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Validation of Default Probabilities

Andreas Blöchlinger∗

Abstract

Well-performing default predictions show good discrimination and calibration. Discrimi-
nation is the ability to separate defaulters from nondefaulters. Calibration is the ability to
make unbiased forecasts. I derive novel discrimination and calibration statistics to verify
forecasts expressed in terms of probability under dependent observations. The test statis-
tics’ asymptotic distributions can be derived in analytic form. Not accounting for cross
correlation can result in the rejection of actually well-performing predictions, as shown
in an empirical application. I demonstrate that forecasting errors must be serially uncorre-
lated. As a consequence, my multiperiod tests are statistically consistent.

I. Introduction

For a lender the use of well-performing default forecasting models that can
carry consistent predictive information about credit defaults is of crucial impor-
tance in terms of profitability and, ultimately, for survival in the marketplace. It
is a long-standing theory in economics (empirically corroborated by the numer-
ous bank failures after the financial market crisis in 2008) that agents who do not
predict as accurately as others are driven out of the market (see Alchian (1950),
Friedman (1953), and Sandroni (2000)).

The default forecast expressed in terms of the probability of default (PD)
is a key input parameter in credit risk management (e.g., to compute the regu-
latory capital). As a consequence, the validation of PDs is a crucial component
of the supervisory review process. Banks must demonstrate that they can assess
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the performance of their forecasts consistently and meaningfully. More detailed
requirements demand, for instance, that realized default rates have to be within
an expected interval (see Basel Committee on Banking Supervision (2005)). The
committee states that “the area of validation will prove to be a key challenge for
banking institutions in the foreseeable future.” In this paper I exactly address this
key challenge by developing new statistical tools to validate PDs as suggested in
a paper by the Department of the Treasury, Federal Reserve System, and Federal
Deposit Insurance Corporation (2003) on supervisory guidance for the internal
ratings-based (IRB) approach:

At this time, there is no generally agreed-upon statistical test of the
accuracy of IRB systems. Banks must develop statistical tests to back-
test their IRB rating systems.

In weather forecasting, validation methods for probability forecasts are well
established (see, e.g., Cooke (1906), Brier (1950)). What makes the verification of
default probabilities more challenging than precipitation probabilities? In weather
forecasting, over the course of 1 year I have 365 daily probability forecasts. Per-
haps, I have 2 separate precipitation forecasting sequences for the north and the
south of a state. The forecasting errors between the 2 geographical regions may
be cross correlated (e.g., when a cold front brings rainfall for both regions faster
than anticipated). The forecasting errors over time, however, must be uncorrelated
(i.e., the early arrival of the cold front is incorporated into the prediction when
making the following day’s rain probability forecasts). In this weather example,
I have a long time series and a small cross section. With default probabilities it is
reversed. I have a large cross section as measured by the number of borrowers but
usually only a few periods of data. Accounting for small cross correlation can re-
verse the validation outcome. That is, the default predictions are considered well
performing when accounting for cross correlation but not so when assuming zero
correlation. Further complicating matters, I may have an average of 25% rainy
days, but default events are scarcer.

According to the existing literature (e.g., Hosmer and Lemeshow (1989),
Harrell (2001), Basel Committee on Banking Supervision (2005)), there are 2
major validation aspects that need to be assessed: discrimination and calibration.
Models that distinguish well between borrowers who default and those who sur-
vive are said to have good discrimination. Calibration refers to the ability of a
model to match predicted and observed default rates across the entire spread of
the data. A model in which the number of observed defaults aligns well with the
number of defaults expected by the model demonstrates good calibration. A com-
monly used measure of discrimination is the Gini (1921) index. The higher the
value of the Gini index, the higher the discriminatory power. Bamber (1975) pro-
vides a method for testing the significance of a model against the naive model.
DeLong, DeLong, and Clarke-Pearson (1988) extend this method to the compari-
son of 2 models. Common measures of calibration are the χ2 statistics of Pearson
(1900) and Hosmer and Lemeshow (1989). Both statistics compare observed with
predicted outcomes.

Up to now, according to the Basel Committee on Banking Supervision
(2005), commonly used tests have had at least one or often several shortfalls:
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Blöchlinger 1091

i) Many tests are derived under stochastic independence (like the
Kolmogorov (1933) statistic or the Spiegelhalter (1986) test based on the Brier
score), which is a problematic assumption for validating default predictions, as
tests can be biased (i.e., true type I error rates can be substantially higher than
nominal significance levels).1

ii) Asymptotic distributions are often not valid because of sparseness of
defaults (e.g., the goodness-of-fit statistics of Pearson (1900) and Hosmer and
Lemeshow (1989)).

iii) Some test statistics rely heavily on numerical methods (e.g., Balthazar
(2004)).

iv) Some statistics require borrowers to be grouped (e.g., Pearson’s χ2 and
its extensions as in Pollard (1979), Andrews (1988)). Grouping can heavily affect
test results.2

v) Other tests are applicable to single time periods only, or if a summary
statistic over several periods is obtainable, I must first determine a time-series
process (e.g., Blochwitz, Hohl, Tasche, and Wehn (2004)).

Due to these shortcomings, the Basel Committee on Banking Supervision
(2005) considers current quantitative validation approaches insufficient:

[A]ll tests based on the independence assumption are rather conserva-
tive, with even well-behaved rating systems performing poorly in these
tests. On the other hand, tests that take into account correlation between
defaults will only allow the detection of relatively obvious cases of rat-
ing system miscalibration.

Basel Committee on Banking Supervision ((2005), p. 3)

They conclude that “the validation process is mainly qualitative in nature and
should rely on the skills and experience of typical banking supervisors” (p. 9).
The experiences from the credit crisis, however, call into question this somehow
fuzzy validation framework and call for a more powerful validation procedure.
Blöchlinger and Leippold (2011) have recently developed a 1-period calibration
statistic under dependent observations that proved to be more powerful than exist-
ing tests. I pursue a different goal: Given probability forecasts over several time
periods, how can I come to a summary statistic for whether the prediction system
is calibrated? I develop multiperiod statistics to test the calibration hypothesis
and thereby offer a solution to the issue raised by the Basel Committee: I account
for cross correlation, but forecasting errors must be serially uncorrelated so that
miscalibrated forecasts can be detected over time.

I am concerned not only with calibration but also with discrimination. In
fact, I propose a new calibration test that is directly derived from a discrimination

1Andrews (1997) extends the Kolmogorov test but keeps the independence assumption. Andrews
(2005) also considers test statistics under common shocks but limits the scope to linear models.

2By means of regrouping, Bertolini, Damico, Nardi, Tinazzi, and Apolone (2000) report for a
single data set p-values ranging from 1% to 95%.
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statistic. That is, I present novel test statistics for both discrimination and cali-
bration under a common set of assumptions that do not suffer from the previous
shortcomings: First, I assume a conditional IID (independent and identically dis-
tributed) as opposed to an unconditional IID setup. Second, my asymptotic dis-
tributions are valid for typical sample sizes in credit risk management. Third, the
distributions are either available in analytic forms or can be easily derived with
numerical methods. Fourth, my tests do not require grouped data. Fifth, I show
that forecasting errors must be serially uncorrelated so that a series of test statistics
for single periods can be easily aggregated into a multiperiod summary statistic.

The paper is structured as follows: Section II illustrates the concepts of dis-
crimination and calibration. Section III sets out the 3 key assumptions. Sections
IV and V derive new statistics for discrimination and calibration, respectively.
Section VI addresses the dependence between observations. Section VII evalu-
ates the performance of the test statistics in a simulation exercise. Section VIII
comprises an empirical application. Section IX concludes.

II. Discrimination and Calibration

Discrimination is a concept for ordinal measures of risk (e.g., rating
classes), whereas calibration is applicable only for risk measures on a ratio scale
(e.g., PDs). The Lorenz (1905) curve is the standard way to depict the discrimina-
tory power, and the related Gini (1921) index is arguably the best-known statistic
to quantify the discriminatory power in a single figure. Calibration is a concept
widely used in probability forecasting (see, e.g., Dawid (1982), (1985)). The stan-
dard measure of calibration is Pearson’s χ2 goodness-of-fit test, which examines
the sum of the squared differences between the observed and expected number
of defaults per group divided by its standard error. Unfortunately, the Gini index
and Pearson’s χ2 are only valid discrimination or calibration measures, respec-
tively, when observations are independent. I create simple examples to illustrate
the problem of validating predictions with respect to discrimination and calibra-
tion under dependent observations.

A. Illustrative Examples

To generate my examples, I introduce a sequence of N independent triples
{(Ui,Vi,Wi) : i= 1, . . . ,N}, where Ui, Vi, and Wi are mutually independent and
all 3 variables are uniformly distributed on [0, 1]. System A generates the follow-
ing predictions:

Ai = 0.01
[
1 + 1{Ui≤0.5,Vi≤0.25} + 1{Ui>0.5,Vi>0.25}

]
,

where 1{·} is the indicator function. Thus, Ai is 1% for 1 group of observations
(the low-risk group) and 2% for the other group (the high-risk group). I can expect
the 2 groups to be equally sized. Systems B and C produce the following forecasts,
respectively:

Bi = 0.04
[
0.25 + 1{Ui>0.5}

]
, and Ci = 1{Vi≤0.03}.
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Blöchlinger 1093

The forecast Bi is either 1% or 5% for each observation i. In system B the 2
groups are expected to be equally sized. System C generates 1s for 3% of the
population and 0s for the rest. Furthermore, I include a common shock, X ∼
U[0, 2], to induce default dependencies between observations. The shock variable
X is stochastically independent from Ui, Vi, and Wi and can be interpreted as
the state of the economy. A value of X above 1 (below 1) represents an economic
outcome worse (better) than originally expected at the time the forecasts are made.
Default indicators are generated by

Yi = 1{Wi≤BiX}.

A positive shock, X > 1, increases the default likelihood for each observation,
since the state of the economy turned out to be worse than anticipated. A nega-
tive shock, X < 1, decreases the likelihood of default. Hence, in a good (bad)
state of the economy the conditional default probabilities are lower (higher).
By straightforward calculations, I have the following conditional expectations:
E [Yi |Bi,X] = BiX, E [Yi |Ai,X] = 2AiX, and E [Yi |Ci,X] = E [Yi]X. The mean
default rate E [Yi] is 3%. By iterated expectations it is straightforward to show that
the 1st group of observations in system A has an unconditional default probability
of 2% and the other group a probability of 4%. The corresponding unconditional
default probabilities in system B are 1% and 5%, since E [Yi |Bi] = Bi. The naive
predictions Ci are completely unable to separate defaults from nondefaults, since
Yi and Ci are independent.

Overall, I create a sequence of quadruples, {(Yi,Ai,Bi,Ci) : i = 1, . . . ,N},
which is conditionally IID. Thus, given X, 2 different quadruples are stochasti-
cally IID. However, it is worth noting that the predictions Ai and Bi for the same
observation i are dependent, even conditional on X, through their common depen-
dence on Ui. The same is true for Ai and Ci through Vi.

B. Discrimination

In system A I expect to observe 66.7% of all defaults in the high-risk group,
but system B assigns 83.3% of all defaults to the high-risk group on average.
Therefore, I can draw the expected Lorenz (1905) curves as depicted in Figure 1.3

3The empirical Lorenz (1905) curve for the sample {(Yi,Pi) : i= 1, . . . ,N} is the following
2-dimensional graph: (

1

N

N∑
i=1

1{Pi≤p},
1

N1

N∑
i=1

1{Pi≤p}Yi

)
,(1)

over all p ∈ R, where Yi is the default indicator and Pi the probability forecast of observation i,
N1 =

∑N
i=1 Yi denotes the number of defaults, and N0 = N − N1 denotes the number of nondefaults.

The Gini (1921) index is given by a ratio of the areas on the Lorenz curve diagram:

2
1

N0N1

N∑
i=1

N∑
j=1

[
1{Pi>Pj} +

1

2
1{Pi=Pj}

]
Yi(1− Yj)− 1.

The Gini index is 1 in case of perfect forecasts (i.e., Pi = Yi for all i), and it is 0 for naive forecasts
(i.e., Pi = p for all i and for any p ∈ R).
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FIGURE 1

Lorenz Curves to Compare the Discriminatory Power

The Lorenz (1905) curve illustrates the discriminatory power of a prediction system. The Lorenz curve is a graph showing
the fraction of defaulters as a percentage of the total population (y-axis) among the x% best rated borrowers (x-axis). The
Lorenz curve of a naive system without any informational content with respect to default corresponds to the diagonal line.
The perfect system can completely separate defaulters from nondefaulters, and its Lorenz curve goes from the point (0, 0)
over (1−p, 0) to (1, 1), whereas p is the default rate. In a good state of the economy, the default rate p is smaller and the
Lorenz curve is closer to the point (1, 0), as compared to a bad state of the economy with a higher default rate p. Systems
A and B have 2 equally sized rating classes, 1/3 or 1/6 of all defaulters, respectively, that can be found in the better rated
class. The Gini (1921) index is defined as the ratio of 2 areas (i.e., the area between the Lorenz curve and the diagonal and
the area between the Lorenz curve of the perfect system and the diagonal). In a normal state of the economy, prediction
system A (system B) has a Gini index of 17.2% (34.4%).

In large samples and in a normal state of the economy (i.e., N → ∞, X = 1),
system B has a Gini (1921) index of 34.4% and system A a Gini index of 17.2%.
Unfortunately, the Gini index is not suitable under dependence. If the population’s
default rate doubles in a bad state of the economy (X = 2), then the Gini index
in system B increases to 35.5%. In a good state of the economy (X = 0.5), the
default rates are cut in half, and the Gini index drops to 33.8%. In other words,
the Gini index does not only depend on the discriminatory power of the prediction
system per se but also on the state of the economy. To filter out the dependence
on the state of the economy, I propose to measure the discriminatory power by
the area above the Lorenz curve. I have an expected area above the Lorenz curve
of 66.7% for system B and 58.3% for system A for all states of the economy.
Thus, both systems show discrimination ability, but system B demonstrates higher
discriminatory power than system A.

C. Calibration

The common shock X has a simultaneous impact on all observations and
distorts Pearson’s χ2. The common shock will almost surely be different from 1,
and the mean empirical default frequency will not converge toward the (uncondi-
tional) expected default frequency, that is, by the law of large numbers the mean
default rate (1/N)

∑N
i=1 Yi converges in probability toward E [Yi]X and not E [Yi].

As a consequence, Pearson’s χ2 will diverge with increasing sample sizes, and the
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Blöchlinger 1095

calibration hypothesis will be rejected with probability 1. The convergence is only
guaranteed when X is almost surely 1 (i.e., when there is no dependence).

I decompose the calibration definition into 2 components that will allow the
derivation of test statistics under dependent observations. First, a calibrated sys-
tem makes unbiased forecasts of the number of defaults. That is, a set of N= 1,000
observations with a mean prediction of 3% experiences on average 30 defaults.
I refer to this component as calibration with respect to the level. Second, a cali-
brated system differentiates correctly between low and high probability forecasts.
That is, a set of observations with a forecast of 5% averages 5 times the default
rate compared to a set of observations with a prediction of 1%, as in prediction
system B. I refer to this component as calibration with respect to the shape. Level
and shape cover 2 different calibration aspects. The level is an absolute and the
shape a relative consideration. To clarify the difference, in system A the low-risk
class has a true default probability of 2%, the high-risk class 4%. Now, system
A assigns 1% to the low-risk class and 2% to the other. The shape is correct
(i.e., high-risk observations are indeed twice as likely to default as low-risk
observations), but the level is wrong (i.e., the mean prediction is 1.5%, but the
true mean is 3%).

I make use of the Lorenz (1905) curve for shape calibration purposes. If the
predictions are indeed shape-calibrated, then the expected Lorenz curve can be
computed solely from the probability forecasts. In system A the forecasts are ei-
ther 1% or 2% and the 2 classes are expected to be of equal size. Thus, I expect
1/3 of the defaulters to stem from the 1st class, with the rest from the other class.
Conversely, in system B the predictions are 1% and 5%, and I expect only 1/6 of
all defaulters to come from the 1st class. Therefore, I compare the realized distri-
butions with the expected distributions by means of the Lorenz curve diagram in
order to test the shape calibration hypothesis. With this crucial insight, I propose
a new calibration test that I directly derive as a corollary from a discrimination
test.

D. Definition of Discrimination and Calibration

To offer formal definitions of discrimination, calibration, and level and shape
calibration, I introduce the probability space (Ω,F ,P) and the σ-field G ⊆ F .
Let Yi ∈ {0, 1} be the indicator of default for observation i and let Pi ∈ [0, 1] be
the probability forecast associated with that observation. I define discriminatory
power and calibration as follows:

Definition 1 (Discriminatory Power). I say the probability forecast Pi is
G-powerful if there is a strictly increasing function g : R → R so that Pi =
g (E [Yi| G]) holds true almost surely.

Definition 2 (Calibration). I say the probability forecast Pi is calibrated if Pi =
E [Yi|Pi] holds true almost surely.

Now, let me return to the previous examples to illustrate these 2 formal def-
initions. With G I denote the σ-algebra generated by prediction system A and
system B (i.e., G = σ {(Ai,Bi) : i= 1, . . . ,N}). Since E [Yi | G] = Bi, Bi is
G-powerful but Ai is not. The marginal information provided by prediction
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system A beyond the information already provided by system B is irrelevant
in forecasting defaults. In other words, system B is more powerful in pre-
dicting defaults than system A. However, system B is not F-powerful since
E [Yi|Bi,Yi] = Yi. The perfect system is by definition more powerful than sys-
tem B. Both predictors Yi and Bi are calibrated, however, since E [Yi|Bi] =Bi and
E [Yi|Yi]=Yi. On the other hand, the predictors Ai and Ci are not calibrated, since
E [Yi|Ai]=2Ai and E [Yi|Ci]=E [Yi]. Definition 2 does not yet imply statistically
testable properties. I obtain 2 anchors for a test design by decomposing calibration
into level and shape calibration as in Blöchlinger and Leippold (2011):

Definition 3 (Level and Shape Calibration). I say the probability forecast Pi is
level calibrated if

E [Yi] = E [Pi] .(2)

I say the probability forecast Pi is shape calibrated if

P {Pi ≤ p|Yi = 1} = E
[
1{Pi≤p}Pi

]
E [Pi]

,(3)

for any p ∈ R.

Level and shape can be combined to obtain a global test on calibration:

Proposition 1. The probability forecast Pi is calibrated if and only if Pi is both
level and shape calibrated.

All proofs can be found in the Appendix. From the previous examples, Ci is
level calibrated but not shape calibrated, Ai is shape calibrated but not level cali-
brated, and Bi and Yi are both level calibrated and shape calibrated. With respect
to an information set, a predictor that is level calibrated, shape calibrated, and
powerful is also efficient with respect to the mean squared error (MSE) criterion:

Proposition 2. The conditional expectation E [Yi| G] is the only predictor that is
both G-powerful and calibrated among all G-measurable functions.

Since the conditional expectation is the only MSE efficient predictor, Propo-
sition 2 implies that if I test for discrimination and calibration then I do not need
a separate test for MSE efficiency.

III. Assumptions

In this section I state my key assumptions that are needed for the deriva-
tion of my validation tests on discrimination and calibration under dependence.
A sample of observations, denoted {(Yi,Pi) : i= 1, . . . ,N}, is often regarded as a
sequence of IID random variables. The variable Pi is the probability forecast, and
Yi the default indicator of observation i. For default risk purposes, these observa-
tions are better thought of as conditionally IID. There is a K-dimensional vector
X= [X1, . . . ,XK ]

� of latent factors representing macroeconomic or other shocks
common to all observations. Given X, observations are assumed to be IID. I am
interested in testing whether the set of default predictions {Pi : i= 1, . . . ,N} has
more discriminatory power than a set of benchmark predictions {Bi : i=1, . . . ,N}

https://doi.org/10.1017/S0022109012000324
D

ow
nloaded from

 https:/w
w

w
.cam

bridge.org/core . U
niversity of Basel Library , on 11 Jul 2017 at 08:10:15 , subject to the Cam

bridge Core term
s of use, available at https:/w

w
w

.cam
bridge.org/core/term

s .

https://doi.org/10.1017/S0022109012000324
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


Blöchlinger 1097

and whether the predictions {Pi : i= 1, . . . ,N} are calibrated. The testing is sup-
posed to be out-of-sample, that is, the set of default indicators {Yi : i= 1, . . . ,N}
was not used for estimating/calibrating the default prediction system.

The K latent factors are assumed to be mutually independent. Each factor
is a continuous and positive random variable with a mean of 1. The vector Wi

is the K-dimensional vector of latent factor loadings such that W�
i 1 ≤ 1, and

min {Wi} ≥ 0, for all i ∈ {1, . . . ,N}. The variable Ui=W
�
i X+1−W�

i 1 is the
random effect of observation i inducing dependence between observations. The
introduction of the random effects specification is the main difference with respect
to the assumptions between my approach and traditional approaches. Three key
assumptions are made: Bernoulli mixture, exchangeability, and orthogonality.

Assumption 1 (Bernoulli Mixture). Conditional on the predictor variable, Pi, the
benchmark predictor variable, Bi, the vector of factor loadings,Wi, and the vector
of factors,X, the default variable, Yi, is Bernoulli distributed with

P {Yi = 1|Pi,Bi,Wi,X} = P {Yi = 1|Pi,Bi}Ui,(4)

for all i ∈ {1, . . . ,N}.
The multiplicative setup and the factor structure in equation (4) are borrowed

from the well-known portfolio model CreditRisk+ (as in Gordy (2000), eq. (1),
p. 122). The intuition behind the random effects’ specification is that Ui serves to
“scale up” or “scale down” the average PD. A high draw of Ui (over 1) increases
the PD. A low draw of Ui (under 1) scales down the default probability.

Assumption 2 (Exchangeability). Conditional on X, the observations,
{(Yi,Pi,Bi,Wi) : i= 1, . . . ,N}, are IID.

Assumption 2 is adopted from Andrews ((2005), Assump. 1, p. 1555). Un-
der Assumption 2, the random variables {(Yi,Pi,Bi,Wi) : i= 1, . . . ,N} are ex-
changeable. That is,

{(
Yπ(i),Pπ(i),Bπ(i),Wπ(i)

)
: i= 1, . . . ,N

}
has the same

joint probability distribution as {(Yi,Pi,Bi,Wi) : i= 1, . . . ,N} for every per-
mutation π of {1, . . . ,N} for all N ≥ 2. The assumption that the data
are conditionally IID given X implies that, unconditionally, the sequence
{(Yi,Pi) : i= 1, . . . ,N} is exchangeable (as opposed to IID). As pointed out by
Stein (2003), unconditional IID causes problems if traditional inference proce-
dures are used.

Assumption 2 is surprisingly general, as shown in Andrews ((2005), Sect. 7).
When observations are sampled randomly from the population (and that is the
standard way of doing validation), Assumption 2 is compatible with arbitrary
stochastic dependence in the population (e.g., observations in different regions or
industry sectors). It is also compatible with any forms of heterogeneity (i.e., non-
identical distributions). Furthermore, Assumption 2 is compatible with common
shocks that have different influences on different observations. My last assump-
tion deals with orthogonality.

Assumption 3 (Orthogonality). The sequence of the triples with predictor vari-
ables, benchmark predictor variables, and weight variables, {(Pi,Bi,Wi) : i =
1, . . . ,N}, and the factors,X, are independent. The sequence of weight variables,
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{Wi : i= 1, . . . ,N}, and the sequence of the pairs with predictors and benchmark
predictors, {(Pi,Bi) : i= 1, . . . ,N}, are also stochastically independent.

The independence assumption between the triple (Pi,Bi,Wi) and the vec-
tor of common shocks X in Assumption 3 comes very naturally. The common
shock vector X must be unanticipated, otherwise the expression “shock” would
be misleading. Anticipated effects must be incorporated into the predictions.

In the same vein, I have orthogonality between predictor variables (Pi,Bi)
and the vector of weight variables Wi. That is, the random effect Ui and the
variables (Pi,Bi) are stochastically independent. On the other hand, the predic-
tor Pi and the benchmark predictor Bi can be dependent even when conditioned
on the common factors, which is not excluded by Assumption 3. For instance,
dependence can result when the models underlying the 2 predictors are nested.
Of course, the default indicators are affected byX, which is also not excluded by
Assumption 3. My examples from the previous section fulfill all 3 assumptions.

IV. Discrimination Testing

I test whether the predictor in question, say Pi, can better discriminate than
a benchmark predictor, say Bi. If a bank uses the predictor Pi to make default
forecasts but its closest competitor uses the more powerful predictor Bi, then
the bank runs the risk of adverse selection. Depending on the price sensitivity of
borrowers, the potential losses can be huge even for small differences in discrim-
inatory power as analyzed by Blöchlinger and Leippold (2006). In order to obtain
a relevant benchmark, I choose the most powerful predictor among a set of well-
known forecasting systems for the population in question. For large corporations,
natural benchmarks are the Z-score in Altman (1968), Merton’s (1974) distance
to default, agency issuer ratings, Moody’s KMV expected default frequency, or
any other logit or discriminant model (see, e.g., Wiginton (1980)).

Discrimination is traditionally measured by the Lorenz (1905) curve or,
alternatively, by the closely related receiver operating characteristic (ROC) (see,
e.g., Swets (1988)). Formally, the Lorenz curve is a 2-dimensional graph:

(P {Pi ≤ p} ,P {Pi ≤ p|Yi = 1}) ,(5)

as a function of p ∈ R. When Pi and Yi are independent, the predictor Pi has no
discriminatory power at all, I have P {Pi ≤ p|Yi = 1}=P {Pi ≤ p} for any p ∈ R
(i.e., the defaulters’ distribution coincides with the population’s distribution). In
other words, the proportion of defaulters to nondefaulters is not higher in high-
risk classes than in low-risk categories. The Lorenz curve is then the diagonal
from (0, 0) to (1, 1). On the other hand, Pi is a perfect discriminator if there is a
p∗ such that P {Pi > p∗|Yi = 0}= 0 and P {Pi > p∗|Yi = 1}= 1. All defaulters
are in the high-risk class and all nondefaulters in the low-risk class.

My summary statistic of the Lorenz (1905) curve is the area above the Lorenz
curve θP:

θP =

∫ ∞
−∞

∫ ∞
−∞
Ψ (p1, p) dFP|Y=1(p1)dFP(p),(6)
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Blöchlinger 1099

where FP(·) denotes the cumulative distribution function (CDF) of Pi (i.e., the
population’s distribution) and FP|Y=1(·) is the conditional CDF of Pi given Yi = 1
(i.e., the defaulters’ distribution), and Ψ (p1, p) := 1{p1>p} + 1/21{p1=p}. Due to
exchangeability, the graph in expression (5) is the same for all i, so that the sample
{(Yi,Pi) : i= 1, . . . ,N} can be used to obtain an empirical estimate. Even by the
presence of random factors, the empirical Lorenz curve as given in expression (1)
is a consistent estimator of the true Lorenz curve in expression (5):

Proposition 3. The empirical CDF of Pi and the empirical CDF of (Pi|Yi= 1) are
consistent estimators for the theoretical CDFs, so that for N →∞:

sup
p∈R

∣∣∣∣∣ 1
N

N∑
i=1

1{Pi≤p} − P {Pj ≤ p}
∣∣∣∣∣ P→ 0, and(7)

sup
p∈R

∣∣∣∣∣ 1
N1

N∑
i=1

1{Pi≤p}Yi − P {Pj ≤ p|Yj = 1}
∣∣∣∣∣ P→ 0,

for any j ∈ {1, . . . ,N} and where N1 =
∑N

i=1 Yi.

As a consequence of Proposition 3, the empirical Lorenz (1905) curve con-
verges in probability toward the true Lorenz curve even under dependent obser-
vations (i.e., for any realization of the state of the economyX).

The area above the Lorenz (1905) curve θP is estimated by replacing the
expectation with the sample average (i.e., the area above the empirical Lorenz
curve θ̂P,N). Analogously, I construct θ̂B,N for the benchmark:

θ̂P,N =
1

N1N

N∑
i=1

N∑
j=1

Ψ (Pi,Pj)Yi, and(8)

θ̂B,N =
1

N1N

N∑
i=1

N∑
j=1

Ψ (Bi,Bj)Yi.

When comparing the discrimination ability of 2 predictors (Pi and Bi), I look
at the difference θ̂P,N − θ̂B,N . If the predictor Pi is indeed more powerful than the
benchmark predictor Bi, then the difference in the areas above the Lorenz (1905)
curve is expected to be greater than 0. Under the null hypothesis that both predic-
tors have the same discriminatory power, θP = θB, the standardized difference is
asymptotically Gaussian distributed:

Proposition 4 (Discrimination Test). If the predictor Pi and the predictor Bi have
the same discriminatory power, θP = θB, then for any s ∈ R,

lim
N→∞

P

⎧⎨
⎩ θ̂P,N − θ̂B,N√

V̂
[
θ̂P,N − θ̂P,N

∣∣N1
] ≤ s

∣∣∣∣∣∣X
⎫⎬
⎭ = Φ (s) ,(9)

where Φ(s) =
∫ s
−∞(1/

√
2π) exp

(−1/2ξ2
)

dξ is the CDF of a standard Gaussian

variable, θ̂P,N , θ̂B,N are given in expression (8), and V̂ [ ·|N1] denotes the empirical
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variance estimator given N1 defaulters. The estimation of the standard error is
found in the Appendix.

It is noteworthy that the convergence in Proposition 4 is guaranteed for any
realization of the state of the economyX.

V. Calibration Testing

In this section I derive statistical tests to accept or reject the calibration hy-
pothesis. The level calibration hypothesis is stated in equation (2), the shape cal-
ibration hypothesis in equation (3). I provide tests for level and shape as well as
a combined statistic to have a summary test for both hypotheses. If a predictor Pi

passes the combined test, then the calibration hypothesis in Definition 2 cannot
be rejected. Unlike well-known calibration tests that are only valid under IID ob-
servations, I work under the more general assumption of conditional IID as stated
in Section III.

If the sample {(Yi,Pi) : i= 1, . . . ,N} is unconditionally IID, then Spiegel-
halter (1986) provides asymptotic confidence intervals of the well-known Brier
(1950) score SN :

SN :=
1
N

N∑
i=1

(Yi − Pi)
2
.

Mean and variance of SN can easily be computed:

E [SN ] =
1
N

N∑
i=1

Pi (1− Pi) ,

V [SN ] =
1

N2

N∑
i=1

Pi (1− Pi) (1− 2Pi)
2
.

By the unconditional IID assumption, the standardized Brier score is asymptoti-
cally standard Gaussian distributed. Hence, I have for any s ∈ R,

lim
N→∞

P

{
SN − E [SN ]√

V [SN ]
≤ s

}
= Φ (s) .(10)

Alternatively, if the sample {(Yi,Pi) : i= 1, . . . ,N} is unconditionally IID,
I simply resort to the law of large numbers, and I have for any s ∈ R,

lim
N→∞

P

⎧⎨
⎩
√

N
(
YN − PN

)
√

PN
(
1− PN

) ≤ s

⎫⎬
⎭ = Φ (s) ,(11)

where YN :=(1/N)
∑N

i=1 Yi denotes the average default frequency and PN :=
(1/N)

∑N
i=1 Pi denotes the average default forecast of sample size N. The statis-

tic in equation (11) is a special case of the Pearson (1900) statistic and of the
Hosmer and Lemeshow (1989) statistic when all observations are summarized
into a single group.
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Blöchlinger 1101

In general, Pearson’s goodness-of-fit test is computed using the covariate
patterns in the data as groups. The Hosmer-Lemeshow test identifies groups via
the quantiles of the response variable. However, the expected number of defaults
in the deciles with low-risk credit ratings is typically too small to warrant the use
of the asymptotic distribution. The expected number of defaults per group must be
5 or greater. Hence, with a group’s mean default forecast of, say, 0.02%, I needed
25,000 observations for only this particular class. I want to point out that for the
following calibration tests, no grouping or bucketing will be required.

A. Level Calibration Testing

Under unconditional IID, the mean default frequency YN converges in prob-
ability toward a degenerate random variable. However, under conditional IID, the
asymptotic variable is nondegenerate:

Proposition 5. If Pi is level calibrated, then I have for N →∞,

YN
P→ P {Yi = 1|X} = E [Pi]

(
1− E [Wi]

� 1 + E [Wi]
�
X
)
,(12)

for any i ∈ {1, . . . ,N}.
Since the factors are assumed to be continuous and stochastically inde-

pendent, the CDF F(·) of the variable P {Yi = 1|X} in expression (12) is also
continuous. With the help of the quantile transformation theorem, F

(
YN
)

is
asymptotically uniformly distributed on [0, 1].4 A further application of the trans-
formation theorem leads me to

lim
N→∞

P
{
Φ−1
(
F
(
YN
)) ≤ s

}
= Φ(s), for any s ∈ R,(13)

where Φ−1(·) is the quantile function of the standard Gaussian CDF Φ(·). There-
fore, my standardized level statistic is given with expression (13).

If I make some sensible distributional assumptions, the asymptotic distri-
bution of expression (12) is easily derivable even for observations spread over
multiple periods. By the law of large numbers, the sample mean prediction PN

converges (in probability) toward the population mean π̄ :=E [Pi]. If the scaled
factors, {π̄Xk : k = 1, . . . ,K}, are assumed to be IID beta variables with corre-
sponding factor weights, E [Wi] = (1/K) [ω, . . . , ω]

�, then I get

YN − PN (1− ω)
PNω

P→ 1
K

K∑
k=1

Xk,(14)

with V [Xk] = σ2, E [Xk] = 1, for each k.

The distribution of (1/K)
∑K

k=1 Xk can be obtained with numerical methods
(e.g., Monte Carlo simulations) or analytically (e.g., in case of K = 1).5 If the

4The quantile transformation theorem can be found in Karr (1993).
5By Slutsky’s theorem, if N → ∞ then PNXk has the same asymptotic distribution as π̄Xk for

each k, since PN converges in probability toward the constant π̄. Therefore, I simulate the sum of K
IID beta variables with mean PN and standard deviation σPN in order to approximate the asymptotic
distribution in expression (14).
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sample size N is too small to warrant the use of the asymptotic distribution, I can
resort to small sample equivalents, for example, I can approximate the Bernoulli-
beta mixture with a Poisson-gamma mixture as in Wilde (1997) in order to get a
closed-form solution for the distribution in expression (14).

B. Shape Calibration Testing

I propose to compare the expected Lorenz (1905) curve with the empirical
Lorenz curve. With the addition of observations, the empirical Lorenz curve con-
verges to the true Lorenz curve for any state of the economy (see Proposition 3).
Thus, the area above the empirical Lorenz curve converges to the true area:

Corollary 1 (Shape Calibration Test). I have for any s ∈ R,

lim
N→∞

P

⎧⎨
⎩ θ̂P,N − θP√

V
[
θ̂P,N

∣∣N1
] ≤ s

∣∣∣∣∣∣X
⎫⎬
⎭ = Φ (s) ,(15)

where θ̂P,N and θP are given in expressions (8) and (6). The computation of the
standard error is found in the Appendix.

The defaulters’ CDF, FP|Y=1(·), to compute θP in equation (6) is obtained
from the distribution of Pi on the right-hand side of equation (3) if shape cali-
brated. Corollary 1 provides an asymptotic statistic to test the null hypothesis that
Pi has a true area above the Lorenz (1905) curve of θP. Corollary 1 implies that
there is a relation between the distribution of Pi and θP when Pi is calibrated.
In other words, under the null hypothesis of a shape-calibrated predictor Pi, the
distribution of Pi determines the true Lorenz curve. For instance, if Pi is Dirac
distributed, then the predictor Pi has no discriminatory power at all and the area
above the true Lorenz curve θP is 0.5. If Pi is shape calibrated and Bernoulli dis-
tributed, then Pi must be the perfect discriminator, Yi = Pi for all i.

C. Combined Calibration Testing: Level and Shape

I now combine the level and the shape statistic into a summary statistic. From
expressions (13) and (15) I have 2 standardized and asymptotically Gaussian dis-
tributed random variables:

Tπ,N := Φ−1
(
F
(
YN
))

and Tθ,N :=
θ̂P,N − θP√
V
[
θ̂P,N

∣∣N1
] .(16)

The level statistic, Tπ,N , and the shape statistic in the form of the standardized
area above the Lorenz (1905) curve, Tθ,N , are asymptotically independent, which
allows for the straightforward combination into a global statistic:

Proposition 6 (Combined Calibration Test). When testing against the alternative
hypothesis that level, Tπ,N , and standardized area above the Lorenz (1905) curve,
Tθ,N , are different from 0, I obtain an asymptotically χ2 distributed combined test

statistic with 2 degrees of freedom: QN :=T2
π,N + T2

θ,N
d→ χ2

〈2〉.
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Blöchlinger 1103

Proposition 6 provides my χ2 distributed test statistic QN with 2 degrees of
freedom for the calibration hypothesis as stated in Definition 2.

VI. Dependence between Observations

There is a huge amount of literature on dependent credit events (see, e.g., Li
(2000), Zhou (2001), Chen and Sopranzetti (2003), Crouhy, Jarrow, and Turnbull
(2008), and Blöchlinger (2011), to list just a few). The kind of dependence be-
tween observations must be understood to determine the degree of correlation
and to aggregate my new test statistics over multiple periods. For instance, the
default of the Italian dairy and food corporation Parmalat in Dec. 2003 certainly
had less influence on the failure of Washington Mutual on Sept. 26, 2008, than
did the default of Lehman Brothers on Sept. 23, 2008. Parmalat operated in a
different industry sector. Furthermore, Parmalat defaulted in a different year and
a different time sector, respectively.

A. Serial Correlation and Noncyclical Industries

Assume observation i stems from an underlying borrower that operates in
a noncyclical industry. Observation i is nonsensitive toward common shocks in
economy X. Consequently, the realization of the random effect Ui will be 1
for any realizations of X. Conversely, the realization of W�

j 1 for borrower j
in a strongly cyclical industry will be higher than average and therefore above
E
[
W�

j

]
1.

If the predictor Pi is calibrated, then I have an unbiased estimate of Yi, and
the forecast error, Yi−Pi, has a mean of 0. Moreover, these forecast errors must be
orthogonal over time, since the information with respect to past predictions and
defaults must be taken into account when making the following period’s proba-
bility forecasts. That is, if observation j stems from a later time period than obser-
vation i (i.e., at the time the prediction Pj is made the realization of Yi is known),
then the realization of the scalar productW�

i Wj must be 0. In such an instance,
the observations i and j are from different time sectors. Technically speaking, the
stochastic time series of forecasting errors form a martingale difference sequence.
This derivation leads to the following proposition:

Proposition 7. If observation i or observation j stems from a noncyclical sector
or if observation i and observation j stem from different time sectors, then the
realization ofW�

i Wj must be 0.

If Pi is the 1-year default forecast at the beginning of the year and Yi is the
default indicator at the end of the year, then Proposition 7 implies that when I
have T years of data I must have at least T (independent) factors. If defaults in
any given year are driven by S industry factors, then I must have T × S factors.

B. Cross Correlation

The Basel Committee on Banking Supervision (2001) measures the degree
of cross correlation with the so-called asset correlation � in a 1-factor asset value
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model. If I impose a 1-factor assumption, there is a relation to transform � into
the volatility parameter σ of the latent factor X1 as required in my framework.
Assuming 2 borrowers with a default probability of π̄ each and a constant factor
weight of ω, these 2 borrowers have the same cross correlation in both frameworks
when the following equality holds true (see Gordy (2000), Prop. 1, p. 133):

ω2σ2π̄ 2 = Φ2(Φ
−1 (π̄) , Φ−1 (π̄) ; �)− π̄ 2,(17)

where Φ2(x, y;�) denotes the bivariate standard Gaussian CDF at point (x, y) with
correlation coefficient �. To obtain a historical estimate of �, I insert the mean
default rate, π̄, and the standard deviation of yearly default rates, ωσπ̄, into equa-
tion (17) and solve for �.

According to historical experience, the standard deviation of the number of
defaults observed year on year among corporate borrowers is typically of the
same order as the average annual number of defaults (see Wilde (1997), p. 44).
For the population of Standard & Poor’s (S&P) rated corporations, I observe an
average yearly default rate of 1.54% and a standard deviation of 1.05%. According
to equation (17), this ratio of 0.68 (= 1.54%/1.05%) translates into a historical
estimate for the asset correlation � of about 6.5%. A higher standard deviation of
1.54% would mean a � of about 12%. The lower (higher) the correlation value �,
the more conservative (progressive) are the validation results; that is, a correct
calibration hypothesis is rejected too often (too rarely). Therefore, I consider
�= 0.06 a sensible, moderate parameterization for a population of large corpora-
tions. To induce an asset correlation of � = 0.06 with ω = 0.8 and π̄ = 0.02, the
volatility σ of the latent factor in equation (17) must be 0.7889.

To investigate the effects of different default dependencies, I work in the
following with a set of asset correlation values, � ∈ {0, 0.05, 0.1, 0.2}, for ob-
servations in the same time sector. A correlation of � = 0 is equivalent to an
unconditional IID setup. The Basel Committee on Banking Supervision (2005)
argues that zero correlation is too conservative an assumption for the purpose of
validation. An asset correlation of 5% represents a moderate correlation regime
that is slightly lower than the historical point estimate. An asset correlation regime
of 10% is a bit stronger than observed in the past. The highest correlation coef-
ficient was in line with the calculation of regulatory capital under the Basel II
framework and translates into rather strong default dependence.

C. Multiperiod Summary Statistics

In light of Proposition 7 and the previous elucidations, the following state-
ment is true for a sample from a single period of observations but not so when the
sample consists of multiple periods of observations:

At present no really powerful tests of adequate calibration are cur-
rently available. Due to the correlation effects that have to be respected
there even seems to be no way to develop such tests. Existing tests are
rather conservative [. . . ] or will only detect the most obvious cases of
miscalibration.

Basel Committee on Banking Supervision (2005)
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Blöchlinger 1105

It is true that cross-correlated errors must be accounted for, but the autocorrela-
tion of forecasting errors in a calibrated and powerful prediction system must be
0. Given T time sectors, I have T uncorrelated clusters, rendering the detection
of miscalibrations efficient over the course of time (i.e., when T → ∞). Conse-
quently, sequences of 1-period statistics can be easily aggregated into multiperiod
summary statistics.

VII. Simulation

In a simulation exercise I demonstrate the functioning and performance of
my discrimination and calibration tests. Within a simulation environment, I know
the true data generating process and therefore bias and statistical power can be
measured under various (asset) correlation regimes. The statistical power mea-
sures a test’s ability to detect an alternative hypothesis. The power of a statistical
test is 1 minus its type II error rate. I expect the statistical power to decrease when
the correlation between observations increases. A test is said to be unbiased or
correctly sized when the probability of rejecting a correct null hypothesis corre-
sponds to its nominal significance level.

It is highly desirable to work with unbiased statistics. In statistical testing
I control the type I error rate, that is, if I assume a nominal significance level
of 5%, I want the true significance level to be 5% without negative or positive
bias. Among all unbiased tests, I want to choose the one with the greatest power
in detecting a wrong null hypothesis. Pearson’s χ2 statistic and the Brier score
are derived under stochastic independence, so I expect these tests to be biased
when the asset correlation is nonzero (i.e., I will reject a correct null hypothesis
too often). Tests can also be biased when the number of observations is too small
(i.e., when the asymptotic distributions are not yet valid). In this case, I could
resort to small sample distributions (e.g., by way of Monte Carlo simulations)
to obtain unbiased tests. I first present the simulation setup and then discuss the
results.

A. Simulation Setup

I have T time periods and N observations per time period. The sample size is
increased by enlarging the number of time periods T . I simulate with a set of time
periods, T ∈ {1, 5, 10, 20, 50}, N = 1,000, and I investigate different asset cor-
relation values, � ∈ {0, 0.05, 0.1, 0.2}, under 100,000 Monte Carlo paths. The
dependent defaults are generated through conditionally independent Bernoulli
variables:

Yi ∼ B (1,PiUi) ,(18)

where Pi = 1/3 (R1,i + R2,i + R3,i) is the default forecast and Ui = (1− ω) +W�
i X

the random effect with mean 1 and ω = 0.8. The variables R�,i are IID binary
variables, and the realization is either πu = 3.5% or πd = 0.5% for all � and i.
Both states, πu and πd, are equally likely, so that the expected value of Pi is
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π̄=1/2 (πu + πd)=2%. Furthermore, I have T IID common factorsX=[X1, . . . ,XT ]
for each time period with

π̄Xt ∼ β

(̄
π

[
1− π̄
π̄σ2

− 1

]
, (1− π̄)

[
1− π̄
π̄σ2

− 1

])
, where σ2 = V [Xt].(19)

The variance σ2 is chosen to obtain the desired degree of asset correlation � as
derived in equation (17). As shown in Section VI, when 2 observations are in
different time periods, the scalar product of factor weights must be 0. To fulfill
this restriction, T − 1 of the T elements of the vector of factor weightsWi are 0,
the nonzero element is chosen at random and is set equal to ω.

By construction, the predictor Pi is shape and level calibrated as defined
in equations (2) and (3). That is, the mean of Pi and the mean of Yi are equal,
and both the area above the Lorenz (1905) curve defined on the left-hand side
of equation (3) and the area above the curve defined on the right-hand side of
equation (3) yield a value of 61.72%. I introduce 4 further predictor variables:

Ai = 1/3 (R1,i + R2,i + π̄ ) ,

Bi = q (R1,i + R2,i) + π̄ (1− 2q) ,

Ci = q (R2,i + R3,i + π̄ ) , and

Di =
p̄
π̄

q (R1,i + R3,i) + p̄ (1− 2q) ,

where p̄ = 1.5% and q = 1/4. The predictors Ai and Bi are level calibrated, and Ci

and Di are not. The mean of Ci and Di, E [Ci] = E [Di] = p̄= 1.5%, is lower than
the true mean default probability of π̄ = 2%. The true area above the Lorenz
curve for all predictors Ai, Bi, Ci, and Di is 59.38% (from the left-hand side of
equation (3)). That is, all 4 predictors, Ai, Bi, Ci, and Di, have the same discrim-
inatory power, but the predictor Pi is more powerful. The true area above the
Lorenz curve is 61.72% for Pi versus 59.38% for Ai, Bi, Ci, and Di. The fore-
casts Ai and Ci are shape calibrated, but Bi and Di are not. For Bi and Di, the area
above the curve as defined on the right-hand side of equation (3) is only 57.03%
(but again, the true area above the Lorenz curve is 59.38%). As can be seen from
these examples, discrimination and calibration are not offsetting (i.e., when one
improves it does not need to be at the expense of the other).

B. Simulation Results

In Figure 2 the simulation results are summarized.6 In Graph A of Figure 2
I have the simulated type I error rate when testing the discrimination ability
between Bi and Ci. Under the null hypothesis, both predictors have the same
discrimination ability, and since this is indeed the case, I expect to reject this
null hypothesis in 5% of all cases, which corresponds to the nominal significance

6The standard error of the Monte Carlo analysis is
√

p(1− p)/n, where n denotes the number of
Monte Carlo draws and p the true error rate. The standard error of the type I error analysis is therefore
0.07% when the nominal significance level is p= 5% and n= 100,000. For the simulated type II error
rate, I have a maximal standard error of 0.16% when p= 50%.
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FIGURE 2

Bias and Statistical Power of Discrimination and Calibration Tests in Simulation Exercise

Unless the sample size is small, T = 1 period, the discrimination test is correctly sized (Graph A of Figure 2). The dis-
crimination test’s power converges toward 1 with increasing sample sizes (Graph B). My multiperiod calibration tests on
level and shape as well as the combined test are correctly sized even under dependent observations. On the other hand,
Pearson’s χ2 and the Brier score are only unbiased under independence or �= 0, respectively (Graph C). The power of
my calibration test decreases with stronger default dependence but converges nonetheless toward 1 over time (Graph D).
Applying uniform correlation among all observations, even for observations in different time periods, when in fact they are
uncorrelated, yields biased and less powerful test statistics.

Graph A. Bias of Discrimination Test (Bi vs. Ci) Graph B. Power of Discrimination Test (Pi vs. Ai)

Graph C. Bias of Calibration Tests (for Pi and T = 5) Graph D. Power of Combined Calibration Test (for Di)

level. Unless the sample size is very small (T= 1), the discrimination test is unbi-
ased. With only 1,000 observations and only 20 defaults on average (T = 1), the
discrimination test is particularly biased under an asset correlation of 20%, and
the true type I error is above 10% when it should be 5%. The statistical power
of the discrimination test converges quite quickly toward 1, as can be seen from
Graph B. The type II error increases only marginally when � increases. When the
asset correlation � is high, I have scenarios in which the number of defaults is
very low, which causes the type II error to increase slightly.

In Graph C of Figure 2, one sees the type I error for the calibration tests.
My 2 calibration tests on level and shape, as well as the combined test, are quite
correctly sized (i.e., they are virtually unbiased). The marginal bias arises from
the level statistic when the sample size is rather small. Pearson’s χ2 and the
Brier score, however, are hugely biased when correlation comes into play. When
� = 0.2, the true type I errors are around 75% when they should be 5%.
This distortion makes the Pearson statistic and the Brier score unsuitable for
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calibration testing under dependent observations. With my combined calibration
test, the power to detect wrongly calibrated predictors decreases when defaults
are dependent (Graph D). That is, it takes longer to tell a wrongly calibrated
level of 1.5% from a true level of 2%. With 20 time periods, the type II error is
close to 0 when observations are independent but still above 50% when defaults
are strongly correlated (� = 20%). Nevertheless, since the autocorrelation must
be 0 for observations in different time periods, as explained in Section VI, the
statistical power of the combined calibration test goes to 1 over time for any
asset correlation regime. Distinguishing between observations in different time
sectors is the key; my multiperiod approach accounts for orthogonality between
observations in different periods. If I were to apply a uniform asset correlation
� to all observations, in fact implying that all the observations are from the same
time sector as in a 1-period setup, this would give rise to biased and less powerful
test statistics, as depicted in Figure 2.

My newly developed tests are correctly sized for typical sample sizes in
credit portfolio management. The stronger the cross correlation between observa-
tions, the weaker the statistical power, but all of my tests are statistically consistent
over time. As analyzed by the Basel Committee on Banking Supervision (2005),
existing tests were either too conservative (i.e., they reject well-performing sys-
tems too often like Pearson’s χ2 statistic and the Brier score) or too progressive
(i.e., they accept inferior systems too often when uniform correlation is assumed).
The final decision as to whether a prediction system was acceptable from a reg-
ulatory viewpoint had to be based on the qualitative assessment of experienced
banking supervisors. My multiperiod approach now offers a valuable quantita-
tive alternative: My multiperiod statistics are unbiased and more powerful than
existing approaches.

VIII. Empirical Analysis

The goal of the empirical exercise is to demonstrate the previously derived
theoretical validation framework with a substantive credit application. I assess the
performance of 2 default forecasting methods: S&P’s issuer ratings and the
distance-to-default model. The distance-to-default model applies the framework
of Merton (1974), in which the equity of a firm is a call option on the underlying
asset value of the firm with a strike price equal to the face amount of the firm’s
debt.

Default probabilities are typically estimated with a sample that includes the
recent history of observations. For example, the default rate is estimated for each
rating class, and this estimate is applied to make today’s forecasts. To validate
today’s forecasts, the whole sample is usually split into an estimation and a vali-
dation sample. All observations before a certain threshold date are in the estima-
tion sample, and later observations are in the validation sample. The default rate
per rating class is again estimated in-sample (i.e., in the estimation sample) and
then applied out-of-sample (i.e., in the validation sample). My new test statistics
allow the out-of-sample assessment of whether the forecasts in the form of de-
fault probabilities are calibrated and if the predictions are at least as powerful in
discriminating between defaulters and nondefaulters as benchmark forecasts. If
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so, the predictor passes the validation test. If not, the prediction model may be
overfitting in the estimation sample and therefore produces inferior forecasts in
the validation sample. A more parsimonious model may be needed.

A. The Merton Distance-to-Default Model

The Merton (1974) distance-to-default model produces a default forecast for
borrowers with market-traded equity at any given point in time. To compute the
distance to default, I basically subtract the logarithmic face value of debt from
the firm’s expected logarithmic asset value, and then I divide this difference by
the asset volatility of the firm:

Di =
log Vi + μi − log Fi − 1/2σ2

i

σi
,(20)

where Vi is the market value of the ith firm’s total assets, Fi is the face amount
of the firm’s debt, σi is the volatility of the firm’s total assets, and μi is the corre-
sponding mean asset return. To implement the distance-to-default model, I closely
follow the procedure as detailed in Bharath and Shumway (2008). The distance to
default is transformed into a default probability by the link function G(·) from R

onto (0, 1):

Pi = G (−Di) = G

(
− log Vi + μi − log Fi − 1/2σ2

i

σi

)
.(21)

In fact, if the assumptions of Merton hold true, then the link function G(·) must
be the standard Gaussian distribution function Φ(·), and in this case the probabil-
ity forecast Pi is calibrated. Bharath and Shumway use the Gaussian distribution
to convert distances to default into probability forecasts. I will use an empirical
estimate for the link function G(·), which I describe later.

B. Data

My data set includes all S&P rated nonfinancial corporations between Jan.
1981 and Dec. 2010 for which equity and debt data from Bloomberg are avail-
able. I focus on 1-year default probabilities. At the end of each month I observe
the S&P rating and the distance to default; 1 year later, each firm has either de-
faulted, not defaulted, or the S&P rating was withdrawn during the course of the
year. I count as default a firm that was downgraded to D by S&P at some point
during that year. Ratings that were withdrawn are excluded from the sample. I
use the data before Dec. 2000 as the sample to estimate the PDs per S&P rating
class and to estimate the mapping from distances to default into default probabili-
ties. The estimation sample consists of 70,590 observations and 847 defaults. The
10 years from 2001 to 2010 represent my validation sample for which my newly
developed validation tools can be applied. For the validation sample, I retrieve
S&P ratings and Merton’s (1974) PDs on Dec. 31 in years 2000–2009 and the de-
fault indicators on Dec. 31 in years 2001–2010. Summary statistics with respect
to S&P ratings and Merton PDs can be found in Table 1.
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TABLE 1

Summary Statistics of S&P Ratings and Merton’s Distances to Default

In Table 1, from 2001 to 2010, there are 14,654 observations and 228 defaults. According to the estimated PD per S&P
rating class, obtained by a sample from 1981 to 2000, I expect an average default frequency of 2.12%, but the realized
frequency is 1.56%. Under independence such a difference between expectation and realization would be a 4.7-sigma
event; under the more reasonable assumption of dependence, however (� = 0.06 for observations in the same time
sector), it is a 1.4-sigma event and therefore not significant. The Merton (1974) PD is within the 1-sigma range even under
independence.

Panel A. S&P Ratings Panel B. Merton’s Distances to Default

No. of Emp. No. of Emp.
Rating Obs. Freq. Def. PD PD Distance Obs. Freq. Def. PD PD

AAA 102 0.70% 0 0.001% 0.00% [7.25,∞) 4,371 29.83% 1 0.020% 0.02%
AA+ 42 0.29% 0 0.010% 0.00% [6.83, 7.25) 514 3.51% 0 0.022% 0.00%
AA 201 1.37% 0 0.020% 0.00% [6.44, 6.83) 514 3.51% 0 0.029% 0.00%
AA– 364 2.48% 0 0.030% 0.00% [6.07, 6.44) 514 3.51% 0 0.036% 0.00%
A+ 591 4.03% 0 0.040% 0.00% [5.71, 6.07) 515 3.51% 0 0.045% 0.00%
A 1,031 7.04% 0 0.050% 0.00% [5.39, 5.71) 514 3.51% 0 0.056% 0.00%
A– 1,196 8.16% 0 0.060% 0.00% [5.09, 5.39) 514 3.51% 0 0.067% 0.00%
BBB+ 1,474 10.06% 2 0.070% 0.14% [4.77, 5.09) 514 3.51% 0 0.081% 0.00%
BBB 1,848 12.61% 2 0.096% 0.11% [4.45, 4.77) 514 3.51% 3 0.097% 0.58%
BBB– 1,364 9.31% 3 0.201% 0.22% [4.14, 4.45) 514 3.51% 3 0.120% 0.58%
BB+ 982 6.70% 2 0.356% 0.20% [3.82, 4.14) 515 3.51% 1 0.150% 0.19%
BB 1,236 8.43% 6 0.977% 0.49% [3.46, 3.82) 514 3.51% 2 0.194% 0.39%
BB– 1,503 10.26% 11 2.333% 0.73% [3.11, 3.46) 514 3.51% 1 0.257% 0.19%
B+ 1,240 8.46% 29 4.318% 2.34% [2.74, 3.11) 514 3.51% 4 0.351% 0.78%
B 746 5.09% 35 7.889% 4.69% [2.34, 2.74) 514 3.51% 6 0.504% 1.17%
B– 443 3.02% 38 13.789% 8.58% [1.89, 2.34) 514 3.51% 4 0.766% 0.78%
CCC+ 146 1.00% 38 21.443% 26.03% [1.39, 1.89) 514 3.51% 10 1.302% 1.95%
CCC 89 0.61% 26 28.560% 29.21% [0.80, 1.39) 515 3.51% 8 2.395% 1.55%
CCC– 22 0.15% 14 38.036% 63.64% [0.12, 0.80) 514 3.51% 26 4.785% 5.06%
CC 34 0.23% 22 42.424% 64.71% [−0.84, 0.12) 514 3.51% 35 10.215% 6.81%
C 0 0.00% 0 — — (−∞,−0.84) 514 3.51% 124 23.535% 24.12%

Sum/avg. 14,654 100.00% 228 2.12% 1.56% Sum/avg. 14,654 100.00% 228 1.58% 1.56%

C. From Ordinal Risk Measures to Default Probabilities

I use the sample from 1981 to 2000 to obtain an empirical estimate of the
link function G(·) in expression (21) and to estimate the default rate for each
S&P rating class. The mapping from S&P rating classes into the 1-year default
probabilities is found in Graph A of Figure 3; the mapping for the distance to
default is depicted in Graph B. As one can see in Graph B, the Gaussian distribu-
tion fails to fit the empirical default frequencies. However, it must be noted that
the transformation from distances to default into PDs is an important input for
calibration testing, but it is not required for measuring the discriminatory power.
As long as the transformation is strictly monotone, the distance to default Di in
equation (20) and the forecast Pi in expression (21) have the same discriminatory
power.

Given the estimation of the credit curves in Figure 3, I now plot the de-
velopment of S&P PDs and Merton (1974) PDs over time for any firm. In its
promotional material, Moody’s KMV points to the example of Enron to illustrate
how the Merton PD is superior to that of agency ratings, as depicted in Graph C
of Figure 4. When it became public knowledge that Enron had serious accounting
problems, Enron’s equity price began to fall and its distance to default steadily
decreased. S&P waited several months to downgrade Enron’s creditworthiness.
Obviously, using market information to infer default probabilities allows the Mer-
ton model to reflect information faster than traditional agency ratings. On the
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FIGURE 3

Default Probability Curves

The 1-year default probabilities are estimated with a sample period from Jan. 1981 to Dec. 1999 with 70,590 observations
and 847 defaults. The PD per S&P rating class is depicted in Graph A of Figure 3, with PD as a function of the distance to
default in Graph B. A Gaussian link function between distance to default and PD would yield an inferior fit. Several borrowers
with a distance to default of 4 or higher defaulted on their debt even though the Gaussian link function indicates a PD of
less than 0.01%. Following the approach of Moody’s KMV, I estimate an empirical link based on exponential functions and
allow the PD not to fall below 0.02%.

Graph A. S&P PD Curve

Graph B. Merton PD Curve

other hand, in March 2009 General Electric (GE) was downgraded from AAA to
AA+, but the distance to default indicated a high likelihood of an imminent de-
fault triggered by concerns about GE’s short-term liquidity, as shown in Graph B.
By the end of 2010, however, GE had not defaulted on its debt. GE could issue
billions of dollars of debt guaranteed by the Federal Deposit Insurance Corpo-
ration during the financial crisis because it was considered too big to fail. Thus,
unlike the distance to default, the S&P rating reflects the anticipated government
backing of GE due to its systematically important subsidiary GE Capital. The
default predictions of Coca-Cola (Graph A) and General Motors (Graph D) are
also shown in Figure 4. However, the superiority/inferiority of one system over
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FIGURE 4

Time Series of 1-Year Default Probabilities

Figure 4 depicts the development of 1-year default probabilities according to S&P and Merton (1974) for 4 selected compa-
nies: Coca-Cola (Graph A), General Electric (Graph B), Enron (Graph C), and General Motors (Graph D). General Motors
defaulted in June 2009 and Enron in Dec. 2001. Coca-Cola and General Electric have not defaulted on their debt.

Graph A. Coca-Cola Graph B. General Electric

Graph C. Enron Graph D. General Motors

the other is not obvious from those 4 arbitrary examples. Fortunately, with my
newly developed validation tools I can rigorously test the performance of both
systems.

D. Validating under Independence and Dependence

The calibration testing exercise aims at validating the PD curves as depicted
in Figure 3 and tabulated in Table 1. Under the null hypothesis, the PD curves
are calibrated. For discriminatory power testing, I compare both S&P ratings and
Merton (1974) PDs against the naive model as well as against each other. The 1st
discrimination analysis compares the predictions with the random or naive model.
Do the probability forecasts have discriminatory power at all? The 2nd discrim-
ination analysis juxtaposes 2 different forecasting methods. Are Merton PDs as
good as agency issuer ratings in distinguishing between defaulters and nonde-
faulters? Under the null hypothesis, the 2 approaches have the same discrimina-
tory power. I work under equivalent assumptions, as for my simulation exercise
in the previous section. That is, the factors follow scaled beta distributions, and
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the factor loadings are assumed to be equal across industry sectors. Forecasting
errors in different years must be uncorrelated, according to Proposition 7.

I first analyze the performance of S&P forecasts. The results for S&P predic-
tions are tabulated in Table 2. In 2001 I have 1,174 observations and 48 defaults.
The expected default frequency of 2.29% is lower than the realized frequency of
4.09%. Under unconditional IID in equation (11), such an outcome represents a
4.1-sigma event, and the null hypothesis of a level-calibrated predictor is defi-
nitely rejected. In 2006 and 2007 I also have 4-sigma events. A 4-sigma event
occurs less then once every 10,000 years. Hence, if defaults were indeed inde-
pendent and the predictions calibrated, I would have experienced three 4-sigma
events within 10 years! Over all 10 years, I have 14,654 observations with 228
defaults. The difference between the realized and expected default frequency is
0.66% (= 2.12%− 1.56%), and the difference would represent a 4.7-sigma event
under independence. The null hypothesis of a level-calibrated predictor is clearly
rejected.

TABLE 2

Validation of S&P Ratings and Merton’s Distances to Default

In Table 2, I perform an out-of-sample validation exercise for the time period from 2001 to 2010. Here, N denotes the
number of observations, and N1 is the number of defaulters. The mean prediction P–N in % is compared with the empirical
default frequency N1/N. The expected area above the Lorenz (1905) curve θ is compared with the empirical area θ̂ (both
in percentage points). The standard error σθ in % is computed under the null hypothesis of calibrated forecasts, TΔ is the
standard Gaussian distributed test statistic comparing the discriminatory power between the 2 forecasting systems, Tπ,�
denotes the level statistic under correlation regime �, Tθ is the shape statistic, and Q� denotes the combined calibration
statistic under correlation regime �. The critical value of the χ2

〈2〉distributed combined statistic under a significance level
of 5% (1%) is 5.9915 (9.2103). * and ** indicate significance at the 5% and 1% levels, respectively.

Year N N1 P–N θ θ̂ σθ TΔ Tπ,0 Tπ,0.06 Tθ Q0 Q0.06

Panel A. S&P Ratings

2001 1,174 48 2.29 89.55 90.14 1.68 0.32 4.13** 1.22 0.35 17.21** 1.62
2002 1,252 38 2.32 90.70 88.72 1.84 −1.27 1.68 0.69 −1.08 3.99 1.64
2003 1,320 25 2.19 90.15 92.72 2.37 0.39 −0.73 0.04 1.09 1.70 1.18
2004 1,508 14 1.94 89.80 93.34 3.28 −0.84 −2.85** 0.85 1.08 9.29** 1.88
2005 1,596 11 1.81 89.24 92.14 3.80 −1.20 −3.37** −1.21 0.76 11.91** 2.06
2006 1,626 6 1.80 89.13 93.13 5.23 −1.49 −4.34** −3.28** 0.76 19.41** 11.33**
2007 1,656 5 2.00 89.07 98.88 5.69 0.17 −4.94** −∞** 1.72 27.35** ∞**
2008 1,559 23 2.12 88.25 90.41 2.69 −1.24 −1.76 −0.28 0.80 3.74 0.73
2009 1,528 44 2.26 88.40 92.78 1.88 0.45 1.64 0.65 2.33* 8.14* 5.86
2010 1,435 14 2.65 88.64 98.01 3.30 1.87 −3.95** −1.26 2.84** 23.67** 9.68**

2001– 14,654 228 2.12 89.33 91.93 0.82 −1.11 −4.75** −1.43 3.19** 32.69** 12.21**
2010

Panel B. Merton’s Distances to Default

2001 1,174 48 3.42 90.33 89.38 1.50 −0.32 1.27 0.54 −0.64 2.01 0.70
2002 1,252 38 1.66 92.08 92.47 1.83 1.27 3.81** 1.27 0.21 14.60** 1.65
2003 1,320 25 2.81 90.46 91.93 2.23 −0.39 −2.02* −0.33 0.66 4.51 0.54
2004 1,508 14 0.36 94.10 95.01 3.79 0.84 3.70** 1.93 0.24 13.72** 3.78
2005 1,596 11 0.36 94.55 95.81 4.08 1.20 2.19* 1.35 0.31 4.90 1.92
2006 1,626 6 0.40 95.45 97.99 5.10 1.49 −0.22 0.13 0.50 0.30 0.26
2007 1,656 5 0.28 93.73 98.83 6.77 −0.17 0.14 0.36 0.75 0.59 0.70
2008 1,559 23 0.96 94.97 92.45 2.05 1.24 2.10** 0.97 −1.23 5.91 2.44
2009 1,528 44 5.86 83.04 91.99 2.36 −0.45 −4.97** −0.78 3.80** 39.08** 15.03**
2010 1,435 14 0.51 90.62 92.84 4.14 −1.87 2.51* 1.37 0.54 6.58* 2.15

2001– 14,654 228 1.58 93.91 92.91 0.60 1.11 −0.28 −0.01 −1.68 2.89 2.81
2010

Under conditional IID in expression (14), however, the p-value in 2001 is
22%, computed from the beta distribution 0.0229X1 ∼ β (1.55, 66.15) and a re-
alization of X1 of 1.98 = (4.09% − 2.29% × 0.2)/(2.29% × 0.8), so that the
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calibration hypothesis is no longer rejected. Conversely, in 2004 I have 1,508
observations and 14 defaults, an expected default frequency of 1.94%, but now
a realized rate of only 0.94%. Under IID such an outcome is highly unlikely
(2.9-sigma event). Under conditional IID, however, the mean default rate of
0.94% is well within the 95% confidence band (even in the 1-sigma band). In
2001 and 2004, the level statistics under IID in expression (11) and unconditional
IID in expression (14) produce contradictory outcomes with respect to the cali-
bration of S&P ratings. My multiperiod statistic under a moderate correlation of
� = 0.06 results in less than a 2-sigma event. Consequently, the level calibration
hypothesis is no longer rejected. This outcome is based on 10 years of data or
10 uncorrelated time sectors. Ten data points of yearly default rates are regarded
as a long time series, and 5-year series are seen as sufficient (see Basel Commit-
tee on Banking Supervision (2005), p. 29). But even for a long time series, cross
correlation must be considered.

The shape statistics listed in Table 2 are not affected by the degree of depen-
dence and are within the 2-sigma confidence bounds for all years except 2009 and
2010. In 2009 (2010) I have an area above the empirical Lorenz (1905) curve of
θ̂ = 92.78% (98.01%), an expected area of θ = 88.40% (88.64%), and a standard
error of 1.88% (3.30%). Over the 10-year period, the multiperiod shape statis-
tic indicates the rejection of the shape calibration hypothesis due to the outliers
in 2009 and 2010. The area above the expected Lorenz curve is only 89.33%,
whereas the corresponding empirical area is 91.93% under a standard error of
0.82%. In other words, defaults are empirically more heavily concentrated in the
high-risk classes than predicted. As a consequence, there may be no constant
functional dependence between S&P ratings and default probabilities. In a good
business cycle, borrowers who are rated say BBB may have the lower default
probability as compared to BBB-rated obligors in a bad business cycle.

The results look a bit different for Merton (1974) PDs as tabulated in Table 2.
Over all 10 years and under the assumption of default dependencies, the only
outlier is observed in 2009. At the beginning of 2009, at the height of the financial
market crisis, the decline in asset values and the increase in volatilities lead to a
predicted default rate of 5.9% even though the realization at the end of 2009 was
only 2.9%. Over all 10 years and taking into account a correlation of 6% leads to
the conclusion that Merton PDs are calibrated. However, under independence, the
level calibration hypothesis would be rejected in 7 out of 10 years!

The shape is rather poorly fitted in 2009, which can be seen by observing
the difference θ − θ̂ and the standard error σθ in Table 2. The shape in 2009
indicates that low-risk borrowers have lower default rates and high-risk bor-
rowers have higher default rates than forecast (the sign of θ̂ − θ is positive).
However, over all 10 years I cannot reject the calibration hypothesis. Both the
multiperiod shape and level statistics are well within the 2-sigma confidence
bands. In Figure 5 I plot the empirical and the expected Lorenz (1905) curves for
S&P ratings and Merton (1974) PDs. The area above the empirical Lorenz curve θ̂
for S&P ratings is 91.93%, and the corresponding area for Merton PDs is 92.91%.
Since the standard errors are smaller than 2%, both areas are significantly greater
than 50%. Both prediction methods are definitely more powerful than naive
forecasts. The difference between the 2 areas of 0.98% (= 91.93% − 92.91%)
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FIGURE 5

Lorenz Curves to Measure Discrimination and Shape Calibration

In Figure 5 the empirical and expected Lorenz (1905) curves are constructed with 14,654 observations from 2001 to
2010 based on S&P ratings, Merton’s (1974) distance to default, and 1,239 credit defaults, from the data in Table 1.
The area above the expected Lorenz curve under S&P’s approach (Merton’s approach) θ is 89.33% (93.91%), and the
area above the empirical Lorenz curves θ̂ is 91.93% (92.91%). Both approaches demonstrate discriminatory power; they
clearly outperform the naive model. Even though Merton’s approach has the higher point estimate for the area above the
Lorenz curve, the difference to S&P ratings is insignificant. Furthermore, the difference between empirical and expected
Lorenz curve is highly significant for S&P ratings but insignificant for Merton’s distance-to-default model. Hence, the shape
calibration hypothesis is rejected with respect to S&P ratings but not so for Merton PDs.

is insignificant given the standard error of 0.88%. Thus, the null hypothesis
that both prediction systems have the same discriminatory power cannot be
rejected.

In general, my findings favor Merton (1974) PDs over S&P ratings for the
validated forecast horizon of 1 year. Both prediction methods have about the same
discriminatory power, but unlike S&P ratings, Merton PDs produce calibrated
forecasts. As assumed, the functional dependence between the distance to default
and the PD seems to be constant over the business cycle. The relation between
S&P ratings and PDs, however, seems to be inconstant over time. I implicitly
assume that borrowers in the same rating category are homogeneous with respect
to the default likelihood irrespective of time or sector. Given my validation results,
this homogeneity for S&P ratings seems to be an inadequate assumption. Actu-
ally, the superiority of Merton PDs could be caused by the fundamental difference
between the through-the-cycle approach as followed by S&P and the point-in-
time approach of Merton PDs. Unlike the Merton PD, the S&P rating does not
reflect transitory effects or short-term fluctuations (see Treacy and Carey (2000)
for a discussion).

To conclude this section, if one agrees with the overwhelming literature on
dependent defaults as discussed in Section VI, the discrepancies between uncon-
ditional IID and conditional IID underscore the need to consider cross correlation
between observations when it comes to the verification of default probabilities.
Even small cross correlations can reverse the validation outcome.
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IX. Conclusion

This paper introduces novel test statistics for the verification of default prob-
abilities. Although emphasis in this paper is exclusively on default risk, the
method has the potential to be applied to other fields. Well-performing probability
forecasts demonstrate good discrimination and calibration. I show that calibrated
and powerful forecasts are also MSE efficient. Calibration can be decomposed
into level calibration and shape calibration. I derive statistical tests for calibration
and discrimination as well as subtests for shape and level calibration under the
assumption of a conditional IID setup. My global test on calibration is asymptot-
ically χ2 distributed with 2 degrees of freedom. The 2 subtests on calibration as
well as the discrimination test are asymptotically standard Gaussian distributed.

There is overwhelming evidence that defaults are dependent, but commonly
used performance tests to validate probability forecasts were developed outside
the field of finance and economics and under the assumption of unconditional
IID. This assumption may well apply to meteorological, psychological, or med-
ical studies. I show that not accounting for default dependence can result in the
rejection of actually well-performing default prediction systems. As demonstrated
in this paper, well-known discrimination figures like the Gini (1921) index or the
area under the ROC curve can differ in different states of the economy. When
comparing the discriminatory power of 2 models, however, the dependence on
the state of the economy can be filtered out.

I derive new summary statistics for observations spread over multiple time
periods. I show that a calibrated and powerful default prediction system must
generate serially uncorrelated forecasting errors. As a consequence, over time my
multiperiod statistics are consistent for the calibration and discrimination hypoth-
esis. That is, with the addition of observations from new time periods, an inferior
prediction system is rejected with a probability converging toward 1. This finding
contrasts with the view of the Basel Committee on Banking Supervision (2005)
that suggests that “there even seems to be no way to develop such [powerful] tests”
(p. 34). My validation approach is demonstrated with a simulation exercise and
applied to S&P’s corporate rating data and Merton’s (1974) distance-to-default
model. I highlight the need to consider default dependence for observations in the
same time period to obtain reasonable validation results and show the discrep-
ancy between dependence and independence. Comprehensive statistical reports
and comments on discrimination and calibration for S&P ratings and Merton’s
distance-to-default model are presented.

Appendix. Proofs and Estimation of Standard Errors

1. Proofs

Proof of Proposition 1. Assume the predictor is level and shape calibrated. Then the
“if” part is proven by multiplying both sides of equation (3) with E [Pi] = E [Yi] from
equation (2). This multiplication yields E

[
1{Pi≤p}Yi

]
= E
[
1{Pi≤p}Pi

]
for any p ∈ R, so

that Pi=E [Yi|Pi] according to the conditional expectation’s definition. The “only if” part
is trivially true. A similar proof is found in Blöchlinger and Leippold (2011).

Proof of Proposition 2. Proposition 2 is a direct consequence of a powerful predictor
(Definition 1) and calibration (Definition 2). If I apply a strictly increasing transformation
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to the conditional expectation, then it is still powerful but no longer calibrated. If a trans-
formation is made so that the transformed predictor is still calibrated, then the trans-
formed predictor must be a conditional expectation on a different σ-field but can no
longer be G-powerful. Only the conditional expectation based on the σ-field G fulfills both
definitions.

Lemma 1. The bivariate, conditional random variables {(Pi,Bi|Yi = 1) : i ∈ M} are IID,
so that

P {PM1 ≤ p1, . . . ,PMn ≤ pn,BM1 ≤ b1, . . . ,BMn ≤ bn| YM1 = 1, . . . , YMn = 1}

=
n∏

k=1

P {Pj ≤ pk,Bj ≤ bk| Yj = 1} ,

for any p1, . . . , pn, b1, . . . , bn ∈ R, any set M ⊆ {1, . . . ,N} with n elements, and any
j ∈ M, Mk the kth element ofM.

Proof of Lemma 1. Note:

P {PM1 ≤ p1, . . . ,PMn ≤ pn,BM1 ≤ b1, . . . ,BMn ≤ bn, YM1 = 1, . . . , YMn = 1|

UM1 , . . . ,UMn} =
n∏

k=1

UMkE

[
P {YMk = 1|PMk ,BMk} 1{PMk

≤pk,BMk
≤bk}
]

=
n∏

k=1

UMkP {PMk ≤ pk,BMk ≤ bk, YMk = 1} ,

where the equalities follow from my assumptions in Section III, that is, Bernoulli mixture,
exchangeability, orthogonality, as well as from iterated expectations. I obtain

P {PM1 ≤ p1, . . . ,PMn ≤ pn,BM1 ≤ b1, . . . ,BMn ≤ bn|
YM1 = 1, . . . , YMn = 1,UM1 , . . . ,UMn}

=

∏n
k=1 UMk

∏n
k=1 P {PMk ≤ pk,BMk ≤ bk, YMk = 1}∏n
k=1 UMk

∏n
k=1 P {YMk = 1}

=
n∏

k=1

P {Pj ≤ pk,Bj ≤ bk| Yj = 1} .

Reducing the fraction, Bayes’ theorem and exchangeability explain the last equality.

Proof of Proposition 3. I have 2 IID sequences of random variables, that is, the sequence
of probability forecasts, Pi, and the sequence of forecasts given a subsequent default,
(Pi|Yi = 1). The former sequence is IID according to exchangeability in Assumption 2
and orthogonality in Assumption 3, the latter according to Lemma 1. As a consequence,
I just need to apply the Glivenko-Cantelli theorem (see, e.g., Theorem 7.28 in Karr (1993)
for a proof).

Proof of Proposition 4. I have N1 draws from the defaulters’ distribution and N0 draws
from the nondefaulters’ distribution such that N1/(N0 + N1)

P→ P {Yi = 1|X}. Neither
the defaulters’ distribution of (Pi,Bi), Lemma 1, nor the population’s distribution,
Assumption 3, depends onX. Thus, I have for any p, b ∈ R, and for any i ∈ {1, . . . ,N},

FP,B(p, b) = P {Yi = 1|X}FP,B|Y=1(p, b)(A-1)

+P {Yi = 0|X}FP,B|Y=0,X(p, b),
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where FP,B(p, b) = P {Pi ≤ p,Bi ≤ b}, FP,B|Y=1(p, b) = P {Pi ≤ p,Bi ≤ b| Yi = 1}, and
the nondefaulter’s CDF FP,B|Y=0,X(p, b) = P {Pi ≤ p,Bi ≤ b| Yi = 0,X}.

First, I derive the 2nd moment of θ̂P,N − θ̂B,N for a known number of defaulters and
nondefaulters as well as conditional on random factors. To avoid long-winded notations,
I do not explicitly write the conditioning on σ(X,N0,N1) in the following. Conditional
on X, the observation sequence {(Yi,Pi,Bi) : i= 1, . . . ,N} is IID. Second, I then let the
number of observations tend to infinity to obtain the limiting distribution. Now, I define a
linear transformation of θ̂P,N , ϑ̂P,N = (1/N1N0)

∑N
i=1

∑N
j Ψ (Pi,Pj) Yi (1− Yj). Hence,

θ̂P,N =
1

N1N

N∑
i=1

N∑
j=1

{Ψ (Pi,Pj) Yi (1− Yj) + Ψ (Pi,Pj) YiYj}

=
N0

N
ϑ̂P,N +

1
2

N1

N
.

The statistic ϑ̂P,N denotes the area under the ROC curve. The Gini (1921) coefficient is
given by 2ϑ̂P,N − 1. Expectation and variance between θ̂P,N and ϑ̂P,N are also linearly
related:

E
[
θ̂P,N

]
=

N0

N
E
[
ϑ̂P,N

]
+

1
2

N1

N
, and V

[
θ̂P,N

]
=

N2
0

N2
V
[
ϑ̂P,N

]
.(A-2)

I show that

θ̂P− θ̂B−E
[
θ̂P− θ̂B

]
√

V̂
[
θ̂P− θ̂B

] =
ϑ̂P,N − ϑ̂B,N − E

[
ϑ̂P,N − ϑ̂B,N

]
√
V
[
ϑ̂P,N − ϑ̂B,N

]
√
V
[
ϑ̂P,N − ϑ̂B,N

]
√

V̂
[
ϑ̂P,N − ϑ̂B,N

](A-3)

is asymptotically Gaussian distributed. The 2nd factor on the right-hand side of equation
(A-3) converges in probability toward 1, since by IID, the empirical variance is a consis-
tent estimator for the true variance. Hence, if I can show that the 1st factor is Gaussian
distributed, I can resort to Slutsky’s theorem and the proposition is proven.

It remains to be shown that

lim
N1,N0→∞

P

⎧⎨
⎩

ϑ̂P,N − ϑ̂B,N√
V
[
ϑ̂P,N − ϑ̂B,N

] ≤ s

⎫⎬
⎭ = Φ(s), for any s ∈ R.

Under the null hypothesis I have E
[
ϑ̂P,N − ϑ̂B,N

]
= 0. I construct 2 auxiliary quantities:

ϑ̃P,N1 =
1

N1

∑
{i:Yi=1}

E [Ψ (Pi,Pj)| Yi = 1, Yj = 0,Pi] , and

ϑ̃B,N1 =
1

N1

∑
{i:Yi=1}

E [Ψ (Bi,Bj)| Yi = 1, Yj = 0,Bi] .

I have a sequence of independent and bounded random variables:

νi := E [Ψ (Pi,Pj)| Yi = 1, Yj = 0,Pi]− E [Ψ (Bi,Bj)| Yi = 1, Yj = 0,Bi] .

Hence, the sequence satisfies the central limit theorem. With the number of draws N1 from
the defaulters’ distribution, FP,B|Y=1(·, ·), going to infinity, I have for any s ∈ R,

lim
N1→∞

P

⎧⎪⎪⎨
⎪⎪⎩
√

N1
∑
{i:Yi=1} νi√

V

[∑
{i:Yi=1} νi

] ≤ s

⎫⎪⎪⎬
⎪⎪⎭

= lim
N1→∞

P

⎧⎨
⎩

ϑ̃P,N1 − ϑ̃B,N1√
V
[
ϑ̃P,N1 − ϑ̃B,N1

] ≤ s

⎫⎬
⎭

= Φ(s),
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where I make use of (1/N1)
∑
{i:Yi=1} νi = ϑ̃P,N1 − ϑ̃B,N1 . Now, I show that

ϑ̃P,N1 − ϑ̃B,N1√
V
[
ϑ̃P,N1 − ϑ̃B,N1

] and
ϑ̂P,N − ϑ̂B,N√
V
[
ϑ̂P,N − ϑ̂B,N

]

converge in quadratic mean when the number of draws, N0, from the nondefaulters’ distri-
bution, FP,B|Y=0,X(·, ·), tends to infinity.

Thus, I show that

0 = lim
N0→∞

E

⎡
⎣
⎛
⎝ ϑ̃P,N1 − ϑ̃B,N1√

V
[
ϑ̃P,N1 − ϑ̃B,N1

] − ϑ̂P,N − ϑ̂B,N√
V
[
ϑ̂P,N − ϑ̂B,N

]
⎞
⎠

2⎤
⎦ .(A-4)

Convergence in quadratic mean implies convergence in distribution. Rewriting equation
(A-4),

(A-5) 1 = lim
N0→∞

E
[(
ϑ̃P,N1

− ϑ̃B,N1

) (
ϑ̂P,N − ϑ̂B,N

)]
√
E

[(
ϑ̃P,N1

− ϑ̃B,N1

)2
]
E

[(
ϑ̂P,N − ϑ̂B,N

)2
]

= lim
N0→∞

N1
(
E
[
ϑ̃P,N1

ϑ̂P,N
]− E

[
ϑ̃P,N1

ϑ̂B,N
]− E

[
ϑ̃B,N1

ϑ̂P,N
]

+ E
[
ϑ̃B,N1

ϑ̂B,N
])

√
N 2

1

(
E

[
ϑ̃2

P,N1

]
− 2E

[
ϑ̃P,N1

ϑ̃B,N1

]
+ E
[
ϑ̃2

B,N1

])(
E

[
ϑ̂2

P,N

]
− 2E

[
ϑ̂P,N ϑ̂B,N

]
+ E
[
ϑ̂2

B,N

]) .

Evaluating expectations, I obtain

N0N1E

[
ϑ̂2

P,N

]
= (N0 − 1)(N1 − 1)E [Ψ (Pi,Pj)| Yi = 1, Yj = 0]2(A-6)

+ (N0 − 1)E [Ψ (Pi,Pj)Ψ (Pi,Pl)| Yi = 1, Yj = 0, Yl = 0]

+ (N1 − 1)E [Ψ (Pi,Pj)Ψ (Pk,Pj)| Yi = 1, Yj = 0, Yk = 1]

+E
[
Ψ (Pi,Pj)

2
∣∣∣ Yi = 1, Yj = 0

]
,

N0N1E

[
ϑ̂2

B,N

]
= (N0 − 1)(N1 − 1)E [Ψ (Bi,Bj)| Yi = 1, Yj = 0]2(A-7)

+ (N0 − 1)E [Ψ (Bi,Bj)Ψ (Bi,Bl)| Yi = 1, Yj = 0, Yl = 0]

+ (N1 − 1)E [Ψ (Bi,Bj)Ψ (Bk,Bj)| Yi = 1, Yj = 0, Yk = 1]

+E
[
Ψ (Bi,Bj)

2
∣∣∣ Yi = 1, Yj = 0

]
,

and

N0N1E
[
ϑ̂P,N ϑ̂B,N

]
(A-8)

= (N0 − 1)(N1 − 1)E [Ψ (Pi,Pj)| Yi = 1, Yj = 0]

×E [Ψ (Bi,Bj)| Yi = 1, Yj = 0]

+ (N0 − 1)E [Ψ (Pi,Pj)Ψ (Bi,Bl)| Yi = 1, Yj = 0, Yl = 0]

+ (N1 − 1)E [Ψ (Pi,Pj)Ψ (Bk,Bj)| Yi = 1, Yj = 0, Yk = 1]

+E [Ψ (Pi,Pj)Ψ (Bi,Bj)| Yi = 1, Yj = 0] .

In the limit, when N0 →∞,

lim
N0→∞

N1E

[
ϑ̂2

P,N

]
= (N1 − 1)E [Ψ (Pi,Pj)| Yi = 1, Yj = 0]2

+E [Ψ (Pi,Pj)Ψ (Pi,Pl)| Yi = 1, Yj = 0, Yl = 0] ,

lim
N0→∞

N1E

[
ϑ̂2

B,N

]
= (N1 − 1)E [Ψ (Bi,Bj)| Yi = 1, Yj = 0]2

+E [Ψ (Bi,Bj)Ψ (Bi,Bl)| Yi = 1, Yj = 0, Yl = 0] ,
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lim
N0→∞

N1E
[
ϑ̂P,N ϑ̂B,N

]
= (N1 − 1)E [Ψ (Pi,Pj)| Yi = 1, Yj = 0]

×E [Ψ (Bi,Bj)| Yi = 1, Yj = 0]

+E [Ψ (Pi,Pj)Ψ (Bi,Bl)| Yi = 1, Yj = 0, Yl = 0] .

Furthermore,

N1E

[
ϑ̃2

P,N1

]
= (N1 − 1)E [Ψ (Pi,Pj)| Yi = 1, Yj = 0]2

+E [Ψ (Pi,Pj)Ψ (Pi,Pl)| Yi = 1, Yj = 0, Yl = 0] ,

N1E

[
ϑ̃2

B,N1

]
= (N1 − 1)E [Ψ (Bi,Bj)| Yi = 1, Yj = 0]2

+E [Ψ (Bi,Bj)Ψ (Bi,Bl)| Yi = 1, Yj = 0, Yl = 0] ,

N1E
[
ϑ̃P,N1 ϑ̃B,N1

]
= (N1 − 1)E [Ψ (Pi,Pj)| Yi = 1, Yj = 0]

×E [Ψ (Bi,Bj)| Yi = 1, Yj = 0]

+E [Ψ (Pi,Pj)Ψ (Bi,Bl)| Yi = 1, Yj = 0, Yl = 0] ,

and

N1E
[
ϑ̃P,N1 ϑ̂P,N

]
= (N1 − 1)E [Ψ (Pi,Pj)| Yi = 1, Yj = 0]2

+E [Ψ (Pi,Pj)Ψ (Pi,Pl)| Yi = 1, Yj = 0, Yl = 0] ,

N1E
[
ϑ̃B,N1 ϑ̂B,N

]
= (N1 − 1)E [Ψ (Bi,Bj)| Yi = 1, Yj = 0]2

+E [Ψ (Bi,Bj)Ψ (Bi,Bl)| Yi = 1, Yj = 0, Yl = 0] ,

N1E
[
ϑ̃P,N1 ϑ̂B,N

]
= (N1 − 1)E [Ψ (Pi,Pj)| Yi = 1, Yj = 0]

×E [Ψ (Bi,Bj)| Yi = 1, Yj = 0]

+E [Ψ (Pi,Pj)Ψ (Bi,Bl)| Yi = 1, Yj = 0, Yl = 0] ,

N1E
[
ϑ̃B,N1 ϑ̂P,N

]
= N1E

[
ϑ̃P,N1 ϑ̂B,N

]
.

By inserting those terms into the numerator and denominator in equation (A-5), I see that
the quotient is indeed 1 in the limit.

Proof of Proposition 5. The convergence in probability follows from the law of large
numbers for exchangeable random variables (see, e.g., Hall and Heyde (1980), eq. (7.1),
p. 202). The equality then follows from the multiplicative setup in Assumption 1, from
level calibration, E [Yi] = E [Pi], and the assumed linearity of Ui.

Proof of Corollary 1. Corollary 1 is a consequence of Proposition 4 by replacing θ̂B,N

with θP. I have θP = E
[
θ̂P,N

∣∣X] for any realizations of X, since neither the CDF of
(Pi|Yi=1) (Lemma 1) nor the CDF of Pi (Assumption 3) depends onX, and the sequences
Pi and (Pi|Yi = 1) are IID (Proposition 3).

Proof of Proposition 6. By Proposition 5, YN converges in probability toward
P {Yi = 1|X} so that Tπ,N is in the limit only a function of the K factors X, but the
standardized area above the Lorenz (1905) curve is independent from X. Conditional on
X, I therefore have

lim
N→∞

E

[
1{Tπ,N≤t1}1{Tθ,N≤t2}

∣∣∣X] = E

[
1{limN→∞ Tπ,N≤t1}1{limN→∞ Tθ,N≤t2}

∣∣∣X]

= 1{limN→∞ Tπ,N≤t1}P
{

lim
N→∞

Tθ,N ≤ t2

∣∣∣X}

= 1{limN→∞ Tπ,N≤t1}Φ (t2) ,

so that limN→∞ P {Tπ,N ≤ t1, Tθ,N ≤ t2} = Φ (t1)Φ (t2) for any t1, t2 ∈ R by iterated
expectations and dominated convergence. The dominated convergence theorem is also ap-
plied to the 1st and 3rd equalities. The 2nd equality follows from Proposition 5. The 3rd
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Blöchlinger 1121

equality exploits Corollary 1. In the limit, I therefore have 2 independent standard Gaussian
variables.

2. Estimation of Standard Errors

The variance of θ̂P,N − θ̂B,N is given by

V
[
θ̂P,N − θ̂B,N

]
=

N2
0

N2

{
E

[
ϑ̂2

P,N

]
− 2E

[
ϑ̂P,N ϑ̂B,N

]
+ E
[
ϑ̂2

B,N

]}
,(A-9)

as shown in the previous section. The 3 expectation terms are derived in equations (A-6),
(A-7), and (A-8). To estimate these 3 expectation terms, I simply replace theoretical means
with empirical means. In the same manner, I can estimate the variance in Corollary 1. By
Slutsky’s theorem, both the limit distribution in Proposition 4 and the limit distribution in
Corollary 1 are unchanged when working with empirical instead of theoretical means for
the computation of the standard error.

There is also an alternative. The standard error in Corollary 1 can be directly cal-
culated via the expectation terms derived in the previous section. Thus, the variance of
θ̂P,N ,

V
[
θ̂P,N

]
=

N2
0

N2

{
E

[
ϑ̂2

P,N

]
− E [ϑ̂P,N

]2}
,(A-10)

is computed from the following expectation terms:

E
[
ϑ̂P,N

]
=

∫ ∞
−∞

∫ ∞
−∞
Ψ ( p1, p0) dFP|Y=1 ( p1) dFP|Y=0,X ( p0) ,

and

E

[
ϑ̂2

P,N

]
= E

[
ϑ̂P,N

]2
+

1− N0 − N1

N0N1
E
[
ϑ̂P,N

]2

+
N0 − 1
N0N1

E [Ψ (Pi,Pj)Ψ (Pi,Pl)| Yi = 1, Yj = 0, Yl = 0]

+
N1 − 1
N0N1

E [Ψ (Pi,Pj)Ψ (Pk,Pi)| Yi = 1, Yj = 0, Yk = 1]

+
1

N0N1
E

[
Ψ (Pi,Pj)

2
∣∣∣ Yi = 1, Yj = 0

]
,

with

E [Ψ (Pi,Pj)Ψ (Pi,Pl)| Yi = 1, Yj = 0, Yl = 0]

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
Ψ (p1, p0)Ψ ( p1, p) dFP|Y=1 ( p1)

× dFP|Y=0,X (p0) dFP|Y=0,X ( p) ,

E [Ψ (Pi,Pj)Ψ (Pk,Pi)| Yi = 1, Yj = 0, Yk = 1]

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
Ψ (p1, p0)Ψ (p, p0) dFP|Y=1 (p1)

× dFP|Y=0,X (p0) dFP|Y=1 (p) ,

and

FP|Y=1(p1) =
E
[
Pi1{Pi≤p1}

]
E [Pi]

,(A-11)

FP|Y=0,X(p0) =
1

P {Yi = 0|X}FP(p0)− P {Yi = 1|X}
P {Yi = 0|X}FP|Y=1(p0).(A-12)
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The unconditional CDF FP(·) allows, if shape calibrated, the derivation of the defaulter’s
distribution function FP|Y=1(·) according to equation (A-11). An asymptotically equivalent
derivation for FP|Y=1(·) is obtained when using the empirical CDF instead of the theoretical
CDF FP(·). The default frequency N1/N converges in probability toward P {Yi = 1|X}.
Thus, this convergence provides an approximation for the nondefaulter’s distribution func-
tion in equation (A-12) by replacing P {Yi = 1|X} with N1/N and P {Yi = 0|X} with
N0/N. The CDFs in equations (A-11) and (A-12) together with the previously derived
expectation terms allow the computation of the variance in equation (A-10).
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