Summary
    Background: Activities of the anti-TNFs, certolizumab pegol (CZP), etanercept (ETA), infliximab (IFX) and adalimumab (ADA), have been compared in a range of in vitro assays. CZP is the only licensed PEGylated Fab' anti-TNF; ETA is a fusion protein with an IgG1 Fc, and IFX and ADA are both antibodies with an IgG1 Fc. Golimumab (GLM) is a monoclonal IgG1 TNF inhibitor recently approved for a number of indications; it is thus of interest to assess the in vitro activity of GLM. In vitro assays previously used were neutralisation of TNF in the L929 bioassay, inhibition of LPS-driven cytokine production by monocytes, induction of apoptosis in activated lymphocytes and monocytes, and induction of neutrophil necrosis. Methods: Neutralisation of human TNF was assessed in the L929 bioassay using a range of concentrations of the anti-TNFs and a fixed concentration of TNF (100 pg/mL). Activity of the anti-TNFs at inhibiting LPS-driven IL-1β secretion by monocytes was assessed by incubating peripheral blood monocytes with various concentrations of the anti-TNF for 1 hour (hr) and then washing the cells. LPS was added for 4 hrs, the supernatants collected and the IL-1β level measured by ELISA. To assess induction of apoptosis, peripheral blood lymphocytes were activated for 2 days with 2 μg/mL CD3/CD28 and monocytes with 300 U/mL IL-4 and GMCSF for 3 days. The effect of the anti-TNFs on apoptosis was assessed by Annexin V staining using flow cytometry 24 hrs later. The effect of the anti-TNFs on neutrophil necrosis was determined by measuring myeloperoxidase release after 12 hrs. An isotype-matched control was used in all assays except the L929 bioassay. Results: IC90 neutralisation activity of the anti-TNFs in the L929 bioassay was 0.3 ng/mL for ETA, 4 ng/mL for GLM, 15 ng/mL for ADA, and 20 ng/mL for IFX, compared with 2.5 ng/mL for CZP. CZP was the most potent inhibitor of LPS-driven IL-1β secretion (IC50 ∼0.1 ng/mL), followed by GLM (20 ng/mL) and IFX (50 ng/mL). GLM, ADA, IFX and ETA induced apoptosis of monocytes and lymphocytes to a similar degree reaching a level of 23% and ∼40% at 100 μg/mL, respectively. CZP caused no increase in apoptosis above the levels seen with the isotype-matched control. In the neutrophil necrosis assay, ADA,IFX and GLM caused ∼70% necrosis at 100 μg/mL, and ETA 48%. CZP did not increase the level of necrosis above the level of the control. Conclusions: Bioactivity of the IgG1 molecules GLM, IFX and ADA in neutralising human TNF was inferior to that of CZP and ETA. CZP, the only PEGylated anti-TNF, had a different profile to the other anti-TNFs as it was the most potent at inhibiting LPS-driven IL-1β production by monocytes, did not induce apoptosis of activated monocytes and lymphocytes, and did not cause neutrophil necrosis. The clinical relevance of these in vitro effects is unknown. Nevertheless, these assays show interesting in vitro differences between the anti-TNFs. Disclosure statement: G.F. and A.N. are employees of UCB