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ABSTRACT
The transverse velocities of steadily rotating, non-axisymmetric patterns in flat galaxies may
be determined by a purely kinematic method, using two-dimensional maps of a tracer sur-
face brightness and radial current density. The data maps could be viewed as the zeroth and
first velocity moments of the line-of-sight velocity distribution, which is the natural output of
integral-field spectrographs. Our method is closely related to the Tremaine–Weinberg method
of estimating pattern speeds of steadily rotating patterns, when the tracer surface brightness
satisfies a source-free continuity equation. We prove that, under identical assumptions con-
cerning the pattern, two-dimensional maps may be used to recover not just one number (the
pattern speed), but the full vector field of tracer flow in the disc plane. We illustrate the recovery
process by applying it to simulated data and test its robustness by including the effects of noise.
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1 I N T RO D U C T I O N

Over the past decade long-slit spectrographs have given way to
integral-field spectrographs (IFS), which produce spectra over a
fully sampled, two-dimensional region of the sky (see, e.g., Bacon
et al. 2001; Thatte et al. 2001; Emsellem & Bland-Hawthorn 2002).
These spectral maps (also called the line-of-sight velocity distribu-
tion, hereafter LOSVD) contain important information on the flow
patterns of non-axisymmetric features in galaxies and their nuclei.
It is widely believed that bars and spiral patterns in disc galaxies
could influence galaxy evolution through their roles in the transport
of mass and angular momentum. These processes are not under-
stood completely, and IFS maps might be expected to play a key
role in the construction of dynamical models of evolving galaxies
(de Zeeuw 2002; Emsellem 2002). A limitation is that IFS maps
provide information about radial, but not transverse, velocities. It is
not possible to recover the unmeasured transverse velocities without
additional assumptions; a classic example is the modelling of the
warped disc of M83, using tilted, circular rings (Rogstad, Lockhart
& Wright 1974). However, the flows in non-axisymmetric features,
such as bars, are expected to be highly non-circular, and a different
approach is needed.

Tremaine & Weinberg (1984, hereafter TW84) considered
steadily rotating patterns in flat galaxies, and showed how data
from long-slit spectrographs may be used to estimate the pattern
speed. Their method assumes that the disc of the galaxy is flat, has
a well-defined pattern speed, and that the tracer component obeys a
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source-free continuity equation. The goal of this paper is to prove
that, making identical assumptions concerning the pattern, IFS data
can be used to determine not just one number (the pattern speed), but
the transverse velocities, and hence the entire two-dimensional vec-
tor field of the tracer flow. Like the TW method, one of the strengths
of our method is that it is kinematic, and not based on any particu-
lar dynamical model. Our main result is equation (8) of Section 2,
which provides an explicit expression for the transverse component
of the tracer current in the disc plane, in terms of its surface bright-
ness and the radial current density maps on the sky. This formula is
applied in Section 3 to a model of the lopsided disc in the nucleus
of the Andromeda galaxy (M31), where we also discuss the effects
of noise on the data maps. Section 4 offers conclusions.

2 T H E R E C OV E RY M E T H O D

An IFS data set consists of a two-dimensional map of the luminosity-
weighted distribution of radial velocities, the LOSVD. The LOSVD
can be regarded as a function of the three variables, (X, Y , U),
where X and Y are Cartesian coordinates on the sky, and U is
the radial velocity. The zeroth moment of the LOSVD over U is
�sky(X , Y ), the surface brightness distribution on the sky, and the
first moment is F sky(X , Y ), the radial current density on the sky.1

Following TW84, we consider a thin disc that is confined to the
z = 0 plane, with x and y being Cartesian coordinates in the disc
plane. The disc is inclined at an angle i to the sky plane (i = 0◦ is

1 The mean radial velocity is then given by U (X, Y ) = (Fsky/�sky): the
contour map of U (X, Y ) is often referred to as a ‘spider diagram’.
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Figure 1. Simulated data from a model disc inclined at 51.◦54: two-dimensional distribution of (a) surface brightness (�sky) and (b) radial current density
(F sky) of the model disc. The images have been smoothed with a circular Gaussian beam (σ = 0.1 arcsec). The contour levels are arbitrary, but separated
uniformly in the values of �sky and F sky, respectively. In (b) the black and white shading corresponds to negative and positive radial current densities, and the
dashed line is the zero radial current density contour. In both maps, the line of nodes is along the x-axis. The axes scales are in arcsec. (‘Data’ taken from SS02.)

face-on and i = 90◦ is edge-on), with line of nodes coincident with
the x-axis. It is clear that the sky coordinates, (X, Y), may be ori-
ented such that the X-axis and x-axis are coincident. Then (X , Y ) =
(x , y cos i).

The non-axisymmetric pattern of the tracer is assumed to rotate
steadily at an angular rate �p ẑ. In this frame the continuity equation
for the tracer brightness assumes its simplest form. Let r be the po-
sition vector in the rotating frame, �(r ) be the tracer surface bright-
ness, and v(r) be the streaming velocity field in the inertial frame.
An observer in the rotating frame sees the tracer move with veloc-
ity [v(r ) − �p(ẑ × r )]. If the tracer brightness is conserved, � and
(�v) must obey the continuity equation, ∇ · [�(v−�p ẑ×r )] = 0.
Cartesian coordinates in the rotating frame may be chosen such that
they coincide instantaneously with the (x, y) axis; thus r = (x , y)
and v(r ) = (vx , vy). In component form, the continuity equation
reads as

∂(�vx )

∂x
+ ∂(�vy)

∂y
= �p

(
x
∂�

∂y
− y

∂�

∂x

)
, (1)

which is equivalent to equations (2) and (3) of TW84. The quantities,
�(x , y) and �(x , y)vy(x , y), can be related directly to the observed
surface brightness and radial current density maps:

�(x, y) = cos i�sky(X, Y ), (2)

�(x, y)vy(x, y) = cot i Fsky(X, Y ). (3)

Henceforth �(x , y) and �(x , y)vy(x , y) will be considered as known
quantities. The unknowns in equation (1) are�p and�(x , y)vx (x , y).
Below we prove that both quantities may be obtained by integrating
over x. We will assume that �(x , y), �(x , y)vy(x , y), and (the un-
known quantity) �(x , y)vx (x , y), all decrease sufficiently rapidly
with distance, such that all the integrals encountered below are
finite.

Integrating equation (1) over x from −∞ to x, we obtain

�(x, y)vx (x, y) = − ∂

∂y

∫ x

−∞
dx ′ (�vy − �px ′�

)
(x ′,y)

−�p y�(x, y), (4)

where we have used �(−∞, y) = 0 and �(−∞, y)vx (−∞, y)
= 0. We must also require that �(+∞, y) = 0, and �(+∞, y)
vx (+ ∞, y) = 0. This leads to the condition

∂

∂y

∫ +∞

−∞
dx(�vy − �px�) = 0. (5)

Since the integral in equation (5) is independent of y, we can infer
its value at large values of |y|. Therefore, the integral itself must
vanish, i.e.

�p

∫ +∞

−∞
dxx�(x, y) =

∫ +∞

−∞
dx�(x, y)vy(x, y), (6)

for any value of y. This will be recognized as the key relation that
TW84 employ to determine the pattern speed (see equation 5 of their
paper). As is clear from our derivation, the real significance of equa-
tion (6) is that �p is an eigenvalue of equation (4). In other words, it
provides a consistency condition that �(x , y) and �(x , y)vy(x , y)
must satisfy, if �(x , y)vx (x , y) is to be given by equation (4). Us-
ing equation (3), we can rewrite equations (6) and (4), such that
�p and �(x , y)vx (x , y) are expressed directly in terms of observed
quantities:2

�p sin i

∫ +∞

−∞
dX X�sky(X, Y ) =

∫ +∞

−∞
dX Fsky(X, Y ), (7)

(�vx )(x,y) = −(cos i)2 ∂

∂Y

∫ X

−∞
dX ′

(
Fsky

sin i
− �p X ′�sky

)
(X ′,Y )

− �pY�sky(X, Y ). (8)

In the next section, equations (7) and (8) will be used on the simu-
lated data of Fig. 1, to enable recovery of the entire two-dimensional
flow vector field of a steadily rotating, lopsided pattern.

2 In principle, the value of �p given by equation (7) should be independent
of Y . However, TW84 recommends multiplying equation (7) by some weight
function, h(Y) and integrating over Y , to obtain an estimate of �p as the ratio
of two integrals – see equation (7) of TW84.
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Figure 2. (a) and (b) display isocontours of the x- and y-current densities, respectively, in the disc plane. The contour levels are equally spaced in current units.
The continuous and dashed curves correspond to the recovered and model current densities, respectively. The black and white shadings correspond to negative
and positive current densities. The velocity field of the input model is shown in (c). The recovered velocity field is close to the input model, and we show only
the residuals (i.e. recovered minus model velocities) in (d). All axes are in arcsec.

3 A P P L I C AT I O N TO S I M U L AT E D DATA

We used as data, simulated observations of a numerical model of
the stellar disc in the nucleus of the Andromeda galaxy (M31). A
brief account of the model is given below, and the reader is re-
ferred to Sambhus & Sridhar (2002, hereafter SS02) for details. The
nucleus of M31 is believed to harbour a supermassive black hole
(SMBH, Kormendy & Bender 1999), surrounded by a dense stellar
disc, which appears as a lopsided, double-peaked structure (Lauer
et al. 1993). The two peaks are separated by about 0.5 arcsec, with
the fainter peak almost coincident with the location of the SMBH
(Lauer et al. 1998). The dynamical centre of the galaxy lies in be-
tween the two peaks, about 0.1 arcsec from the SMBH. Tremaine
(1995) proposed that the SMBH was surrounded by an eccentric
disc of stars, for which the orbital apoapsides were aligned in a
manner that gave rise to the lopsided peak in the density of stars.
Our input model is a dynamical model of this eccentric disc that

was constructed by SS02, based on the Hubble Space Telescope
photometry of Lauer et al. (1998). The model consisted of about
230 000 points distributed on a plane. Each point (‘star’) possessed
five attributes: luminosity (or mass), location in the plane and two
components of velocity. The lopsided pattern formed by these points
rotated steadily about an axis normal to the plane with a (prograde)
pattern speed equal to 16 km s−1 pc−1; thus the model satisfied all
the assumptions used in Section 2. SS02 estimated an inclination
angle i = 51.◦54, and we use this value while projecting the model
disc to the sky-plane. To obtain a smooth distribution, we ‘observed’
the model with a circular Gaussian beam of σ = 0.1 arcsec. Fig. 1
shows the surface brightness (�sky) and the radial current density
(F sky). The line of nodes is along the x-axis.

We computed the integrals in equation (7), using �sky and F sky

from Fig. 1, for 11 different values of Y . Following Gerssen,
Kuijken & Merrifield (1999), we plotted the 11 different values
of one integral against the 11 values of the other integral. The slope
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Figure 3. Recovered velocity fields and residuals for typical noisy realizations. (a) and (c) are the recovered velocity fields for noise levels of 5 and 10 per
cent, respectively. (b) and (d) are the respective residuals.

of the ‘best-fitting’ straight line (in the least-square sense) gave an
estimate of �p sin i . Using i = 51.◦54, we found that �p = 15.11 ±
0.47 km s−1 pc−1. We used this value of �p to compute the right-
hand side of equation (8). After deprojection using (x , y) = (x , y cos
i) we obtained the x-current density (�vx ), the isocontours of which
are displayed in Fig. 2(a) as the continuous curves. For comparison,
we also plot the isocontours of (�vx ) from the input model in the
same figure as the dashed curves. In Fig. 2(b) similar plots of (�vy)
are displayed to make the point that, in practice, deprojection can
also give rise to errors. It is traditional and useful to look at the ve-
locity field, instead of the current density field. The velocity field is
obtained by dividing the current density field by �(x , y), and we
may expect this process of division to give rise to errors, especially
in the outer parts where � is small. To quantify the errors, we com-
puted the residual map, which was defined as the difference between
the recovered and input x-velocity maps. The �-weighted mean (R)
and root-mean-squared (rms; σ R) values of the residual map were

then calculated. When expressed in units of |vx |max of the input
map, they were found equal to R = 1.09× 10−3 and σ R = 7.67 ×
10−2. These globally determined numbers should give the reader
some idea of the dynamic range of the recovery method, when ap-
plied to noise-free spatially smoothed data. The spatial distribution
of the errors in both the x and y velocities is best visualized with
‘arrow plots’ of the velocity fields. Fig. 2(c) displays the velocity
field of the input model in the disc plane. The reconstructed veloci-
ties are close to the model, and we do not present them separately.
Instead we plot the residual current field (recovered minus input) in
Fig. 2(d).

We also tested the recovery method on noisy data. In a real ob-
servation most of the error is likely to reside in the measurement
of velocities, rather than the surface brightness. This is because the
methods used to extract the velocity information from spectra are
less robust than photometry. Therefore, we added noise to Fig. 1(b),
and kept Fig. 1(a) noise-free. To each pixel of Fig. 1(b), we added
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Table 1. Column 1: noise level added to ‘observed’ radial velocity map. The quantities in columns 2–4 were
obtained by averaging over 21 realizations for each level of noise. Column 2: pattern speed from using equation (7),
in units of km s−1 pc−1. Columns 3 and 4: mean and rms residuals of recovered transverse velocities, respectively,
in units of |vx |max of the input map.

Noise �p (error) R (error) σR (error)

1 per cent 15.29 (0.79) 1.14 × 10−3 (1.75 × 10−4) 8.02 × 10−2 (1.54 × 10−3)
5 per cent 17.67 (3.24) 1.50 × 10−3 (6.69 × 10−4) 1.30 × 10−1 (1.45 × 10−2)
10 per cent 16.78 (6.38) 1.00 × 10−3 (1.22 × 10−3) 2.30 × 10−1 (3.42 × 10−2)

Gaussian noise with mean equal to that observed, and rms equal to
some fixed fraction of the mean.3 We experimented with three levels
of noise, namely rms noise per pixel equal to 1, 5 and 10 per cent
of the mean. For each level of noise, 21 realizations were explored.
The pattern speed, x-current density and x velocities were computed
for each realization, using equations (7) and (8). Comparing with
the input model, we computed the mean (R) and rms (σ R) of the
residual x velocities for each realization. The distributions of the 21
R and σ R values were peaked close to their mean values, R and σR ,
respectively. Table 1 provides estimates (and rms errors) for these,
as well as for the pattern speed.

The mean residual, R, is always quite small, implying that there
is very little global systematic shift in the x velocities. This occurs
because of cancellation between positive and negative residual ve-
locities. The estimated pattern speed is also well behaved, because
this is calculated using numbers from different Y cuts. However, the
errors on �p increase dramatically with noise, resulting in a signif-
icant increase in σR . As earlier, the arrow plots are very revealing.
The recovered and residual maps for the case of 1 per cent noise
are very close to the noise-free case discussed earlier. Therefore, in
Fig. 3 we display arrow plots only for noise levels of 5 and 10 per
cent. In addition to random errors in the residual velocities there are
systematic alignments parallel to the line of nodes, the axis along
which integrals are evaluated in the recovery method. However, as
Fig. 3 suggests, even for a noise level as high as 10 per cent, the
recovery method does not fail completely.

4 C O N C L U S I O N S

We have demonstrated that it is possible to recover the transverse
velocities of steadily rotating patterns in flat galaxies, using two-
dimensional maps of a tracer surface brightness and radial current
density, if the tracer satisfies a source-free continuity equation. Our
method is kinematic, and closely related to the TW method of de-
termining pattern speeds. Indeed, the conditions that need to be
satisfied – that the galaxy is flat, the pattern is steadily rotating
and the tracer obeys a continuity equation – are identical to those
assumed by TW84. Our main result is an explicit expression for
the transverse velocities (equation 8), which is exact under ideal
conditions. We have applied it successfully to simulated data, and
demonstrated its utility in the presence of intrinsic numerical errors
in the data, finite angular resolution, and noise. The TW relation
for the pattern speed (equation 7) emerges as an eigenvalue, and we
expect our method to work well whenever the TW method gives a
good estimate of the pattern speed. It is legitimate to be concerned
that the conditions required to be satisfied might impose serious lim-

3 Adding noise to F sky is equivalent to adding noise to U = (Fsky/�sky),
because we have kept �sky noise-free.

itations in practice; the angle of inclination and line of nodes need
to be estimated, the pattern need not be steadily rotating, the con-
tinuity equation need not be satisfied, the tracer distribution could
be warped, the disc could be thick, and there could be streaming
velocities in the z-direction. All of these are well-known worries
concerning the applicability of the TW method itself. That they are
not unduly restrictive is evident from the success that the TW method
itself has enjoyed in the determination of pattern speeds (see, e.g.,
Kent 1987; Kuijken & Tremaine 1991; Merrifield & Kuijken 1995;
Bureau et al. 1999; Gerssen, Kuijken & Merrifield 1999; Baker et al.
2001; Debattista & Williams 2001; Debattista, Corsini & Aguerri
2002a; Debattista, Gerhard & Sevenster 2002b; Gerssen 2002;
Zimmer & Rand 2002; Aguerri, Debattista & Corsini). Therefore,
we are cautiously optimistic that our method of recovering trans-
verse velocities can be applied usefully to two-dimensional spectral
maps.
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