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BACKGROUND: Identification of embryos with high implantation potential remains a challenge in in vitro fertiliza-
tion (IVF). Subjective pronuclear (PN) zygote scoring systems have been developed for that purpose. The aim of this
work was to provide a software tool that enables objective measuring of morphological characteristics of the human
PN zygote. METHODS: A computer program was created to analyse zygote images semi-automatically, providing
precise morphological measurements. The accuracy of this approach was first validated by comparing zygotes
from two different IVF centres with computer-assisted measurements or subjective scoring. Computer-assisted
measurement and subjective scoring were then compared for their ability to classify zygotes with high and low implan-
tation probability by using a linear discriminant analysis. RESULTS: Zygote images coming from the two IVF centres
were analysed with the software, resulting in a series of precise measurements of 24 variables. Using subjective
scoring, the cytoplasmic halo was the only feature which was significantly different between the two IVF centres. Com-
puter-assisted measurements revealed significant differences between centres in PN centring, PN proximity, cyto-
plasmic halo and features related to nucleolar precursor bodies distribution. The zygote classification error
achieved with the computer-assisted measurements (0.363) was slightly inferior to that of the subjective ones
(0.393). CONCLUSIONS: A precise and objective characterization of the morphology of human PN zygotes can be
achieved by the use of an advanced image analysis tool. This computer-assisted analysis allows for a better morpho-
logical characterization of human zygotes and can be used for classification.
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Introduction

In vitro fertilization (IVF) is a common technique in medi-

cally assisted reproduction that has been continuously

improved during the last few decades. Despite progress in

the IVF technique itself, only a minority of the in vitro-

generated embryos have the ability to implant and to give a

viable pregnancy, probably because of intrinsic characteristics

of the gametes. To increase the probability of implantation,

several embryos are usually transferred at the same time in

each patient. The drawback of this practice is a high fre-

quency of multiple pregnancies that often lead to dramatic

health and economic problems. To avoid multiple pregnancies

and to guarantee high pregnancy rates, the transfer of a single

embryo with high implantation potential would be the ideal

strategy.

Identifying embryos with high implantation potential

remains a challenge in IVF and different approaches have

been adopted for that purpose. The most widely supported

strategy to choose viable embryos is to rely on the number of

blastomeres and the grade of the embryos at the time of

embryo transfer. However, these morphological aspects do

not correlate sufficiently with the embryonic viability to

allow a univocal microscopic recognition of the embryos

able to produce a viable pregnancy. A number of other strat-

egies have thus been proposed to improve the prognostic evalu-

ation of embryo viability, including selection of early cleaving

embryos (Shoukir et al., 1997), culture up to the blastocyst

stage (Gardner et al., 1998) and scoring of pronuclear (PN)

stage zygotes (Ebner et al., 2003). Unfortunately, legal con-

straints in some countries prevent the use of approaches invol-

ving embryo selection. In Switzerland, identification of

potentially viable embryos is thus limited either to oocytes

prior to fertilization or to PN stage zygotes (Germond and

Senn, 1999).
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Several features of the PN zygotes (see Fig. 1), including the

cytoplasmic halo, the position of the PN and the number and

distribution of nucleolar precursor bodies (NPB) in PN, have

been proposed as indicators of embryo viability and chromoso-

mal normality (Garello et al., 1999; Tesarik and Greco, 1999;

Scott et al., 2000; Senn et al., 2006; Gianaroli et al., 2007). PN

zygote scoring systems have been developed, focusing on a

single or on a series of features, but all having in common a

subjective microscopic observation of zygotes. No study has

so far specifically attempted to evaluate the contribution of

morphological characteristics automatically detected by an

advanced image analysis tool. The aim of the present study

was to provide a software tool that enables objective measuring

of morphological characteristics, which may be used as poss-

ible markers of future embryo developmental competence.

For that purpose, an ImageJ plug-in was created that allows

the measurement of a large number of morphometrical features

of the human PN zygote.

Materials and Methods

Patients

Patients undergoing IVF (or ICSI) treatments at the Centre of Medi-

cally Assisted Reproduction in Lausanne (Group I) and at the

Women’s General Hospital in Linz (Group II) were included in this

study (Table I). For both groups, all the patients of consecutive IVF

or ICSI cycles occurring during a 6 month period were retained,

without any patient selection. Due to national legal constraints, the

embryo selection strategy was different between the two groups. For

Group I, 1–3 PN zygotes were randomly allocated for transfer after

fertilization assessment, while all the others were immediately

frozen. For Group II, all zygotes were cultured until transfer on Day

2 or 3, and 1–3 of the best embryos were chosen for transfer.

Another group of 107 patients from Group III, for whom all trans-

ferred zygotes (n = 206) had a known implantation outcome, was used

for a zygote classification test (see classification of zygotes). In this

group, all the implanted zygotes (n = 84) originated from single or

twin pregnancies after the transfer of one or two embryos, respect-

ively. Embryos were considered as implanted when a gestational sac

with fetal heartbeat was observed by ultrasound, 5–6 weeks after

embryo transfer.

Image acquisition

Zygotes were observed at the PN stage 17–20 h after insemination

under an inverted microscope equipped with a Hoffman modulation

contrast (Hoffman and Gross, 1970; Murphy, 2001). An Octax

Eyeware camera (Octax, MTG, Herborn, Germany) attached to the

microscope was used to acquire zygote digital images that were

then stored in the Eyeware database until image processing. Images

of PN zygotes with different magnification (Fig. 1) were provided

by the Centre of Medically Assisted Reproduction in Lausanne (201

images) and by Dr T. Ebner from the General Woman Hospital in

Linz (188 images). All the photographed zygotes analysed in this

study corresponded to the transferred embryos.

Image processing

Photographed zygotes were subjectively scored according to Senn

et al. (2006) and objectively analysed by using the computer-assisted

method.

In subjective scoring, scores were assigned to the six following par-

ameters: centring of the two PN, proximity of PN, orientation of PN

with respect to polar bodies, number of NPB, polarization of NPB

and cytoplasmic halo. Scores ranged from 1 (worst) to 3 (best).

A cumulated pronuclear score, ranging from 6 to 18, was obtained

by adding the six individual scores.

In the computer-assisted method, a plug-in of the image processing

ImageJ (http://rsb.info.nih.gov/ij) was created in Java programming

language to quickly analyse zygote digital images and to minimize

subjectivity (the plug-in accessible from http://biolab.uspceu.com/
recursos.php). We developed a sequence of image-processing steps

leading to the measurement of 24 morphological features related to

the six characteristics pointed out by Senn et al. (2006). Our image-

processing steps can be visualized in Fig. 2 and are briefly summarized

as follows:

† Automatic detection of the oolemma

† Semi-automatic detection of the cytoplasmic halo

† NPB manual selection

Figure 1: Images of human pronuclear stage zygotes of Group I (top)
and Group II (bottom).

Table I. Zygotes from Groups I and II.

Group I Group II

Number of patients 98 112
Age, Mean+SD 36.5+4.1 33.3+4.4
Number of transferred embryos 188 201
Number of implanted embryos (%) 28 (14.8) 62 (30.8)
Number of pregnancies (%) 27 (27.5) 53 (47.3)
Number of zygote imagesa 188 201

aAll the zygote images corresponded to the transferred embryos.
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† Semi-automatic detection of PN

† Polar bodies manual selection

† Morphological measurements

Automatic detection of the oolemma

The oolemma detection was performed in several steps:

Foreground detection. First, the region with the central oocyte is sep-

arated from the background. For this, we perform a segmentation by

region on the basis of the four image corners. We assume that each

corner belongs to the image background and is characteristics of a

region when Iðx:yÞ � m̂ð Þ=s½ � < 0:1; where I(x,y) is the image pixel

being considered, m̂ is the current estimate of the mean grey value

for this region and s is the current estimate of SD of the grey values

within the region. Each time a pixel is accepted as belonging to the

region, the statistical estimates are updated. The four regions are con-

sidered to belong to the background of the image, whereas the rest of

the pixels are considered to be the foreground containing the

oolemma. The pixels in the border between the foreground and the

background are selected and an ellipse is fitted to these pixels as

suggested by Fitzgibbon et al. (1999). The Hough transform (Illing-

worth and Kittler, 1988) could have been used in order to find the

best fitting ellipse. However, the computational cost of the Hough

transform exceeds that of the algorithm proposed by Fitzgibbon.

Figure 3 shows the result of this foreground detection. Note that if

one of the corners is occupied by another oocyte, it does not hinder

the right detection of an ellipse within which the oolemma lies.

Next, the smallest rectangular image enclosing the foreground

ellipse is computed and from this point on, all operations are

applied to this sub image.

Oolemma boundary detection. The second step is to automatically

detect the pixels belonging to the boundary of the oolemma. For

this, we apply a Gaussian blur of radius 2 pixels, and then a Sobel

edge filter. We then binarize using a Lloyd–Max classification with

two classes, morphologically close the image with a square structure

element of two pixels, compute the skeleton of the result, and

finally suppress small blobs by dilating with a square structure

element of one pixel. Figure 4 shows this process.

Oolemma approximation by an ellipse. Finally, an ellipse is fitted

(Fitzgibbon et al., 1999) to the oolemma boundary pixels. The

bottom-right image of Fig. 4 shows the fitted ellipse as a dashed

line.

Figure 2: Computer-dependent measurements of morphological fea-
tures in zygotes.
The oolemma (green) and cytoplasmic halo (black) ellipses have been
drawn as well as the pronuclei circles and nucleolar precursor bodies
(blue and yellow). The axis defined by the two PN has been also drawn
(white) together with the line separating the two PN (white). The red
lines join the two polar bodies with the centre of the white cross.

Figure 3: Detection of an ellipse (foreground) where the studied
oolemma lies.

Figure 4: Detection of oolemma boundary pixels.
(a) original oocyte; (b) oocyte after Gaussian blurring; (c) oocyte after
Sobel filtering; (d) oolemma edges obtained by Lloyd–Max classifi-
cation and morphological closure; (e) oolemma edges after skeletoni-
zation; (f) oolemma edges after blob suppression (the ellipse fitted to
the oolemma is shown as a dashed line in this image).

Quantitative analysis of pronuclear zygote morphology
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Semi-automatic detection of the cytoplasmic halo

The cytoplasmic halo is semi-automatically computed with the help of

a few points (at least 5) selected by the user on the border of the cyto-

plasmic retraction. An ellipse is fitted to these selected points (Fitzgib-

bon et al., 1999). An example of the detection of the cytoplasmic halo

is shown in Fig. 2 as a black ellipse.

NPB manual selection

NPBs are small spots within the PN. These are very difficult to detect

correctly and robustly over a wide range of images. This task requires

significant training and is completely left to the user who must select

them within the image. Furthermore, the NPB positions are used in the

next step for constraining the search of the PN. For this reason, we call

the next step a semi-automatic detection.

PN semi-automatic detection

PN pose two difficulties for correct identification: first, their borders

are faint and sometimes overlap; second, due to the Hoffman modu-

lation, along the PN border there are bright pixels, dark pixels and

pixels of the same greyness as their background (see Fig. 5).

However, semi-automatic detection is possible by applying the fol-

lowing image-processing steps and the knowledge of the NPB

positions:

Light correction. The direction of light is calculated using the inertia

matrix.

where

aðx; yÞ ¼ arctan
@Iðx; yÞ=@y

@Iðx; yÞ=@x

� �
and rIðx; yÞ ¼

@Iðx; yÞ

@x
;
@Iðx; yÞ

@y

� �
:

Derivatives are computed using cubic spline interpolation as

described by Unser et al. (1993). The signs of the image gradient com-

ponents help to disambiguate the quadrant of the gradient angle. In

practice, the partial derivatives @I(x,y)/@x and @I(x,y)/@y are con-

volved with a Gaussian whose SD is 3 in order to avoid instabilities

in the derivative estimation due to image noise.

Calling mij to the ij-th component of the inertia matrix, the angle of

the light can be computed as.

b ¼
2 m01

m00 � m11 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 m2

01 þ ðm00 � m11Þ
2

q

Once the light direction is detected, the image is rotated so that the

light comes from the vertical direction. The rotated image is then fil-

tered vertically with a band pass filter whose transfer function is.

HðzÞ ¼
aðz� z�1Þ

az� ð1þ a2Þ þ az�1
;

where a = 0.98 (this value has been determined empirically).

The resulting band pass filtered image is rotated back b degrees. The

output of this process is an image where the differences in illumination

due to the Hoffman modulation are negligible. The PN are automatically

sought in this light-corrected image. It can be seen in Fig. 6 that the PN

limits are darker than their surroundings in this light-corrected image.

PN detection. The finding of the two PN is performed on the light-

corrected image in a number of steps:

(i) Histogram equalization (Jain, 1989, Chap. 7).

(ii) Blurring with a Gaussian kernel with a SD of 5.

Figure 5: Profile of the grey values along a line in one pronucleus.
It can be seen that along this line one of the borders is a local minimum
(dark border), while the other border is a local maxima (bright border).
Just in the transition between dark and bright borders, there is a region
where the border is of the same intensity as its background.

Figure 6: Left: original oocyte with a thick arrow pointing the light
direction as created by the Hoffman modulation.
(Right) Oocyte after the upwards filtering (two black arrows point the
limits of the PN). (Bottom) Intensity profile of the light corrected
image where the two black arrows indicate the limits of the PN.

Beuchat et al.
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(iii) Edge finding using a Sobel operator. The result of this step and

the previous two on the light-corrected image is shown in Fig. 7

(left).

(iv) The edge image is correlated to a family of PN edge templates.

These templates are produced knowing that the human PN radius

is of a size between 13 and 14 mm. Using the image sampling

rate, this size range translates into a size range expressed in

pixels. There is a PN edge template for every circle with

integer radius within this latter range. The correlation between

the edge image and each of the templates is computed, and for

each pixel the maximum correlation with all possible templates

is kept. The resulting image is referred to as the maximum cor-

relation image, and is also shown in Fig. 7 (right).

(v) The centre of the two PN is sought as the maximum correlation

peaks found within a distance of 13 mm around the correspond-

ing sets of NPBs (previously manually marked by the user).

Polar bodies manual selection

As for the NPBs, the identification of polar bodies is not easily auto-

mated with 100% reliability. However, a trained embryologist can

simply tell the program whether the two polar bodies are visible,

only one is visible or none. When they are seen, the user must indicate

their position.

Morphological measurements

Once the different morphological features of the zygotes have been

detected (automatically, semi-automatically or manually), we associ-

ate a 27-dimensional feature vector to each zygote. The first three

components of this vector are input by the user and they relate to

the zygote treatment (fertilization method and preservation state)

and the presence or absence of polar bodies. The following 24 com-

ponents are computed from the morphological characterization

described in previous sections. As exemplified in Fig. 2, these com-

puted components largely remove the subjectivity introduced in the

zygote scoring scheme previously proposed by Senn et al. (2006).

Classification of zygotes

Zygotes belong to two classes, representing zygotes with low and high

implantation probability, respectively. Zygotes of Group III were

assigned to either class by using linear discriminant analysis (LDA)

after subjective scoring and computer-assisted measurements. LDA

is a classification technique (Webb, 2002) that, given a feature

vector x (in the case of the vector of subjective scores), aims at clas-

sifying it in one of two classes (in our case, the classes of zygotes with

high and low implantation chances respectively). This is done with the

help of a linear function h(x) = wx = w0, where w is a weight vector,

and w0 is a threshold. If, for a given x, h(x) , 0, then it is classified

as belonging to class of low implantation probability; while if

h(x) � 0, then it is classified as belonging to the class of high implan-

tation probability. In the scheme proposed in Senn et al. (2006), a

decision rule was proposed based on the accumulated experience

that zygotes with a score of 15 or larger had more chances to success-

fully implant. From a classification point of view, this decision rule

corresponds to a LDA with w = (1,1,...,1)t and w0 = 215. Error rates

of classification were determined by using k-fold cross validation

when either subjective scoring or computer-assisted objective

measurements were used to characterize zygotes.

Statistical tests

The non-parametric Mann–Whitney U test was used to test whether

different groups of measures were drawn from the same distribution

(P-values of this test are shown in Tables II, III and IV). Student’s

t-test was used to compare error rates of classification. Differences

were considered as significant when P , 0.05.

Results

According to Senn et al. (2006), zygotes were scored 1, 2 or 3,

for the following six features: centring of the PN, proximity of

the PN, orientation of the PN in respect to the polar bodies,

total number of NPB, polarization of NPB and cytoplasmic

halo. Zygotes were also subjected to the computer-assisted

method proposed in this article. The same observer in Group

I scored all zygotes. Figs 8–13 show images of subjectively

scored zygotes and their corresponding objective measure-

ments by using the ImageJ plug-in. While subjective scoring

is global for each of the six features, the computer-assisted

analysis associates several measurements to each parameter.

Comparison of the measurement of distances for zygotes
coming from two different centres

To validate the use of the plug-in on a larger scale, we analysed

two groups of zygote images coming from two different IVF

Figure 7: (Left) Edge image after histogram equalization and Gaussian blurring of the light-corrected image in Fig. 6.
(Middle) Template used for the correlation computation, the template models the PN border and its radius is varied within a range that includes 13
and 14 mm. (Right) The position of the two correlation maxima have been encircled by a dash line).

Table II. Objective measurements of the size of zygotes and their pronuclei.

Feature Group I (n = 188) Group II (n = 201) P-value

Zygote size
Major axis (mm) 56.3+2.9 56.0+2.7 0.51
Minor axis (mm) 54.0+2.7 54.3+3.2 0.41
Pronucleus size
Radius pronucleus 1 (mm) 12.5+0.9 12.6+0.8 0.10
Radius pronucleus 2 (mm) 12.2+0.9 12.1+0.9 0.60
Relative radius pronucleus 1 0.22+0.02 0.22+0.02 0.34
Relative radius pronucleus 2 0.22+0.02 0.21+0.02 0.49

Quantitative analysis of pronuclear zygote morphology
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Table III. Groups I and II: subjective scoring (bold features, n = 6) and computer-assisted measurements (n = 24) of PN centring, PN proximity, PN orientation,
number of NPB, distribution of NPB and cytoplasmic halo.

Feature Group I, (n = 188) Group II, (n = 201) P-value

1. PN centring 2.4+++++0.6 2.3+++++0.7 0.22
2. Centring (mm) 12.3+3.1 13.8+3.3 0.00
3. Relative centring 0.22+0.06 0.25+0.06 0.00
4. PN proximity 2.4+++++0.6 2.3+++++0.7 0.19
5. Proximity (mm) 20.8+3.4 23.1+3.0 0.00
6. Relative proximity 0.8+0.1 0.9+0.1 0.00
7. PN orientation 2.1+++++0.6 2.0+++++0.63 0.06
8. Angle closest polar body (rad) 0.6+0.5 0.8+0.5 0.11
9. Angle farthest polar body (rad) 0.7+0.5 0.8+0.6 0.42
10. Sum of angles (rad) 1.4+0.9 1.6+1.0 0.19
11. Number of NPB 2.4+++++0.7 2.3+++++0.7 0.49
12. Number of NPB pronucleus 1 6.7+0.9 7.0+2.3 0.23
13. Number of NPB pronucleus 2 4.5+1.5 4.4+1.5 0.17
14. Sum 11.2+3.0 11.4+3.3 0.82
15. Difference, number of NPB 2.2+1.7 2.7+2.1 0.01
16. NPB polarization 1.9+++++0.6 2.0+++++0.6 0.054
17. Centre of gravity pronucleus 1 (mm) 5.9+1.23 5.8+1.4 0.35
18. Centre of gravity pronucleus 2 (mm) 5.1+1.4 4.5+1.3 0.00
19. Regression pronucleus 1 (mm) 3.2+1.2 3.0+1.4 0.04
20. Regression pronucleus 2 (mm) 2.6+1.4 1.9+1.1 0.00
21. Splitting pronucleus 1 (mm) 7.5+2.3 7.9+2.1 0.20
22. Splitting pronucleus 2 (mm) 6.7+2.1 6.2+1.9 0.02
23. Cytoplasmic halo 2.2+++++0.8 1.9+++++0.8 0.00
24. Retracted cytoplasm surface 0.79+0.08 0.84+0.08 0.00
25. Major axis (mm) 50.5+3.0 52.1+4.9 0.00
26. Minor axis (mm) 47.7+3.3 48.8+4.7 0.00
27. Axis ratio 1.06+0.06 1.05+0.16 0.58
28. Shift (rad) 1.0+0.9 0.9+0.89 0.63
29. Centring (mm) 4.2+2.1 3.3+2.2 0.00
30. Relative centring 0.08+0.04 0.06+0.09 0.00

Table IV. Group III: subjective scoring (bold features, n = 6) and computer-assisted measurements (n = 24) of PN centring, PN proximity, PN orientation,
number of NPB, distribution of NPB and cytoplasmic halo.

Feature Implanted zygotes (n = 84) Non-implanted zygotes (n = 122) P-value

1. PN centring 2.27+++++0.63 2.27+++++0.59 0.98
2. Centring (mm) 12.08+3.4 11.95+3.19 0.93
3. Relative centring 0.21+0.062 0.22+0.058 0.43
4. PN proximity 1.75+++++0.44 1.81+++++0.39 0.29
5. Proximity (mm) 20.66+5.1 20.09+4.59 0.317
6. Relative proximity 0.85+0.22 0.84+0.18 0.676
7. PN orientation 1.94+++++0.55 2.07+++++0.62 0.109
8. Angle closest polar body (rad) 0.75+0.51 0.58+0.51 0.087
9. Angle farthest polar body (rad) 0.97+0.64 0.80+0.58 0.015
10. Sum of angles (rad) 1.78+0.98 1.49+0.93 0.046
11. Number of NPB 2.06 +++++0.63 2.0+++++0.65 0.57
12. Number of NPB pronucleus 1 6.13+1.91 5.5+1.7 0.008
13. Number of NPB pronucleus 2 3.75+1.43 4.10+1.25 0.013
14. Sum 9.88+2.83 9.61+2.64 0.642
15. Difference, number of NPB 2.38+1.82 1.4+1.4 0000
16. NPB polarization 1.75+++++0.64 1.61+++++0.65 0.094
17. Centre of gravity pronucleus1 (mm) 5.63+1.4 5.61+1.21 0.57
18. Centre of gravity pronucleus 2 (mm) 4.67+1.42 5.11+1.24 0.140
19. Regression pronucleus 1 (mm) 3.43+1.51 3.26+1.21 0.52
20. Regression pronucleus 2 (mm) 2.45+1.32 3.06+1.80 0.007
21. Splitting pronucleus 1 (mm) 7.56+2.87 7.95+2.69 0.174
22. Splitting pronucleus 2 (mm) 7.14+2.94 7.75+2.72 0.068
23. Cytoplasmic halo 2.02+++++0.67 2.05+++++0.68 0.72
24. Retracted cytoplasm surface (%) 74.11+7.083 74.62+6.62 0.44
25. Major axis (mm) 49.25+2.94 48.36+3.46 0.089
26. Minor axis (mm) 45.65+1.87 44.62+3.27 0.015
27. Axis ratio 1.075+0.056 1.08+0.075 0.232
28. Shift (rad) 0.885+0.806 0.9540.88 0.71
29. Centring (mm) 3.59+2.01 1.92+1.77 0.012
30. Relative centring 0.075+0.042 0.063+0.039 0.035
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centres (Lausanne and Linz). The plug-in succeeded in analys-

ing all images coming from these two centres. Precise measure-

ments of zygote and pronucleus sizes were provided by the

plug-in. The distribution of the size of the zygotes and their

PN was found to be statistically similar in zygotes coming

from both centres (Table II).

Comparison of the computer-assisted measurements versus
the subjective scores

As shown in Table III, computer-assisted measurement and sub-

jective scoring were first compared between PN zygotes from

Group I and Group II. When subjectively scored, PN centring

and proximity were not significantly different between the two

groups, but a significant difference was observed when these

parameters were objectively measured. PN orientation accord-

ing to the polar bodies was similar in both groups when assessed

either with subjective scoring or computer-assisted measure-

ment. NPB numbers were similar, but the difference in NPB

number between pronucleus 1 (the pronucleus with the highest

number of NPB) and pronucleus 2 (the other pronucleus), calcu-

lated only by the plug-in, was significantly higher in the Group

II. Concerning NPB polarization, a non-significant (P = 0.054)

Figure 8: (1) Centring of the PN.
Computer-assisted measurements: (2) Centring: absolute distance (mm) between zygote centre and the PN barycentre; (3) Relative centring: cen-
tring/zygote radius.

Figure 9: (4) Proximity of the PN.
Computer-assisted measurements: (5) Proximity: absolute distance (m m) between the two centres of the PN; (6) Relative proximity: proximity/
Sum of the PN radii.

Figure 10: (7) Orientation of the PN according to the polar bodies.
Computer-assisted measurements: (8) Angle closest polar body (radians): angle between the PN axis and the closest polar body; (9) Angle farthest
polar body (radians): angle between the PN axis and the farthest polar body; (10) Sum of the previous two angles (radians).

Quantitative analysis of pronuclear zygote morphology
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Figure 11: (11) Number of nucleolar precursor bodies.
Computer-assisted measurements: (12) Number of NPBs in the pronucleus with more NPBs; (13) Number of NPBs in the pronucleus with fewer
NPBs; (14) Total number of NPBs in the two PN; (15) Difference in the number of NPBs between the two PN.

Figure 12: (16) Distribution of NPB inside the PN.
Computer-assisted measurements: (17) Centre of gravity pronucleus 1: mean distance (mm) between the NPBs and their gravity centre in pronu-
cleus1; (18) Similar measure for pronucleus 2; (19) Regression pronucleus 1: mean distance (mm) between the NPBs and their regression line in
pronucleus 1; (20) Similar measure for pronucleus 2; (21) Splitting pronucleus 1: mean distance (mm) between the NPBs and the line separating
the two pronucleus; (22) Similar measure for pronucleus 2.

Figure 13: (23) Cytoplasmic halo.
Computer-assisted measurements: (24) Retracted cytoplasm surface: ratio retracted cytoplasm surface/zygote surface; (25) Major axis (mm) of
the retracted cytoplasm ellipse; (26) Minor axis of the same ellipse; (27) Axis ratio: major axis/Minor axis; (28) Shift (radians): angle between the
major axis of the retracted cytoplasm ellipse and the major axis of the zygote ellipse; (29) Centring: absolute distance (mm) between the centre of
the retracted cytoplasm and the centre of the zygote; (30) Relative centring: centring/retracted cytoplasm radius.
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higher subjective score was observed in zygotes of Group II.

Computer-assisted analysis revealed a significantly higher

NPB polarization of pronucleus 2 in the Group II, as indicated

by lower mean distances of NPB to their gravity point, to their

regression line and to the line splitting the PN. In pronucleus

1, the only significant observation was a lower distance of

NPB to their regression line in the Group II, suggesting less dis-

persed NPB in this pronucleus in zygotes of Group II. Subjective

scoring showed a significantly smaller cytoplasmic halo in

zygotes of the Group II that was confirmed by computer-assisted

measurements. The two axes and the relative surface of the

retracted cytoplasm were larger, resulting in lower size of the

halo in the Group II. In addition the halo was significantly

more centred in these zygotes.

Computer-assisted measurement and subjective scoring

were then compared for their ability to classify zygotes with

high and low implantation probability. Zygotes of Group III

were used for this classification analysis (Table IV). In this

group, the mean subjective scores of implanted zygotes were

not significantly different from the non-implanted zygotes. In

contrast, computer-assisted measurements evidenced signifi-

cant differences between implanted and non-implanted

zygotes concerning the number of NPB in PN1 and PN2,

respectively, the distribution of NPB in PN2 (regression

PN2) and the centring of the cytoplasmic halo.

The zygote scoring scheme previously proposed by Senn

et al. (2006) computes the sum of all the subjective scores. If

the sum is above 15, then the zygote is classified as having a

high implantation probability. If the sum is below 15, then the

zygote is classified as having a low implantation probability.

In the present study, this approach resulted in a classification

error of 0.398. If one looks for the optimal weight vector and

threshold separating the class of zygotes with high implantation

potential and the class of zygotes with low implantation poten-

tial using the same subjective data, a 10-fold cross validation

experiment showed that the classification error of such

optimal LDA classifier was 0.393+ 0.013, i.e. the scheme pro-

posed in Senn et al. (2006) closely achieves the best classifi-

cation error attainable with linear separation of the

subjectively scored dataset. When a 10-fold cross validation

experiment was performed on the objectively measured

dataset produced by the plug-in, the classification error with

the optimal LDA classifier was 0.363+ 0.021. This error

measure is significantly different from the one achieved with

the subjective data. However, it should be noted that the differ-

ence between the two classification errors is not large.

Discussion

To determine the quality of zygotes we need a non-invasive

tool for a quick, precise and reproducible analysis that does

not interfere with the daily clinical work in the IVF laboratory.

Analysis of images instead of direct microscopic evaluation of

zygotes avoids a long exposure of zygotes to a deleterious

environment outside the incubator. We have previously

shown that subjective scoring of zygote images is feasible

and allows the identification of zygotes with high probability

to implant (Senn et al., 2006). However, the number of

analysed features was limited to six, and discrete scores,

instead of continuous variables, were assigned to each

feature. To increase the number of analysed features and to

improve precision in their evaluation, we developed a software

tool so as to obtain a morphological fingerprint of individual

human zygotes. The plug-in of ImageJ presented in this

article provides precise and reproducible measurements of a

high number of variables on digital images of zygotes observed

under Hoffman modulation contrast.

Images coming from two different IVF laboratories were

successfully analysed with the plug-in, indicating that this

tool could be used in different laboratories. The average size

of the zygotes (mean diameter, 110 mm), measured by the

plug-in, was close to the value of 115.9 mm that was measured

by Roux et al. (Roux et al., 1995). The mean diameter of the

two PN measured by the plug-in (pronucleus 1: 25 mm, pronu-

cleus 2: 24.4 mm) were similar to the mean values of 27.3 mm

and 25.6 mm reported by Roux et al. (Roux et al., 1995) and to

the range values of 16.5–24.1 mm and 15.3–22.4 mm reported

by Payne et al. (Payne et al., 1997). The measurements were

similar for the images provided by Group I and by Group II,

except for some features. When subjectively scored, the size

of the cytoplasmic halo was the only feature significantly

different between the two groups. Computer-assisted measure-

ments revealed significant differences between Group I and

Group II, not only in the cytoplasmic halo but also in PN cen-

tring, PN proximity and NPB distribution. This indicates that

computer-assisted analysis is mainly in accordance to subjec-

tive scoring but results in better precision in evaluating the

zygote features. Therefore, subtle differences between

zygotes, not detected by subjective scoring, appear clearly sig-

nificant after objective measurements. Differences observed

between the zygotes from Group I and Group II are probably

explained by the differences in the zygote selection policy

between the two centres. In the Group II, the transferred

embryos, selected on the basis of their quality, originated cer-

tainly from zygotes presenting morphological characteristics

representative of a high developmental competence. For

example, a strongly polarized distribution of NPB observed

in zygotes of Group II is considered as a predictor of a good

embryo development (Scott, 2003). A lower halo size in

Group II compared with Group I zygotes is consistent with

the observation that an extreme halo impairs embryo develop-

ment (Zollner et al., 2002). Although the influence of the age of

the women and culture conditions (culture system and culture

medium) on zygote morphology cannot be excluded in the

present study, zygote scores were previously shown to be inde-

pendent of age (Scott et al., 2000) and the influence of culture

conditions have not been described as yet.

Identifying zygotes with high implantation probability

remains a challenge to improve IVF treatment efficiency

while decreasing the occurrence of multiple pregnancies. Pre-

diction of implantation is limited when the only criteria rely

on subjective assessment of zygote morphology (Montag and

van der Ven, 2001; Zollner et al., 2002; Senn et al., 2006;

Guerif et al., 2007), and a number of additional studies have

questioned the efficiency of PN scoring for identifying

embryos with high implantation potential (James et al., 2006;
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Arroyo et al., 2007; Nicoli et al., 2007). The performance of a

prognostic test in terms of implantation prediction is demon-

strated by its ability to correctly classify most of the analysed

zygotes, implying a minimal error rate of classification. In

the present study, the classification error averaged 0.39 when

using a subjective zygote scoring, which is far from optimal.

The computer-assisted measurement of a large number of

zygote parameters did not result in a dramatic improvement

of classification (error rate 0.36), indicating that the low predic-

tive performance of zygote morphology is probably not due to

its imprecise evaluation. This is consistent with a recent state-

ment that prediction of implantation on the basis of zygote

morphology is limited, unless it is combined to other relevant

parameters describing embryo development (Guerif et al.,

2007). However, in countries where embryo characteristics

cannot be taken in account for embryo selection, PN zygote

morphology remains a valuable tool.

In summary, we show that the morphological features

extracted by our plug-in can be used for an objective zygote

characterization in terms of morphology. It presents the import-

ant advantage over the subjective scoring scheme previously

proposed in Senn et al. (2006) to be totally reproducible. It

could therefore contribute to improve the consensus between

laboratories on how to evaluate human PN zygotes.
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