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ABSTRACT

The paid-incurred chain (PIC) reserving method is a claims reserving method
that allows to combine claims payments and incurred losses information in a
mathematical consistent way. The main criticism on the original Bayesian log-
normal PIC model presented in Merz–Wüthrich [5] is that it does not respect
dependence properties within the observed data. In the present paper, we extend
the original Bayesian log-normal PIC model so that dependence is modeled in
an appropriate way.
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1. PAID-INCURRED CHAIN MODEL WITH DEPENDENCE MODELING

1.1. Introduction

The process of assessing the outstanding loss liabilities is an important part
of the management of a non-life insurance company. Reserving actuaries need
to predict the outstanding loss liabilities based on all available information. In
many cases, this available information comprises claims payments observations,
incurred losses data and, may be, prior loss ratio information. State-of-the-art
stochastic claims reserving methods are not able to combine these three sources
of information in a mathematically consistent way. Often in practice, actuaries
apply different claims reserving methods to these different sources of informa-
tion. The results of these different methods are then merged in an ad hoc way
to obtain one prediction of the outstanding loss liabilities. Of course, such ad
hoc considerations do not allow one to assess prediction uncertainty because,
typically, the merging is done subjectively by pure expert opinion.
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2 S. HAPP AND M.V. WÜTHRICH

One of the first claims reserving techniques in the actuarial literature to
unify outstanding loss liability prediction based on claims payments and in-
curred losses information is theMunich chain ladder (MCL)method. TheMCL
method was introduced by Quarg–Mack [8] and its aim is to reduce the gap be-
tween the two chain ladder (CL) predictions that are based on claims payments
and incurred losses data, respectively. The idea is to adjust the CL factors with
paid-incurred ratios to reduce the gap between the two predictions. The diffi-
culty with theMCLmethod is that it involves several parameter estimates whose
precisions are difficult to quantify within a stochastic model framework.

In this paper, we revisit the Bayesian log-normal paid-incurred chain (PIC)
model of Merz–Wüthrich [5]. This PIC reserving model was motivated by
Posthuma et al. [7] who have designed a similar model bringing paid-incurred
information in-line. The PIC reserving method combines claims payments and
incurred losses information in such a way that Bayesian inference can be made
on the missing (future) part of the claims development triangles based on both
sources of information, see also Figure 1. The main criticism on the models of
Posthuma et al. [7] and Merz–Wüthrich [5] is that they do not respect depen-
dence properties in an appropriate way. In the present paper, we expand the
initial Bayesian log-normal PIC model such that actual dependence structure
found in the data is respected.

1.2. Notation and model assumptions

For the PIC model, we consider three channels of information: (i) claims pay-
ments, which refer to the payments done for reported claims; (ii) incurred losses,
which correspond to the reported claim amounts; (iii) prior expert opinion. The
crucial observation is that the claims payments and incurred losses time series
must reach the same ultimate value, because these two time series both con-
verge to the total ultimate claim. By choosing appropriate model assumptions,
we force this property to hold true in our model.

In the following, we denote accident years by i ∈ {0, . . . , J} and develop-
ment years by j ∈ {0, . . . , J}. We assume that all claims are settled after the
Jth development year. Cumulative claims payments in accident year i after j
development periods are denoted by Pi, j and the corresponding incurred losses
by Ii, j .Moreover, for the ultimate claim, we assume (force) Pi,J = Ii,J with prob-
ability 1, which means that ultimately (at time J) they reach the same ultimate
value. For an illustration we refer to Figure 1.

We introduce the following notation, for i ∈ {0, . . . , J},

�i = (ζi,0; ζi,1, ξi,1, ζi,2, ξi,2, . . . , ζi,J, ξi,J)′ ∈ R
2J+1,

with, for j ∈ {0, . . . , J} and l ∈ {1, . . . , J},

ζi, j = log
Ii, j
Ii, j−1

and ξi,l = log
Pi,l
Pi,l−1

,
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PAID-INCURRED CHAIN RESERVING METHODWITH DEPENDENCE MODELING 3
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FIGURE 1: Left-hand side: cumulative claims payments Pi, j development triangle; right-hand side: incurred
losses Ii, j development triangle; both leading to the same ultimate claim Pi,J = Ii,J .

where we have set Ii,−1 ≡ 1. The Bayesian log-normal PIC model with depen-
dence within the random vectors �i is then defined as follows.

Model Assumptions 1.1 (Bayesian log-normal PIC model with dependence).

• Conditionally, given � = (�0;�1,�1, �2,�2, . . . , �J,�J)
′ and V ∈

R
(2J+1)×(2J+1),

– the random vectors �0, . . . , �J are i.i.d. with multivariate Gaussian dis-
tribution

�i ∼ N (�,V) for i = 0, . . . , J;
– we assume Pi,J = Ii,J for all i = 0, . . . , J, P-a.s.

• V is a positive definite covariance matrix and the components of� are inde-
pendent with prior distributions, for j ∈ {0, . . . , J} and l ∈ {1, . . . , J},

� j ∼ N (
ψ j , t2j

)
and �l ∼ N (

φl , s2l
)
,

with prior parameters ψ j , φl ∈ R and tj > 0, sl > 0.
�

Remarks.

• For V = diag(τ 20 ; τ 21 , σ 2
1 , . . . , τ

2
J , σ

2
J) the model above exactly gives the PIC

reserving model fromMerz–Wüthrich [5]. In the present paper, we now allow
for general covariance matrices V (as long as they are positive definite). In
(1.1) below, we give an explicit choice that will be applied to a motor third-
party liability portfolio.

• The PICmodel combines both cumulative payments and incurred losses data
to get a unified predictor for the total ultimate claim that is based on both
sources of information. Thereby, the model assumption Pi,J = Ii,J guaran-
tees that the total ultimate claim coincides for claims payments and incurred
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4 S. HAPP AND M.V. WÜTHRICH

losses data. In particular, we obtain the identities

Ii, j = Ii, j−1 exp{ζi, j }, with initial value Ii,0 = exp{ζi,0},

and by backward recursion

Pi, j−1 = Pi, j exp{−ξi, j }, with initial value Pi,J = Ii,J .

Note that in comparison to Merz–Wüthrich [5], we have exchanged the role
of Ii, j and Pi,l . In the original model of Merz–Wüthrich [5], the resulting
claims reserves are completely symmetric in the exchange of Ii, j and Pi,l . If
we consider the model with dependence, as inModel Assumptions 1.1 above,
it is more natural to use incurred losses Ii,J as prior for claims payments Pi,l .
This means that Hertig’s log-normal model [4] for Ii, j plays the role of the
prior for Gogol’s claims reserving model [3] for Pi,l ; see also Merz–Wüthrich
[5].

• If we have prior (expert) knowledge (as a third information channel) this can
be used to design the prior distribution of �. If there is no prior knowledge
we choose non-informative priors for �, that is we let t2j → ∞ and s2l → ∞
for j ∈ {0, . . . , J} and l ∈ {1, . . . , J}.

• The assumption Pi,J = Ii,J means that all claims are settled after J devel-
opment years and there is no so-called tail development factor. If there is a
claims development beyond development year J, then one can extend the PIC
model for the estimation of a tail development factor; seeMerz–Wüthrich [6]
for more details.

• Under Model Assumptions 1.1, the distribution of the ultimate claims Ii,J
is a priori equal across accident years. However, given the observed data,
we observe different posterior distributions for claims of different accident
years. Therefore, the PIC reserving method allows for accident year variation
(see Theorem 3.2). However, if knowledge about prior differences is available,
it should be incorporated in the prior means. This relaxation of the model
assumption will still lead to closed-form solutions. A similar effect can be
achieved by considering (volume-) adjusted observations.

• Conditional i.i.d. guarantees that we obtain a model of chain ladder type
where chain ladder factors do not depend on accident year i . Of course, this
model assumption requires that the data considered need to be sufficiently
regular. If this is not the case, one can introduce prior differences between
accident years (see also last bullet point). These more general assumptions
still lead to a closed-form solution. The drawback is that the model might
become over-parameterized and/or it requires to extended expert knowledge.

• The covariance matrix V allows for modeling dependence within �i . In par-
ticular, we will choose this covariance matrix such that the correlation be-
tween ζi, j and ξi, j is positive because Pi, j is contained in Ii, j (and hence they
are dependent).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/asb.2012.4
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 14:38:18, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2012.4
https:/www.cambridge.org/core


PAID-INCURRED CHAIN RESERVING METHODWITH DEPENDENCE MODELING 5

This last bullet point is motivated by the following argument: a positive change
from Ii, j−1 to Ii, j means that the claims adjusters increase their expectation in
future claims payments. One part of this increased expectation is immediately
paid in development period j (and hence contained in both Ii, j and Pi, j ) and
the remaining increased expectation is paid with some settlement delay, which
means that we also have higher expectations for Pi,l , l > j . This argument leads
to a following possible explicit choice of the correlation matrix of the random
vector �i :

ζi,0 ζi,1 ξi,1 ζi,2 ξi,2 ζi,3 ξi,3 ζi,4 ξi,4 · · · ζi,J ξi,J

ζi,0 1 0 ρ1 0 ρ2 0 0 0 0 · · · 0 0
ζi,1 0 1 ρ0 0 ρ1 0 ρ2 0 0 · · · 0 0
ξi,1 ρ1 ρ0 1 0 0 0 0 0 0 · · · 0 0
ζi,2 0 0 0 1 ρ0 0 ρ1 0 ρ2 · · · 0 0
ξi,2 ρ2 ρ1 0 ρ0 1 0 0 0 0 · · · 0 0
ζi,3 0 0 0 0 0 1 ρ0 0 ρ1 · · · 0 0
ξi,3 0 ρ2 0 ρ1 0 ρ0 1 0 0 · · · 0 0
ζi,4 0 0 0 0 0 0 0 1 ρ0 · · · 0 0
ξi,4 0 0 0 ρ2 0 ρ1 0 ρ0 1 · · · 0 0
...

...
...

...
...

...
...

...
...

...
. . .

...
...

ζi,J 0 0 0 0 0 0 0 0 0 · · · 1 ρ0
ξi,J 0 0 0 0 0 0 0 0 0 · · · ρ0 1

(1.1)

The rational behind this correlation matrix is that the incurred losses in-
crements ζi, j are (positively) correlated to the claims payments increments ξi, j ,
ξi, j+1 and ξi, j+2 with positive correlations ρ0, ρ1 and ρ2, respectively. Note that
ζi,0 plays the special role of the initial value for incurred losses Ii,0 (on the log
scale), whereas the initial value for claims payments Pi,0 (on the log scale) can
be defined by ξi,0 = ∑J

j=0 ζi, j −∑J
l=1 ξi,l .

Organization: In Section 2, we derive the ultimate claim predictor for known
parameters � (see Corollary 2.2). The model parameter � is estimated in Sec-
tion 3, leading to the ultimate claim predictor in Theorem 3.2. In Section 4, we
calculate the prediction uncertainty in terms of the conditional mean square
error of prediction (MSEP; see Theorem 4.1). We apply the PIC method with
dependence with three explicit choices of a covariance matrix of the form (1.1)
to a motor third-party liability example in Section 5. In Section 6, we present
the conclusions. Furthermore, all proofs are provided in the Appendix.
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6 S. HAPP AND M.V. WÜTHRICH

2. ULTIMATE CLAIM PREDICTION FOR KNOWN PARAMETERS �

Wecanwork eitherwith the randomvector�i ∈ R
2J+1 (seeModelAssumptions

1.1) or with the logarithmized observations given by the random vector

Xi = (log Ii,0, log Pi,0, log Ii,1, log Pi,1, . . . , log Ii,J−1, log Pi,J−1; log Ii,J)′

∈ R
2J+1.

The consideration of �i was easier for the model definition and for the inter-
pretation of the dependence structure; but often it is more straightforward if
we directly work with Xi (under the explicit logarithmized cumulative observa-
tions). Note that there is a linear one-to-one correspondence between�i andXi ,
and we denote the (invertible) transformation matrix by B. The explicit form of
B is given by

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 . . . 0 0 0
1 1 −1 1 −1 . . . −1 1 −1
1 1 0 0 0 . . . 0 0 0
1 1 0 1 −1 . . . −1 1 −1
1 1 0 1 0 . . . 0 0 0

...
. . .

...

1 1 0 1 0 . . . 0 1 −1
1 1 0 1 0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We then obtain the following conditional multivariate Gaussian distribution
for Xi :

Xi |{�} = B �i |{�} ∼ N (μ = μ(�) = B�, 
 = BVB′). (2.1)

Conditionally given the parameters � (or μ = μ(�), respectively), the random
vector Xi is within the multivariate Gaussian distribution family. Our first aim
is to study the conditional distribution of the ultimate claim Pi,J = Ii,J , condi-
tionally given the parameters � and the observations

DJ = {Ii, j , Pi, j : i + j ≤ J, 0 ≤ i ≤ J, 0 ≤ j ≤ J}
in the upper paid and incurred triangles (see Figure 1).

For accident years i ∈ {1, . . . , J}, define n = 2J + 1 and q = q(i) = 2(J −
i + 1) ∈ {2, . . . , 2J}. At time J, we have for accident year i observations (given
in the upper triangles DJ)

X(1)i = (log Ii,0, log Pi,0, log Ii,1, log Pi,1, . . . , log Ii,J−i , log Pi,J−i )′ ∈ R
q ,

and we would like to predict the lower triangles given by

X(2)i = (log Ii,J−i+1, log Pi,J−i+1, . . . , log Ii,J−1, log Pi,J−1; log Ii,J)′ ∈ R
n−q .
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PAID-INCURRED CHAIN RESERVING METHODWITH DEPENDENCE MODELING 7

This provides, for i ∈ {1, . . . , J}, the following decomposition μ =
(μ

(1)
i ,μ

(2)
i ) = B� ∈ R

n of the conditional mean:

E
[
X(1)i

∣∣�]=μ
(1)
i = B(1)i � ∈ R

q and E
[
X(2)i

∣∣�] = μ
(2)
i = B(2)i � ∈ R

n−q ,

with partition of B ∈ R
n×n given by, for i ∈ {1, . . . , J},

B =
(
B(1)i

B(2)i

)
with B(1)i ∈ R

q×n and B(2)i ∈ R
(n−q)×n.

In the same way, we also decompose the covariance matrix 
 which provides


 =
(


(11)
i 


(12)
i



(21)
i 


(22)
i

)
with 


(11)
i ∈ R

q×q .

For i = 0, we set q(0) = n, X(1)0 = X0 ∈ R
n, 
(11)

0 = 
 and B(1)0 = B.
Having this notation, we provide the prediction of X(2)i , conditionally given

{�,DJ}:
Lemma 2.1. Choose an accident year i ∈ {1, . . . , J}. Under Model Assumptions
1.1 we have

X(2)i
∣∣∣
{�,DJ }

= X(2)i
∣∣∣
{�,X(1)i }

∼ N
(
μ̃
(2)
i =μ

(2)
i +
(21)

i

(


(11)
i

)−1
(
X(1)i −μ

(1)
i

)
, 
̃

(22)
i

)
,

with the conditional covariance matrix 
̃(22)
i = 


(22)
i −


(21)
i (


(11)
i )−1


(12)
i .

An immediate consequence of Lemma 2.1 is the following corollary.

Corollary 2.2. Under the assumptions and notations of Lemma 2.1, we obtain for
the ultimate claim Ii,J = Pi,J, for i ∈ {1, . . . , J},

log Ii,J
∣∣
{�,DJ } ∼ N (e′

i μ̃
(2)
i , e′

i 
̃
(22)
i ei

)
,

with ei = (0, . . . , 0, 1)′ ∈ R
n−q .

This corollary implies that, conditionally given the parameters � and the ob-
servations DJ , we get the ultimate claim predictor, for i ∈ {1, . . . , J},

E[Ii,J |�,DJ ] = exp
{
e′
i μ̃

(2)
i + e′

i 
̃
(22)
i ei/2

}
. (2.2)

In the special case of a diagonal correlation matrix (1.1), i.e. ρ0 = ρ1 = ρ2 = 0,
this is exactly the predictor derived in Corollary 2.5 of Merz–Wüthrich [5].
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8 S. HAPP AND M.V. WÜTHRICH

3. ESTIMATION OF PARAMETER �

The ultimate claim predictor (2.2) is still based on the unknown parameters �,
namely

e′
i μ̃

(2)
i = e′

i

(
μ
(2)
i +


(21)
i (


(11)
i )−1(X(1)i − μ

(1)
i

))
= e′

i

(
B(2)i � +


(21)
i (


(11)
i )−1(X(1)i − B(1)i �

))
(3.1)

= �i � + e′
i 


(21)
i (


(11)
i )−1 X(1)i ,

where we have defined

�i = e′
i

(
B(2)i −


(21)
i

(


(11)
i

)−1
B(1)i

)
.

In particular, we see that e′
i μ̃

(2)
i is a linear function in �. We aim to calcu-

late the posterior distribution of �, conditionally given the observations DJ .
The σ -field generated by DJ is the same as the one generated by the observa-
tions D̃J = {X(1)0 , . . . ,X

(1)
J }. Therefore, by a slight abuse of notation, we identify

the observations D̃J withDJ . The likelihood of the logarithmized observations,
conditionally given �, is then written as, see also (2.1),

lDJ (�) ∝
J∏
i=0

exp
{
−1
2

(
X(1)i − B(1)i �

)′(


(11)
i

)−1(X(1)i − B(1)i �
)}
.

UnderModel Assumptions 1.1, the posterior distribution u (�|DJ) of�, given
DJ , is given by

u (�|DJ) ∝ lDJ (�) exp
{
−1
2
(� − ϑ)′ T−1 (� − ϑ)

}
, (3.2)

where the last term is the prior density of � with prior mean given by

ϑ = (ψ0;ψ1, φ1, ψ2, φ2, . . . , ψJ, φJ)
′,

and the (diagonal) covariance matrix defined by

T = diag
(
t20 ; t21 , s21 , t22 , s22 , . . . , t2J, s2J

)
.

This immediately implies the following lemma.

Lemma 3.1. UnderModel Assumptions 1.1, the posterior distribution of�, given
DJ, is a multivariate Gaussian distribution with posterior covariance matrix

T(DJ) =
(
T−1 +

J∑
i=0

(
B(1)i

)′(


(11)
i

)−1
B(1)i

)−1

,
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PAID-INCURRED CHAIN RESERVING METHODWITH DEPENDENCE MODELING 9

and the posterior mean is given by

ϑ(DJ) = T(DJ)

[
T−1 ϑ +

J∑
i=0

(B(1)i )′(
(11)
i )−1X(1)i

]
.

Remarks on credibility theory.
We define the matrix S = (∑J

i=0

(
B(1)i

)′(


(11)
i

)−1
B(1)i

)−1
, and the credibility

weights (I is the identity matrix)

A= (T−1 + S−1)−1S−1 and I − A= (T−1 + S−1)−1T−1,

see also formula (7.11) in Bühlmann–Gisler [2]. This then implies for the pos-
terior covariance matrix T(DJ) = AS = (I − A)T and we obtain the linear
credibility formula for the posterior mean

ϑ(DJ) = (I − A)ϑ + AY,

with compressed data Y = S
[∑J

i=0

(
B(1)i

)′(


(11)
i

)−1X(1)i
]
, see Chapters 7 and

8 in Bühlmann–Gisler [2]. That is, the posterior mean ϑ(DJ) is a credibility
weighted average between the prior mean ϑ and the observations Y with credi-
bility weight A.

Theorem 3.2 (PIC predictor). Under Model Assumptions 1.1, we obtain the ulti-
mate claim predictor for Ii,J = Pi,J, given observations DJ,

Îi,J = E[Ii,J |DJ ] = exp
{
�i ϑ(DJ)+ e′

i 

(21)
i

(


(11)
i

)−1 X(1)i

+�i T(DJ) �
′
i/2 + e′

i 
̃
(22)
i ei/2

}
.

Theorem 3.2 gives the ultimate claim predictor that is now based on claims
payments, incurred losses and prior expert information. In contrast to Merz–
Wüthrich [5] we can now easily choose any meaningful covariance matrix V
for �i .

4. PREDICTION UNCERTAINTY

In order to analyze the prediction uncertainty, we can now study the posterior
predictive distribution of IJ = (I1,J, . . . , IJ,J), which exactly corresponds to
the column of unknown ultimate claims, given the observations DJ . If g(·) is a
sufficiently nice function, we obtain
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10 S. HAPP AND M.V. WÜTHRICH

E [g(IJ)|DJ ] =
∫
x∈RJ

g(x) f (x|DJ)

dx =
∫
x∈RJ ,�

g(x) f (x|�,DJ) u (�|DJ) dx d�,

where u (�|DJ) denotes the posterior density of�, givenDJ . Because the den-
sities f (x|�,DJ) and u (�|DJ) are explicitly given by Corollary 2.2, Lemma
3.1 and the conditional independence of accident years, given �, we can calcu-
late these predictive values E [g(IJ)|DJ ] numerically, for example using Monte
Carlo simulations. This allows for the analysis of any uncertainty and risk mea-
sure.

The probably most popular uncertainty measure in actuarial practice that
has a closed-form solution is the so-called conditional MSEP. If we consider
the total ultimate claim

∑J
i=1 Ii,J and the corresponding predictor

∑J
i=1 Îi,J ,

the conditional MSEP is given by (see Wüthrich–Merz [9], Section 3.1)

msep∑J
i=1 Ii,J

∣∣∣DJ

(
J∑
i=1

Îi,J

)

= E

⎡⎣( J∑
i=1

Ii,J −
J∑
i=1

Îi,J

)2
∣∣∣∣∣∣DJ

⎤⎦ = Var

(
J∑
i=1

Ii,J

∣∣∣∣∣DJ

)
,

where we have used Îi,J = E
[
Ii,J
∣∣DJ

]
in our Bayesian model. Henceforth, we

need to calculate this last conditional variance in order to obtain the conditional
MSEP.

Theorem 4.1. Under Model Assumptions 1.1, the conditional MSEP is given by

msep∑J
i=1 Ii,J

∣∣∣DJ

(
J∑
i=1

Îi,J

)

=
J∑

i,k=1

Îi,J Îk,J
(
exp

{
�i T(DJ) �

′
k + e′

i 
̃
(22)
i ei 1{i=k}

}− 1
)
,

with Îi,J = E
[
Ii,J
∣∣DJ

]
given by Theorem 3.2.

Thus, we obtain a closed-form solution for both, the ultimate claim predic-
tors Îi,J and the corresponding prediction errors, measured by the conditional
MSEP.
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PAID-INCURRED CHAIN RESERVING METHODWITH DEPENDENCE MODELING 11

5. MOTOR THIRD-PARTY LIABILITY EXAMPLE

We apply the PICmodel with dependence to the motor third-party liability data
given in Tables 4 and 5. InModel Assumptions 1.1, we work with logarithmized
paid claims ratios ζi,k and logarithmized incurred losses ratios ξi,k, respectively.
That means that we have to transform the data in Tables 4 and 5 and we will use
in our following calculations logarithmized ratios ζi,k for paid claimants and ξi,k
for incurred losses as assumed in Model Assumptions 1.1. Due to the fact that
there is no expert knowledge for the specific choice of the means in the prior
distributions, we choose in Model Assumptions 1.1 non-informative priors for
�l and � j , i.e. we let t2j → ∞ and s2l → ∞. This implies asymptotically for
the credibility weight A= I in Lemma 3.1 and no prior knowledge of the prior
means φ j andψl of the prior distributions� j and�l is used in our calculations.

For Model Assumptions 1.1, it remains to choose a suitable covariance ma-
trixV. Here we present three different choices of correlationmatrices of the type
(1.1), which are motivated by an ad hoc estimate for the correlationmatrix given
below. This estimator for the correlation matrix of the type (1.1) should be seen
as an intuitive proposal of a covariance structure and not as an estimator being
optimal in some sense. In Section 5.1, we provide a correlation analysis of the
motor third-party liability example motivating suitable correlation choices.

5.1. Correlation matrix choice

The choice of the correlation matrix type in formula (1.1) reduces the number
of parameters to be estimated in comparison to the estimation of a full correla-
tion matrix. Note that we decided for structure (1.1) by pure expert choice. In
formula (1.1), we then have to choose ρl for l ∈ {0, 1, 2} as

ρl = Cor(ζi,k, ξi,k+l) for i = 1, . . . , J and k = 1, . . . , J − l,

and ρl = Cor(ζi,0, ξi,l) for l ∈ {1, 2}.We propose the following ad hoc estimators
for ρl for l ∈ {0, 1, 2}:
1. For the unknown means �k = E(ζi,k), �k = E(ξi,k) and variances σ 2

ζk
=

Var(ζi,k) and σ 2
ξk

= Var(ξi,k), we use sample estimates

�̂k = 1
J − k+ 1

J−k∑
i=0

ζi,k, k = 0, . . . , J,

σ̂ 2
ζk

= 1
J − k

J−k∑
i=0

(ζi,k − �̂k)
2
, k = 0, . . . , J − 1,
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12 S. HAPP AND M.V. WÜTHRICH

and

�̂k = 1
J − k+ 1

J−k∑
i=0

ξi,k, k = 1, . . . , J,

σ̂ 2
ξk

= 1
J − k

J−k∑
i=0

(ξi,k − �̂k)
2
, k = 1, . . . , J − 1.

Since for the estimation of the last variance parameters σ̂ 2
ζJ

and σ̂ 2
ξJ

there
is only one observation in the observed triangle, we use the extrapolation
formula

σ̂ 2
ζJ

= min
{
σ̂ 2
ζJ−2
, σ̂ 2

ζJ−1
, σ̂ 4

ζJ−2
/σ̂ 2

ζJ−1

}
and σ̂ 2

ξJ
= min

{
σ̂ 2
ξJ−2
, σ̂ 2

ξJ−1
, σ̂ 4

ξJ−2
/σ̂ 2

ξJ−1

}
.

2. We consider for accident year i ∈ {0, . . . , J} the standardized observations

ζ̃i,k = ζi,k − �̂k

σ̂ζk
for k = 0, . . . J − i, ξ̃i,k = ξi,k − �̂k

σ̂ξk
for k = 1, . . . J − i.

3. For l ∈ {0, 1, 2}, we use the standard correlation estimator for ρl , based on
the dataset{

(ζ̃i,k, ξ̃i,k+l)
∣∣∣∣k ∈ {1, . . . , J − l}, i ∈ {1, . . . , J − k− l}

}
. (5.1)

According to our correlation estimators above, we obtain for ρ̂l with l =
0, 1, 2, 3 (ρ̂3 is defined analogous to the other cases) as a function of the number
of observations out of the set (5.1) (the observations are ordered in the way
that we first pick up a development period k and then all accident years i up
to J − k− l) being used for estimating ρl Figure 2. We see in Figure 2 that the
assumption of positive correlatedness between ζi,k and ξi,k+l for l ∈ {0, 1, 2} is
evident. For l = 3 or higher time lags, the correlation estimation is comparably
small (about 5%) andwill therefore be neglected in our following considerations.
For the sample estimators, stated above and based on the full data set in (5.1)
we obtain:

ρ̂0 ρ̂1 ρ̂2 ρ̂3
23% 27% 28% 5%

(5.2)

In order to also get correlation sensitivities, we make three explicit correlation
choices (cases 1–3 in Table 1), with the correlation estimation results in (5.2)
being a point of orientation for our correlation choice and compare it with the
uncorrelated case (case 0) of Merz–Wüthrich [5] (see Table 1). For these corre-
lation choices, we have to check whether the resulting covariance matrix V is
positive definite (see Model Assumptions 1.1). To calculate V, we use the iden-
tity

V = Var1/2CorlVar1/2,
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FIGURE 2: Correlation estimators ρ̂l for ρl for l ∈ {0, 1, 2, 3} as a function of the number of observations
used for the estimation.

TABLE 1

INDEPENDENT CASE AND THREE EXPLICIT CHOICES OF CORRELATIONS.

Case 0 Case 1 Case 2 Case 3

ρ0 = ρ1 = ρ2 = 0% ρ0 = 30%, ρ1 = 25%, ρ0 = 30%, ρ1 = 25%, ρ0 = 25%, ρ1 = 25%,
ρ2 = 40% ρ2 = 30% ρ2 = 30%

where Corl denotes the correlation matrix in (1.1) for the cases l ∈ {1, 2, 3}
and Var denotes the diagonal matrix with the standard variance estimates
of (ζi,0; ζi,1, ξi,1, ζi,2, ξi,2, . . . , ζi,J, ξi,J)′ ∈ R

2J+1 on its diagonal, i.e. Var =
diag

(
σ̂ 2
ζ0
; σ̂ 2

ζ1
, σ̂ 2

ξ1
, . . . , σ̂ 2

ζJ
, σ̂ 2

ξJ

)
. Since Var1/2 is diagonal, we only have to check

whether the matrix Corl is positive definite. The eigenvalues of the correlation
matrix Corl are for our choices of ρ0, ρ1 and ρ2 in the cases l = 1, 2, 3 strictly
positive, the smallest being 9, 2 × 10−12 and the largest being 3, 8 × 10−03 and
hence the corresponding covariance matrix V fulfills Model Assumptions 1.1.

Based on these choices for the covariancematrix V, we calculate the ultimate
claim reserves and the conditional MSEP.

Remarks.

• We choose by means of explorative data analysis explicit covariance matrices
V. This was partly done by intuitive expert knowledge.

• In our Bayesian model the derivation of an optimal estimator of the corre-
lation matrix having good statistical properties is not trivial and should be
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14 S. HAPP AND M.V. WÜTHRICH

subject to more statistical research. Therefore, we present an ad hoc estima-
tor for the correlationmatrix and use the resulting estimates as an orientation
for our three explicit choices of correlation (cases 1–3).

• Model Assumptions 1.1 allow for arbitrary covariance matrices as long as
they are positive definite. If sufficient data for a robust estimation of the
(n(n + 1)/2) entries of a general covariance matrix are available, there is no
need to reduce to correlations up to lag 2. However, we believe that (due to
overparametrization) arbitrary correlation structures are no feasible alterna-
tive and expert opinion always needs to specify additional structure.

• Positive definiteness of V should always be checked because most intuitive
choices do not always provide a positive definite correlation matrix.

5.2. Claims reserves and prediction uncertainty

5.2.1. Claims reserves at time J. We consider the expected outstanding loss
liabilities (claims reserves)

R̂(DJ) = E[Ii,J |DJ ] − Pi,J−i .

The percental difference between claims reserves with and without dependence
is denoted by D(R̂(DJ)). We observe in Table 2 that in the first case the claims
reserves are about 6% lower than the claims reserves without dependence. In
the other two cases, the difference is still about 3%. This shows that the specific
choice of correlation has a crucial impact on the claims reserves. The deeper
reason for the higher claims reserves in case 0 is that there has been a slight
change in the claims adjuster’s philosophy that influences Ii,J . In cases 1–3, this
change in philosophy is smoothed more over time which should result in more
reliable claims reserves.
5.2.2. Prediction uncertainty at time J. In Table 3, we provide the msep1/2 for
our explicit correlation choices above and for the classical PIC model without
dependence (see Table 1). We observe that the prediction uncertainty measured
in terms of the conditional MSEP is higher than in the classical PIC model.
The reason is that positive correlations in Model Assumptions 1.1 increase the
correlations in the ultimate outcomes, and hence the uncertainties. This implies
that not considering dependence in the PIC model clearly underestimates the
overall uncertainties.

6. CONCLUSIONS

In the original PIC model of Merz–Wüthrich [5], a unified predictor of the ulti-
mate claim based on incurred losses and claims payments and the corresponding
prediction uncertainty in terms of the conditional MSEP can be derived ana-
lytically. The main criticism is that the original PIC model does not allow for
modeling dependencies between claims payments and incurred losses as it is
observed in the data.
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TABLE 2

CLAIMS RESERVES IN THE CLASSICAL PIC MODEL AND PIC MODEL WITH DEPENDENCE.

Acc. R̂(DJ) R̂(DJ) D(R̂(DJ)) R̂(DJ) D(R̂(DJ)) R̂(DJ) D(R̂(DJ))

year Case 0 Case 1 Case 1 Case 2 Case 2 Case 3 Case 3

1 7.726 7.729 0,0% 7.729 0,0% 7.728 0,0%
2 12.084 12.090 0,0% 12.089 0,0% 12.087 0,0%
3 15.196 15.537 2,2% 15.423 1,5% 15.397 1,3%
4 9.916 8.291 16,4% 8.664 12,6% 8.718 12,1%
5 20.746 21.310 2,7% 21.169 2,0% 21.096 1,7%
6 23.675 24.111 1,8% 24.102 1,8% 24.047 1,6%
7 33.328 33.410 0,2% 33.749 1,3% 33.683 1,1%
8 35.740 37.369 4,6% 37.327 4,4% 37.146 3,9%
9 40.144 38.695 3,6% 39.669 1,2% 39.767 0,9%
10 53.888 48.764 9,5% 51.602 4,2% 51.788 3,9%
11 62.825 59.284 5,6% 61.134 2,7% 61.233 2,5%
12 79.164 77.724 1,8% 78.716 0,6% 78.352 1,0%
13 89.437 81.510 8,9% 85.614 4,3% 85.572 4,3%
14 88.300 79.565 9,9% 82.942 6,1% 83.358 5,6%
15 122.534 107.575 12,2% 115.540 5,7% 116.508 4,9%
16 126.151 108.955 13,6% 117.667 6,7% 118.831 5,8%
17 126.202 119.794 5,1% 122.695 2,8% 122.682 2,8%
18 127.522 124.947 2,0% 126.287 1,0% 125.897 1,3%
19 152.078 143.847 5,4% 147.725 2,9% 148.060 2,6%
20 185.586 170.054 8,4% 175.798 5,3% 177.062 4,6%
21 251.803 246.960 1,9% 248.818 1,2% 248.554 1,3%

Total 1.664.045 1.567.522 5,8% 1.614.459 3,0% 1.617.568 2,8%

TABLE 3

PREDICTION UNCERTAINTY MSEP1/2 FOR THE CLASSICAL PIC MODEL AND
THE PIC MODEL WITH DEPENDENCE.

msep1/2 msep1/2 msep1/2 msep1/2

Case 0 Case 1 Case 2 Case 3

Total 40.606 48.010 49.145 48.922
in % of claims reserves 2,44% 3,06% 3,04% 3,02%

In this paper, we generalize the original PICmodel so that it allows for mod-
eling dependence between claims payments and incurred losses data. This is
motivated by the fact that, on the one hand, claims payments are contained in
incurred losses data and, on the other hand, incurred losses contain additional
information, which influences future claims payments data. The data in our ex-
ample (see Tables 4 and 5) confirm this hypothesis of the dependence between
claims payments and incurred losses data (see Figure 2).
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16 S. HAPP AND M.V. WÜTHRICH

We have seen in the sensitivity analysis that dependence modeling in the
PIC method has a crucial impact on the claims reserves and the correspond-
ing MSEPs (see Tables 2 and 3). Note that the classical PIC model of Merz–
Wüthrich [5] underestimates the prediction uncertainty (see Table 5), due to the
missing dependence in its structure within accident years. Furthermore, for a
better understanding of the influence of prior choices on the reserves and its
uncertainty, it might be useful to provide a sensitivity analysis of the method to
the choice of priors, which should be subject to an extended case study in future
work.

Concluding, the benefits of the PIC method with dependence modeling are
that

• two different channels of information are combined to get a unified ultimate
loss predictor;

• dependence structures between paid and incurred data can be modeled ap-
propriately;

• prior expert knowledge can be used to design the prior distributions of the
parameter vector �, otherwise we can choose non-informative priors for �.
Prior expert opinion should also be used for the design of appropriate corre-
lation structures;

• we can calculate the ultimate claim and the conditional MSEP analytically;
• the full predictive distribution can be derived via Monte Carlo simulations.

This allows for the calculation of any risk measure like value-at-risk or ex-
pected shortfall.
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APPENDIX

APPENDIX. PROOFS

In this appendix, we prove all the statements.

Proof of Lemma 2.1. Conditionally given the parameters �, we have that �i for different
accident years i are independent and hence so are Xi . Therefore, conditionally given the
parameters � and DJ , only the observations with accident year i within DJ are relevant
for the study of the distribution of Xi . This proves the first equality of the claim in Lemma
2.1. The second distributional claim is then a well-known result for multivariate Gaussian
distributions. For the Schur complement of
(11)

i in
,we also refer to SectionA.5.5 in Boyd–
Vandenberghe [1]. This proves the lemma.

�

Proof of Lemma 3.1. From (3.2) it immediately follows that the posterior distribution of �,
given DJ , is a multivariate Gaussian distribution. The first and second moments are then
found by squaring out all terms.

�

Proof of Theorem 3.2.Using the tower property for conditional expectations, we obtain from
formulas (2.2) and (3.2):

E[Ii,J |DJ ] = E [E[Ii,J |�,DJ ]|DJ ]

= E [ exp {�i �}|DJ ] exp
{
e′
i 


(21)
i

(


(11)
i

)−1 X(1)
i + e′

i 
̃
(22)
i ei/2

}
.

But then the proof is a consequence from Lemma 3.1.
�

Proof of Theorem 4.1.With the variance decoupling formula, we obtain

Var

(
J∑
i=1

Ii,J

∣∣∣∣∣DJ

)
=

J∑
i,k=1

Cov
(
Ii,J, Ik,J

∣∣DJ
)

=
J∑

i,k=1

Cov
(
E[Ii,J |�,DJ ],E[Ik,J |�,DJ ]

∣∣DJ
)+

J∑
i=1

E[Var(Ii,J |�,DJ)|DJ ],
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18 S. HAPP AND M.V. WÜTHRICH

where for the second term we have used the conditional independence of different accident
years, given�. Thus, we need to calculate these last two terms. Using Corollary 2.2 and (3.2),

E
[
Ii,J
∣∣�,DJ

] = exp
{
�i � + e′

i 

(21)
i

(


(11)
i

)−1 X(1)
i + e′

i 
̃
(22)
i ei/2

}
,

and
Var

(
Ii,J
∣∣�,DJ

) = E
[
Ii,J
∣∣�,DJ

]2 (
exp

{
e′
i 
̃

(22)
i ei

}− 1
)
.

We first treat the second term. It provides

E
[
Var

(
Ii,J
∣∣�,DJ

)∣∣DJ
]

= E

[
exp

{
2�i � + 2e′

i 

(21)
i (


(11)
i )−1 X(1)

i + e′
i 
̃

(22)
i ei

}∣∣∣DJ

] (
exp

{
e′
i 
̃

(22)
i ei

}− 1
)

= E
[
Ii,J
∣∣DJ

]2
exp

{
�i T(DJ) �

′
i

} (
exp

{
e′
i 
̃

(22)
i ei

}− 1
)
.

For the first term we need to consider

Cov
(
E
[
Ii,J
∣∣�,DJ

]
,E
[
Ik,J
∣∣�,DJ

]∣∣DJ
)

= exp
{
e′
i 


(21)
i

(


(11)
i

)−1 X(1)
i + e′

i 
̃
(22)
i ei/2 + e′

k 

(21)
i (


(11)
i )−1 X(1)

k + e′
k 
̃

(22)
i ek/2

}
× Cov ( exp {�i �} , exp {�k �}|DJ) .

For this last covariance term, we have

Cov ( exp {�i �} , exp {�k �}|DJ)

= E [ exp {�i �}|DJ ] E [ exp {�k �}|DJ ]
(
exp

{
�i T(DJ) �

′
k

}− 1
)
.

Henceforth, we obtain for the first term

Cov
(
E
[
Ii,J
∣∣�,DJ

]
,E
[
Ik,J
∣∣�,DJ

]∣∣DJ
)

= E
[
Ii,J
∣∣DJ

]
E
[
Ik,J
∣∣DJ

] (
exp

{
�i T(DJ) �

′
k

}− 1
)
.

Collecting all the terms and using Îi,J = E
[
Ii,J
∣∣DJ

]
completes the proof.

�
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TABLE 4

CUMULATIVE CLAIMS PAYMENTS Pi, j , i + j ≤ 21, DATA FROM A MOTOR THIRD-PARTY LIABILITY EXAMPLE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 136.367 195.757 213.788 227.545 240.136 249.647 260.260 271.207 285.847 290.814 300.035 305.988 312.930 316.524 319.988 323.268 325.798 326.231 327.722 328.616 332.724 337.137
1 143.135 212.658 233.989 252.155 267.259 280.669 295.863 310.584 322.938 332.021 341.670 349.924 356.908 361.126 367.795 370.548 373.051 376.942 378.314 379.716 381.388
2 146.469 219.759 241.983 257.063 272.848 285.437 313.398 329.903 340.223 353.075 362.015 371.042 375.094 379.430 382.385 389.057 391.468 395.824 397.531 399.724
3 158.518 232.128 256.752 276.593 292.807 310.757 322.837 339.751 352.613 366.707 378.735 385.394 394.505 402.618 409.044 412.422 415.624 421.409 424.117
4 158.633 224.457 249.797 267.676 285.455 303.548 320.282 340.976 352.487 361.300 374.500 388.449 397.848 402.989 408.151 414.016 416.098 419.528
5 153.215 225.074 249.688 267.753 285.294 307.116 324.791 341.238 353.420 369.549 382.016 390.301 395.206 403.634 406.302 407.819 411.082
6 153.185 215.699 235.609 255.384 272.749 290.988 304.081 319.717 334.457 352.992 372.879 383.645 394.634 401.194 407.377 410.387
7 150.974 217.545 242.400 260.473 279.436 299.797 317.991 336.679 352.929 373.339 397.542 407.145 416.136 429.445 435.980
8 141.432 205.018 225.339 241.315 260.098 277.061 296.286 312.645 330.538 338.629 349.021 357.775 366.468 372.513
9 141.554 207.510 230.597 250.393 272.538 294.008 321.253 346.836 366.865 381.705 391.678 404.292 411.770

10 141.899 206.157 229.510 246.710 262.735 280.171 303.956 324.354 343.041 356.874 368.163 380.622
11 145.037 215.127 240.970 260.457 280.524 304.118 322.331 345.629 357.081 370.673 384.000
12 135.739 203.999 232.176 250.014 277.500 298.976 323.555 339.853 352.098 364.883
13 135.350 209.545 236.220 256.710 276.576 293.467 305.436 320.329 336.143
14 132.847 203.592 227.902 249.914 270.477 286.129 301.347 317.801
15 135.951 205.450 229.862 250.624 266.371 280.202 300.874
16 131.151 193.635 215.365 234.202 247.325 262.034
17 130.188 190.262 213.586 226.115 242.768
18 118.505 174.622 192.852 206.808
19 118.842 177.671 199.872
20 121.011 185.856
21 132.116
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TABLE 5

INCURRED LOSSES Ii, j , i + j ≤ 21, DATA FROM A MOTOR THIRD-PARTY LIABILITY EXAMPLE.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 370.661 369.491 358.572 344.401 346.665 342.370 344.807 344.529 346.520 344.774 345.346 344.592 339.747 340.214 338.824 338.687 338.119 337.285 336.834 336.271 336.647 337.137
1 419.289 416.218 393.048 384.661 383.508 376.001 382.602 383.968 384.388 383.803 387.951 389.023 386.576 389.510 388.477 388.833 389.687 390.600 389.190 388.147 388.548
2 437.568 427.975 415.222 407.791 406.460 418.175 411.091 406.724 410.959 413.780 414.044 410.973 410.142 409.120 410.870 414.860 412.483 410.468 410.964 410.768
3 450.610 448.418 431.294 424.361 432.825 427.773 436.947 434.592 437.282 437.315 438.579 439.037 440.049 439.942 439.561 437.789 437.218 439.781 438.979
4 468.979 450.942 432.591 435.162 423.583 420.876 424.588 424.632 429.180 431.788 429.673 433.284 430.848 432.002 431.379 429.732 429.539 428.875
5 443.189 434.315 433.325 425.332 424.921 422.432 421.233 422.904 424.484 426.661 431.462 431.676 434.368 433.599 431.820 432.994 433.037
6 435.307 422.149 412.660 405.190 402.367 402.597 411.096 412.873 420.973 432.325 437.067 433.610 435.824 435.656 434.796 436.011
7 475.948 438.817 432.413 436.710 436.904 443.156 448.347 463.171 468.412 476.070 474.593 473.324 477.058 472.283 473.524
8 447.021 422.678 405.919 399.462 400.047 398.297 406.939 404.834 409.056 411.421 412.002 410.739 409.744 413.587
9 457.229 444.054 436.390 436.853 442.292 453.494 456.363 460.272 459.591 456.975 455.336 454.500 453.068

10 462.989 464.776 447.833 432.893 432.124 442.743 451.994 451.534 450.528 450.845 448.398 442.810
11 484.915 468.800 454.958 447.601 461.106 470.358 465.346 468.879 461.537 456.753 453.919
12 462.028 429.610 438.929 454.797 468.116 468.721 469.907 463.823 459.524 452.385
13 450.908 456.030 476.259 483.129 476.952 464.941 453.391 445.089 434.103
14 426.385 428.504 456.796 449.886 445.397 432.021 412.353 402.565
15 461.078 477.458 480.960 471.869 462.978 444.670 437.203
16 444.123 430.684 433.664 419.422 403.126 396.903
17 433.830 407.931 393.723 371.800 361.853
18 418.202 374.855 338.598 324.790
19 426.853 373.282 351.590
20 410.810 394.477
21 405.597

use, available at https:/w
w

w
.cam

bridge.org/core/term
s. https://doi.org/10.1017/asb.2012.4

D
ow

nloaded from
 https:/w

w
w

.cam
bridge.org/core. U

niversity of Basel Library, on 30 M
ay 2017 at 14:38:18, subject to the Cam

bridge Core term
s of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/asb.2012.4
https:/www.cambridge.org/core

