an extension of the adaptive mesh refinement (AMR) code RAMSES

(Teyssier 2002). RAMSES models the interaction of dark matter, stellar
populations, and baryonic gas, via gravity, HD, and radiative cool-
ing. The gas evolution is computed using a second-order Godunov
scheme for the Euler equations, while trajectories of collisionless
DM and stellar particles are computed using a particle-mesh solver.
RAMSES-RT adds the propagation of photons and their interaction
with gas via photoionization and heating of hydrogen and helium.
The advection of photons between grid cells is described with the
moment method and the M1 closure relation for the Eddington ten-
sor. RAMSES-RT solves the non-equilibrium evolution of the ionization
fractions of hydrogen and helium, along with ionizing photon fluxes
and the temperature in each grid cell.

The goal of the present paper is to extend the RHD implementa-
tion in RAMSES, adding three important features: (i) we now include
the radiative force, which couples the radiation flux to the gas mo-
mentum equation; (ii) we introduce a new scheme to recover the
proper asymptotic limit in the radiation diffusion regime, in case
the mean free path is much smaller than the grid spacing; (iii) we
add relativistic corrections to the RHD equations, accounting for
Doppler effects up to first order in v/c, where v and c are the gas
and light speeds, respectively, and for the work done by the ra-
diation force on the gas. In this section, we will review the main
characteristics of the RAMSES-RT solver before discussing our new
numerical scheme for the radiation force and for the preservation
of the asymptotic diffusion regime. We will omit the order v/c rel-
ativistic corrections, which will be described in more detail in the
appendix.

2.1 The RHD equations

We describe here the moment equations solved in RAMSES-RT, out-
lining the role played by the radiation force.

As detailed in R13, we use an important approximation to speed
up our explicit scheme for radiation advection, where the time-step
scales inversely with the speed of light c. In this so-called reduced
speed of light approximation, we simply decrease the speed of light,
typically by 1–3 orders of magnitude.1 In this paper, we thus make
an important distinction between c, the actual speed of light, and c̃,
the reduced speed of light.

The starting point in deriving the RHD equations is the radi-
ation specific intensity Iν(x, n, t), describing the radiation flow
(CGS units of erg cm−2 s−1 Hz−1 rad−2)2, over the dimensions of
frequency ν, location x, unit direction n, and time t. The evolution
of the specific intensity is described by the RT equation:

1

c̃

∂Iν

∂t
+ n · ∇Iν = ην − κνρIν, (1)

where κν is the gas opacity, (cm2 g−1), ρ the gas density (g cm−3),
and ην the plasma emissivity (erg s−1 cm−3 Hz−1 rad−2, usually as-
sumed to be isotropic).

We define the radiation energy density E (erg cm−3), the radiation
flux F (erg cm−2 s−1), and the radiation pressure P (erg cm−3), in
a group of photons over a specified frequency range, as moments

1 This approximation is valid only if the modified light crossing time is still
short compared to the sound crossing time, the recombination time, and the
advection time in the flow. If this is not the case, then the reduced speed of
light approximation is invalid and one has to rely on either RT subcycles
(Aubert & Teyssier 2008) or implicit time integration (Commerçon, Debout
& Teyssier 2014).
2 We will use CGS units (centimetres–grams–seconds) to clarify variable
dimensions, but these are obviously interchangeable for other units systems.
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(i.e. averages) of the radiation intensity over solid angle � and
frequency:

E(x, t) = 1

c̃

∫
ν

∫
4π

Iν(x, n, t) dν d�, (2)

F(x, t) =
∫

ν

∫
4π

Iν(x, n, t) n dν d�, (3)

P(x, t) = 1

c̃

∫
ν

∫
4π

Iν(x, n, t)n ⊗ n dν d�, (4)

where ⊗ denotes the outer product. Taking the zeroth and first
moments of equation (1) and substituting the definitions (2)–(4)
yields the well-known moment equations of radiation energy and
flux (e.g. Mihalas & Mihalas 1984):

∂E

∂t
+ ∇ · F = S − κEρc̃E, (5)

1

c̃

∂F
∂t

+ c̃∇ · P = −κFρ F, (6)

where κE and κF are, respectively, the radiation energy and flux-
weighted mean opacities, and the source function S is the integral
of the emissivity over all solid angles and over the photon groups
frequency range. With multiple photon groups, a separate set of
moment equations exists for each group, which should in principle
be denoted by photon group subscripts, i.e. Ei, Fi , P i , Si, κE, i, and
κF, i. For the sake of simplicity, we omit those subscripts, unless
they are required for clarification.

If the system under study is close to local thermodynamical equi-
librium (LTE), where the gas emits as a blackbody, and the photon
group covers a sufficiently large frequency range, the source func-
tion can be approximated by the frequency integral of a Planckian,

S = κPρcaT 4, (7)

where a is the radiation constant, κP is the Planck mean opacity,
and T is the gas temperature. This approximation is often used to
describe the coupling between dust and IR radiation in the ISM
(Mihalas & Mihalas 1984, chapter 6). We assume a single-fluid
system in this work, where the gas and dust are also in LTE, i.e.
at the same temperature. Note that in the previous equations, the
opacities are computed in the comoving frame, moving with the
gas, while the radiation moments are defined in the laboratory (or
lab) frame. We ignore Doppler effects of these relative motions in
the main text. However including them for non-relativistic flows
introduces important additional terms which are described in the
appendix.

If one assumes that the spectral energy distribution (SED) is close
to a Planckian, then κE = κP. Another traditional approximation,
when the fluid-radiation system is close to LTE and the optical
depth is large, is to take κF � κR, where the latter is the Rosseland
mean. Under these approximations, valid only for systems close to
LTE (such as for ISM dust and IR radiation), equations (5) and (6)
simplify into

∂E

∂t
+ ∇ · F = κPρ

(
caT 4 − c̃E

)
, (8)

∂F
∂t

+ c̃2∇ · P = −κRρc̃F. (9)

These equations are not valid in the optically thin regime and for
systems far from LTE, such as for ionizing radiation coupled to the
non-equilibrium chemistry of hydrogen and helium. Under such
conditions, one can instead use a template spectrum, usually the

SED of stellar populations, to compute the average dust opacities
(see R13).

The HD equations must be modified to account for the transfer of
energy and momentum between radiation and gas. The fluid energy
equation describes the evolution of the gas energy density

Egas = 1

2
ρv2 + e, (10)

where the right-hand side (RHS) terms are kinetic energy, with v

the gas speed, and internal or ‘thermal’ energy e. Assuming LTE,
the fluid energy equation becomes

∂Egas

∂t
+ ∇ · (

v(Egas + P )
) = ρg · v + � + κPρ

(
c̃E − caT 4

)
,

(11)

where v and P are the gas velocity and pressure, g is the local gravi-
tational acceleration, and � represents cooling/heating via thermo-
chemical processes (see R13). The new term here is the last one on
the RHS, describing the internal energy exchange between the gas
and the radiation field.

The fluid momentum equation becomes

∂ρv

∂t
+ ∇ · (ρv ⊗ v + P I) = ρg + κRρ

c
F, (12)

where I is the identity matrix. Here the new term is again the last one
on the RHS, describing the radiation momentum absorbed by the
gas. Note that the work done by the radiation force is absent. These
terms of order v/c are introduced in the appendix as a relativistic
correction, but we omit them from the main text for the sake of
simplicity.

2.2 The radiation solver

RAMSES-RT solves the radiation advection equations (8) and (9) us-
ing the M1 closure for the Eddington tensor, first introduced by
Levermore (1984). In this approximation, the Eddington tensor,
defined as P = DE, is given explicitly by a simple local relation

D = 1 − χ

2
I + 3χ − 1

2
n ⊗ n, (13)

where n = F/|F| and χ depends only on the reduced flux,

f = |F|
c̃E

, (14)

as

χ (f ) = 3 + 4f 2

5 + 2
√

4 − 3f 2
. (15)

It is based on the assumption that the angular distribution of the ra-
diation intensity can be approximated by a Lorentz-boosted Planck-
ian, in the direction of the radiation flux. This approximation re-
covers the asymptotic limit of the diffusion regime, when f � 1, so
that χ � 1/3 and D � I/3. It also describes well the free stream-
ing of radiation from a single source, when f � 1, so that χ � 1
and D � n ⊗ n. In the intermediate regime, or in the presence of
multiple sources, this is only an approximation, and the model must
therefore be compared to existing exact solutions to assess its range
of validity (Aubert & Teyssier 2008, R13).

A very important consequence of the M1 closure is that the
resulting system of conservation laws (ignoring the source terms)
is hyperbolic, and can therefore be integrated numerically using
a classical Godunov scheme (Aubert & Teyssier 2008), and an
operator split approach, where the radiation variables E and F in
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each cell are modified first using a conservative and explicit update
from their intercell fluxes, and the source terms are included in
a second step using a local, implicit, subcycling thermochemistry
module (Aubert & Teyssier 2008, R13).

Stability of the numerical integration for the transport step is en-
sured using proper upwinding to compute the numerical flux, using
a Riemann solver. In this paper, we use the Global Lax Friedrich
(GLF) Riemann solver3 (see Aubert & Teyssier 2008, R13), for
which the interface radiation flux is explicitly

F1/2 (UL, UR) = FR + FL

2
− c̃

2
(ER − EL) , (16)

where U = (F, E) is a cell state, the ‘1/2’ subscript refers to the
Godunov intercell state, that we use to perform the final conservative
update of the radiation energy, and the subscripts ‘L’ and ‘R’ refer
to the neighbouring left and right cells. A similar formula holds for
the intercell Eddington tensor to conservatively update the radiation
flux. The first term on the RHS of equation (16) is the average of
the right and left cells radiation fluxes. This term alone would give
a second-order but unstable solution. The second term on the RHS
of equation (16) is proportional to the difference of the right and
left cell radiation densities. This is the stabilizing term, also called
the numerical diffusion term. Indeed, one can formally rewrite the
numerical flux as

F1/2 = FR + FL

2
− c̃
x

2

∂E

∂x
, (17)

where 
x is the width of the cell. We now see explicitly the nu-
merical diffusion coefficient as νnum = c̃
x/2. We will use these
numerical concepts in Section 2.4.

2.3 A new RHD solver

The microscopic processes that are already included in RAMSES-RT

(see R13) are the non-equilibrium chemistry of hydrogen and he-
lium coupled to the ionizing radiation. We now describe the new
features in RAMSES-RT which can be used to model the coupling
between dust and IR radiation, and to model the injection of mo-
mentum into the gas by the radiation flux.

2.3.1 Modified moment RT equations, for IR and higher energy
photons

In RAMSES-RT, we now make a distinction between the group of IR
photons and all other, higher-energy, groups. The IR photons are
assumed to cover the energy range of dust emission and to be in
LTE with the dust particles, exchanging energy via absorption and
re-emission. Other groups, however, span energies above the dust
emission. These photons can be absorbed by the dust, as well as
by hydrogen and helium via photoionization, but the dust-absorbed
energy is re-emitted at lower (IR) energies. Thus, the IR photons

3 RAMSES-RT also offers the possibility to use the Harten–Lax–van Leer (HLL)
intercell flux function, which is less diffusive than GLF, but also produces
less spherically symmetric radiation from stars, as we showed in R13. Our
method for radiation trapping in the optically thick limit, which we develop
in this paper, is however only strictly compatible with GLF, so we do not
include the HLL function in the current work. Since we prefer the GLF
function over HLL, which produces asymmetric radiation around stellar
sources, we do not have immediate plans to adopt radiation trapping for
HLL.

can be seen as ‘multiscattered’, while all other photons are ‘single
scattered’.

For a group i �= IR of non-IR photons, the moment RT equations,
following from equations (5) and (6), are unchanged from what we
presented in R13, save for new dust absorption terms:

∂Ei

∂t
+ ∇ · Fi = −

H I,He I,He II∑
j

njσij c̃Ei + Ėi − κiρc̃Ei, (18)

∂Fi

∂t
+ c̃2∇ · P i = −

H I,He I,He II∑
j

njσij c̃Fi − κiρc̃Fi . (19)

Here we sum over the hydrogen and helium species j which absorb
ionizing photons, with σ ij denoting the ionization cross-section
(cm2) between photon group i and ion species j, which is zero for
non-ionizing photons. Ė is the rate of emission from point sources
(stars, AGN) and hydrogen/helium recombinations. The last terms
in each equation represent dust absorption, which scales with the
dust-opacity (κ i) and the gas density.

The dust-absorbed energy is re-emitted into the IR photon group,
for which the RT equations are

∂EIR

∂t
+ ∇ · FIR = κPρ

(
caT 4 − c̃EIR

) + ĖIR

+
other groups∑

i

κiρc̃Ei, (20)

∂FIR

∂t
+ c̃2∇ · P IR = −κRρc̃FIR. (21)

These equations are the same as the previous equations (18) and
(19) for non-IR photons, except that (i) we omit photoioniza-
tion/recombination terms (in ĖIR), as these photons have subioniz-
ing energies, (ii) the negative dust absorption terms in the previous
equations become additive terms here, representing dust re-emission
into the IR group, and (iii) we have added the first RHS term, which
describes the coupling between IR radiation density and the gas
(dust) temperature.

A great deal of complex physics is encapsulated inside κ i, κR,
and κP, which depend on temperature, the dust content, and the
exact shape of the radiation spectrum. One can use existing models
for temperature-dependent dust opacities (e.g. Draine & Li 2007),
assuming that the dust content scales with metallicity, and include
a cut-off at T � 1000 K to model dust sublimation. In this work,
however, we consider only constant values for the photon opac-
ities, except for Section 3.7, where we use simple temperature-
dependent functions. Updating the opacities to more complex forms
is a straightforward addition to the code, and often specific to the
problem at hand and the level of detail one seeks to achieve. We
defer those considerations to future works.

As described in detail in R13, the RT moment equations are
solved, after the HD step, with an operator splitting approach, where
we solve in sequence the advection terms and the source/sink terms
over an RHD time-step, for all cells in a given refinement level.
The advection is solved explicitly and the source/sink terms are
solved quasi-implicitly, together with the gas temperature, using
thermochemistry subcycling. The only non-trivial addition to the
solver is the coupling term for the gas and radiation, i.e. the first
term on the RHS of equation (20), which is described next.
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2.3.2 IR–dust temperature coupling

Ignoring advection terms and other sources of photon absorp-
tion/emission and gas cooling/heating, which are described in R13,
the coupling between the IR energy density, EIR, and the gas internal
energy density, e, follows from equations (8) and (11), respectively:

∂EIR

∂t
= κPρ

(
caT 4 − c̃EIR

)
, (22)

∂e

∂t
= κPρ

(
c̃EIR − caT 4

)
. (23)

These equations are solved in each thermochemistry substep after
the updates of radiation energy density and gas temperature via
other terms of absorption, emission, heating, and cooling. Keeping
in mind the strong coupling between radiation and temperature, we
solve semi-implicitly using a linear approach. In this formulation,
the change in the state vector UE ≡ (EIR, e), over the thermochem-
istry time-step of length 
t, is


UE = U̇E
t (I − J
t)−1 , (24)

where U̇E is the RHS of equations (22) and (23), and J = ∂U̇E

∂UE
is

the Jacobian matrix, each evaluated at the start of 
t.
Taking advantage of the symmetry of the problem (
EIR =−
e),

the update over 
t is obtained by


EIR = −
e = caT 4 − c̃EIR

(κPρ
t)−1 + c̃ + 4caT 3C−1
V

, (25)

where CV = (
∂e
∂T

)
V

= ρkB
mpμ(γ−1) is the heat capacity at constant vol-

ume, kB the Boltzmann constant, μ the average particle mass in
units of the proton mass mp, and γ is the ratio of specific heats.

After the update of temperature and IR energy via equation (25),
we reapply the 10 per cent thermochemistry rule (R13): if either T
or EIR (or both) was changed by more than 10 per cent from the
original value, the entire thermochemistry substep is repeated with
half the time-step length.

2.3.3 Momentum transfer from photons to gas

In the framework of the RHD method, the fluid momentum equation
is

∂ρv

∂t
+ ∇ · (ρv ⊗ v + P I) = ρg + ṗγ . (26)

This is the same as equation (12), but generalized to the total local
momentum absorption rate, per unit volume, from all photon groups
via all radiation interactions (not only radiation–dust interactions):

ṗγ =
groups∑

i

Fi

c

⎛
⎝κiρ +

H I,He I,He II∑
j

σij nj

⎞
⎠ . (27)

The momentum transfer is implemented with an operator split
approach, adding to the gas momentum in each RHD step after
the thermochemistry step. Since both photon fluxes and absorber
densities may change substantially during the subcycling of the
thermochemistry equations over a single RHD time-step, 
tRHD, we
collect the absorbed momentum density over the subcycles, whose
subtime-steps are limited such as to change the evolved quantities
only by a small fraction (10 per cent) per substep:


 pγ =
∑

k


tk

groups∑
i

Fi,k+1

c

⎛
⎝κiρ +

H I,He I,He II∑
j

σij nj,k+1

⎞
⎠ . (28)

Here the outermost sum is over the thermochemistry substeps (with∑
k
tk = 
tRHD). At the end of the thermochemistry subcycling

of a cell, the total absorbed photon momentum density vector 
 pγ

is added to the gas momentum, and the gas specific total energy is
updated to reflect the change in kinetic energy.

In addition to the direct radiation pressure just described, radi-
ation pressure from isotropic diffusive IR radiation is also imple-
mented in RAMSES-RT, as we will discuss in the next subsection.

2.4 Preserving the asymptotic diffusion limit

The diffusion limit is reached when the optical depth of the LTE
radiation becomes unresolved and the photons propagate in a ran-
dom walk.4 Then, since F � c̃E, we get for the Eddington tensor
(equation 13) D = I/3. In this case, we reach the asymptotic regime
where equation (9) reduces to a static form (see Mihalas & Mihalas
1984, section 80)5, giving

F � − c̃λR

3
∇E, (30)

where λR = (κRρ)−1 is the mean free path. This equation expresses
the fact that in this regime, radiation is a diffusive process, with
diffusion coefficient νrad = c̃λR/3. The previous derivation for our
numerical scheme (see equation 16) explicitly demonstrates that
in the diffusion limit, the numerical diffusion of our M1 solver
dominates over the true radiation diffusion when

νnum > νrad or 3
x > 2λR. (31)

This last inequality is likely to occur in optically thick regions,
where the optical depth of the cell, τ c = 
x/λR, is larger than 1.

As discussed in Liu (1987) and Bouchut (2004), if the equa-
tion (31) inequality occurs, operator splitting is not valid anymore,
as source terms become stiff compared to the hyperbolic transport
terms. The numerical result becomes severely inaccurate: radia-
tion propagates with an effective mean-free-path equal to the cell
size, much larger than the true mean-free-path, manifesting in pho-
tons which travel much too fast through the volume, compared to
equation (30).

One possibility to resolve the problem and recover the correct
diffusion of photons is to exploit the AMR technique and refine the
grid adaptively so that 
x always stays smaller than, say, λR/4.
This is unfortunately not always possible in realistic astrophysical
applications where the opacity can be a highly non-linear function
of temperature and density.

We now propose two different techniques to modify our base
scheme in order to preserve the asymptotic diffusion regime posed
by equation (30): (i) a modification of the Godunov flux that takes
into account the diffusion source term (Section 2.4.1), and (ii) the

4 This section concerns only the IR photon group, since other groups are
assumed to be single scattering.
5 The ratio between the time-dependent and static flux terms in equation (9)
is

∂F
∂t

κRρc̃F
∼ λR

c̃
t
=

(
λR


x

)2

, (29)

where we use the fact that a travelled distance 
x requires (
x/λR)2 in-
teractions in a random walk, and hence the time to travel this distance is

t = 
x2

c̃λR
. If λR � 
x, the time-dependent flux term is thus negligible, and

we can use the static diffusion form (equation 30).
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addition of a new photon (sub) group that we call trapped pho-
tons (Section 2.4.2). As opposed to streaming photons, these new
photons are strictly isotropic in angular space.

2.4.1 Asymptote-preserving Godunov fluxes

Following the methodology presented in Berthon, Charrier &
Dubroca (2007), it is possible to correct for the effect of radia-
tion diffusion by explicitly taking into account the source terms in
the Riemann solver. The Riemann solution becomes much more
complicated (see Berthon et al. 2007), but can be approximated by
a simple modification of the intercell flux (equation 16) as

F1/2 = F1/2(αLUL, αRUR), (32)

where Berthon et al. (2007) introduced the new function α(τ c),
which is, in case one uses the GLF numerical flux,

α(τc) = 1

1 + 3
2 τc

. (33)

This function encodes the modification to the Riemann solver that
accounts for the source terms. It satisfies

α → 1 when τc → 0, and

α → 2

3τc
when τc → +∞.

Our goal is to recover the correct asymptotic limit in the optically
thick regime. Using equation (17) with the above modification, we
indeed find, assuming for simplicity that the mean free path is uni-
form, that the numerical flux has the correct asymptotic behaviour
given by equation (30):

F1/2 � 2λR

3
x

(FR + FL)

2
− c̃λR

3

(ER − EL)


x

� − c̃λR

3

(ER − EL)


x
. (34)

The latter equality comes from the fact that in the limit of optically
thick cells, the absorption terms in equation (20) naturally lead to
F � c̃E.

2.4.2 Trapped versus streaming photons

Although the previous method allows us to upgrade, in a straight-
forward way, our M1 hyperbolic solver for the transport of radiation
in a dense, optically thick medium, we have instead implemented in
RAMSES-RT an alternative technique, that turns out to be equivalent
to the previous one, but allows for a more accurate treatment of
the diffusion limit, where trapped photons are advected with the
gas, and radiation pressure, along with the work performed by that
pressure, is naturally accounted for.

Our technique is based on the ‘IDSA methodology’ (Isotropic
Diffusion Source Approximation), proposed by Liebendörfer,
Whitehouse & Fischer (2009) in the context of neutrino transport in
core collapse SN. The idea is to introduce two different IR photon
groups spanning the same frequency range, splitting the total IR
radiation energy into a trapped radiation energy variable Et and a
streaming radiation energy variable Es satisfying E = Et + Es. The
difference between the trapped and streaming photons is that the
former are assumed to be strictly isotropic in angular space. They
correspond to the asymptotic limit of vanishingly small mean free
path, for which the radiation flux is strictly zero. We can then rewrite

the radiation moment equations, (20) and (21), using Ft = 0 as

∂Et

∂t
+ ∂Es

∂t
+ ∇ · Fs = κPρ

(
caT 4 − c̃Et − c̃Es

) + Ė, (35)

∂Fs

∂t
+ c̃2

3
∇Et + c̃2∇ · P s = −κRρc̃Fs, (36)

where we used the fact that P t = Et I/3 (equation 13) since trapped
photons are isotropic, and we enclosed the isotropic emission terms
from gas, stars, AGN, and other photon groups in equation (21)
under one term, Ė.

Liebendörfer et al. (2009) proposed to split the previous system
into two sets of equations, one describing the trapped photons only,

∂Et

∂t
= κPρ

(
caT 4 − c̃Et

) + Ė, (37)

where the isotropic source of radiation is assigned naturally to the
trapped component, and a second one describing the streaming
photons only, with

∂Es

∂t
+ ∇ · Fs = −κPρc̃Es, (38)

∂Fs

∂t
+ c̃2∇ · P s = −κRρc̃Fs − c̃2

3
∇Et, (39)

where the last two equations are our standard moment equations (20)
and (21), only with modified source terms. This is the system that we
would like to solve using our Godunov scheme. In the Liebendörfer
et al. (2009) approach, the next step is to introduce an additional fic-
titious source term describing the energy exchange between trapped
and streaming photons (noted � in the IDSA methodology).

We follow a different route, analysing the asymptotic diffu-
sion regime, which gives a straightforward decomposition between
trapped and streaming photons. Indeed, in the diffusion limit, we
have Es � Et, and equation (39) becomes

Fs � − c̃λR

3
∇Et. (40)

On the other hand, we know that the numerical diffusion term for
streaming photons in the GLF flux function of our Godunov scheme
(equation 17) is

Fs � − c̃
x

2
∇Es. (41)

It is then straightforward to make a partition between streaming and
trapped photons, such that equation (40) is correctly retrieved in our
photon advection scheme. The relations which ensure this are

Et = 3τc

2
Es and E = Et + Es, (42)

i.e.

Es = 2

2 + 3τc
E, Fs = F, (43)

Et = 3τc

2 + 3τc
E, Ft = 0. (44)

Using this partition, we can describe our streaming photon group
with the classical Godunov solver (equation 16) without the addi-
tional source term in equation (39), namely

∂Fs

∂t
+ c̃2∇ · P s = −κRρc̃Fs, (45)

and still get the correct asymptotic diffusion limit of the mixed
trapped/streaming system.
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In other words, by making the partition of equations (43) and
(44) between streaming and trapped photons, in all cells, before
each photon advection step, the streaming photon variables, Es and
Fs, can be advected using equations (20) and (21), without any mod-
ification to the RT advection solver. The RT solver, however, does
not touch the trapped photon variable, Et. We de-partition between
the trapped and streaming photons before the thermochemistry step,
such that thermochemistry is performed on the total photon density
and flux, and re-partition once the thermochemistry step is finished,
such that the advection is correctly performed in the diffusion limit.
The modification to the RHD code to correctly account for the dif-
fusion limit is thus limited to a single new variable (Et), and a few
lines of code before and after the call to the thermochemistry.

In addition to this simple modification, we need to also make
sure that (i) the trapped photons are advected with the gas, (ii) that
radiation pressure from the trapped photons is correctly accounted
for, and (iii) that the PdV work done on the gas by the trapped
radiation pressure is accounted for, by reducing the trapped radiation
energy accordingly. Fortunately, all these features are automatically
acquired in RAMSES, by storing the trapped radiation as a non-thermal
energy variable. Non-thermal energy variables are a new feature in
RAMSES, adding up the total energy density and pressure which is
used in the classical Euler HD equations (see e.g. R13, equations
39 and 40), and they behave just like the thermal energy. In other
words, the trapped radiation energy is correctly advected with the
gas, the trapped radiation pressure is correctly accounted for, and
so is the PdV work done by the trapped radiation. These relativistic
details are covered in Appendix B. The equation of state relating
the trapped radiation energy and pressure, is

Prad = c̃

c

Et

3
. (46)

The radiative force is computed as the sum of the trapped and
streaming contributions (from equation 36), which, in our model, is
also equivalent to the Godunov GLF flux of the streaming photons.
The fluid momentum equation (12) thus becomes

∂ρv

∂t
+ ∇ · (ρv ⊗ v + (P + Prad)I) = κRρ

c
Fs + ρg, (47)

where we omit the contributions from single scattering photon
groups, which have the same form as the first term on the RHS.
In the diffusion limit, for which Es � Et and Fs ≈ 0, we recover
the regime where the radiative force is equal to the radiative pressure
gradient

∂ρv

∂t
+ ∇ · (ρv ⊗ v + P I) = − c̃

3c
∇Et + ρg. (48)

With the partition given by equations (43) and (44), trapped
photons are only generated in regions of the flow where the mean
free path is smaller than the cell size. In opposite situations where
the mean free path is large enough, it is desirable to make sure that
the fraction of trapped photons very quickly converges to zero. We
therefore modify our trapped versus streaming photons distribution
using

Es =
[

1 − exp

(
− 2

3τc

)]
E, (49)

Et = exp

(
− 2

3τc

)
E. (50)

This model has the same optically thick limit as the original one,
(equations 43 and 44) but trapped photons vanish much faster in the
optically thin limit.

To summarize, our new method starts by initializing the trapped
and streaming radiation variables using equations (49) and (50).
Only the streaming photons are advected using our original Go-
dunov scheme,

∂Es

∂t
+ ∇ · Fs = −κPρc̃Es, (51)

∂Fs

∂t
+ c̃2∇ · P s = −κRρc̃Fs. (52)

For the thermochemistry, including the radiation/matter coupling
term, the IR radiation used is the sum of the free streaming and
trapped photons,

E = Et + Es, F = Fs. (53)

In our operator splitting approach, the streaming radiation density is
in practice advected with equation (51) with the RHS = 0, while the
RHSs of equations (37) and (51) are accounted for in the thermo-
chemical coupling of the dust temperature to the total IR radiation
temperature, as in equations (22) and (23):

∂

∂t
(Es + Et) = κPρ

(
caT 4 − c̃(Es + Et)

)
, (54)

∂e

∂t
= κPρ

(
c̃(Es + Et) − caT 4

)
. (55)

3 TESTS

We now describe tests of our RHD implementation, focusing on the
new additions. We start with tests of the M1 closure dealing with free
streaming and dust-coupled photons, in Section 3.1 and Section 3.2,
respectively. Then, in Section 3.3, we analyse the effect of direct
radiation pressure from ionizing photons, testing the validity of the
momentum transfer from photons to gas. In Sections 3.4–3.6, we
go on to test our trapping method for the diffusion of photons in
underresolved optically thick regimes. Finally, in Section 3.7 we
test the full RHD implementation of multiscattered IR radiation
interacting with dust via momentum and temperature exchange,
in an occasionally optically thick limit, reproducing the recent 2D
experiments of Davis et al. (2014) on the competition between
radiation pressure and gravity.

3.1 Free-streaming radiation from a thin disc

In R13, it was demonstrated that while the M1 closure deals well
with single sources of radiation, it fails in-between multiple sources,
creating spurious sources of perpendicular radiation where opposing
radiation flows should more realistically pass through each other.
The point of this first test is to investigate how well the M1 method
does in a geometry where we might expect it to fail. We are inspired
here by a similar test which has been performed by Jiang et al. (in
preparation), to compare the behaviour of their variable Eddington
tensor (VET; e.g. Jiang et al. 2012) closure against M1 and flux-
limited diffusion (FLD).

We consider a multiple source geometry which is quite relevant
in the astrophysical context: emission from a thin (galactic) disc,
surrounded by a torus of optically thick gas. We compare, in a 2D
setup, the converged result of a hydrodynamically static RAMSES-RT

experiment to an analytically derived result.
The setup is as follows. The simulation box is a square of 1 cm on

a side, resolved by 1282 cells. At 0.1 cm from the bottom of the box,
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centred along the box width, is an emitting horizontal disc, or line in
2D, since the disc plane is perpendicular to the simulated 2D plane.
The disc spans one cell in height, and has a length of L = 0.125 cm,
which corresponds to 16 cell widths. For convenience, we define
the origin to lie at the centre of the emitting disc, so the disc end
coordinates are ±(L/2, 0). The disc has a constant energy density,
E0, (imposed in every time-step) of monochromatic radiation that
only interacts with the gas via hydrogen ionization.

In the background the box contains hot and diffuse ionized gas,
while surrounding the disc is a one-cell high torus, in the same plane
as the disc, of cold and dense neutral gas which is optically thick
to the radiation. The important point is that the background gas
is optically thin, allowing the radiation to pass unhindered, while
the torus instantly absorbs all radiation that enters it, and re-emits
nothing.6

For such a setup, the field morphology can be expressed analyti-
cally. For any point (x, y) in the box, a length element d� at location
(�, 0) along the emitting disc subtends an angle

d� = y d�

y2 + (x − �)2
. (56)

Assuming isotropic emission and a razor-thin disc, the contribution
from d� to the radiation density at (x, y) is

dE(x, y) = E0

2π
d�. (57)

The energy density at (x, y) can then be obtained by integrating the
contributions from the whole disc:

E(x, y) =
∫

disc
dE(x, y) =

∫ L/2

−L/2

E0

2π

y d�

y2 + (x − �)2

= E0

2π

[
arctan

L/2 − x

y
+ arctan

L/2 + x

y

]
. (58)

In Fig. 1 we map the converged radiation density obtained from
RAMSES-RT, in the colour scheme and solid contours, and compare
it to equation (58), shown as dashed contours. Comparison of the
contours reveals that the M1 scheme does well, though not perfectly,
at reproducing the correct result in this astrophysically relevant
setup. The discrepancy stems from the well-known disadvantage
of the M1 method in dealing with radiation streaming in different
directions in the same point, which results in the radiation being
too collimated perpendicular to the disc. We stress, however, that
qualitatively, but not exactly quantitatively, the correct morphology
is obtained by RAMSES-RT.

3.2 Dust absorption

In this test, which is inspired by a similar one from González, Audit
& Huynh (2007), we examine how well the M1 method performs
in producing the correct radiation morphology in the case of ab-
sorption in the optically semithick regime. This is again a pure RT
test, with the HD turned off. A 2D square box 7.48 × 1012 cm
on a side is resolved with 642 cells and contains a homoge-
neous medium with κPρ = κRρ = 10−12 cm−1, making the opti-
cal depth of the box τ box = 7.48. The box is illuminated from

6 For completeness, the properties of the radiation, source, and gas are
as follows: the source energy density is E0 = 2.2 × 1019 erg cm−3, the
photon energy is 13.6 eV, and the hydrogen ionization cross-section is
σH I = 3 × 10−18 cm2. The background gas has density 10−10 g cm−3 and
temperature 106 K, while the torus that surrounds the radiation source has
density 1030 g cm−3 and temperature 100 K.

E/E0

0.001 0.010 0.100 1.000

Figure 1. Emission from a thin disc. The colour scheme and solid contours
show the radiation density obtained by RAMSES-RT, relative to the injected
density in the disc at the bottom centre, while the dashed contours show
the exact analytic result from equation (58). The contour values are marked
in the colour bar. The RAMSES-RT results agree fairly well with the analytic
prediction.

the left-hand side by an incoming horizontal flux of radiation
F∗ = 5.44 × 104 erg s−1 cm−1. We impose the incoming radiation
by setting a constant c̃E = Fx = F∗, and Fy = 0 in the left ghost7 re-
gion, and for the remaining three boundaries we set E = Fx = Fy = 0.
We run until a converged static state has been reached (which we
verified is independent of the light speed used).

The resulting converged gas temperature profile does not depend
on the chosen value for κP, as long as it is non-zero to ensure cou-
pling between the radiation and gas temperature, and thus eventual
convergence towards T = Tr (only the time to reach convergence
depends on κP). The test is thus equivalent to a pure scattering test.
We exploit this by comparing the RAMSES-RT results to an equivalent
setup run with a computation routine, described in Appendix C, that
solves the full RT equation (1) on a four-dimensional grid – with
642 physical dimensions, and 322 angular bins. We emit radiation
at the rate F∗ in the x-direction into the left-hand side of the box,
and otherwise set zero-valued boundaries for the radiation. The full
RT routine does not evolve (or store) the gas temperature, but is run
instead in pure scattering mode, with the scattering opacity equal
to κR. We compare the RAMSES-RT gas temperature to the radiation
temperature produced by the full RT routine, which should ideally
converge to the same values.

The results are shown in Fig. 2, where we map with colour and
solid contours the gas temperature in RAMSES-RT. For comparison, we
plot in dashed contours the converged radiation temperature in the
full RT calculation. The results agree well in terms of the shape of the
radiation field, and the accuracy of the RAMSES-RT produced radiation
field is at the ∼10 per cent level compared to the full RT calculation.

7 Ghost cells lie exterior to the box boundary on all sides, and define the
box boundary conditions. They are necessary for the advection in and out
of cells interior to the box boundaries.
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T [K]

50. 70. 90. 110. 130. 150. 170.

Figure 2. Two-dimensional photon scattering test, with an optical depth
from side to side of τ box = 7.48. The image shows the equilibrium state
reached in the test. The colours and overlaid solid contours indicate the
RAMSES-RT gas temperature. For comparison, the dashed contours show re-
sults, in the form of radiation temperature, from an identical test run with a
full RT code. The results produced by RAMSES-RT are qualitatively similar to
the full RT results, but differ in value by 10–20 per cent.

The discrepancy can be attributed in part to the M1 moment method
directly and its approximative approach to the collisionless nature
of radiation, but in part the boundary conditions are to blame, which
are not exactly equivalent in RAMSES-RT on one hand and in the full
RT code on the other. The zero-valued boundary conditions in M1
‘suck’ radiation out from the top, bottom, and right-hand sides,
while the inwards flux at the right boundary (where the discrepancy
is worst) prevents scattered radiation from flowing back out of the
box.

3.3 Tests of direct pressure from ionizing radiation

We aim to demonstrate with the following RHD tests that radiation
pressure in RAMSES-RT is robustly implemented, i.e. momentum is
correctly deposited from photons to gas. In what follows, we assume
an idealized case of pure hydrogen gas, which is initially homoge-
neous and isothermal, and monochromatic photons, and we ignore
the effect of gravity. The setup is a radiation source of luminosity
L placed at the origin in a medium of homogeneous density ρ0

which turns of at time t = 0, and we are interested in following the
expansion of the gas due to the direct ionizing radiation pressure.
For the tests to be meaningful, we first need analytic expressions to
compare against.

3.3.1 Analytic expectations

Wise et al. (2012) present a simple analytic argument to demonstrate
the effect of radiation pressure in dwarf galaxies. The expression is
derived from requiring momentum conservation in the swept-up gas
around the radiation source, ignoring gravity and thermal pressure,

and describes the radial position r of the expanding density front,

r(t) = (
r4

S + 2At2
)1/4

, (59)

where A = 3L/4πρ0c, and rS is the Strömgren radius, at which an
optically thick shell forms at t ≈ 08,

rS =
(

3L

4παBn2
H,0εγ

)1/3

= 1.8 pc

(
L

L�

)1/3 ( nH

1 cm−3

)−2/3
. (60)

Here, αB is the case B recombination rate, which we take to be
equal to 2.5 × 10−13 cm3 s−1, approximately valid in photoionized
hydrogen gas, nH, 0 = ρ0/mp is the hydrogen number density, εγ is
the monochromatic photon energy, which we take to be the hydrogen
ionization energy of 13.6 eV, and we assume a solar luminosity of
L� = 3.84 × 1033 erg s−1 (in ionizing photons).

We will present expanding H II region experiments where we
compare the front position against equation (59). However, we find
at best, that the simulated expansion only partially follows the an-
alytic prediction. First, the expansion tends to be dominated by
photoionization heating, which is not described by equation (59).
Secondly, even if the effect of heating is negligible, the expansion
eventually stalls due to thermal gas pressure on the far side, leav-
ing a semistable bubble of diffuse ionized gas surrounded by a
denser neutral gas. The final radius of the bubble is dictated by the
combined effect of photoionization heating and the direct radiation
pressure.

We can consider separately, for radiation pressure and photo-
heating, roughly how far each of these mechanisms are expected to
sweep the gas.

For the radiation pressure, ignoring the effect of photoheating,
the bubble will reach a radius rγ where the gas pressure outside the
bubble equals the outwards radiation pressure at the surface, i.e.

nH,0kBT0 = L

4πr2
γ c

, (61)

where T0 is the outer gas temperature and kB is the Boltzmann
constant. Solving for the bubble radius gives

rγ =
√

L

4πcnH,0kBT0

= 0.28 pc

(
L

L�

)1/2 ( nH

1 cm−3

)−1/2
(

T0

102 K

)−1/2

. (62)

With photoionization heating dominating, the underdense bubble
is supported by inner gas pressure, i.e.

nH,ionTion = nH,0T0, (63)

where nH, ion and Tion are the gas density and temperature inside the
bubble, somewhat incorrectly assumed to be homogeneous, and the
density and temperature outside are just the initial homogeneous
values. Given a radius rT of the thermally supported bubble, the
ionizing luminosity of the central source supports an equal rate of

8 The creation time of the Strömgren sphere, which is approximately the
recombination time, is assumed to be short compared to the hydrodynamical
response of the gas, an assumption which holds in our tests (see Fig. 5, though
it barely holds in the highest density case).
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recombinations in the bubble, i.e.

L

εγ

= 4

3
πr3

TαBn2
H,ion. (64)

From this we can solve for the gas density inside the bubble, which
we insert into equation (63), giving

rT =
(

Tion

T0

)2/3

rS

= 39 pc

(
L

L�

)1/3 ( nH

1 cm−3

)−2/3

×
(

Tion

104 K

)2/3 (
T0

102 K

)−2/3

. (65)

We can now compare the radius of the radiation pressure sup-
ported bubble versus the radius of the thermally supported bubble.
The condition for radiation pressure to start dominating over pho-
toionization heating is

rγ > rT. (66)

Substituting equations (60), (62), and (65) then gives the condition

L >
1

nH,0

T 4
ion

T0

36πc3k3
B

α2
Bεγ

2

= 7 × 1012 L�
( nH,0

1 cm−3

)−1
(

T0

102 K

)−1

×
(

Tion

104 K

)4 ( εγ

13.6 eV

)−2
. (67)

Admittedly, a range of assumptions and approximations go in, but
equation (67) nevertheless gives an idea of the luminosities required
for ionizing radiation pressure to give a strong boost over the ef-
fect of photoionization heating. Clearly both large luminosities and
gas densities are required for this to happen. However, the relative
difference in the equilibrium radii scales only very weakly with the
density and luminosity, i.e.

rγ

rT
∝ (L nH,0)1/6, (68)

so even if the condition of equation (67) is far from met, radiation
pressure may well give a modest boost to the thermally driven ex-
pansion. Conversely, this also means that a prodigious luminosity
and/or density is required for the photoionization heating to be-
come negligible, as is generally acknowledged in the literature (see
Krumholz & Matzner 2009, and references therein).

We can also consider the relevant physical scales for ionizing
radiation pressure by requiring that it is stronger than the thermal
pressure in a Strömgren sphere,

L

4πcr2
S

> nH,0kBTion. (69)

Solving directly for the luminosity gives equation (67) with the
outer temperature, T0, removed. But for the physical scale, we can
instead use equation (60) to eliminate nH, 0, giving the requirement
on the Strömgren radius that

rS <
αB

12πc2k2
B

Lεγ

T 2
ion

= 0.1 pc

(
L

106 L�

) ( εγ

13.6 eV

) (
104 K

Tion

)2

. (70)

Table 1. Expanding H II region tests. All tests are run in a square box
with 1283 cells, with a source luminosity of 106 L�, a monochromatic
photon energy of 15 eV, and a reduced speed of light factor fc = 10−3.
The columns list, from left to right, the initial homogeneous gas num-
ber density, nH, 0, the expected thermally supported bubble radius, rT,
direct radiation pressure supported bubble radius, rγ , the box width,
Lbox, the run time of each test, tf, and, for comparison, the recombina-
tion time trec = (nH, 0αB)−1, which is approximately the time it takes
for the Strömgren sphere to develop.

nH, 0 rT rγ Lbox tf trec

(cm−3) (pc) (pc) (pc) (Myr) (Myr)

100 291 36 450 103 10−1

103 2.9 1.1 5.5 10 10−5

105 0.13 0.11 0.3 0.3 10−6

107 6 × 10−3 11 × 10−3 2 × 10−2 10−2 10−8

109 2 × 10−4 11 × 10−4 1.4 × 10−3 10−3 10−10

Comparing with equation (60), this translates to a young stellar
population of ≈103 M� (L ≈ 106 L�), embedded in gas with
nH, 0 ∼ 105 cm−3, which is currently beyond, but not far from, the
resolution limits of most galaxy-scale simulations.

3.3.2 Expanding H II regions

We set up a square 3D box and place in the corner a source of
luminosity L = 106 L�, emitting monochromatic ionizing photons
with energy εγ = 15 eV9 (1.8 × 1050 photons s−1) and hydrogen
ionization cross-section σH I = 3 × 10−18 cm2, into an initially ho-
mogeneous neutral pure hydrogen gas (no helium, metals, or dust)
at a temperature of 104 K. The box boundaries adjacent to the
source are reflective and the opposite sides have outflow bound-
aries. We use 1283 cells, and reduce the speed of light by a factor
fc = 10−3. Even at this low light speed the run-time is hundreds of
light-crossing times in each run, so this has no effect on the later
stages of development.

To compare regimes where either ionization heating or ionization
pressure dominates, we compare sets of runs at five different initial
densities nH, 0, presented in Table 1. For each initial density we run
two tests: with and without direct radiation pressure. The table also
shows the run time (tf), the box width (Lbox), and our estimates
for the thermally supported bubble radius (rT, equation 65) and the
direct radiation pressure supported radius (rγ , equation 62), where
we have used a bubble temperature of Tion = 1.3 × 104 K and an
external temperature of T0 = 6 × 103 K, based approximately on
the temperature profiles in the end results (see Fig. 4: the radiation
heats the ionized gas, and the shielded neutral gas eventually cools
due to residual collisional ionization). Comparing the rT and rγ

values in the table, photoionization heating should dominate in the
test with the lowest initial density, nH, 0 = 1 cm−3, but with higher
densities radiation pressure should have an increasing effect, and
should dominate at the highest initial density of nH, 0 = 109 cm−3.

Fig. 3 shows slices, at the side of the box containing the radiation
source, of gas density at the end of each run. Comparing the maps
with and without direct radiation pressure, i.e. the upper versus
lower row of maps, it is clear that radiation pressure has a negligible

9 Average ionizing photon energies from young stellar populations are larger
by a few eV. However, we use a low photon energy to minimize photoion-
ization heating and give radiation pressure a head start, as higher photon
energies increase the heating rate in the H II region.
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Figure 3. Slices of the simulation box, on the side containing the radiation source, showing gas density, normalized to the initial density, at the end of the
expanding H II region tests. The upper row shows tests with direct ionizing radiation pressure turned off, i.e. photoionization heating only, and the lower
row shows the corresponding runs with the radiation pressure turned on. The panels are ordered from left to right by the initial homogeneous gas density, as
indicated in the top-right corner of the upper row panels.

effect at the lowest initial densities, while it gradually overtakes the
effect of photoionization heating at higher gas densities. It can also
be seen that radiation pressure, once it becomes effective, is more
efficient at driving the gas out of the bubble, creating much lower
internal densities than with photoionization heating only.

Fig. 4 shows radial profiles of, from top to bottom, gas density,
neutral fraction, temperature, and thermal pressure, taking average
values in radial bins from the source. We show profiles for two sets
of initial densities, one at which radiation pressure is just starting
to have an effect (nH, 0 = 103 cm−3, left-hand panel), and the high-
est initial density, at which radiation pressure clearly dominates
(nH, 0 = 109 cm−3, right-hand panel). The density profile plots (top)
show how shells of overdense gas are ejected from the ionization-
front, leaving behind a semistable bubble of diffuse gas. For the
lower-density case (left-hand panels), the profiles with/without ra-
diation pressure are quite similar. The addition of radiation pressure
only slightly advances the bubble and yields a slightly lower den-
sity and gas pressure at the bubble centre. We note that a similar
comparison of profiles at the lowest initial density, nH, 0 = 1 cm−3,
reveals negligible differences between the runs with radiation pres-
sure on or off (not shown), so we are indeed considering densities
where radiation pressure is just beginning to have a non-negligible
effect compared to photoionization heating.

For the high-density case (right-hand panels in Fig. 4), turning
on the radiation pressure has a very substantial effect. Compared to
the photoionization heating only case, both the inner bubble density
and pressure are almost two orders of magnitude lower, while the
temperature remains nearly unchanged. The bubble is now mostly
supported by direct radiation pressure, as can be clearly seen by
comparing the thermal pressure profiles (bottom-left plot). With
only photoionization heating the bubble is supported by thermal
pressure, which is identical inside and outside the bubble. With ra-
diation pressure turned on, the thermal pressure drops dramatically
inside the bubble and the direct radiation pressure compensates to
maintain the large steady bubble, such that the sum of gas and
radiation pressure is identical on each side of the interface.

Finally, Fig. 5 shows the expansion of the ionization front (I-
front, which we define to be at xH I = 0.5), which here is a proxy

for the radius of the underdense bubble, in each of the runs, with
the plots ordered by increasing density from top to bottom. We
show the I-front expansion as predicted by analytic momentum
conservation (equation 59, dashed black), and from the runs, with
photoionization heating only (dotted red) and with added direct
radiation pressure (solid blue). Grey lines show our estimate of the
radiation pressure supported radius rγ (equation 62, dotted), and
the thermally supported radius rT (equation 65, dashed), given in
Table 1. If the numerical I-front expansion is regarded closely, it
can be seen that the front overshoots slightly in all runs, due to
the momentum of the expanding gas, and then backtracks to reach
a radius where the inner and outer pressure is in equilibrium. This
effect can also be seen in the right-hand panel of Fig. 4, if the curves
for 3 × 102 and 103 yr are compared.

Two important points can be inferred from Fig. 5. First, the nu-
merical experiments roughly reproduce the analytic expectations,
laid out in Section 3.3.1, for the relative roles of photoionization
heating and direct radiation pressure. For the lowest initial den-
sity (top plot), the bubble radius ≈rT, while at the highest density
(bottom plot) it goes out to ≈rγ . The second point is that when
radiation pressure dominates the bubble expansion, and while the
bubble is expanding towards its final radius, the momentum con-
serving prediction, equation (59), is reproduced by the numerical
results (bottom plot).10

All in all, these results strongly indicate that RAMSES-RT correctly
models direct radiation pressure and photoionization heating. As a
further validation, the results are qualitatively in good agreement
with the numerical experiments of Sales et al. (2014), where ionizing
radiation pressure begins to dominate over photoionization heating
at similar luminosities and densities as in our case (see their fig. 6).

10 The analytic result is not reproduced at the very start, at t � 0.001 tf .
This is the I-front expansion towards the Strömgren radius, ignored in the
arguments leading to equation (59), and during which the gas density stays
more or less constant.
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Figure 4. Radial profiles of, from top to bottom, the gas density, neutral fraction, temperature, and gas pressure, for the expanding H II region tests, with a
106 L� source radiating ionizing photons into an initially homogeneous neutral medium. The plots to the left show the case with nH, 0 = 103 cm−3, where
radiation pressure has only a marginal effect compared with photoionization heating, and the plots to the right show nH, 0 = 109 cm−3, where radiation pressure
dominates over photoionization heating. Runs with only photoionization heating are represented by dotted curves, while runs that in addition include direct
pressure from the ionizing photons are represented by solid curves. The curve colours (and thickness) represent the profile times, as indicated in the ionization
fraction plots.

3.4 Resolved versus unresolved photon diffusion

We will show quantitative tests of photon trapping in the next sub-
sections, but we shall start with a simple demonstration of how it
produces robust results when the mean free path is unresolved.

We consider a simple 2D pure RT test, i.e. with the HD turned off.
The box contains a homogeneous medium which is optically thick
to IR radiation, with an optical depth of τ box = 200. Through the left
boundary we emit a constant IR flux of 5.44 × 104 erg s−1 cm−1.
The remaining sides of the box have zero-value boundaries. We use
a full light speed, but note that the results are independent of the
light speed used.

We use this setup in four RAMSES-RT experiments, each running
until a steady-state is reached. We run with a low resolution of 322

cells and a high resolution of 10242 cells, such that the mean free
path is 0.16 and 5.12 cell widths, respectively. For each resolution,
we run with and without photon trapping activated.

Without trapping, we should expect more or less correct results in
the high-resolution run, where the mean free path is well resolved,
but incorrect results in the low-resolution run, where the photons
diffuse artificially between the optically thick cells. With trapping
turned on, photon diffusion is also handled on unresolved scales,
and there should ideally be no difference between the high- and
low-resolution runs (on scales larger than the low-resolution cell
width). The low-resolution results with trapping should resemble
those of the high-resolution run without (and with) trapping.

This is indeed the case, as shown in Fig. 6, where we map the
steady-state radiation temperature, Tr = (E/a)1/4, in the four runs.

Comparing the low- and high-resolution runs without trapping (top-
left and bottom-left, respectively), we see a large qualitative differ-
ence in the steady-state radiation field. With the unresolved mean
free path, the photons diffuse numerically from the optically thick
cells, and there is much less build-up of radiation compared to
the higher resolution case, where numerical diffusion is negligible.
Comparing instead the two runs with trapping turned on (top- and
bottom-right), we find similar results, even if the cell widths differ
by more than an order of magnitude. Furthermore, the results with
photon trapping are also similar to the high-resolution case without
trapping, indicating strongly that the photon trapping method (i) re-
produces the correct results when the mean free path is unresolved,
and (ii) converges to the correct result when the mean free path
becomes well resolved.

The agreement is not perfect, as can be seen from a careful
comparison of the contours and the box edges. This disagreement
stems partly from the fact that the non-trapping result is still not quite
resolution converged, but more importantly, with trapping turned on,
the box boundary does not behave in the same way along optically
thin cells as it does along optically thick ones. In the optically thin
limit (lower right), the photons freely escape along the boundaries
on scales shorter than the mean free path, and accurately so, since
the boundaries are zero-valued. However, when the mean free path is
not resolved (upper right), the escape of photons along the boundary
is suppressed by the trapping, which essentially assumes the same
mean free path everywhere within the cell, resulting in larger values
for the radiation temperature.
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Figure 5. Evolution of radiation-powered H II region radius (the radius at
which the ionized fraction is 0.5), for increasing initial gas density (top to
bottom plot). In each plot, the solid blue (dotted red) curve shows the bubble
radius with direct radiation pressure turned on (off), and the black dashed
curve shows the analytic expectation from momentum conservation (equa-
tion 59). Dashed grey horizontal lines show the expected thermally supported
bubble radius (rT, equation 65), while dotted grey horizontal lines show the
expected radiation pressure supported radius (rγ , equation 62), where we
have used a bubble temperature of Tion = 1.3 × 104 K and an external
temperature of T0 = 6 × 103 K, based approximately on the temperature
profiles in the end results (see Fig. 4). As those simple analytic estimates
predict, photoionization heating dominates at the lower densities, but radia-
tion pressure starts to take over at high densities, with an expansion towards
the final bubble radius that is well described by momentum conservation.
The early deviations from the analytic results, at t � 0.001 tf , correspond to
the ionization front expansion towards the Strömgren radius, which in the
analytic arguments was assumed to happen instantaneously.

3.5 Diffusion of a radiation flash in 2D

We now test whether our implementation of radiation trapping
agrees with analytic expectations of diffusing radiation. We con-
sider two test cases, in this and the next subsection. In both cases,
HD is turned off.

The first test is a 2D version of the 1D test described in
Commerçon et al. (2011). The simulation box is a 1-cm wide square
composed of 1282 gas cells, which contain a homogeneous medium
with κRρ = 103 cm−1 (i.e. τ box = 103). The box is initially empty
of radiation, except for N0 = 105 photons that are distributed uni-
formly over four cells at the centre of the box, at which we define the
origin of our coordinate system. We then turn on the RT, allowing
the photons to diffuse out of the box. For the boundary conditions,
we apply linear extrapolation to all the RT variables, from a buffer
of two cells inside the border, to determine the values in ghost cells
outside the border. We run this test with the full light speed, i.e.
with c̃ = c.

No trapping 
 
32 x 32

Trapping 
 
32 x 32

No trapping 
 
1024 x 1024

Trapping 
 
1024 x 1024

Tr [K]

0 100 200 300 400 500

Figure 6. A demonstration that our method for photon trapping produces
robust results in an optically thick medium, with τ box = 200. All maps
show time-converged results from 2D RAMSES-RT runs, with a constant flux
of photons into the box from the left. The colour represents the radiation
temperature, Tr, as indicated by the colour bar, and contours mark centennial
values, also marked in the colour bar. The top-left map shows the results
without photon trapping in a low-resolution run, 322 cells. The bottom-left
map shows an identical run, i.e. no trapping, with a much higher resolution
of 10242 cells. The results are different, since the mean free path is resolved
by ≈5 cell widths in the high-resolution run, whereas a cell width contains
≈6 mean free paths in the low-resolution run. In the right-hand column
of maps we show the results of running with the same pair of resolutions,
but with photon trapping activated. With photon trapping on, the results are
much better converged with resolution.

The evolution, with time t and radius r from the origin, of the
photon number density N, is given by (Commerçon et al. 2011)

N (r, t) = N0

2p (πχt)p/2 e− r2
4χt , (71)

where χ = c/(3κRρ), and p = 2 is the number of dimensions.
Fig. 7 shows the time-evolution of the analytic radiation density
profile (solid curves), and compares it to the test results (dashed),
up to 5.5 × 10−9 s, which corresponds to 165 box crossing times
in the free-streaming limit. The numerical results show the sum
of the trapped and free-streaming photons (see equation 42). The
agreement is excellent. The main discrepancy, at the box edges at
late times is caused by the boundary conditions, which release the
photons too efficiently.

We note that we also ran the test with a reduced light speed
c̃ = c × fc = c/100, reproducing exactly the former results, if the
replacement c → c̃ is made in equation (71), and the profiles are
plotted at the times t/fc, where t is the profile times in Fig. 7. In
other words, reducing the speed of light simply slows the diffusion
speed by a factor fc.

We also ran the test with 10 times higher and lower optical depth
(via κR). At the higher optical depth, the numerical results come
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even closer to the analytic ones. Conversely, at the lower optical
depth, the results visibly diverge from equation (71), as should be
expected in the free-streaming radiation limit.

3.6 Diffusion of constant luminosity radiation in 3D

We now consider again radiation diffusion with the HD turned off,
but in 3D, and with a constant luminosity source. We use a setup,
which is relevant for cosmological simulations in terms of the source
luminosity, gas density, metallicity, and spatial resolution. We put
a source with a luminosity L = 1050 photons s−1 into the centre
of a box which is resolved by 323 cells, and allow the radiation to
propagate through the homogeneous gas with the trapping model
presented in Section 2.4.2, assuming an opacity κR = 10 cm2 g−1,
until a converged steady-state has been reached. The box width is
Lbox = 500 pc, which gives a cell size of 15.6 pc. We then run
variants of this setup with varying gas density, spanning nH = 5–
105 cm−3, corresponding to optical depths (through the box) of
τ box ≈ 0.2–3 × 103.

We compare the converged, steady-state, numerical radiation
density profile, as a function of distance from the source, to an
analytic expression which is derived as follows.

In a homogeneous optically thick medium of density ρ and emit-
tance L (i.e. luminosity per volume), the local photon number den-
sity, N, is described by the diffusion equation,

∂N

∂t
− c̃

3κRρ
∇2N + L = 0. (72)

In the steady-state limit, this reduces to the Poisson equation,

c̃

3κRρ
∇2N = L. (73)

In three dimensions, assuming a single point source of radiation,
the solution is

N (r) = 3ρκRL

4πc̃r
, (74)

where r is the distance to the radiation source, and L is the point
source luminosity. Equation (74) is the analytic expression we can
compare to our numerical results.

The analytic argument leading to equation (74) essentially as-
sumes infinity in both space and time, i.e. there are no boundaries
or ‘box’ limits, and steady-state can thus only be reached in an in-
finite time. For time, we simply run the tests until they converge to
a final solution, but to approximate the infinite spatial dimensions,
we set up the boundaries of the box to roughly match the expected
slope given by equation (74).11 The boundary condition for this test
is thus

U0 = U1

(
1 − 
x

Lbox

)
, (75)

where U = (F, N ) is a cell state, 
x is the cell width at the bound-
ary, and the subscripts 0 and 1 refer to the ghost cell and the boundary
cell inside the computational domain, respectively. The boundary
can only approximately ‘mimic’ the infinite space assumption, since
the box has a square shape.

Fig. 8 shows the results of the diffusion tests, where we have
run with a reduced speed of light, c̃ = c/200. The steady-state
limit for radiation flux is the same as with a full light speed, but
it takes longer, by a factor fc

−1, to reach that state. From left to
right, the plots in Fig. 8 show the test results for the different gas
densities, which translate to different optical depths. In each plot, the
grey dash–dotted lines show the N ∝ r−2 profile expected for free-
streaming radiation, while the solid black lines show the optically
thick prediction made by equation (74). The dashed green curves
show the converged test results where photon trapping is applied.
For comparison, the dotted red curves show the converged results
of identical tests where photon trapping is deactivated.

In the optically thick case (leftmost two plots), the radiation pro-
file evolves towards the correct diffusion solution when trapping
is included. On close inspection it can be seen that the test results
(green dashed) do not perfectly follow the analytic prediction near
the edge of the box, but this is purely due to the boundary condi-
tions, which as we remarked are not correct everywhere due to the
geometry of the box. If the slope at the boundaries is steepened, the
agreement with the analytic result becomes better at r ≈ 250 pc,
where the edge of the box is closest, but at the same time it becomes
worse at r ≈ 350 pc, corresponding to the box corners, where the
gradient should be shallower.

The third plot from the left shows worse agreement with the ana-
lytic solution, but here the gas is also coming close to the optically
thin regime, and equation (74) no longer holds. In the rightmost plot
we have the situation where τ box � 1, and the results agree with the
free-streaming limit, regardless of whether trapping is turned on or
off.

The curve without trapping assumes the correct ∝ r−1 shape
where τ box > 1 due to the scattering which isotropizes the radiation
in every cell, but the curve fails to follow the correct scaling with
increasing τ box.

Again we find that our scheme for trapped radiation (Sec-
tion 2.4.2) robustly reproduces analytic expectations. We ran this
test as well with an alternative version of our method for handling
the optically thick regime, suggested in Section 2.4.1, where instead

11 In the tests with the most optically thick gas, free-flow boundary condi-
tions result in an overestimate of the radiation in the box, since the gradient
at the box edge is zero, giving too much backflow of radiation from the
boundaries, while zero-valued boundaries give an underestimate because
the gradient is infinite, and hence no backflow comes from the boundaries.
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Figure 8. Test of radiation diffusion in a medium of decreasing optical thickness (from left to right). The plots show time-converged radiation profiles from
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of splitting the photons into trapped and free-streaming, we apply
directly a diffusion operator α(τ c) = (1 + 3/2 τ c)−1, where τ c is
the cell optical depth, to the GLF intercell flux function, as in equa-
tion (34). The results using this alternative version were identical to
using the trapped/streaming photons scheme, which is no surprise,
since the trapped/streaming split essentially amounts to the same
thing for the intercell flux. However, the trapped/streaming scheme
has the further advantages of the trapped photons moving with the
gas, and of a natural inclusion of radiation pressure in the optically
thick regime, neither of which is an issue in this test.

3.7 Levitation of optically thick gas

As a final test of radiation pressure, the radiation–temperature cou-
pling, multiscattering, and photon trapping, we repeat the 2D ex-
periment described by Krumholz & Thompson (2013) and Davis
et al. (2014), hereafter KT13 and D14, respectively, which explores
the competition between gravity and radiation pressure.

The experiment is interesting in the context of radiation feed-
back, because it gives insight into how gravitationally bound gas
responds to multiscattering radiation pressure. The setup, which
represents a stellar nursery or the central plane of an optically thick
galactic disc, consists of a thin bottom layer of gas, kept in place
by gravity, which is then exposed to an opposing flux of IR radi-
ation. Even though the radiation flux is sub-Eddington, the effect
of multiscattering may still lift the gas if the radiation is efficiently
trapped by the gas. However, radiative Rayleigh–Taylor instabil-
ities, if they develop, suppress the radiation pressure by creating
‘chimneys’ through which the radiation may escape without effi-
ciently coupling to the gas.

KT13 ran the experiment using the FLD method, which essen-
tially solves equation (30), while making sure the radiation does not
surpass the speed of light in the optically thin limit. They found that
the radiation tends to escape through the gas rather than coherently
lifting it, resulting in a ‘steady-state’ of turbulent gas boiling near
the radiating bottom surface.

D14 investigated the idea that the failure to lift the gas has to
do with the RT method. This is a valid concern, since the mean
free paths are, for the most part, resolved in the experiment, but
FLD is strictly only valid in the optically thick regime. They ran the
experiment with the ATHENA moment method RHD code, comparing

the FLD closure against the more accurate VET closure, which
constructs the radiation flux vector on the fly in every volume by
sweeping the grid with short characteristics rays, thus incorporating
the contribution from all radiation sources and absorbers. They
found that the qualitative result is sensitive to the closure used,
with their FLD implementation giving a similar result as found
by KT13, while the VET version coherently lifts the gas out of
the frame. However, while the average horizontal velocity of the
gas is considerably higher with VET, the average optical depths
and radiation force on the gas are quite similar between the two
methods: the defining difference appears to be that the radiation
force with VET is just enough to lift the gas while with FLD it is
just below what is needed. The reason, the authors conclude, is that
as the gas is being lifted, the FLD closure tends to create chimneys
in the gas though which most of the radiation escapes, and hence the
force is enough to get the gas moving and forming those chimneys,
but the radiation never builds up sufficiently to evacuate the gas.

The M1 closure can be seen as an intermediate approach between
those of FLD and VET: instead of simply following the energy gra-
dient as in FLD, M1 stores locally the bulk direction of radiation,
keeping some ‘memory’ of where it was emitted. However, the di-
rectionality of radiation from multiple sources tends to mix locally,
creating an artificial diffusion which should be more or less absent
with the VET closure, provided good angular resolution in the VET
ray-sweeping scheme. We should therefore expect our results with
M1 to lie somewhere between those of FLD and VET, though a
priori it is unclear exactly where. None the less, the quantitative
results using the FLD and VET closures in D14, in terms of ef-
fective optical depths, radiation force, and even gas velocities, lie
within a fairly narrow margin, making this a good test case for our
implementation. We thus repeat the test from D14 and validate our
implementation by comparing our results to theirs.

The setup of the experiment is as follows: the simulation box is
a 2D square of height Lbox = 1024 h∗, where h∗ = 2 × 1015 cm
is the scaleheight for the initial gas density profile. The box is re-
solved by 20482 cells, and the resolution is fixed, i.e. we do not
use adaptive refinement. The physical resolution and box height
is identical to that of D14, while the box width, constrained by
the square geometry of RAMSES, is twice as large. A layer of gas
is placed at the bottom of the box, and given an exponential den-
sity profile with distance from the bottom, ρ(h) = ρ∗exp (−h/h∗),
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where12 ρ∗ = 7.1 × 10−16 g cm−3, resulting in a column density of
� = 1.4 g cm−2. Following D14, we add fluctuations to the initial
gas density profile, of the form

∂ρ

ρ
= 0.25 (1 ± χ ) sin (2πx/Lbox) , (76)

where χ is a random number in the range [−0.25, 0.25]. The initial
gas profile is floored at a minimum density of 10−10ρ∗, and the
gas is given a homogeneous initial temperature of T∗ = 82 K. The
only non-adiabatic source of heating and cooling for the gas is
the dust–radiation interaction,

∂e

∂t
= −∂E

∂t
= κPρ

(
c̃E − caT 4

)
. (77)

The bottom boundary of the box emits a radiation flux of
F∗ = 1.03 × 104 erg cm−2 s−1 (2.54 × 1013 L� kpc−2), and the box
is initialized to contain an upwards radiation flux of the same mag-
nitude, with c̃E = Fy = F∗ and Fx = 0, and thus a radiation tem-
perature

Tr∗ =
(

F∗
ca

)1/4

= T∗. (78)

The radiation is coupled to the gas via Rosseland and Planck opaci-
ties which, vitally to the mechanics of this experiment, are functions
of the gas temperature:

κP = 0.1

(
T

10 K

)2

cm2 g−1,

κR = 0.0316

(
T

10 K

)2

cm2 g−1. (79)

These opacity functions originate from KT13 and are approximately
in agreement with dust models at T � 150 K (Semenov et al. 2003).
Given the initial temperature, T∗ = 82 K, the initial Rosseland
opacity is κR∗ = 2.13 cm2 g−1.

The radiation force is countered by a homogeneous grav-
itational acceleration field pointing downwards, of magnitude
g = 1.46 × 10−6 cm s−2. The local competition between down-
wards gravity and upwards radiation pressure is described by the
Eddington ratio,

fE = fy,rad

gρ
, (80)

where fy,rad is the vertical radiation force,

fy,rad = κRρFy

c
+ 1

3
∇Et. (81)

Given the initial conditions, the Eddington ratio is fE, ∗ = 0.5, so the
radiation initially cannot lift the gas against the opposing force of
gravity. However, the gas is optically thick to the radiation with an
initial optical depth of, from bottom to top,

τ∗ = κR∗� = 3. (82)

Thus, the radiation can be trapped and accumulated by the layer
of optically thick gas, which boosts the radiation temperature. Due
to the coupling in equation (77), this in turn heats the gas, which
may via equation (79) increase κR to the extent that fE > 1. This of

12 Since the experiment is in 2D, the units for density and column density
should be g cm−2 and g cm−1, respectively. However, following KT13 and
D14, we use 3D units in the description for this experiment.

course requires efficient trapping of the radiation, which is the vital
factor that in the end decides whether the gas is lifted or not.

It should be noted that trapping here not only refers to our
method for trapping radiation in regions where the optical depth
is unresolved, but also to radiation which may be free-streaming in
optically thin gas, but is trapped bouncing back and forth between
the confinements of optically thick shells. We do apply our method
of trapping photons inside gas cells of unresolved mean free path,
which turns out to be relevant only to the early lift of gas, as we
shall see in the following analysis.

The box is periodic in the horizontal direction, both for the radi-
ation and matter. For the matter content, the bottom of the box
is reflective, allowing no escape or entry of gas, and Dirichlet
boundary conditions, i.e. fixed values, are applied to the top, with
ρ = 10−13 ρ∗, T = 10−3 T∗, and zero velocity, in pressure balance
with the initial conditions, and allowing easy escape of upwards
moving gas. For the radiation, we also apply Dirichlet boundary
conditions at the top, with zero flux and energy density. The bot-
tom boundary needs to emit radiation vertically at the rate F∗. We
accomplish this by solving the GLF intercell flux function (equa-
tion 16) to give an intercell flux of F1/2 = F∗ at the interface between
each cell at the lower box boundary and its ghost neighbour, with
the additional requirement that the ghost region cell has a photon
flux of F0 = (0, F∗). This gives a radiation energy density for the
ghost cell of

c̃E0 = F∗ − Fy,1 + c̃E1, (83)

where the subscripts 0 and 1 refer to the ghost cell and the boundary
cell inside the computational domain, respectively. As with all other
tests presented in this paper, we use here the GLF intercell flux
function for calculating the photon advection between cells. We
tried as well with the HLL intercell flux function, which is better
at maintaining the directionality of radiation (see R13), though
photon trapping is strictly not supported with it (see comment in
Section 2.2). Using HLL results in slightly more efficient early lift of
gas than with the GLF function, but eventual convergence towards
the same qualitative situation at the end of the run.

We follow the evolution of the system for 200 t∗, where t∗ = h∗/c∗
is the characteristic sound crossing time, and c∗ = √

kBT∗/(μmH) =
0.54 km s−1 is the characteristic sound speed. We run the experiment
using a reduced light speed of c̃ = 3 × 10−3 c, which is more than
two orders of magnitude faster than c∗ (and much faster than any
gas velocities attained in the experiment). We start the experiment
at a full light speed and converge exponentially towards c̃ over
3 × 104 RHD time-steps. We do this specifically to capture the
sudden and short lived pile-up of trapped photons by the gas which
is accumulated mostly in the bottom layer of cells. This only affects
the acceleration of gas in the initial few t∗, compared to running at
c̃ for the whole experiment. We have run as well with a factor of 10
lower value for c̃, which gives a very similar evolution, implying
light speed convergence around the default value. In all the results
presented here, we use the relativistic corrections described in the
appendix, but note that they have no visible effect on the results.

To illustrate the effect and importance of photon trapping, we
present results from two RAMSES-RT runs, one with and one without
photon trapping. The run without trapping uses c̃ for the whole run,
without the initial decrement from the full light speed, as this has
no effect without the trapping mechanism which is responsible for
the initial pile-up of radiation. Also, since the run without trapping
has much less initial vertical acceleration of gas, it has half the
box width (and height) as the one with trapping activated, while
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Figure 9. Maximum (solid) and mass-weighted average (dashed) cell op-
tical depths in the gas levitation test. The thin bright-green curves show a
run without radiation trapping, while the thick dark-green curves show the
main run with radiation trapping. The high optical depths of cells indicate
that the diffusion limit is somewhat relevant in this experiment, especially
at the very start of the runs (t � 5t∗), where most of the gas mass is in the
diffusion limit (τc � 1).

keeping the same physical resolution, i.e. the box has a height of
Lbox = 512 h∗ and is resolved by 10242 cells.

Fig. 9 shows the evolution of cell optical depths, τ c. Focusing
first on the run without trapping (light green curves), we find that
the mass-weighted average and maximum cell optical depths start at
〈τ c, M〉 ≈ 2 and τ c, max ≈ 4, respectively, showing that the mean free
paths are unresolved at the start of the run, which implies that the
diffusion limit, and thus the photon-trapping mechanism, is relevant
at the start. The cell optical depths quickly decline in value as the gas
rises from the bottom and becomes more diffuse, such that the mean
free path becomes better resolved. For the remainder of the run the
average cell optical depths are mostly well below unity, although
there always remain cells with large optical depths. With trapping
turned on (darker green curves), the optical depths start well above
the values from the non-trapping run, due to the larger concentration
of photons that now accumulates in the optically thick gas, which
leads to higher gas opacity via equation (79). However, once the gas
starts to lift, the cell optical depths are reduced to smaller values
than in the non-trapping run, as a result of the diffusive pressure of
the trapped photons. After the experiment has reached a turbulent
equilibrium state, around 100 t∗, the opacities are consistently lower
than when trapping is not used.

Fig. 10 shows maps of gas density and radiation temperature at
different snapshots of the run with photon trapping. The evolution
is qualitatively similar to the results in D14, and we see the same
features of filamentary gas concentrations interspersed with more
diffuse ‘chimneys’ through which the radiation escapes to the top
of the box. Visual inspection of the gas density and radiation tem-
perature suggests that the results fall in between those of FLD and
VET in D14 (their figs 3–5). Focusing on the gas densities, the gas
is initially levitated quite efficiently, even more so than in either
FLD or VET, due to the strong initial trapped photon pressure (a
point which we will revisit later). About 1 per cent of the total mass
is ejected from the top of the box in the first upwards burst of gas.
The rest of the gas drops back to the bottom, to �200 h∗, where it
is kept turbulent by the competition between radiation pressure and
gravity. Unlike with VET, the gas is not coherently lifted beyond

h ≈ 500 h∗.13 It settles to eventually occupy similar heights as in the
FLD results, where it is concentrated below ≈200 h∗ at t = 150 t∗.
The radiation temperature maps show trapped radiation beneath co-
herent layers of gas, which extends quite high initially, but is kept at
much lower heights once the gas breaks up due to Rayleigh–Taylor
instabilities.

The first two density maps from the left (t = 25 and 50 t∗) contain
a conspicuous perfectly vertical feature at x ≈ 575 h∗. This gas is
flowing downwards in a thin stream, which is limited in thickness
only by the cell width. The horizontal forces on the gas stream are
negligible for some time, and thus, guided by the grid alignment,
the stream can maintain this perfect shape from t ≈ 22 t∗ until it is
destroyed by laminar gas flows at t = 64 t∗. No other such numerical
features appear in the simulation.

In Figs 11 and 12 we compare our results directly to those of
FLD and VET from D14 (courtesy of Shane Davis). The top plot in
Fig. 11 shows the volume-averaged Eddington ratio,

fE,V =
〈
fy,rad

〉
〈gρ〉 . (84)

This ratio expresses the competition between radiation pressure and
gravity, with fE, V > 1 when radiation pressure has the upper hand.
By construction, fE, V = f∗ = 0.5 at the start of the run. The middle
plot shows the volume-averaged optical depth from bottom to top,

τV = Lbox 〈κRρ〉 . (85)

The evolution of this quantity is closely linked to fE, V through that
of κR, which sets both the optical depth and the strength of the
radiation pressure. The bottom plot shows the ratio of the photon
flux-weighted mean optical depth,

τF = Lbox

〈
κRρFy

〉
Fy

, (86)

to τV.
We first focus on the effect of photon trapping in the RAMSES-RT

runs (Fig. 11, light and dark green curves). With photon trapping
turned on, there is an almost instantaneous rise from the initial
values, fE, V = 0.5 and τV = 3, quickly followed by a steep decline
in both. This early evolution is absent in the non-trapping run,
which just shows a gradual and much slower initial rise for both
quantities. The steep rise is due to the sudden build-up of trapped
photons in the bottom layer of cells, which increases κR. This results
in a strong force from the diffusive radiation, which quickly pushes
the gas upwards. The rapid diffusion of the gas in turn leads to
a rapid decrease of κR, and some of the trapped radiation escapes
upwards, reducing the opacity and the radiation push. With trapping
turned off, there is much less initial build-up of radiation, and the
initial push is gentler. In the long run, ignoring the evolution in the
first ≈10 t∗, the evolution with/without trapping, however, is quite
similar.

The same can be said if we compare the RAMSES-RT results to those
from D14. The results agree quite well overall, showing similar early
reaction and then settling on similar semiconstant values of fE, V, τV,
and τ F/τV. In the early reaction phase, t � 75t∗, the results in places
resemble an interpolation between the FLD and VET results, in line
with our argument that M1 is an intermediate approach between
FLD and VET.

13 The VET simulation is restarted with an extended box height at t = 80 t∗,
when the gas approaches the upper boundary, and the gas is approaching the
(new) upper limit at h ≈ 2048 h∗ when the run is stopped at ≈150 t∗.
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Figure 10. Maps of the gas density (upper row) and radiation temperature (lower row) in selected snapshots from the gas levitation experiment. We show the
full height of the box, but to fit the maps on the page, we show only half of the width, along the centre.

The run with photon trapping very quickly reaches peaks of
fE, V = 10 and τV = 32 at 0.023 t∗, which disappear rapidly as the
gas starts moving. We do not show these peaks in the plots in Fig. 11
for the sake of not stretching out the y-axes. The magnitude of the
peaks depends on the speed of light, which is the reason why we
start the trapping run with a full speed of light and converge to c̃

in the first ≈3 × 104 time-steps. We verified in hydrodynamically
static runs (i.e. with RT turned on but the HD turned off) that an
equilibrium is reached with constant values of fE, V = 10.7 and
τV = 32.5, regardless of the speed of light. The important differing
factor is simply the time it takes to reach that equilibrium, which
with reduced light speed becomes longer than the duration of the
peak.

This rather large discrepancy in optical depth from the FLD and
VET implementations at early times demands further investigation
to justify our ballpark numerical value. If we assume, for the sake
of simplicity, that all the gas is initially placed in a single horizontal
cell layer,14 we can derive an expression for the equilibrium value

14 This is a good approximation: 25–60 per cent of the column density is
initially in the bottom layer of cells, depending on the sinusoidal and random
fluctuations.

of the cell optical depth, τ c, at which the upwards flux from the cell
equals F∗. In the framework of M1 using the GLF intercell flux,
with photon trapping, such an equilibrium is met when

c̃Es =
[

1 − exp

(
− 2

3τc

)]
c̃E = 2F∗, (87)

where Es is the τ c-dependent streaming photon density (equa-
tion 49). We can then combine the relation τ c = κR�, equa-
tion (79) describing κR(T), and the relation between radiation tem-
perature and radiation energy, yielding

τc(E) = 3.16 × 10−4 cm2 g−1

K2
�

√
c̃E

ca
, (88)

assuming Tr = T. Substituting equation (88) into equation (87), and
using �∗, then gives an equilibrium condition that can be solved for
τ c, which yields a median value of τ c = 27, in fair agreement with
our peak optical depth of 32. Allowing for the maximum fluctuation
amplitude in �∗ gives an upper limit of τ c = 67, and looking at
Fig. 9, we find that the maximum initial values for τ c are within this
limit.

MNRAS 449, 4380–4403 (2015)



4398 J. Rosdahl and R. Teyssier

0.0
0.5

1.0

1.5

2.0

2.5

f E
,V

6

8

10

12

14

16

τ V

0 50 100 150 200
t / t*

0.2

0.4

0.6

0.8

1.0

τ F
 / 

τ V

M1 without trapping
M1 with trapping

FLD
VET

Figure 11. Comparison of gas levitation test for RAMSES-RT with and without
trapping (light green and darker green curves, respectively), and for the
ATHENA code, taken from D14, using FLD (red) and VET (blue). Top panel:
Eddington ratio fE (=0.5 at t = 0) between the upwards force of radiation
pressure and the downwards force of gravity. Middle panel: average volume-
weighted optical depth along lines of sight from the bottom to the top of
the box (=3 at t = 0). Bottom panel: ratio between the flux-weighted and
volume-weighted average optical depths (=1 at t = 0). All plots show
strong similarity between the different methods and codes. Comparison of
the RAMSES-RT results with and without trapping reveals that the diffusion
limit is important at the beginning of the run, where a pile-up of radiation
results in very strong optical depth and in turn a strong radiation force.

With FLD we can make a similar estimate. Here the equilibrium
condition is

c̃E

3τc
= F∗, (89)

and again using equation (88) gives the same median and upper limit
for τ c as in the photon-trapping framework. While these simplified
estimates do not predict the exact equilibrium value of the optical
depth, they demonstrate that the high initial peak reached in our run
is indeed plausible.

We now turn our attention to the gas velocities. The upper panel
in Fig. 12 shows the ratio of the mass-weighted mean (i.e. bulk)
vertical velocity and the characteristic sound speed, while the lower
plot shows velocity dispersions in the gas (i.e. turbulence). With-
out trapping, the M1 results show relatively weak initial upwards
acceleration of the gas, followed by a drop, a bounce, and then an
turbulent equilibrium state, with the velocity dispersions well be-
low the constantly rising ones of VET, but somewhat above those
of FLD. With trapping turned on, there is a much more dramatic
initial acceleration of gas, even stronger than that of VET, which we
already attributed to the strong initial build-up of trapped radiation
in and below the bottom layer of gas. This is followed by a very
strong deceleration and drop back to the bottom of the box, which
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Figure 12. Gas velocity comparison in gas levitation test, for RAMSES-RT

with and without trapping (light green and darker green curves, respectively),
and for the ATHENA code from D14, using FLD (red) and VET (blue). Top
plot: mass-weighted mean vertical velocity. Bottom plot: mass-weighted
velocity dispersions. The plots show good comparison between RAMSES-RT

and ATHENA, but the RAMSES-RT results are more in line with the ones obtained
with FLD than VET. The main effect of photon trapping in RAMSES-RT can
again be seen in the faster early acceleration due to the combination trapped
photon pressure and the higher opacity of the gas that results from the
trapped photons (equation 79).
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Figure 13. Contributions, in the M1 levitation test with trapping, to the
total Eddington ratio (grey), from the free-flowing photon flux (red) and the
diffusion pressure from trapped photons (blue). The diffusion pressure is
important, but only at the very start of the run where almost all the gas mass
is concentrated in one row of cells at the bottom of the box.

is even stronger than with FLD. The strong drop is likely due to
the reduced speed of light: the incoming radiation flux cannot keep
up with filling the growing ‘bubble’ between the bottom of the box
and the rising layer of gas, and as a result the radiation pressure de-
flates as the gas lifts. At the same time, radiative Rayleigh–Taylor
instabilities fragment the gas, allowing the radiation to escape, and
the gas falls hard back to the bottom. However, it also bounces
back, and eventually reaches a turbulent state quite similar to the
non-trapping run, and to FLD, though the velocity dispersions are
stronger than with FLD.

We finally illustrate, in Fig. 13, the relative contributions to the
average Eddington ratio fE, V (grey) from the free-streaming photon
flux, κRρFy

c
(red) and from the trapped photon diffusion pressure

1
3 ∇Et (blue). As suggested by the previous plots, the diffusion
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pressure dominates strongly during the first few t∗, but is more or
less negligible for the remainder of the run.

Summarizing this final test, we repeated with RAMSES-RT the gas
levitation experiment described in D14, in which FLD and VET
closures were used for solving the moment equations of RT. We
ran the same setup as described therein, modulo differences in the
initial and boundary conditions required by the different methods.
With FLD, the bottom boundary condition requires that

cλ

κRρ

∂E

∂y
= F∗, (90)

where λ is the flux-limiter that limits the speed of radiation transport
to the speed of light. With VET, the comoving radiation flux in the
bottom boundary ghost zone is set to Fy = F∗ which is quite similar
to the boundary condition we apply with M1, but they also add a
‘diffusion limit’ correction to the flux, enhancing it according to the
optical thickness of the layer of cells just above the boundary. We
need not apply any such correction, since the trapping of photons
automatically takes care of the diffusion limit. However, the similar
early evolution suggests that the correction made in VET is valid,
and that the diffusion limit is indeed mostly relevant in the very
bottom layer of gas cells.

All in all, our results using the M1 closure agree well with the
other closures, though they are qualitatively more similar to FLD
than VET: while both M1 and FLD manage to build up, after 50 t∗,
a quasi-hydrostatic extended gas layer, VET still continues to evac-
uate gas at a significant rate. In light of this, since the M1 closure
does not follow the gradient of radiation energy as the FLD clo-
sure does, the difference between the fate of the gas with different
closures is likely to have a more nuanced explanation than just the
FLD closure tending to magnify radiative Rayleigh–Taylor insta-
bilities. It is non-trivial to read much in terms of physics into those
differences, especially since it remains to be seen how far the gas
can levitate with VET before reaching a turbulent equilibrium state,
and whether this state eventually resembles the results with FLD
and M1.

While we cannot point out specifics in the other implementations
which could affect the experiment results, we can point out two
factors which might affect our own results. One is the reduced
speed of light. While our convergence tests that change the speed of
light by a factor of a few in each direction give very similar results,
it is possible that the results would be quite different if we used the
real speed of light, or a value close to it. Indeed we have seen that the
early acceleration of the gas is quite sensitive to the speed of light, so
is likely the relatively strong deceleration, and the same may indeed
apply later in the experiment. Possibly the gas can spontaneously
form a coherent layer that efficiently traps the radiation. In such a
scenario, the radiation builds up faster with an increasing speed of
light, and with a low speed of light the trapping layer of gas may
be destroyed by gravity ahead of the radiation build-up, essentially
keeping the gas from being lifted. Another factor is the limitation
of the M1 closure in dealing with multiple sources. In the case of
efficient trapping, the radiation essentially bounces between the gas
layer and the bottom of the box, and in such a case the M1 closure
may create an overtly diffusive radiation field that tends to blow
holes in the trapping layer of gas.

There are also limitations to the setup of this experiment, which
ultimately are probably more severe than the implementation de-
tails mentioned, e.g. the lack of resolution in the initial setup, the
close competition between gravity and radiation, the monogroup
approach, and the lack of a third dimension.

In conclusion, and regardless of the physical limitations, this last
test gives support in favour of the robustness of the new additions to
RAMSES-RT, as we test all the new aspects of the code, i.e. radiation
pressure, radiation–temperature coupling, radiation trapping, and
relativistic corrections (though the last factor turns out to have no
effect on the results). The results using RAMSES-RT are very similar
to those obtained by FLD and VET in terms of the evolution of
the Eddington ratio between the forces of radiation and gravity, the
volume-averaged optical depth, and the ratio between the flux aver-
aged and volume-averaged optical depths. The early acceleration of
the gas is quite similar to the VET case, but instead of continuing to
lift, the gas drops back to the bottom and reaches a turbulent equi-
librium state, with velocity dispersions in-between those of FLD
and VET.

4 C O N C L U S I O N S

We have presented several important modifications to the RHD
implementation in RAMSES-RT. Previously, as described in R13, the
implementation focused on the interaction of photons and gas via
photoionization and the associated gas heating. In the current work,
three features were added.

(i) Multiscattered IR radiation, which is coupled to the evolution
of the gas/dust temperature. A vital ingredient here is the novel
treatment of radiation diffusion in a medium where the mean free
path is unresolved, by partitioning the radiation into subgroups of
trapped and streaming photons. In the optically thick limit, the
method accurately reproduces the results of FLD, but has the great
advantage over FLD that free-streaming photons are much more
accurately modelled, and that photons can ‘adaptively’ alternate
between trapped and free-streaming, depending on the local prop-
erties of the gas.

(ii) Relativistic v/c corrections to the implementation of dust-
coupled radiation, accounting for Doppler effects and hence the
work done by the radiation on the gas.

(iii) Momentum transfer from radiation to gas, allowing for re-
alistic modelling of the effects of radiation pressure, both direct
pressure from ionizing radiation, and from reprocessed multiscat-
tered radiation.

We used a series of test to validate our new additions. These
included a morphological assessment of a radiation field produced
by the M1 closure around a galaxy disc (Section 3.1), a test of dust-
absorbed radiation in a homogeneous optically semithick medium,
where we compared to a full RT solution (Section 3.2), tests of direct
ionizing radiation pressure in an initially homogeneous gas around
a luminous young stellar population (Section 3.3), a qualitative res-
olution convergence test for photon trapping in a resolved versus
unresolved optically thick gas (Section 3.4), quantitative tests of ra-
diation diffusion in optically thick gas, with a radiation flash in 2D
(Section 3.5), and a constant radiation source in 3D (Section 3.6),
and, finally, a 2D test of the competition of gravity and multiscatter-
ing IR radiation where we compared our results in terms of average
optical depths, Eddington ratios, bulk gas velocities, and turbu-
lence, against previously published results with the ATHENA code,
from D14. With the tests, we can demonstrate a robust treatment in
RAMSES-RT of the interaction of radiation and gas via photoionization
heating, direct pressure from ionizing radiation, dust heating, and
momentum deposition by multiscattering photons.

There are limitations to the RHD approach that we use in RAMSES-
RT. As discussed in both this work and R13, the M1 moment
method which we employ has problems in dealing with situations of
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overlapping radiation from different sources, especially in between
those sources. We have presented demonstrations of this particu-
lar limitation, but we argue that even if the radiation is not always
propagated to full quantitative precision, it is qualitatively robust,
and generally adequate in relevant astrophysical scenarios. Another
limitation of the code is that while it does offer a multifrequency
approach, it is quite crude, with only a handful of frequency bins
realistically attainable in standard simulations. However, (Mirocha
et al. 2012) have shown that as few as four bins of (ionizing) ra-
diation, if optimally placed in the frequency range, can eliminate
frequency resolution errors to high precision, and other factors, such
as resolution, likely become more limiting in studying the effects
of radiation feedback on galaxy evolution.

We will follow up on this work with RHD simulations to study
the effects of radiation feedback from stars and AGN on galaxy
evolution, morphology, and outflows, on cosmological, galactic,
and ISM scales.

The RAMSES-RT implementation, including all the new features
described here, is publicly available, as a part of the RAMSES code.15
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APPENDI X A : R ELATI VI STI C CORRECT IO NS
TO T H E R H D E QUAT I O N S

We describe briefly the RHD equations, taking into account v/c
terms that were missing in this paper so far, which represent rela-
tivistic Doppler effects between the rest frames of the gas and the
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radiation. These equations are derived from the classical textbook
on RHD, Mihalas & Mihalas (1984).

We now distinguish between the radiation energy expressed in
the gas comoving frame, noted E0, from the radiation energy in the
lab frame, noted E in the main text. We also define the radiation flux
vector in the comoving frame as F0, and the lab frame radiation
flux F. The gas total energy is defined as usual by

Egas = 1

2
ρv2 + e, (A1)

where we recall ρ and v are the gas density and speed, respectively,
and e is the gas internal thermal energy.

We now add v/c terms to the radiation momentum equations (8)
and (9), neglecting only (v/c)2 terms (see Mihalas & Mihalas 1984,
page 423).

∂E

∂t
+ ∇ · F = κρ

(
caT 4 − c̃E + v · 1

c
F

)
, (A2)

∂F
∂t

+ c̃2∇ · DE = κρc̃

(
−F + vaT 4 + v · c̃

c
DE

)
. (A3)

Note that λ = (κρ)−1 is the frequency-averaged mean free path
computed in the comoving frame. Doppler effects are therefore
only accounted for up to v/c in the previous explicit form, and the
radiation variables are still in the lab frame. This formulation is
therefore referred to as the mixed frame equations.

We find it convenient to re-express these equations using the co-
moving radiation variables, when coupled to the thermochemistry.
For this, we use the Lorentz transform up to first order in v/c to com-
pute comoving variables as a function of the lab frame variables.
We have (Mihalas & Mihalas 1984, page 417):

E0 = E − 2

c̃c
v · F, (A4)

F0 = F − v · c̃

c
E (I + D) . (A5)

Injecting these relations into the mixed frame equations (A2) and
(A3) leads to the form

∂E

∂t
+ ∇ · F = κρ

(
caT 4 − c̃E0

) − v · κρ

c
F, (A6)

∂F
∂t

+ c̃2∇ · DE = κρc̃F0 + v
κρc̃

c

(
caT 4 − c̃E

)
. (A7)

The source terms are now easier to interpret: the first term on the
RHS of the energy equation is the classical radiation and matter
coupling term in the comoving frame. The second term is equal
to minus the work of the radiation force in the lab frame. In the
radiation flux equation, the first term is the radiation force in the
comoving frame, while the second one is a purely relativistic term
usually identified as a frame dragging effect between matter and
radiation. The gas energy and momentum equations (11) and (12)
(ignoring gravity and other heating/cooling processes) are modified
accordingly and are written using a globally strictly conservative
form

∂Egas

∂t
+ ∇ · (

v(Egas + P )
) = κPρ

(
c̃E0 − caT 4

) − v · κPρ

c
F,

(A8)

∂ρv

∂t
+ ∇ · (ρv ⊗ v + P I) = κRρ

c
F0 − v

κRρ

c2

(
caT 4 − c̃E

)
.

(A9)

We directly exploit this form of the RHD equations in our nu-
merical implementation, by adding each contribution in a classical
operator splitting approach.

APPENDI X B: TRAPPED V ERSUS STREAMING
P H OTO N S IN A M I X E D FR A M E FR A M E WO R K

In order to deal with extremely opaque conditions, for which the
mean free path, λR = (κRρ)−1, is much smaller than the grid spac-
ing 
x, we have developed in Section 2.4.2 a trapped/streaming
radiation approach that properly captures the diffusion limit, even if
one does not resolve the mean free path. This method was presented
without taking into account the relativistic corrections discussed in
the previous section. We now consider both the comoving and the
lab frame, and our trapped photons are assumed to be isotropic in
the comoving frame. This means that F0

t = 0 and, to first order in
v/c, one has from equations (A4) and (A5):

Et = E0
t , P t = E0

t

3
I and Ft = 4

3

c̃

c
E0

t v, (B1)

where we now express the comoving variables with a ‘0’ superscript
rather than a subscript. We split the radiation energy into trapped
and streaming components E = E0

t + Es, using the decomposition
of Section 2.4.2 based on the local cell optical depth. The total
radiation energy equation (equation 35, ignoring the Ė source term)
then becomes

∂E0
t

∂t
+ ∂Es

∂t
+ ∇ ·

(
Fs + 4

3

c̃

c
E0

t v

)

= κPρ
(
caT 4 − c̃E0

t − c̃E0
s

) − v · κPρ

c
F, (B2)

and the total radiation flux equation (equation 36) becomes

∂Fs

∂t
+ c̃2

3
∇E0

t + c̃2∇ · (DEs)

= −κRρc̃F0
s + v

κRρc̃

c

(
caT 4 − c̃E

)
. (B3)

In the diffusion regime, we would like to recover equation (40) in
the comoving frame, i.e.

F0
s � − c̃λR

3
∇E0

t . (B4)

In order to enforce our scheme to satisfy this limit when the cell size
is large compared to the mean free path, we exploit our GLF flux
function (equation 17) and we fix the streaming to trapped photon
ratio by

E0
t = 3τc

2
Es. (B5)

We then solve for the streaming photon energy and flux variables
in equations (B2) and (B3) using our mixed frame M1 Godunov
solver

∂Es

∂t
+ ∇ · Fs = −κPρc̃E0

s − v · κPρ

c
Fs, (B6)

∂Fs

∂t
+ c̃2∇ · DEs = −κRρc̃F0

s + v
κRρc̃

c

(
caT 4 − c̃E

)
. (B7)

The total radiative force is decomposed into a streaming and a
trapped component as before,

κRρ

c
F = κRρ

c
Fs − 1

3

c̃

c
∇E0

t . (B8)
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The work of the radiation force (with a minus sign) is decomposed
between the streaming and the trapped photon energy equation. For
the latter, we solve the trapped part of the radiation energy equation
(B2), namely

∂E0
t

∂t
+∇ ·

(
4

3

c̃

c
E0

t v

)
=κPρ

(
caT 4−c̃E0

t

)+v · 1

3

c̃

c
∇E0

t , (B9)

which can be rewritten as the classical comoving radiation energy
equation

∂E0
t

∂t
+ ∇ ·

(
c̃

c
E0

t v

)
+ Prad∇ · v = κPρ

(
caT 4 − c̃E0

t

)
, (B10)

where the trapped radiation pressure is Prad = 1
3

c̃
c
E0

t . The gas mo-
mentum equation (47) (ignoring the gravity term) is also modified
into

∂ρv

∂t
+ ∇ · [ρv ⊗ v + (P + Prad)I]

= κRρ

c
F0

s − v
κRρ

c2

(
caT 4 − c̃E

)
, (B11)

as well as the gas total energy equation (11) (ignoring gravity and
�),

∂

∂t

(
Egas + E0

t

) + ∇ · [
v(Egas + E0

t + P + P 0
t )

]
= κPρc̃E0

s + v · κPρ

c
Fs. (B12)

We now see quite clearly that in very optically thick regions, where
Es � E0

t , the streaming photons energy and flux can both be ig-
nored and the previous set of equations just becomes a classical HD
system with two pressure and energy components (gas and trapped
radiation), that can be solved with a multifluid Godunov scheme.
We incorporate the trapped energy radiation energy and pressure
into all components of the fluid solver, as in Commerçon et al.
(2011).

APPENDIX C : A FULL RT SOLV ER

In Section 3.2 we compare RAMSES-RT results to a full RT calculation,
which we will now describe.

The full RT solver takes a ‘bulldozer’ approach in solving the
full RT equation (1), in the four-dimensional space (x, y, φ, θ ),
where the first two dimensions are location and the latter two are
the standard solid angle, with φ the angle from the x-axis in the
xy-plane and θ the angle from the normal vector to the xy-plane.
The four-dimensional space is discretized into a four-dimensional
grid (i, j, k, �), with a total number of elements Nx × Ny × Nφ × Nθ ,
where the Ns denote the number of bins in each dimension. Each
grid element contains the radiation specific intensity I(i, j, k, �) (in
a single group approach). The radiation energy density (energy per
unit volume) in a cell (i, j) is retrieved by summing the specific
intensity over all angles:

E(i, j ) = 1

c

Nφ∑
k=1

Nθ∑
�=1

I (i, j , k, �) sin θ 
θ 
φ, (C1)

where


φ = 2 π

Nφ

(C2)


θ = π

Nθ

, (C3)

φ(k) = (k − 1.)
φ, (C4)

θ (�) = (� − 0.5)
θ. (C5)

The specific intensity is integrated on the whole grid, according
to equation (1), in discretized time-steps of length 
t = 0.5 
x

c
. In

each time-step, the specific intensity is updated from It to It + 
t

in three operator-split steps: injection, advection, and scattering,
which are performed as follows.

C1 Injection

This step corresponds to solving equation (1) with only the first
term on the RHS, i.e.

1

c

∂I

∂t
= η. (C6)

Here, photons are simply added to I(i, j, k, �) where appropriate.
In our Section 3.2 test, no such injection inside the box bound-

aries is in fact needed. Here, it suffices to initialize the boundary
conditions such that the correct flux is emitted from the left-hand
side. For all but the left boundary, the ghost cells, i.e. static cells just
outside the box boundary, are initialized to zero radiation intensity,
while for the left-hand side ghost cells we set

I (0, j , 1, �) = 1

2

F∗
sin θ
φ
θ

, (C7)

for j = (1, . . . , Ny) and � = (Nθ /2 − 1, Nθ /2), assuming even Nθ .

C2 Advection

Here, we solve equation (1) over 
t with only the advection term,
i.e.

1

c

∂I

∂t
+ n · ∇I = 0. (C8)

First, fluxes are calculated across each intercell boundary inside the
grid (and at the grid boundaries). The x-fluxes are

fx

(
i + 1

2
, j , k, �

)
= cnxI↓

(
i + 1

2
, j , k, �

)
, (C9)

where nx = cos φ sin θ , and I↓ is the downstream radiation intensity,
i.e.

I↓

(
i + 1

2
, j , k, �

)
=

{
I (i, j , k, �) if nx > 0,

I (i + 1, j , k, �), otherwise.

Likewise, the y-intercell fluxes are

fy

(
i, j + 1

2
, k, �

)
= cnyI↓

(
i, j + 1

2
, k, �

)
, (C10)

where ny = sin φ sin θ , and

I↓

(
i, j + 1

2
, k, �

)
=

{
I (i, j , k, �) if ny > 0,

I (i, j + 1, k, �), otherwise.

The radiation is then explicitly advected between cells, using the
intercell fluxes:

I ′(i, j , k, �) = I (i, j , k, �) + 
t


x[
fx

(
i − 1

2
, j , k, �

)
− fx

(
i + 1

2
, j , k, �

)

+fy

(
i, j − 1

2
, k, �

)
− fy

(
i, j + 1

2
, k, �

) ]
, (C11)
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for each i ∈ (1, . . . , Nx), j ∈ (1, . . . , Ny), k ∈ (1, . . . , Nφ), � ∈
(1, . . . , Nθ ).

C3 Scattering

In the final operator-split step in the full RT calculation, the radiation
is scattered isotropically. First, the radiation intensity in each cell
and over all angles is semi-implicitly ‘absorbed’:

I ′′(i, j , k, �) = I ′(i, j , k, �)

1 + 
t ρκc
. (C12)

Then these photons are emitted isotropically (i.e. scattered):

I t+
t (i, j , k, �) = I ′′(i, j , k, �) + fsc(i, j )

4π
, (C13)

where fsc is the scattered flux over the time-step,

fsc(i, j ) =
Nφ∑
k=1

Nθ∑
�=1

[
I ′′(i, j , k, �) − I ′(i, j , k, �)

]
sin θ
φ
θ.

(C14)

With equation (C13), the radiation specific intensities are fully up-
dated to time t + 
t, and now the sequence of operator splitting
steps (C1)–(C3) can be repeated for consecutive time-steps.
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