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Digital acoustics: processing wave fields in space
and time using DSP tools
francisco pinto, mihailo kolundžija and martin vetterli

Systems with hundreds of microphones for acoustic field acquisition, or hundreds of loudspeakers for rendering, have been
proposed and built. To analyze, design, and apply such systems requires a framework that allows us to leverage the vast set
of tools available in digital signal processing in order to achieve intuitive and efficient algorithms. We thus propose a discrete
space–time framework, grounded in classical acoustics, which addresses the discrete nature of the spatial and temporal sampling.
In particular, a short-space/time Fourier transform is introduced, which is the natural extension of the localized or short-time
Fourier transform. Processing in this intuitive domain allows us to easily devise algorithms for beam-forming, source separation,
and multi-channel compression, among other useful tasks. The essential space band-limitedness of the Fourier spectrum is also
used to solve the spatial equalization task required for sound field rendering in a region of interest. Examples of applications are
shown.
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I . I NTRODUCT ION

In the world of digital signal processing (DSP), there are
three fundamental tools that have become the basis of every
algorithm, system, and theory dealing with the processing
of digital audio. Those are the Nyquist sampling theory,
the Fourier transform, and digital filtering. We could add a
fourth one – the short time Fourier transform – which gen-
eralizes the Fourier transform to account for non-stationary
signals such as music and speech. These concepts are so
embedded into the creative thinking of audio engineers and
scientists that new ideas are often intuitively based on one
(or more) of these fundamental tools. Digital audio cod-
ing, speech synthesis, and adaptive echo cancellation are
great examples of complex systems built on the theories of
sampling, Fourier analysis, and digital filtering.

Fourier theory itself is built on some of the most basic
tools of mathematics, such as vector spaces and integration
theory (although harmonic analysis was not originally con-
ceived this way by Joseph Fourier [1]). From an intuitive
perspective, the Fourier transform can be seen as a change
of representation obtained by projecting the input signal
s (t) onto an orthogonal set of complex exponential func-
tions ϕ(ω, t) = e− jωt , given by S(ω) = ∫

R
s (t)ϕ(ω, t)dt.

The Fourier representation is useful for many types of sig-
nals, and is oftentimes the logical choice. As a consequence,
many of the mathematical and computational tools avail-
able today for the purpose of DSP have been developed
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2D Fourier spectrum of an acoustic wave field generated by three far-field
sources.

under the assumption that the input signal is processed in
the Fourier domain.

In digital audio, the fact that the Fourier transform ker-
nel e jωt is an eigenfunction of linear time-invariant systems
makes it a natural choice for representing sound signals
in time. In this paper, we explore the assumption that the
Fourier transform is a natural choice for representing sound
fields in both space and time.

The concept of “spatial dimension” of an audio signal
dates back to the development of array signal processing.
The underlying principles are similar to those of electro-
magnetic antennas: an array of sensors (microphones) sam-
ples the wave field at different points in space, and the
combined signals are used to enhance certain features at the
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output. Beamforming and source separation [2, 3] – two
widely used techniques – are forms of spatial filtering.
On the reproduction side, the idea translates as follows:
an array of transducers (loudspeakers) positioned at dif-
ferent points in space synthesize the acoustic wave front
from a discrete set of spatial samples. Techniques that use
this principle include Ambisonics [4], near-field higher-
order Ambisonics [5], Wave Field Synthesis (WFS) [6, 7],
Spectral DivisionMethod [8], and Sound Field Reconstruc-
tion [9].

Arrays of audio transducers enable the sound field to be
sampled and reconstructed in space just like a sound sig-
nal is sampled and reconstructed in time. On the one hand,
recent advances in acoustic sensing technology [10] have
made microphones small enough such that the sound field
can be sampled in space at theNyquist rate.1 Since the sound
field is typically band-limited, as wewill see later, thismeans
it can be sampled and reconstructed with little spatial alias-
ing. On the other hand, the ground-breaking work on wave
field synthesis [6] has made it possible to think of loud-
speakers as interpolation points in a synthesized wave front,
just like digital samples that reconstruct an analog signal.
As a result, the sound field can be conveniently interpreted
as a multidimensional audio signal with a temporal dimen-
sion and (up to) three spatial dimensions. Such a signal can
be processed by a computer using multidimensional DSP
theory and algorithms.

The goal of this paper is not to build on the theory of
acoustics, nor present competing soundfield processing and
rendering techniques, but rather to provide an intuitive view
of how the three fundamental tools of DSP translate into
the world of digital acoustics, where audio signals have both
temporal and spatial dimensions, and are sampled in both
of them. We show what it means to sample and reconstruct
a sound field in space and time from the perspective of sig-
nal processing, andwhat the respective Fourier transform is.
With a proper understanding of the spectral patterns caused
by each source in the acoustic scene, it becomes easy and
intuitive to design filters that target these sources. It also
provides a framework for the design of discrete space and
time algorithms for sound field processing, including sound
field rendering, filtering, and coding.

I I . ACOUST IC S IGNALS AND THE
WAVE EQUAT ION

When we think of an audio signal – or an acoustic sig-
nal – having a spatial dimension, we need to move our
framework into a multidimensional space. Depending on
the number of spatial dimensions considered, the signal
can have between two and four independent variables. For
simplicity, we will consider only one spatial dimension,
although the theory can be extended to all three dimen-
sions. Our signal will then be a function p(x, t), where

1Sound fields of interest have temporal frequencies in the audible
range 20Hz–20 kHz.

Fig. 1. An illustration of the three physical principles: (i) a point source gener-
ates a spherical wave front, which becomes increasingly flat in the far-field; (ii)
as the distance increases, the ratio between evanescent energy (E ) and prop-
agating energy (P ) decays to zero; (iii) the Huygens principle implies that the
wave front is a continuum of secondary sources that generate every “step” in its
propagation.

x is the position along the x-axis and t is the temporal
dimension.

Signals defined in such a way belong to a particular class
of signals, in the sense that p(x, t) must satisfy the wave
equation. Points in the function are not independent, but
rather tied by a propagating function. Unlike images, acous-
tic signals are not direct two-dimensional (2D) extensions
of traditional 1D signals. Namely, while in digital image
processing the x and y dimensions are interchangeable, in
acoustics the x and t dimensions are linked (or correlated)
through the wave equation.

The essentials of acoustic signal processing are based on
three core principles of theoretical acoustics: (i) spherical
radiation [11], (ii) modes of wave propagation [12], and (iii)
the Huygens principle [11]. Each of these principles, which
can be derived from the wave equation, is associated with
a different stage of a DSP system. Spherical radiation is rel-
evant to the analysis of acoustic signals in space and time.
The modes of wave propagation are visible in the Fourier
domain, and they affect the spectral patterns generated by
the acoustic wave fronts. The Huygens principle provides a
basis for interpolation of a sampled wave front. These three
principles, illustrated in Fig. 1, are described in more detail
bellow.

A) Spherical radiation
Spherical radiation is the radiation pattern generated by
point and spherical sources in open space. A point source
is an infinitely compact source in space that radiates sound
equally in all directions, giving the wave front a purely
spherical shape. Many sound sources can be modeled as
point sources, or as systems comprising multiple point
sources – the so-called multipoles. Reflections caused by
walls in a closed space can be equally interpreted as vir-
tual point sources [13]. This suggests that a description
of the acoustic scene solely based on point sources can
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be accurate enough to characterize the resulting wave
field.

In the particular case when the source is located in the
far-field, i.e., at a long distance from the observation region,
the incoming waves appear to have a flat wave front char-
acterized by a direction of propagation. The two types of
radiation are illustrated in Fig. 1.

Plane waves show up in the steady-state analysis of the
wave equation in Cartesian coordinates [12], and represent
simple-harmonic sound pressure disturbances that propa-
gate in a single direction (thus they have planar wavefronts).
We will see that the plane wave is the elementary com-
ponent in the spatiotemporal Fourier analysis of a wave
field, the same way complex frequencies are the elementary
components in traditional Fourier analysis. The local char-
acteristics of the wave field converge to a far-field case as the
observation region moves away from the source (and vice
versa), and this happens already a few wavelengths away.
This is the main motivation for the use of space–frequency
analysis, addressed later in the paper.

Note, however, that far-field waves in the free field are
an idealization, since their amplitude does not decay with
the distance – something not possible under the Som-
merfeld radiation condition given by (2), as described in
Box II.1.�

�

�

�

The wave equation in Cartesian coordinates is
given by (

∇2 − 1

c2

∂2

∂t2

)
p(r, t) = − f (r, t), (1)

where, for an acoustic wave field, p(r, t) denotes
sound pressure at the point of observation r =
(x, y, z) and time t. The Laplacian operator ∇2 is
given by ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , and the speed of
sound is given by c in m/s. The function f (r, t)
describes the source of radiation, and is a function
with compact support.

A solution to (1) that corresponds to radiating
sound sources needs to satisfy the Sommerfeld radia-
tion condition given by [12]

lim
r→∞ r

[
∂

∂r
− jk

]
p(r , t) = 0, (2)

where r = ‖r‖, k = ω/c is the wave number, and ω
the temporal frequency.

In the case of a point source, the source can be sim-
ply described by f (r, t) = δ(r)s (t), where δ(r) is a
Dirac delta function and s (t) is the source signal at the
singularity point. If the point source is at rp = (0, 0, 0)
and in open space, the solution to (1) is given by [11]

p(r, t) =
s
(
t − r

c

)
4πr

, (3)

which represents the spherical radiation pattern.

�

�

�

�

In the far-field, the assumption is that r � 1/k. By
applying it to (3) and normalizing the amplitude to 1,
the result is given by

p(r, t) = s
(
t + k · r

c

)
. (4)

The wave vector k = (kx , ky , kz) represents the direc-
tion of arrival of the flat wave front, and · denotes
dot product. The most distinctive aspect of this result
is that the sound pressure is dependent only on the
direction of propagation of the wave front. In the case
where s (t) = e jω0t , the function p(r, t) is called a
plane wave with frequency ω0 rad/s.

It should also be noted that in some applications
the far-field conditions are not met, primarily at low
frequencies. As a consequence, one needs to account
for the near-field effects. Examples where this hap-
pens include near-field higher-order Ambisonics [5]
and near-field beamforming [14].

Box II.1: Spherical Radiation

B) Modes of wave propagation
The convergence from spherical to far-field radiation is
related to the concept of modes of wave propagation. A far-
field acoustical wave front is not physically possible in the
free field because it contains only one mode of wave prop-
agation, called the propagating mode (PM). To satisfy the
wave equation, the wave front must contain two modes of
wave propagation: (i) the PM, which is responsible for the
harmonicmotion, and (ii) the evanescentmode (EM), which
is responsible for the amplitude decay (see Box II.2 for more
details). The ratio between the two modes depends on the
distance from the point source to the region of observa-
tion and the wavelength λ. The plot in Fig. 1, which shows
the normalized ratio between EM and PM for one tempo-
ral frequency, shows that the energy contribution of the EM
decays to zero exponentially.

We will see later that, although the modes of wave prop-
agation are not directly visible in the acoustic signal, they
become distinguishable when p(x, t) is represented in the
spatiotemporal Fourier domain.�

�

�

�

Plane waves are simple-harmonic functions of
space and time obtained as the steady-state solutions
of the homogeneous acoustic wave equation in Carte-
sian coordinates [11],

∂2 p

∂x2
+ ∂2 p

∂y2
+ ∂2 p

∂z2
− 1

c2

∂2 p

∂t2
= 0. (5)

They are expressed as analytic functions of the
spatial coordinate r = (x, y, z) and time t,

p(r , t) = P0 e j (ωt+k·r), (6)
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�

�

�

�

where P0 is a complex amplitude, ω is the angular
frequency, and k = (kx , ky , kz) is the wave vector or
a three-dimensional spatial frequency. The wave vec-
tor components, kx , ky , and kz, denoting the spatial
frequencies along the axes x, y, and z, respectively,
satisfy √

k2
x + k2

y + k2
z = k = ω

c
. (7)

Propagating plane waves, for which all the spatial
frequencies kx , ky , and kz have real values, are char-
acterized by harmonic oscillations of sound pressure
with the same amplitude at any point in space. How-
ever, even if k2

x + k2
y > k2, the acoustic wave equation

is satisfied when

kz = j
√

k2
x + k2

y − k2 = j k′
z. (8)

This particular case defines an evanescent wave,
which takes the form

p(r , t) = P0 e−k′
zze j (kx x+ky y). (9)

The evanescent wave defined by (9) is a plane
wave that propagates parallel to the xy-plane, in the
direction kxex + kyey , while its magnitude decays
exponentially in coordinate z.

Evanescent waves are responsible for the fast
change in amplitude and wavefront curvature in the
vicinity of a source. They are important in the anal-
ysis of vibrating structures and wave transmission
and reflection, as they develop close to the surface
of a vibrating structure and on boundaries between
two different media [12]. However, in the problems of
sound field reproduction or capture of sound waves
from distant sources, the spatially ephemeral evanes-
cent waves are not of utmost importance.

Box II.2:Modes of wave propagation

C) The Huygens principle
The propagation of acoustic waves through themedium is a
process of transfer of energy between adjacent particles that
excite each other as the wave passes by. At a microscopic
level, every time a particle is “pushed” by its immediate
neighbor, it starts oscillating back and forth with decaying
amplitude until it comes to rest in its original position. This
movement triggers the oscillation of subsequent particles –
this timewith less strength – and the process continues until
the initial “push” is not strong enough to sustain the transfer
of energy.

An important consequence of such behavior is that, since
particles end up in the same position, there is no net dis-
placement of mass in the medium. So, even though the
waves travel in the medium, the medium itself does not
follow the waves. This effectively turns every particle into
a (secondary) point source – each driven by the original

source s (t). At a macroscopic level, the combination of all
the secondary point sources, and the spherical waves they
generate, jointly build up the “next step” of the advancing
wave front. This phenomenon, illustrated in Fig. 1, is known
as the Huygens principle.

If we look at the Huygens principle from a signal pro-
cessing perspective, it essentially describes a natural process
of spatial interpolation, where a continuous wave front is
reconstructed from discrete samples (the medium parti-
cles). What is interesting is that, in practice, the interpola-
tion of the original wave front can be done with a limited
number of secondary sources, which can be replicated with
loudspeakers. This is the basis of spatial audio rendering
techniques such as WFS and Sound Field Reconstruction
(discussed later). In other words, the Huygens principle
constitutes the basis of a digital-to-analog converter of
acoustic wave fields.

I I I . FOUR IER TRANSFORM OF A
WAVE F IELD

We have stated that the modes of wave propagation become
distinguishable when p(x, t) is represented in the spa-
tiotemporal Fourier domain. This is because they emerge in
disjoint regions of the spectrum. Evanescent energy, in par-
ticular, tends to increase the spatial bandwidth of the wave
field, since it spreads to infinity across the spectrum. Prop-
agating energy, on the contrary, generates compact spectral
components.

When s (t) = δ(t), the resulting p(x, t) is known as
Green’s function [11], which is a special case of the plena-
coustic function [15]. Green’s function is an acoustic signal
that excites all frequencies in the 2D spectrum to their max-
imum extent – a condition analogous to the 1D spectrum of
a Dirac pulse. The resulting spectral pattern is shown in the
upper half of Fig. 2. There are three distinctive aspects in this
result: (i) the propagating (P ) and evanescent (E ) modes
are concentrated in separate regions of the spectrum, sepa-
rated by two boundary lines satisfying |φ| = |ω|/c ; (ii) the
propagating energy is dominant over the evanescent energy,
which decays exponentially; (iii) as a consequence of (i) and
(ii), the spectrum can be considered band-limited in many
cases of interest. As we will see, this has important conse-
quences on sound field sampling. This characteristic band-
limitedness can be observed in related representations, such
as the circular and spherical harmonic domains [16].

It is also interesting to analyze what happens when the
source is in the far field – illustrated in the lower half of
Fig. 2. In the example, there are two far-field sources – one
generating a sinusoidal wave front with frequency ω0; the
other generating an impulsive wave front (a Dirac pulse).
The sinusoid generates two spectral points in the 2D spec-
trum, point-symmetric, and positioned along an imaginary
diagonal line of slope cosαA/c and aligned with ω = ±ω0

(see Box III.1 for details). In other words, the sinusoidal
wave front is composed of two plane waves with oppos-
ing frequencies. The diagonal line’s slope changes within
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Fig. 2. 2D Fourier transform of a Dirac source in the near-field (top), and a
sinusoidal source and a Dirac source in the far-field (bottom). φ represents the
spatial frequency along the x-axis, and the third dimension is the magnitude of
the sound pressure as a function of spatial and temporal frequencies.

the shaded triangular region as a function of the angle of
arrival αA of the wave front. The second wave front gener-
ates a Dirac function spanning the entire diagonal line with
slope cosαB/c , which also changes as a function of αB. This
means that a Dirac source in the far-field excites all the fre-
quencies in the 2D spectrum associated with its direction of
propagation.

In general, it can be shown that wave fields are composed
of propagating plane waves traveling in different direc-
tions with different frequencies, plus the (mostly residual)
evanescent components [17]. This is analogous to 1D signals
being composed of complex exponentials with different
frequencies. The spectrum of plane waves and evanes-
cent energy is obtained through the spatiotemporal Fourier
transform.�

�

�

�

If the x-axis, for instance, represents the micro-
phone array, the continuous Fourier transform of the
wave field is defined by

P (φ,ω) =
∫

R

∫
R

p(x, t)e− j (φx+ωt)dtdx, (10)

whereφ is the spatial frequency in rad/m (also known
as wavenumber) and ω is the temporal frequency in
rad/s. The inverse transform is given by

p(x, t) = 1

4π2

∫
R

∫
R

P (φ,ω)e j (φx+ωt)dωdφ. (11)

�

�

�

�

The first relevant aspect of (10) is that the Fourier
transform of a wave field is an orthogonal expan-
sion into plane wave components. Each plane wave
is characterized by a spatiotemporal frequency pair
(φ0,ω0), which determines the respective frequency
of oscillation and direction of propagation. For every
frequency pair, we get

P (φ,ω) = 2πδ
(
ω − ω0

)
2πδ

(
φ − φ0

)
, (12)

which can alternatively be expressed as

P (φ,ω) = 2πδ
(
ω − ω0

)
2πδ

(
φ − cosα0

ω0

c

)
, (13)

where α0 is the propagation angle with respect to the
x-axis. For a general source in the far field, we get

P (φ,ω) = S(ω)2πδ
(
φ − cosα

ω

c

)
. (14)

The Dirac function δ
(
φ − cosα ωc

)
is non-zero for

φ = cosα ωc , and is weighted by the Fourier transform
of the source signal. The orientation of theDirac func-
tion is given by the line crossing the φω-plane with
slope ∂φ

∂ω
= cosα

c , which depends only on the speed
and direction of propagation of the wave front.

Note also that, since α ∈ [0,π], the Dirac func-
tion is always within a triangular region defined by
φ2 ≤ (

ω
c

)2. This gives the spectrum of a wave field a
characteristic bow-tie shape, since most of the energy
comes from plane waves (as opposed to evanescent
waves) and they all fall into this region. It also gives a
good intuition as to why the Nyquist sampling con-
dition in space is given by φs ≥ 2ωm/c , since this
condition prevents spectral images along the φ-axis
from overlapping and causing spatial aliasing [15].

Green’s function
Consider a point source with source signal s (t) =

δ(t) located at r = rp , such that

p(r, t) =
δ
(
t − ‖r−rp‖

c

)
4π
∥∥r − rp

∥∥ .

Plugging p(x, t) into (10) yields [15]

P (φ,ω) = 1

4 j
H (1)∗

0

(√
y2

p + z2
p

√(ω
c

)2
− φ2

)
e− jφxp .

(15)
where H (1)∗

0 is the zeroth-order Hankel function of
the first kind.

Evanescent waves belong to the part of the 2D
spectrum where |φ| > |ω|/c . Note that for |φ| >
|ω|/c , the argument of the Hankel function in (15)
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�

�

�

�

becomes imaginary, and (15) can be rewritten as [15]

P (φ,ω) = 1

2π
K0

(√
y2

p + z2
p

√(ω
c

)2
− φ2

)
e− jφxp ,

(16)
where K0 is the modified Bessel function of the sec-
ond kind and order zero. The asymptotic behavior of
K0 is given by [12]

K0(x) ∼
√
π

2x
e−x , x > 0. (17)

Thus, the evanescent energy decays exponentially
along the spatial frequency beyond |φ| = |ω|/c .

Box III.1: Definition of the spatiotemporal Fourier
transform

I V . SAMPL ING IN SPACE AND
T IME

We have seen that acoustic signals are approximately band-
limited in a special, non-separable way, defined by the
spectral support of the Green’s function in free field. In
the context of signal processing, this leads to important
sampling and interpolation results.

In traditional signal processing, a system is composed of
three stages: sampling, processing, and interpolation. The
system takes as input a continuous-time signal, and gen-
erates a discrete version by taking periodic samples with a
given sampling frequency ωs . If the signal is band-limited
with maximum frequency ωm and the sampling frequency
satisfies the Nyquist condition, given byωs ≥ 2ωm, then the
samples contain all the information needed to reconstruct
the original continuous-time signal, which can be donewith
an interpolation filter. In many scenarios in acoustic sig-
nal processing, one deals with sources that are sufficiently
far away from the region of interest. As a consequence,
temporally band-limited sources give rise to spatially and
temporally band-limited wave fields. This also implies that
the sound pressure can be sampled at discrete locations in
spacewithout a significant loss of information, as long as the
Nyquist sampling condition is satisfied [15]. To satisfy the
Nyquist condition in space, the spatial sampling frequency
φs must be chosen such that φs ≥ 2ωm/c . The spatial sam-
ples can then be used to resynthesize the “analog” wave
front, as predicted by the Huygens principle. Once in dis-
crete space and time, the tools and algorithms of 2D DSP
can be used to process thewave field. The effects of sampling
in space and time are illustrated in Fig. 3.

V . SPACE–T IME–FREQUENCY
ANALYS IS

One of the limitations of the Fourier transform in the analy-
sis of wave fields is that it is non-local. Similarly to the time-
domain signals whose frequency content is time dependent,

(f)(e)

(d)(c)

(b)(a)

Fig. 3. Effects of sampling in space and time: (a) non-band-limited spec-
trum; (b) band-limited spectrum; (c) (aliasing-free) temporal sampling; (d)
(aliasing-free) spatial sampling; (e) temporal aliasing; (f) spatial aliasing.

the plane-wave content of wave fields is space dependent. As
a consequence, the Fourier transform in its standard form
has no spatial resolution. To visualize this limitation, take
for example a point source in space radiating a spherical
wave front. The curvature of the wave front is not the same
everywhere; it is much more pronounced in the vicinity of
the source, and more flat as we move farther (eventually
converging to a far-field wave front). This suggests that the
plane wave content of the wave field tends to vary consid-
erably, depending on the region in space where the wave
field is observed. Thus, the Fourier analysis of the wave field
requires some form of spatial resolution.

One way of addressing this problem is to represent the
wave field in a space–frequency domain, where the spatial
resolution can be increased to the detriment of spatial fre-
quency resolution. In practice, this means applying a spatial
window along the microphone array, and selecting a win-
dow function and respective length such that it provides
the desired balance between space and frequency resolu-
tion. If the input wave field is a plane wave, the spectral
line that represents its frequency and direction of propaga-
tion “opens up” into a smooth support function centered at
the same point. This implies that, by limiting the size of the
analysis window, the plane waves become less concentrated
in small regions of the spectrum, affecting the overall spar-
sity of the spatiotemporal Fourier transform. The result of
the spatial windowing operation is illustrated in the upper
half of Fig. 4.

Another important limitation of the Fourier transform
comes from its implicit assumption of infinitely long spa-
tial axis, making the sources always appear in the near field
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Fig. 4. Windowed Fourier transform of a Dirac source in the far-field (top) and the near-field (bottom). The triangular pattern opens as the source gets closer to the
microphone array, closes as the source gets farther away, and skews left and right according to the minimum and maximum angles of incidence of the wave front.
The ripples on the outside of the triangle are caused by the sinc-function effect of spatial windowing, and are directed toward the average direction of incidence of
the wave front.

(in the analytical sense). Thus, it provides little basis for the
practical case: a microphone array with finite length. The
space–frequency analysis, on the contrary, provides such
a mathematical basis. The result is an “intermediate-field”
spectral shape that varies between a fully open triangular
shape (near-field) and an infinitely compact Dirac line (far-
field). The aperture of the triangle is directly affected by the
local curvature of the wave front. This is illustrated in the
lower half of Fig. 4.�

�

�

�

Theway of implementing a spatiotemporal Fourier
transform with spatial resolution is by defining
P (x0,φ,ω) such that

P (x0,φ,ω) =
∫ L

0

∫
R

p(x, t)w(x − x0) e− j (φx+ωt)dtdx,

(18)
where w(x − x0) is a spatial window function of
length L . For a source in the far field, the “short-
space” Fourier transform replaces the Dirac spectral
support by the Fourier transformof thewindow func-
tion, W(ω). The result in (14) then becomes

P (x0,φ,ω) = S(ω)W
(
φ − cosα

ω

c

)
e− jφx0 . (19)

Similarly towhat happens in time–frequency analysis,
the limited length of the spatial window introduces
uncertainty in the frequency domain, by spread-
ing the support function across φ. In practice, this
means that two wave fronts that propagate with a

�

�

�

�

similar angle may not be resolved in the frequency
domain, due to the overlapping of their respective
support functions. This uncertainty reflects the trade-
off between spatial resolution and spatial frequency
resolution.

In addition, the use of windowing in space makes
it easier to estimate the Fourier transform of a curved
wave front (which is the general case). A good approx-
imation is given by

P (x0,φ,ω)

=
{

S(ω)W(0)e− jφx0 , (φ,ω) ∈ C,

S(ω)W
(
φ − cos α̃ ωc

)
e− jφx0 , (φ,ω) /∈ C,

(20)

where C is a point-symmetric region where, for ω ≥
0, C = {(φ,ω) : φmin ≤ φ ≤ φmax}, given cos α̃ =
1
L

∫ L
0 cosα(x)dx, φmin = cosαmax

ω
c , and φmax =

cosαmin
ω
c . What the result in (20) says is that, as

the analysis window gets closer to the source, the
main lobe of the support function spreads along
the region C, which is defined by the minimum
and maximum angles of incidence of the wave front
with the x-axis, αmin and αmax . The intuition behind
this is that a curved wave front is a superposition
of far-field wave fronts with different propagation
angles (note that (19) is obtained from (20) when
αmin = αmax).

Box V.1: Definition of the windowed Fourier transform
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V I . PROCESS ING WAVE F IELDS IN
D ISCRETE SPACE AND T IME

The work carried out by Dennis Gabor in 1946 on the time–
frequency representation of non-stationary signals [18] had
an impact in the area of Fourier analysis well beyond that
of the development of the short-time Fourier transform.
The work essentially led to a generalized view of orthogo-
nal transforms, based on the concept that different types of
signals require different partitioning of the time–frequency
plane. Music signals, for instance, are better represented
by a uniform partitioning of the spectrum, due to their
harmonic nature. Electrocardiographic signals, on the con-
trary, are mostly characterized by low-frequency compo-
nents generated by the heart beat plus the wide band noise
generated by the surrounding muscles. For this type of sig-
nals, a dyadic partitioning of the spectrum – with higher
resolution for lower frequencies – is amore appropriate rep-
resentation. Such representations can be obtained through
a class of discrete-time structures known as filter banks,
which consist of a sequence of filters and rate converters
organized in a tree structure (see, e.g., Vaidyanathan [19]
and Vetterli et al. [20, 21]).

Filter banks are a powerful tool used for modeling sys-
tems and obtaining efficient representations of a given class
of signals through linear transforms that are invertible and
critically sampled, and, in many cases, computationally effi-
cient. In particular, filter banks can be used to implement
the discrete version of orthogonal transforms, such as the
Fourier transform. For example, the frequency coefficients
provided by the discrete Fourier transform (DFT) can be
interpreted as the output of a uniform filter bank with
as many bandpass filters as the number of coefficients. If
the signal being transformed is multidimensional – say, a
spatio-temporal signal – then the theory of multidimen-
sional filter banks can be used instead, resulting in the
typical filter bank structure shown in Fig. 5.

The generalization of filter banks theory (see, e.g., [19])
consists of using multidimensional filters to obtain the dif-
ferent frequency bands from the input spectrum and using
sampling lattices to regulate the spectral shaping prior to
and after the filtering operations. Similarly to the 1D case,
the synthesis stage of the filter bank can be designed such
that the output signal is a perfect reconstruction of the
input.

A) Realization of spatiotemporal orthogonal
transforms
Spatiotemporal orthogonal transforms can be obtained
through any combination of orthogonal bases applied sep-
arately to the spatial and temporal dimensions of the dis-
cretized sound field. Examples of transforms that can be
used to exploit the temporal evolution of the sound field
include the DFT, the discrete cosine transform (DCT), and
the discrete wavelet transform (DWT). The DFT and the
DCT are better suited for audio and speech sources, due
to their harmonic nature, whereas the DWT can be better

(a)

(b)

Fig. 5. Typical structure of a multidimensional filter bank. (a) The filter bank
structure is similar to the 1D case, except that the filters and rate converters are
multidimensional. The z-transform vector is defined such that, in the 2D spa-
tiotemporal domain, z = (zx , zt ), and N is a diagonal resampling matrix given
by N =

[
Nx 0
0 Nt

]
. The number of filters is determined by the size of the space

of coset vectors K
2 ⊂ Z

2 (assuming m = 2 from the figure), which is essen-
tially the space of all combinations of integer vectors k =

[
kx
kt

]
from k = [

0
0

]
to k = [ Nx−1

Nt−1

]
. (b) The equivalent polyphase representation is characterized by

a delay chain composed of vector delay factors z−k = z−kx
x z−kt

t and the resam-
pling matrix N, which generate 2D sample blocks of size Nx × Nt from the
input signal and vice versa. If the filter bank is separable, the filtering opera-
tions can be expressed as a product between transformmatrices associated with
each dimension.

suited for impulsive and transient-like sources. In the spa-
tial domain, the choice of basis takes into account different
factors, such as the position of the sources and the geometry
of the acoustic environment – which influence the diffuse-
ness of sound and the curvature of the wave field – as well
as the geometry of the observation region (for instance, if
it is not a straight line). The Fourier transform, as we have
shown, provides an efficient representation of the wave field
on a straight line.

The definition of the discrete spatiotemporal Fourier
transform is explained in more detail in Box VI.1, and two
examples are illustrated in Figs 6(c) and 7(c).�

�

�

�

The general formulation of a 2D spatiotemporal
orthogonal transform is given by

P [b] =
∑
n∈Z2

p[n]υ∗
bx ,nx

ψ∗
bt ,nt

, b ∈ Z
2 (21)

and

p[n] =
∑
b∈Z2

P [b]υbx ,nxψbt ,nt , n ∈ Z
2, (22)

where n = [nx , nt] are the discrete spatiotemporal
indexes, b = [bx , bt] are the transform indexes, p[n]
is the discrete spatiotemporal signal, and P [b] are the
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�

�

�

�

spatiotemporal transform coefficients. The bases rep-
resented by υbx ,nx and ψbt ,nt are spatial and temporal
orthogonal bases, respectively.

In matrix notation, (21) and (22) can be written as

Y = ϒP�H (23)

and
P = ϒHY� , (24)

where P, Y, ϒ , and � are the matrix expansions of
p[n], P [b], υbx ,nx , and ψbt ,nt , respectively.
The results in (23) and (24) show that a spa-

tiotemporal orthogonal transform is simply a matrix
product between the input samples and the transfor-
mationmatricesϒ and� . The transform can thus be
expressed as a multidimensional filter bank structure
similar to the one shown in Fig. 5, where the block∏

m Hm represents a left product by ϒ and a right
product by �H , and

∏
m Fm represents a left prod-

uct byϒH and a right product by� . The input signal
p[n] of size Nx × Nt is decomposed by the analysis
stage of the filter bank into a transform matrix P [b]
of equal size, and reconstructed back to p[n] by the
synthesis stage.

To perform a spatiotemporal DFT, the basis func-
tions are defined as

υbx ,nx = 1√
Nx

e j 2π
Nx

bxnx and ψbt ,nt = 1√
Nt

e j 2π
Nt

btnt , (25)

where bx = 0, . . . , Nx − 1, nx = 0, . . . , Nx − 1, bt =
0, . . . , Nt − 1, and nt = 0, . . . , Nt − 1. This implies
that ϒ and � are DFT matrices of size Nx × Nx and
Nt × Nt respectively.

Box VI.1: Definition of discrete spatiotemporal transforms

B) Realization of lapped orthogonal
transforms (LOTs)
A LOT is a class of linear transforms where the input sig-
nal is split up into smaller overlapped blocks before each
block is projected onto a given basis (and typically pro-
cessed individually). A perfect reconstruction of the input
signal is obtained by inverting the individual blocks and
adding them through a technique known as overlap-and-
add [22]. A spatiotemporal LOT is the kind of transform
that is needed to perform the type of analysis described in
Section V.

The multidimensional filter bank structure of Fig. 5 can
be converted into a lapped transform simply by applying
the resampling matrix N − O instead of N, where O =[Ox 0

0 Ot

]
contains the number of overlapping samples Ox

and Ot in each dimension. Without loss of generality, we
assume that O = 1

2 N, representing 50 of overlapping in
both dimensions. Note, however, that since the resulting

number of samples is greater than the number of samples
of the input signal, the filter bank generates an oversam-
pled transform. This problem can be solved with the use of
special subsampled bases, such as the MDCT basis [22].

Through the use of LOTs, a spatiotemporal version of
the short-time Fourier transform can then be defined, by
applying the method shown in Box VI.2. Examples of the
short spatiotemporal Fourier transform of a sound field are
illustrated in Figs 6(d) and 7(d).

�

�

�

�

The decomposition of p[n] into overlapped blocks
pi[n] can be written as

pi[n] = p[n] , n = N

2
i, . . . ,

N

2
(i + 2)− 1 , i ∈ I

2, (26)

where i = [ ix
it

]
is the block index and I

2 ⊂ Z
2 is

the respective set of block indexes. The notation
n = N

2 i, . . . , N
2 (i + 2)− 1 means that nx = Nx

2 ix , . . .,
Nx
2 (ix + 2)− 1 and nt = Nt

2 it , . . . ,
Nt
2 (it + 2)− 1.

The vector integers are defined as 0 = [
0
0

]
, 1 = [

1
1

]
,

and so on. Note also that, in order to handle the
blocks that go outside the boundaries of n, we
consider the signal to be circular (or periodic) in
both dimensions. This presents an advantage over
zero-padding, in particular, when the spatial “axis” is
closed.

Denoting ϕ[b, n] = υbx ,nxψbt ,nt , the direct and
inverse transforms for each block are given by

Pi[b] =
N1−1∑
n=0

pi[n]ϕ∗[b, n] , b = 0, . . . , N1 − 1 (27)

and

p̂i[n] =
N1−1∑
b=0

Pi[b]ϕ[b, n] , n = 0, . . . , N1 − 1. (28)

Finally, the reconstruction of p[n] through overlap-
and-add is given by

p[n] =
∑
i∈I2

p̂i

[
n − 1

2
Ni
]

, n ∈ Z
2. (29)

Box VI.2: Definition of discrete Lapped spatiotemporal
transforms

C) Spatiotemporal filter design
In DSP, filtering is the cornerstone operation when it comes
to manipulating signals, images, and other types of data. It
is arguably the most used DSP technique in modern tech-
nology and electronic devices, as well as in the domain
of Fourier analysis in general. The outstanding variety of
applications of filtering go beyond the simple elimination
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(b)(a)

(d)(c)

Fig. 6. Far-field and intermediate-field sources driven by a Dirac pulse, observed on a linear microphone array. (a) Acoustic scene; (b) spatiotemporal signal p[n];
(c) spatiotemporal DFT P [b]; (d) short spatiotemporal Fourier transform Pi[b].

of undesired frequencies in signals: it allows, for exam-
ple, the elimination of several types of interferences, the
cancellation of echoes in two-way communications, and
the frequency multiplexing of radio signals. Moreover, the
theory led to the invention of filter banks, and hence the
development of new types of linear transforms and signal
representations.

In array signal processing (see, e.g., Johnson et al. [23]),
there exists a similar concept called spatial filtering (or
beamforming). A spatial filter is a filter that favors a given
range of directions in space, implemented directly through
the array of sensors. The sensors are synchronized such that
there is phase alignment for a desired angle of arrival and
phase opposition for the other angles. Spatial filters have
been used in many contexts throughout history with enor-
mous success – most notably during warfare with the use of
radars, and during the era of wireless communications with
the use of antennas. Other applications include sonar, seis-
mic wave monitoring, spatial audio, noise cancellation, and
hearing aids technology. As long as more than one sensor
is available, it is always possible to implement a spatial fil-
ter. The human auditory system, for example, uses an array

of two sensors (the ears) to localize the sound sources in
space.

Similarly to time-domain signals, representing sound
fields in the spatiotemporal Fourier domain enables the
design of filters in amuchmore intuitive fashion. One of the
greatest attributes of the Fourier transform is that it allows
the interpretation of convolutional filtering in terms of intu-
itive parameters such as the cut-off frequencies, stop-band
attenuation, and phase response. For instance, a filter can
be sketched in the Fourier domain such that it has a uni-
tary response for a given range of frequencies (pass-band)
and a high attenuation for the remaining frequencies (stop-
bands), plus an equiripple magnitude response and a linear
phase. Using existing algorithms [24], the ideal filter can be
translated into a realizable filter that optimally obtains the
desired response.

In spatiotemporal Fourier analysis, the same reason-
ing can be used: we can sketch a spatial filter in the
Fourier domain such that it has a unitary response for
every plane wave within a given range of directions (pass-
band) and a high attenuation for the remaining plane
waves (stop-bands), plus any additional magnitude and
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(b)(a)

(d)(c)

Fig. 7. Intermediate-field source driven by a Dirac pulse and observed on a curved microphone array. (a) Acoustic scene; (b) spatiotemporal signal p[n];
(c) spatiotemporal DFT P [b]; (d) short spatiotemporal Fourier transform Pi[b].

phase constraints. The ideal filter can be translated into
a realizable filter by using two-dimensional filter design
techniques. Once the spatiotemporal filter coefficients are
obtained, the filtering operation can be performed either
in the spatiotemporal domain, using the convolution for-
mula, or in the Fourier domain, using the convolution prop-
erty of the Fourier transform. This process is described in
Box VI.3.

Figures 8–11 show various examples of how this type
of non-separable spatio-temporal filtering can be used to
suppress point sources in space (in the near-field and far-
field) without the loss of spatial information of the remain-
ing sources in the output signal. In these examples, the
ideal filter is designed using the method of (32), with cut-
off angles given by αmax

Stop = 1.05αmax , αmax
Pass = 0.95αmax ,

αmin
Pass = 1.05αmin, and αmin

Stop = 0.95αmin, where αmin and
αmax are the minimum and maximum incidence angles of
the wave front we wish to filter (see Fig. 12). The ideal
filter H[b] is then applied directly to the input sound
field spectrum P [b] using (31), without actually going
through a 2D filter design algorithm. Obviously, applying
an ideal filter with flat pass- and stop-bands is not advised

in practical implementations; we do it here only as a
proof-of-concept.�

�

�

�

A spatiotemporal filter is a 2D discrete sequence
defined as h[n] = h[nx , nt] with DFT coefficients
H[b] = H[bx , bt]. If the input signal is p[n], then
that spatiotemporal filtering operation is given by a
2D circular convolution [24],

y[n] =
Nx−1∑
ρ=0

Nt−1∑
τ=0

p[ρ, τ ]h[((nx − ρ))Nx , ((nt − τ))Nt ],

(30)
where ((·))N = · mod N . Unlike beamforming, the
output of (30) is the 2D signal y[n] representing the
entire wave field (i.e., with spatial information).

Using the convolution property of the DFT, it fol-
lows that

Y[b] = P [b]H[b]. (31)
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Fig. 8. Example of filtering directly in the spatiotemporal Fourier domain (with no lapped transform). (a) The acoustic scene consists of two Dirac sources in the
intermediate-field. The goal is to suppress the dashed source. (b) DFT along the entire spatial axis. (c) Filter input. (d) Filter output.

�

�

�

�

To specify the parameters of the ideal filter, we first
need to decide what is the purpose of the filter. A rea-
sonable goal is to focus on the wave fronts originating
from a particular point in space – perhaps the loca-
tion of a target source – while suppressing every other
wave front with a different origin. For this purpose,
the expression of the spatiotemporal spectrum of an
intermediate-field source can be used to specify the
parameters of the ideal filter.

Recall the results from Box V.1. According to (20),
the maximum concentration of energy is contained
within the region defined by the triangular support
(i.e., for (φ,ω) ∈ C). Thus, the ideal filter can be
defined in discrete space and time as

H[b] =
{

1 , b ∈ C,

0 , b /∈ C,
(32)

where C = {
b : bmin

x ≤ bx ≤ bmax
x , bt ≥ 0

}
, and

point-symmetric for bt < 0. The parameters bmin
x

and bmax
x are the discrete counterparts of φmin and

φmax , and are given by bmin
x = cosαmax bt

c

(
Tx Nx

Nt

)
and

bmax
x = cosαmin bt

c

(
Tx Nx

Nt

)
, where Tx is the sampling

period in space. The relation between the focus point
and the filter specifications is illustrated in Fig. 12.

Box VI.3: Spatiotemporal filtering

D) Acoustic wave field coding
Since the early days of DSP, the question of how to repre-
sent signals efficiently in a suitablemathematical framework
has been paired with the question of how to efficiently store
them in a digital medium. The storage of digital audio, in
particular, has beenmarked by twomajor breakthroughs: (i)
the development of pulse-codemodulation (PCM) [25], and
(ii) the development of perceptual audio coding [26]. These

techniques were popularized, respectively, by their use in
Compact Disc technology and MP3 compression; both had
a deep impact on the entire industry of audio storage.

The MP3 coding algorithm, in particular, operates by
transforming the PCM signal to a Fourier-based domain
through the use of a uniform filter bank, where the ampli-
tude of the frequency coefficients is again quantized. The
key breakthrough is that the number of bits used for quan-
tizing each coefficient is variable, and, most importantly,
dependent on their perceptual significance. Psychoacoustic
studies show that a great portion of the signal is actu-
ally redundant on a perceptual level. This is related to the
way the inner ear processes mechanical waves: the wave is
decomposed into frequencies by the cochlea, where each
frequency stimulates a local group of sensory cells. If a
given frequency is close to another frequency with higher
amplitude, it will not be strong enough to overcome the
stimulation caused by the stronger frequency, and therefore
will not be perceived. For this reason, the use of percep-
tual criteria in the quantization process gives an average
compression ratio of 1/10 over the use of PCM.

In the spatiotemporal analysis of acoustic wave fields,
the question arises of how much relevant information is
contained in the wave field, and what is the best way of
storing it. When the sound pressure is captured by the mul-
tiple microphones to be processed by a computer, there
is an implicit amplitude quantization of the pressure val-
ues in p[n]. The spatiotemporal signal obtained by a linear
array, for instance, is in fact a 2D PCM signal. Withmodern
optical media such as Double Layer DVD (approximately
8.55 GB of storage capacity) or BlueRay, we can store about
24 audio channels with 80min of raw (uncompressed) PCM
data. However, if the goal is to store in the order of 100
channels, it is imperative that the data be compressed as
efficiently as possible.

The most relevant work on joint compression of audio
channels dates back to the development of perceptual audio
coding in the early 1990s. When it was realized that mono
PCM audio could be efficiently compressed using filter
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(b)(a)

(d)(c)

Fig. 9. Example of filtering directly in the spatiotemporal Fourier domain (with no lapped transform). (a) The acoustic scene consists of two Dirac sources, where
one is in the intermediate-field and the other in the far-field. The goal is to suppress the dashed source. (b) DFT along the entire spatial axis. (c) Filter input. (d)
Filter output.

banks theory and perceptual models, the techniques were
immediately extended to stereo PCM audio (see, e.g., John-
ston et al. [27] and Herre et al. [28]), and later to an
unlimited number of PCM audio channels (see, e.g., Faller
et al. [29] and Herre et al. [30]). The basic premise of these
techniques is that the audio channels are highly correlated
and therefore can be jointly encoded with high efficiency,
using a parametric approach. The correlation criteria can be
both mathematically based – for example, using the theory
of dimensionality reduction of data sets [31]; or perceptually
motivated – for example, based on the ability of humans to
localize sound sources in space [32]. However, what all these
techniques have in common is that they treat the multi-
channel audio data (i.e., the acoustic wave field) as multiple
functions of time, and not as a function of space and time
such as the one the wave equation provides.

So, rather than treating the multichannel audio data as
multiple functions of time, we can treat the entire wave field
as a single multidimensional function of space and time,
and perform the actual coding in the multidimensional
Fourier domain [33]. When the spatiotemporal signal p[n]

is transformed into the spatiotemporal Fourier domain,
there is an implicit decorrelation of the multichannel audio
data. This decorrelation is optimal for harmonic sources in
the far-field, as these are the basic elements of the spatio-
temporal Fourier transform. As a consequence, by quantiz-
ing the transform coefficients in P [b] instead of jointly cod-
ing the multichannel signals p[0, nt], p[1, nt], . . . , p[Nx −
1, nt], we are directly coding the elementary components
of the wave field, which are the plane wave coefficients.
Then, using rate-distortion analysis, we can obtain a func-
tion that relates the number of bits needed to encode the
sound field for any given distortion. This rate-distortion
analysis is described in Box VI.4.�

�

�

�

Suppose we want to compress the wave field
observed on a straight line with Nx spatial points,
by encoding the coefficients of P [b] in the transform
domain. The first step is to quantize the amplitude of
P [b], so that a limited number of bits is needed to
encode the amplitudes of each coefficient. One way
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(b)(a)

(d)(c)

Fig. 10. Example of filtering in the short spatiotemporal Fourier domain. (a) The acoustic scene consists of two Dirac sources in the intermediate-field. The goal is
to suppress the dashed source. (b) DFT along the entire spatial axis. (c) Filter input. (d) Filter output. (e) Short spatiotemporal Fourier transform.

�

�

�

�

to quantize P [b] is by defining PQ[b] such that

PQ[b] = sign {P [b]}
⌊
SF[b] |P [b]|

⌋
, (33)

where SF[b] contains the scale factors of each coeffi-
cient, and �·� denotes rounding to the closest lower
integer. The purpose of the scale factors is to scale the
coefficients of P [b] such that the rounding operation
yields the desired quantization noise.

Conversely, the noisy reconstruction of P [b] can
be obtained as

P̂ [b] = sign
{

PQ[b]
}( 1

SF[b]

∣∣PQ[b]
∣∣) . (34)

To determine the number of bits required to encode
the quantized coefficients, we need to associate the
amplitude values to a binary code book – preferably
one that achieves the entropy. In this paper, we con-
sider a Huffman code book similar to the one used in

�

�

�

�

the MPEG standard [34], where code words are orga-
nized such that less bits are used to describe lower
amplitude values.

Defining Huffman {A} as an operator that maps
the amplitude value A to the corresponding set of bits
(or code word) in the Huffman code book, the num-
ber of bits R[b] required for each coefficient is given
by

R[b] = ∣∣Huffman
{

PQ[b]
}∣∣ , (35)

where |·| denotes the size of the set of bits in the
resulting code word.

Using the MSE between the input signal p[n] and
the output signal p̂[n] as a measure of distortion,
the rate-distortion function D(R) is given by the
parametric pair

R =
N1−1∑
n=0

R[b],
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(b)(a)

(d)

(e)

(c)

Fig. 11. Example of filtering in the short spatiotemporal Fourier domain. (a) The acoustic scene consists of threeDirac sources in the intermediate-field, and a curved
microphone array. The goal is to suppress the dashed sources. (b) DFT along the entire spatial axis. (c) Filter input. (d) Filter output. (e) Short spatiotemporal Fourier
transform.
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�

�

�

�

D = 1

det N

N1−1∑
n=0

(
p[n] − p̂[n]

)2
, (36)

where R and D are functions of SF[b], with 0 ≤
SF[b] < ∞. In the limiting cases, where SF[b] → 0
and SF[b] → ∞ for all b, (36) yields respectively.

lim
SF[b]→0

R = 0,

lim
SF[b]→0

D = var {p[n]}

and

lim
SF[b]→∞

R = ∞,

lim
SF[b]→∞

D = 0,

where var {·} denotes the signal variance (or power),
and the last equality comes from the limiting case
limSF[b]→∞ P̂ [b] = P [b].

Box VI.4: Spatiotemporal spectral quantization

Figure 13 shows examples of rate-distortion curves that
result of encoding the acoustic wave field observed on a
straight line, using the short spatiotemporal Fourier trans-
form (the Gabor domain). In these examples, the acoustic
scene is composed ofwhite-noise sources, in order to reduce
the influence of the temporal behavior of the wave field in
the bit rate R. Also, since we are evaluating the influence of
the number of spatial points Nx in the final number of bits
required, the bit rate is expressed in units of “bits per time
sample”.

In both cases, we can observe that the increase in the
number of spatial points Nx does not increase the bit rate
proportionally, but it actually converges to an upper-bound.
The reason is that, even though doubling Nx also duplicates
the number of transform coefficients, the support functions
are narrowed to half the width (recall equation (19)), and
the trade-off tends to balance itself out. Thus, increasing Nx

past a certain limit does not increase the spectral informa-
tion, since all it adds are zero values (i.e., amplitude values
that are quantized to zero).

It can also be observed that for lower bit-rates – in
the order of those used by perceptual audio coders [35] –
the difference between one channel and a large number of
channels is low in terms of MSE. For example, in Fig. 13
(left), the number of bits required to encode 256 channels
is 11.3 bits/time-sample, as opposed to the 2.6 bits/time-
sample required for encoding one channel. To have a
fair comparison, we can consider that a practical codec
would require about 20% of bit-rate overhead with decod-
ing information [34], and thus increase the average rate
to 13.6 bits/time-sample. Still, compared to encoding one
channel, the total bit rate required to support the additional
255 channels is only five times higher.

Another interesting result is that, similarly to what hap-
pens when Nx is increased, the increase in the number of
sources does not increase the bit rate proportionally; again,
it converges to an upper-bound. This is because the bit rate
only increases until the entire triangular region of the spec-
trum (defined in Box III.1 as φ2 ≤ (

ω
c

)2) is filled up with
information. Once this happens, the spectral support gen-
erated by additional sources will simply overlap with the
existing ones.

E) Sound field reproduction
Here we give brief descriptions of two approaches for repro-
ducing continuous sound fields. The first is based on the
spatiotemporal sampling framework described in Section
IV, and acoustic multiple input, multiple output (MIMO)
channel inversion, described in the following. The second
approach, known under the name of WFS [6], is based on
the Huygens principle described in Section C.

We note that we cannot do justice to a number of other
approaches for reproducing sound fields. Some of them
are extensions of WFS [36, 37], some are based on mul-
tidimensional channel inversion [8], and there are many
approaches based on matching spherical harmonic compo-
nents between the desired and reproduced 3D sound fields
[4, 5, 38–40].

1. Sound field reproduction through acoustic
MIMO channel inversion
Wehave already seen one implication of effective spatiotem-
poral band-limitedness of wave fields in Section IV, that
a wave field is essentially determined by its time evolu-
tion on a sampling grid of points that satisfies the Nyquist
condition φs ≥ 2ωm/c . Here we present a way to use this
observation in order to reproduce continuous wave fields
by discrete-space processing.

Assume for simplicity that twowave fields are fully band-
limited, with the same spatiotemporal spectral support
shown in Fig. 3(b). Following the argument from Section
IV, the two wave fields are uniquely represented bymultidi-
mensional signals obtained through sampling on a spatial
grid satisfying the Nyquist condition (refer to Fig. 3(d)).
Moreover, one can easily extend that argument and show
that if two adequately sampled wave fields are equal in the
discrete domain, they are equal in the continuous domain –
at any point in space and time [9].

Transposed to the context of sound field reproduction,
this observation states that it is sufficient to reproduce a
sound field on a grid of points that satisfies the Nyquist
condition; the accurate reproduction (or interpolation) in
the remainder of the continuous domain is taken care of by
Green’s function acting as the interpolation kernel [9].

Imagine that a loudspeaker array L = {l1, l2, . . . , lL } –
not necessarily planar or linear – is used for reproducing a
sound field in a continuous area, as shown in Fig. 14(a). Let
C = {c1, c2, . . . , cN} be a grid of control points covering
the listening domain S and satisfying the Nyquist condition
which, as stated earlier, is sufficient to describe a continuous
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(b)(a)

(d)

(e)

(c)

Fig. 12. Design steps of a spatiotemporal filter. The pass-band region of the filter should enclose the triangular pattern that characterizes the spectrum of a point
source.
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Fig. 13. Experimental rate-distortion curves for white-noise sources in the far-field observed on a straight line. On the left, the D(R) curves are shown for one
source encoded in the short spatiotemporal Fourier domain (Gabor domain) with no overlapping. The source is fixed at α = π

3 and the number of spatial points
Nx is variable. On the right, the D(R) curves are shown for multiple sources encoded in the short spatiotemporal Fourier domain. The number of spatial points is
fixed, Nx = 64, and the sources are placed at random angles. The black circle shown in each plot indicates R = 2.6 bits/time-sample, which is the average rate of
state-of-art perceptual coders.

Fig. 14. Sound field reproduction through MIMO acoustic channel inversion
problem overview.

sound field. The acoustic channel G ji (ω) between loud-
speaker i and control point j is determined byGreen’s func-
tion Gω(r li |rc j ), so the system loudspeakers-control points
can be described by an acoustic channel matrix G(ω) =[
Gi j (ω)

]
. In a similar way, any reproduced source s defines

an array A(ω) of acoustics channels to the control points,
given by Ai (ω) = Gω(r s |rci ) and illustrated in Fig. 14(b).
Note that in practice Ai (ω) are usually obtained from a
model (e.g., Green’s function in the free field), while Gi j (ω)

are either measured or obtained from a model.

Acoustic MIMO channel inversion
The observation that multi-point reproduction gives a bet-
ter control over the reproduced sound has been used in

active noise control (see [41, 42] and references therein) and
multichannel room equalization [43]. Multichannel tech-
niques from active noise control later found application in
sound field reproduction, either independently [44, 45] or
combined with other approaches, such as WFS [36, 37].

The multi-point sound reproduction through the inver-
sion of an acoustic MIMO channel G(ω) can be expressed
in the general form

minimize ‖W(ω)(G(ω)H(ω)− A(ω))‖x

subject to physical constraints, (37)

where W(ω) is an error-weighting matrix, x is the chosen
weighted-error norm (typically the L2-norm), and H(ω) is
an array of unknown reproduction filters.

The very general term “physical constraints” is usually
used to express hard or soft constraints on filters’ gains or
their frequency-domain variations, but can equally account
for geometry-based selection of used loudspeakers [9, 36,
46, 47]. On the other hand, the weighting matrix W(ω) can
assign different importance to errors at different frequencies
or different control points, as done in [9]. One should also
note that extending the reproduction to an arbitrary num-
ber of sources is done using the principle of superposition,
solving (37) for every reproduced sound source separately
and combining the outputs into one array of loudspeaker
driving signals.

The simplest case of acoustic MIMO channel inver-
sion contains no physical constraints, no error weighting
(W(ω) = I ), and minimizes the L2-norm of the reproduc-
tion error. Its well-known solution obtained through the
pseudoinverse of the matrix G(ω) is given by

H(ω) = G+(ω)A(ω). (38)

Typically, however, thematrix G(ω) has a very large con-
dition number at low frequencies, and the reproduction
filters obtained from (38) are of little practical use. The usual
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(a)

(b)

Fig. 15. An illustration of sound field reproduction with an array of loudspeakers, the listening area being to the right (in front) of the loudspeaker array. Figures
on the left show snapshot of desired sound fields, while figures on the right show the corresponding sound fields reproduced with loudspeaker arrays. The desired
sound field emanates from a point source (a) behind, with rs = (0 m, 1 m) and (b) in front of the loudspeaker array, with rs = (2 m, 1.5 m). It is apparent that in
the listening area, sound fields reproduced with loudspeaker arrays match well the corresponding desired sound fields.

remedy to this problem is the use of a regularized pseudoin-
verse, computed either through Tikhonov regularization2
[36, 48] or truncated singular value decomposition [9].

In more general cases, (37) takes a form of a convex
program, which can be solved using some readily available
solvers, such as [49] or [50].

Figure 15 illustrates the reproduction of sound fields with
Sound Field Reconstruction, which is an approach based on
the previously described discretization strategy and acous-
tic MIMO channel inversion [9].

2. Wave field synthesis
WFS [6] is a notable principle of reproducing sound fields
based on the interior Helmholtz integral equation and its
special cases expressed through Rayleigh’s I and II integrals
[12]. For the sake of space, we only give Rayleigh’s I integral,
which serves as the essence of WFS with omnidirectional
loudspeakers:

P (r ′,ω) = −2
∫∫

∂Vxy

iρ0ω Gω(r|r ′)Vn(r ,ω) d(∂Vxy) .

(39)

In words, Rayleigh’s I integral gives a way of reproducing
sound fields that emanate from sources in the half-space

2We should add here that the Tikhonov regularization is obtained
as the solution to (37), where one uses a soft constraint in the form
of an effort penalty term, minimizing the cost function ‖G(ω)H(ω)−
A(ω)‖2

2 + λ‖H(ω)‖2
2.

z < 0 with a distribution of secondary point sources in the
plane z = 0.

Figure 16 illustrates the mentioned principle. The sec-
ondary sources are identified through the term Gω(r|r ′),
which is the free-field Green’s function, and their driving
signals are given by the normal component Vn(r ,ω) of the
particle velocity vector of the desired sound field in the
plane z = 0.

For a system based on Rayleigh’s I integral to be prac-
tical, one needs a loudspeaker array of finite size (often
a single-line array), which mathematically corresponds to
approximating the integral in (39) with a finite sum. As
a consequence, the WFS reproduction is limited to the
frequencies below an aliasing frequency

fmax = c

2�x sinαmax

Fig. 16. The principle of reproducing sound fields in the half-space z > 0 using
a planar distribution of secondary point sources in the xy-plane.
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determined by the loudspeaker spacing �x and the max-
imum radiation angle αmax of reproduced sound sources
[6].

It should be noted that loudspeaker spacing �x is the
main cause of the spatial aliasing artifacts above the aliasing
frequency, irrespective of the reproduction method. One
can mitigate the problem to some degree by selecting active
loudspeakers [9, 36, 47] or applying a tapering window [46].

V I I . CONCLUS ION

This paper presented a view of sound fields based on the
theory of multidimensional signal processing. We saw that
point sources generate spherical wave fronts, which become
increasingly flatter and weaker the farther they propagate.
Such waves are shaped by a PM and an EM, which causes
the amplitude to decay. Owing to the Huygens principle,
wave fronts can theoretically be sampled and reconstructed
with an array of microphones and loudspeakers. This pro-
vides a basis for processing wave fields in discrete space
and time. We showed that acoustic wave fields are essen-
tially band-limited, and that the spatiotemporal Fourier
transform of a point source has a symmetric triangular pat-
tern. This triangle opens and closes as a function of the
distance between the source and the sampling axis, and
skews according to the average direction of the wave front.
If multiple sources are present, they can be separated by
applying a 2D filter that matches the spectral triangle of
each desired source. They can also be compressed using
the principles of digital audio coding and psychoacous-
tics. Finally, we showed that a wave field can be recon-
structed in a listening areawith little spatial aliasing, by solv-
ing an optimization problem over a discrete set of control
points.
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