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There is compelling evidence that preconditioning occurs in humans. Experimental studies with

potential clinical implications as well as clinical studies evaluating ischaemic, pharmacological

and anaesthetic cardiac preconditioning in the perioperative setting are reviewed. These

studies reveal promising results. However, there are con¯icting reports on the ef®cacy of pre-

conditioning in the diseased and aged myocardium. In addition, many anaesthetics and a signi®-

cant number of perioperatively administered drugs affect the activity of cardiac sarcolemmal

and mitochondrial KATP channels, the end-effectors of cardiac preconditioning, and thereby

markedly modulate preconditioning effects in myocardial tissue. Although these modulatory

effects on KATP channels have been investigated almost exclusively in laboratory investigations,

they may have potential implications in clinical medicine. Important questions regarding the

clinical utility and applicability of perioperative cardiac preconditioning remain unresolved and

need more experimental work and randomized controlled clinical trials.
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Brief episodes of sublethal cardiac ischaemia protect against

subsequent prolonged ischaemia. The phenomenon is

termed `preconditioning' and represents an endogenous

protective mechanism inherent to all tissues with high-

energy consumption. Preconditioning has been described in

the kidney,95 liver,73 small intestine,67 lung52 and brain.27 It

is tempting to speculate that this protective adaptive

mechanism developed during the evolutionary process to

increase cell survival within specialized tissues in response

to temporal shortages of nutrient supply and repetitive

noxious stimuli.

Part I of this review108 focused on the important

signalling steps and the cytoprotective mechanisms under-

lying ischaemic, pharmacological and anaesthetic-induced

preconditioning in cardiac tissue. Particularly, it noted that

volatile anaesthetics and opioids induce cardiac precon-

ditioning. The signalling cascades involve alterations in

nitric oxide and free oxygen radical formation and several

G-protein-coupled receptors (adenosine and a/b-adrenergic

receptors), and point to the key role of protein kinase C

(PKC) as a signal ampli®er and to the KATP channels as the

main end-effectors in preconditioning. Laboratory investi-

gations also stress the concept that anaesthetics may

precondition endothelial and smooth muscle cells, the

main components of blood vessels.17 As blood vessels are

responsible for the supply of nutrients and oxygen to all

tissues, anaesthetic preconditioning might bene®cially

affect a much wider variety of organs, including the brain,

spinal cord, liver and kidneys.

Part II of this review discusses experimental studies with

clinical implications, and the clinical studies that provide

evidence for perioperative cardiac preconditioning, particu-

larly anaesthetic-induced preconditioning. In addition, the

modulatory effects of anaesthetics and perioperative medi-

cation and the in¯uence of disease states on cardiac

preconditioning are reviewed.

Evidence of preconditioning in humans

Coronary angioplasty, unstable and `warm-up'

angina

The myocardial adaptation observed in patients undergoing

percutaneous transluminal coronary angioplasty (PTCA)
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strongly suggests that preconditioning also occurs in

humans.18 Most, but not all,19 studies have demonstrated

increased tolerance to ischaemia with repeated balloon

in¯ations. A single 90-s balloon occlusion immediately

before angioplasty markedly decreased periprocedural

release of phosphocreatine kinase.45 Unstable angina

occurring in the 24 h before infarction can precondition

the heart,68 and preinfarct angina led to improved long-term

survival compared with patients who were asymptomatic

before the ischaemic insult.42 Both observations may re¯ect

classic or delayed preconditioning. Recently, Leesar and

colleagues50 found that nitroglycerin infusion 24 h before

PTCA with three 2-min balloon in¯ations interspersed with

5 min of reperfusion markedly enhanced tolerance of

ischaemia, using ST-segment changes, ischaemic dysfunc-

tion and chest pain as the study end-points. This is the ®rst

study which provides evidence that delayed preconditioning

also occurs in humans. It also showed that collateral vessel

recruitment is not involved in the observed improvement

and that early preconditioning effects, as assessed by ST-

segment changes, occur after only two 2-min episodes of

ischaemia. Another clinical correlate of preconditioning is

so-called warm-up angina, a phenomenon which describes

relief of anginal pain in response to increased duration of

exercise.65 Consistent with an early and delayed window of

protection, patients with stable angina exhibit less stunning

after exercise-induced myocardial ischaemia, or if a

preceding exercise was performed, they had improved

exercise tolerance 24 h after the exercise.15

Ischaemic preconditioning in coronary artery bypass

surgery

On-pump procedures

Patients undergoing coronary artery bypass graft (CABG)

surgery are an ideal model for studying the effects of

preconditioning. Intermittent ischaemia achieved by aortic

cross-clamping in a ®brillating heart during CABG surgery

was used by Jenkins and colleagues34 to evaluate the

ischaemic preconditioning effect. Two cycles of 3-min

ischaemic episodes (induced by intermittent aortic cross-

clamping and pacing the heart at 90 beats min±1), each

followed by 2 min of reperfusion before a prolonged

ischaemia of 10 min (induced by aortic cross-clamping), led

to increased ATP preservation and decreased troponin T

release compared with untreated patients. A 1-min episode

of aortic cross-clamping before cold-blood cardioplegia

followed by 5 min of reperfusion signi®cantly improved

heart function 1 h after surgery in another study, and

decreased the need for inotropic support in patients

undergoing open-heart surgery.30 Similarly, improved car-

diac function, and decreased release of phosphocreatine

kinase MB isoenzyme was shown in patients undergoing

valve replacement when receiving two cycles of 3 min of

aortic cross-clamping, each followed by 2 min of

reperfusion before cardioplegic arrest.56 However, one

trial with patients undergoing CABG surgery using one

3-min episode of aortic cross-clamping before the onset of

warm-blood cardioplegic arrest failed to show bene®cial

effects, but rather exhibited exacerbated ischaemic

damage.74 Increased phosphocreatine kinase release and

lactate production were observed in these patients. It is

assumed that protective effects of preconditioning during

CABG surgery may only become demonstrable if cardio-

plegic protection is inadequate8 or ischaemic times are

long.12 In addition, differences in surgical techniques

(normothermic vs hypothermic, ®brillation vs cardioplegic

arrest) and study end-points (haemodynamic vs metabolic vs

cardiac enzymes vs clinical outcome variables) make a

direct comparison between these studies impossible.

Off-pump procedures

In off-pump, beating-heart CABG surgery, temporary

segmental occlusion of coronary arteries is required for

successful suturing of the anastomosis. Ischaemic pre-

conditioning may be used to preserve cardiac function

during this critical time. Jacobson and colleagues33 reported

favourable effects of ischaemic preconditioning on

pressure-area loops, as assessed by transoesophageal

echocardiography, in patients undergoing minimally inva-

sive CABG. A recent study in patients undergoing off-pump

CABG surgery46 investigated whether ischaemic precondi-

tioning by occluding the left anterior descending coronary

artery before bypass grafting would enhance myocardial

performance. Decreased myocardial enzyme release and

increased myocardial function was observed in precondi-

tioned patients. Conversely, Malkowski and colleagues58

did not observe functional improvement by ischaemic

preconditioning during minimally invasive CABG surgery.

Vigorous surgical manipulations and pharmacological

stimulation by catecholamines with the potential to induce

preconditioning may overwhelm any bene®t from thera-

peutic ischaemia.57

Volatile anaesthetic-induced preconditioning in
CABG surgery

Volatile anaesthetics are well suited to preconditioning

during the operative period as they can be administered via

the ventilator or the cardiopulmonary bypass oxygenator.

Only a few, small studies have investigated the precondi-

tioning effects of volatile anaesthetics in human myocar-

dium (Table 1). So far, three studies have evaluated the

preconditioning effects of iso¯urane3 25 93 and one the

effects of en¯urane72 on either post-ischaemic cardiac

dysfunction or the release of cardiac injury markers in

patients undergoing CABG surgery under cardioplegic

arrest. A small study compared sevo¯urane with propofol

anaesthesia in CABG patients and found improved post-

operative myocardial function in the sevo¯urane patients.16

This study of only 20 patients further claimed that
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sevo¯urane would decrease the release of cardiac troponin I,

which is surprising considering the marked variability

between patients and the large number of surgical

techniques.16 Nonetheless, pharmacological induction of

preconditioning, in contrast to classic ischaemic precondi-

tioning, would be desirable, speci®cally in high-risk patients

such as CABG surgery patients, in whom an ischaemic-type

of preconditioning may further jeopardize diseased myo-

cardium. Tomai and colleagues93 gave iso¯urane for 15 min

at 1.5 vol/vol % through the ventilator followed by a

washout period of 10 min before starting cardiopulmonary

bypass. No differences in haemodynamic variables, such as

cardiac index and left ventricular ejection fraction, were

found between control and preconditioned groups.

However, a decrease in postoperative phosphocreatine

kinase MB and troponin I release could be detected in

patients with a poor preoperative left ventricular ejection

fraction (<50%) (Table 1). Conversely, when administering

iso¯urane 0.5±2 vol/vol % shortly before cardiopulmonary

bypass through the ventilator, Haroun-Bizri and col-

leagues25 demonstrated improved haemodynamic recovery

and decreased ST-segment changes, but no reduction in

dysrhythmias in the immediate reperfusion period.

Administration of iso¯urane 2.7 vol/vol % for 5 min on

established cardiopulmonary bypass followed by a 10-min

washout period before aortic cross-clamping only showed a

tendency to lower phosphocreatine kinase MB isoenzyme

and troponin I release (not statistically signi®cant).3 Penta

de Peppo and colleagues72 applied en¯urane 1.3 vol/vol %

over 5 min immediately before cardiopulmonary bypass.

Preconditioning afforded increased left ventricular contrac-

tility, but no decrease in perioperative phosphocreatine

kinase MB isoenzyme or cardiac troponin T release was

noted. As raised concentrations of myocardial enzymes after

CABG surgery can occur from cannulation of the right

atrium, cardioplegia, inadequate delivery of cardioplegia

in the presence of stenosis or hypertrophy, vigorous

manipulations of the heart, prolonged surgery and

differences in surgical techniques, they may not properly

re¯ect the protection afforded by preconditioning.

Collectively, these data provide some evidence that volatile

anaesthetics may protect human hearts by anaesthetic

preconditioning.

Preconditioning signal transduction pathways in
human myocardium

Experimental studies on human tissue and clinical studies

with patients support the concept that the signalling

pathways that mediate preconditioning in humans are the

same as those observed in animal models. The signalling

steps and the cytoprotective mechanisms of ischaemic and

anaesthetic preconditioning were described in detail in Part

I of this review.108

Human cardiomyocytes and myocardial tissue

The involvement of a1-adrenergic receptors, bradykinin B2

receptors, adenosine 1, PKC and KATP channels (including

mitochondrial channels) in human cardiomyocytes and

myocardial tissue has been demonstrated.11 13 Cytosol-to-

membrane translocation in response to adenosine stimula-

tion was previously shown for the a isoform of PKC in

human cardiomyocytes.29 Many of these signalling

components, including adenosine receptors, adrenergic

receptors and the sarcolemmal and mitochondrial KATP

channels, were also demonstrated to be related to the

preconditioning elicited by volatile anaesthetics in human

tissue.24 78

Clinical studies

Adenosine antagonists such as aminophylline and bami-

phylline can prevent adaptation to ischaemia during

repeated balloon in¯ation,90 and intracoronary adenosine

and bradykinin administration was as effective as ischaemic

preconditioning.49 51 Also, adaptation to ischaemia can be

induced by morphine and abrogated by naloxone92 or

phentolamine,91 suggesting that opioid and a-adrenergic

receptors play an important role in human myocardium.

Involvement of PKC and KATP channels was shown in some

clinical studies. Ecto-5¢-nucleotidase, a marker of PKC

activity, was increased in response to iso¯urane adminis-

tration in patients undergoing CABG surgery.3 Nicorandil, a

mitochondrial KATP channel opener, reduces ST-segment

changes in patients undergoing PTCA, and perioperatively

in patients undergoing abdominal surgery.36 Clinically used

oral sulfonylurea agents, used to treat type II diabetes

mellitus and potent blockers of the KATP channels,

effectively abolish cardiac preconditioning.41

Modulatory effects of anaesthetics and
perioperative medication on cardiac
preconditioning

Anaesthetics

Many anaesthetics have profound effects on sarcolemmal

and mitochondrial membranes, the putative sites of the end-

effectors for preconditioning, at concentrations as low as

those known to produce general anaesthesia. It is therefore

not surprising that cardiac preconditioning can be prevented

by different anaesthetics. Anaesthetics with mostly inhibi-

tory or no effects on KATP channels are listed in Table 2.

Inhibition of this important endogenous protective mech-

anism may be a hazard. To date, there are only sparse

clinical data addressing this important topic.100 In rabbit

hearts, racemic ketamine, but not the stereoisomer S-

ketamine, was found to block early and late

preconditioning.63 64 Racemic ketamine and the stereo-

isomer of ketamine were also shown to block both types

of KATP channel in isolated rat cardiomyocytes.43 107

Similarly, the barbiturate thiamylal,99 which closely

Anaesthetics and cardiac preconditioning
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resembles thiopental in its chemical structure, inhibits

sarcolemmal KATP channels. Two laboratories independ-

ently showed that commonly used barbiturates inhibit

mitochondrial KATP channel activity.44 107 No inhibitory

effects on mitochondrial KATP channels were found for

xylazine, an a2-adrenergic agonist similar to clonidine,

dexmedetomidine and mivazerol.108 Similarly, propofol,

etomidate and midazolam did not have any effect on KATP

channels or ischaemic myocyte survival in a rat model.37 107

Taken together, these studies support the concept that

certain anaesthetics may antagonize the protective effects of

preconditioning.

Perioperative medication

Frequently used drugs that may inhibit or enhance

ischaemic preconditioning are listed in Table 3.

Sulfonylurea hypoglycaemic agents prevent ischaemic

preconditioning13 and are thought to be responsible, in

part, for the reported increase in cardiovascular mortality in

patients treated with these agents.20 61 However, this has

been questioned recently.22 Importantly, recent observa-

tions in type-2 diabetes patients suggest that glibenclamide-

induced inhibition of preconditioning-related cardioprotec-

tion can be prevented by changing the antidiabetic treatment

to insulin.82 Because b-blockers are thought to have

bene®cial perioperative effects109 110 and to reduce early76

and late60 perioperative cardiovascular morbidity and

mortality, the suggested inhibitory effects of b-blockers

on cardiac preconditioning (Table 3) appear somewhat

con¯icting, with their strong perioperative cardioprotection.

However, metoprolol, a pure b-blocking agent, did not

neutralize the favourable effects of preconditioning in

pigs.103 In addition, b-adrenergic receptors represent only

one signalling pathway by which preconditioning can be

triggered, and speci®c alterations in the diseased heart, such

as downregulation of G-protein-coupled receptors, may

diminish the protective effects of preconditioning.

Effects of preconditioning in the aged and
diseased heart

Most experimental studies have evaluated the phenomenon

of preconditioning in healthy juvenile hearts. This approach

is far from clinical reality, as diseased myocardium would

bene®t most from this protection. Some clinical and

experimental studies provide evidence that diseased myo-

cardium may be less amenable to the protective effects of

preconditioning (Table 4).

Ageing

Preconditioning protection may be lost in aged myocar-

dium. Even worse, increased deleterious effects of ischae-

mia were reported in preconditioned aged rat hearts.88 This

effect appears to be due to the insuf®cient translocation of

PKC isoforms in response to the preconditioning stimulus.87

These experimental ®ndings are supported by two clinical

studies in which the anti-arrhythmic and infarct-limiting

effects of prodromal angina were lost in elderly patients

with myocardial infarction.1 32 In contrast, JimeÂnez-Navarro

and colleagues35 found that the occurrence of angina 1 week

before myocardial infarction still conferred protection

against in-hospital adverse outcomes in patients aged

>70 yr. However, a more recent clinical study in patients

undergoing PTCA, comparing ischaemic preconditioning in

younger (45 (SD 5) yr) and elderly patients (71 (3) yr), also

suggests that ischaemic preconditioning is attenuated in the

aged human myocardium, most probably as a result of age-

related inhibitory effects upstream of the mitochondrial

KATP channels.48

Metabolic dysfunction: hypercholesterolemia and

diabetes

Rabbit myocardium loses its preconditioning-induced pro-

tection when exposed to a cholesterol-enriched diet for more

than 4 weeks,85 and markedly increased serum glucose

concentrations (>500 mg dl±1) can inhibit KATP channel

Table 2 Intravenous anaesthetics with inhibitory effects or no effects on mitochondrial and sarcolemmal KATP channels. ¬®=no effect; =increased effect;

¯=decreased effect. #Only at high concentrations

Anaesthetic drug Mitochondrial KATP

channel activity
References Sarcolemmal KATP

channel activity
References

R-ketamine ¯ 63, 64, 107 ¯ 43, 63, 64

S-ketamine ¬® 107 ?

Propofol ¬® (¯#) 37, 44, 107 ¬® (¯#) 37

Etomidate ¬® 107 ?

Thiopental ¯ 107 ?

Midazolam ¬® 107 ?

Pentobarbital (used in the laboratory) ¯ 44, 107 ¯ 23

Thiamylal (used in the laboratory) ? ¯ 100

Xylazine (used in the laboratory) ¬® 107 ?
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activation per se.38 Tosaki and colleagues96 reported a loss

of protection by preconditioning in streptozotocin-induced

diabetic rat hearts. Conversely, Liu and colleagues54

demonstrated that preconditioning reduces infarct size in

non-insulin-dependent diabetic rats to the same extent as in

normal hearts. One study found less pronounced release of

cardiac enzymes in preconditioned isolated perfused hearts

of streptozotocin-treated diabetic rats compared with

preconditioned hearts of normal rats.89 More recently,

iso¯urane-induced preconditioning was found to be attenu-

ated in diabetic dogs.86 Some of these experimental results

are consistent with clinical observations in which prodromal

angina did not limit infarct size, enhance recovery of

myocardial function or improve survival in diabetic patients

with myocardial infarction, as opposed to non-diabetic

patients.31

Remodelled heart

The effects of preconditioning have been shown to be

operative in three rat models of hypertrophied myocardium

(deoxycorticosteroid-treated and salt-fed rats,83 spon-

Table 3 Modulatory effects of medication on cardiac preconditioning. NSAIDs=non-steroidal anti-in¯ammatory drugs; COX-2=cyclooxygenase 2

Preconditioning  Preconditioning ¯

Adenosine receptor agonists49 Adenosine receptor antagonists90

Including nucleotide transporter inhibitors (acadesine,7 59 dipyridamol70) Theophylline, aminophylline

KATP channel openers KATP channel blockers

(Nicorandil,71 diazoxide, cromakalim, levosimendan,39 minoxidil,

benzocaine, p-diethylaminoethylbenzoate), including the uncoupler of

oxidative phosphorylation: bupivacaine, ropivacaine, most NSAIDs84

Sulfonylurea agents, including antidiabetic drugs: glibenclamide, glyburide.

Much less: glimepiride,41 and anticancer drugs (diarylsulfonylurea),84

lidocaine, mexiletine98

Opioid agonists (probably via d1) Opioid antagonists

Morphine,80 pentazocine, fentanyl Naloxone92

b-Adrenergic receptor agonists104 b-Adrenergic receptor antagonists55

Isoproterenol, norepinephrine, epinephrine. Some b-blockers with

auxiliary effects may enhance preconditioning,109 such as carvedilol,66

nipradilol28 and nebivolol

Including drugs which deplete myocardial tissue of catecholamines, such

as reserpine94

a1-Adrenergic receptor agonists102 a1-Adrenergic receptor antagonists

Phenylephrine, norepinephrine Phentolamine

M2-muscarinic receptor agonists5 M2-muscarinic receptor antagonists

Acetylcholine esterase inhibitors Atropine

Nitric oxide releasers Nitric oxide scavengers

Nitroglycerin,50 nitroprusside, L-arginine Vitamin E?

Ca2+ 62 Ca2+ channel blocker

Nifedipine101

B2-bradykinin receptor agonists51 81

Angiotensin converting enzyme inhibitors: captopril, lisinopril, enalapril

AT1-receptor antagonists9

Statins

Lovastatin, pravastatin, via activation of ecto-5¢-nucleotidase47

Flumazenil106

Amrinone79

Digoxin26

Gadolinium75

Aprotinin6

COX-2 inhibitors4

Table 4 Factors affecting the ef®cacy of cardiac preconditioning. ¬®=no effect; =increased effect; ¯=decreased effect

Factors/disease states Ischaemic
preconditioning

References Anaesthetic
preconditioning

References

Diabetes ¯/¬®/ 31, 38, 54, 96 ¯ 86

Medication ¯/¬®/ (Table 3 in present paper) ¯/¬®/ (Table 3 in present paper)

Increased age ¯/¬® 1, 32, 35, 48, 87, 88 ?

Raised plasma cholesterol ¯ 85 ?

Coronary artery disease (ischaemic cardiac remodelling) ¯/¬® 48, 53 ?

Arterial hypertension (hypertrophic cardiac remodelling) ¯/¬® 5, 69, 77, 83 ?
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taneously hypertensive rats5 and transgenic hypertensive

rats77). Conversely, in a dog model of hypertrophy (aortic

stenosis), there was no evidence of cardioprotection with

preconditioning.69 Results from muscle slices of human

right atrial appendages of patients with a left ventricular

ejection fraction <30% indicate that failing human myo-

cardium is much less amenable to ischaemic precondition-

ing.21 In contrast, successful preconditioning can be

established in severely atherosclerotic knockout mice

(ApoE/LDLr±/±).53

Questions and perspectives

Preconditioning by anaesthetics represents a promising new

therapeutic strategy in patients undergoing PTCA, CABG

surgery (including off-pump procedures) or valve replace-

ment, and in the preservation of donor hearts.40

Pharmacological preconditioning may even exert better

protection than ischaemic preconditioning.97 However, in

short surgical procedures with optimal cardioplegic protec-

tion or short ischaemic periods, loss of function and cell

death may be negligible. Furthermore, it remains to be

established whether diseased and aged myocardium can be

preconditioned in the same manner as healthy myocardium.

Although it is possible to re-initiate preconditioning once it

has worn off,105 there is currently sparse experimental

evidence indicating that cardiac tissue can be constantly

maintained in a protective preconditioned state. Dana and

colleagues14 showed in a rabbit model that repeated

administration of an adenosine receptor agonist, with a

48-h interval schedule, can maintain the heart in a protective

state against myocardial infarction with no evidence of

tachyphylaxis. However, continuous stimulation of the

preconditioning mechanism may lead to tachyphylaxis. In

this regard, late preconditioning may be more attractive,

though less effective. Late preconditioning has been

demonstrated for opioids, but not for volatile anaesthetics.

Moreover, silent ischaemia, overt angina or warm-up angina

may already precondition high-risk cardiac patients and

thereby abrogate the bene®cial effects of pharmacological

interventions. Recently, Aitchison and colleagues2 pre-

sented experimental evidence that there may exist an `anti-

preconditioned' state of the myocardium. By means of

pre-ischaemic transient k1-opioid receptor stimulation in

isolated perfused rat hearts, a sizeable increase in infarct

size compared with ischaemia alone was achieved. This

observation implies that transient receptor stimulation may

make the heart more vulnerable to necrosis (`death memory'

vs `survival memory' by preconditioning). The discovery of

pro-injurious anti-preconditioning effects opens up a fas-

cinating ®eld for future studies in experimental and clinical

cardioprotection. Some of the commonly used perioperative

medications may induce anti-preconditioning in cardiac

tissue and thereby affect outcome. Prophylactic treatment

with pharmacological preconditioning should be used with

extreme care. The combination of ischaemic precondition-

ing and antecedent prophylactic treatment with nicorandil

can abolish the protection afforded by ischaemia in human

trabeculae,10 and halothane can inhibit the effects of

hypoxic preconditioning.78 No direct extrapolation should

be made from theoretical experimental knowledge, and the

effects of each preconditioning protocol need to be evalu-

ated in randomized controlled trials.

Conclusions

Cardiac preconditioning is an area of basic research with

clinical relevance. Human myocardium is amenable to this

form of protection. Although the key signalling steps and

ultimate cellular protective mechanisms underlying cardiac

preconditioning have been unravelled, many questions

remain unresolved, particularly with respect to the aged

and diseased myocardium. The concept that many anaes-

thetics interact with the endogenous cardioprotection

elicited by preconditioning should be considered carefully

in experimental and clinical medicine. Although there is

some promising evidence that anaesthetic preconditioning

may improve the perioperative cardiovascular outcome in

patients at high risk of cardiovascular complications, its

de®nitive role in clinical practice needs to be established in

randomized controlled clinical trials.
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Addendum

Anaesthetic-induced preconditioning in humans

During the review process of this article, a double-blinded,

placebo-controlled study on the protective effect of

sevo¯urane preconditioning in 72 patients undergoing

CABG surgery was published by Julier and colleagues.111

Sevo¯urane preconditioning signi®cantly decreased post-

operative release of NT-proBNP (N-terminal pro-brain

natriuretic peptide), a sensitive biochemical marker of

myocardial contractile dysfunction. Pronounced PKC d and

e translocation was observed in sevo¯urane-preconditioned

myocardium. In addition, the postoperative cystatin C

plasma concentration (a more sensitive marker of subtle

changes in renal glomerular ®ltration rate than plasma

creatinine) increased signi®cantly less in sevo¯urane-

preconditioned patients. No differences between groups

(sevo¯urane vs placebo) were found for perioperative

ST-segment changes, arrhythmias or phosphocreatine

kinase-MB and cardiac troponin T release. In summary,
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sevo¯urane preconditioning preserves myocardial and renal

function, as assessed by biochemical markers in patients

undergoing CABG surgery. This suggests that anaesthetic

preconditioning may elicit more global protection. In

contrast, Pouzet and colleagues,112 assessing the activation

of PKC, p38 mitogen-activated protein kinase and tyrosine

kinase in atrial biopsies of 20 sevo¯urane-preconditioned

patients undergoing CABG surgery, did not observe

signi®cant differences in enzyme activities compared with

control patients. However, all kinases were signi®cantly

activated, probably as a result of the stimulus by the

cardiopulmonary bypass. No decrease in cardiac troponin I

release was reported in patients preconditioned with

sevo¯urane.

Preconditioning-inducing drugs

Lee and colleagues113 demonstrated that administration of

oestrogen in women undergoing coronary angioplasty

diminishes signs of myocardial ischaemia, as assessed by

ECG. Another study showed infarct size-limiting effects by

sildena®l (Viagra) mediated by mitochondrial KATP

channels in a rabbit model of regional ischaemia.114
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