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ABSTRACT
We present a detailed analysis of the two-point correlation function, ξ (σ , π ), from the 2dF
Galaxy Redshift Survey (2dFGRS). The large size of the catalogue, which contains ∼220 000
redshifts, allows us to make high-precision measurements of various properties of the galaxy
clustering pattern. The effective redshift at which our estimates are made is zs ≈ 0.15, and
similarly the effective luminosity, Ls ≈ 1.4L∗. We estimate the redshift-space correlation
function, ξ (s), from which we measure the redshift-space clustering length, s0 = 6.82 ±
0.28 h−1 Mpc. We also estimate the projected correlation function, �(σ ), and the real-space
correlation function, ξ (r ), which can be fit by a power law (r/r0)−γ r , with r0 = 5.05 ±
0.26 h−1 Mpc, γ r = 1.67 ± 0.03. For r � 20 h−1 Mpc, ξ drops below a power law as, for
instance, is expected in the popular 
 cold dark matter model. The ratio of amplitudes of the
real- and redshift-space correlation functions on scales of 8–30 h−1 Mpc gives an estimate
of the redshift-space distortion parameter β. The quadrupole moment of ξ (σ , π ) on scales
30–40 h−1 Mpc provides another estimate of β. We also estimate the distribution function of
pairwise peculiar velocities, f (v), including rigorously the significant effect due to the infall
velocities, and we find that the distribution is well fit by an exponential form. The accuracy
of our ξ (σ , π ) measurement is sufficient to constrain a model, which simultaneously fits
the shape and amplitude of ξ (r) and the two redshift-space distortion effects parametrized by β
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and velocity dispersion, a. We find β = 0.49 ± 0.09 and a = 506 ± 52 km s −1, although the
best-fitting values are strongly correlated. We measure the variation of the peculiar velocity
dispersion with projected separation, a(σ ), and find that the shape is consistent with models
and simulations. This is the first time that β and f (v) have been estimated from a self-consistent
model of galaxy velocities. Using the constraints on bias from recent estimates, and taking
account of redshift evolution, we conclude that β(L = L∗, z = 0) = 0.47 ± 0.08, and that the
present-day matter density of the Universe, �m ≈ 0.3, consistent with other 2dFGRS estimates
and independent analyses.

Key words: surveys – galaxies: distances and redshifts – galaxies: statistics – cosmological
parameters – large-scale structure of Universe.

1 I N T RO D U C T I O N

The galaxy two-point correlation function, ξ , is a fundamental statis-
tic of the galaxy distribution, and is relatively straightforward to cal-
culate from observational data. Because the clustering of galaxies
is determined by the initial mass fluctuations and their evolution,
measurements of ξ set constraints on the initial mass fluctuations
and their evolution. The astrophysics of galaxy formation introduces
uncertainties, but there is now good evidence that galaxies do trace
the underlying mass distribution on large scales.

In this paper we analyse the distribution of ∼220 000 galaxies
in the two-degree Field Galaxy Redshift Survey (2dFGRS; Colless
et al. 2001). A brief summary of the data is presented in Section 2.
Much of our error analysis makes use of mock galaxy catalogues
generated from N-body simulations which are also discussed in
Section 2.

The two-dimensional (2D) measurement ξ (σ , π ), where σ is the
pair separation perpendicular to the line of sight and π is the pair
separation parallel to the line of sight provides information about
the real-space correlation function, the small-scale velocity distribu-
tion, and the systematic gravitational infall into overdense regions.
The spherical average of ξ (σ , π ) gives an estimate of the redshift-
space correlation function, ξ (s), where s =

√
(π 2 + σ 2), so the

galaxy separations are calculated assuming that redshift gives a di-
rect measure of distance, ignoring the effects of peculiar velocities.
Integrating ξ (σ , π ) along the line of sight sums over any peculiar
velocity distributions, and so is unaffected by any redshift-space ef-
fects. The resulting projected correlation function, �(σ ), is directly
related to the real-space correlation function. Our estimates of ξ (σ ,
π ), ξ (s), �(σ ) and ξ (r ) are presented in Section 3. These statistics
have been measured from many smaller redshift surveys (e.g. Davis
& Peebles 1983; Loveday et al. 1992; Jing, Mo & Börner 1998;
Hawkins et al. 2001; Zehavi et al. 2002), but because they sample
smaller volumes, there is a large cosmic variance on the results.
The large volume sampled by the 2dFGRS leads to significantly
more reliable estimates. A preliminary analysis was performed on
the 2dFGRS by Peacock et al. (2001) but we now have a far more
uniform sample and twice as many galaxies. Madgwick et al. (2003)
have measured these statistics for spectral-type subsamples of the
2dFGRS.

Peculiar velocities of galaxies lead to systematic differences be-
tween redshift-space and real-space measurements, and we can con-
sider the effects in terms of a combination of large-scale coherent
flows induced by the gravity of large-scale structures, and a small-
scale random peculiar velocity of each galaxy (e.g. Marzke et al.
1995; Jing et al. 1998). The large-scale flows compress the contours
of ξ (σ , π ) along the π direction, as described by Kaiser (1987) and

Hamilton (1992). The amplitude of the distortion depends on the
mean density of the Universe, �m, and on how the mass distribu-
tion is clustered relative to galaxies, which can be parametrized in
terms of a linear bias b, defined so that δg = bδm, where δ represents
fluctuations in the density field. The random component of peculiar
velocity for each galaxy means that the observed ξ (σ , π ) is con-
volved in the π coordinate with the pairwise distribution of random
velocities. In Section 4 we describe the construction of a model ξ (σ ,
π ) from these assumptions about redshift-space distortions and also
the shape of the correlation function.

In Section 5 we use the Q statistic (Hamilton 1992) based on
the quadrupole moment of ξ (σ , π ) to estimate the parameter β ≈
�0.6

m /b. In the absence of the small-scale random velocities, the
shape of ξ (σ , π ) contours on large scales is directly related to the
parameter β. A similar estimate of β is provided by the ratio of
amplitudes of ξ (s) to ξ (r ) and this is also presented in Section 5.

In Section 6, we use the method of Landy, Szalay & Broadhurst
(1998, hereafter LSB98) to estimate the distribution of peculiar ve-
locities. This technique ignores the effect of large-scale distortions
and uses the Fourier transform of ξ (σ , π ) to estimate the distribu-
tion of peculiar velocities, f (v). The large sample volume of the
2dFGRS makes our measurements more reliable than previous es-
timates in the same way as for the correlation functions mentioned
earlier.

These two approaches provide reasonable estimates of β and f (v)
so long as the distortions at small and large scales are completely
decoupled. This is not the case for real data, and so we have fitted
models which simultaneously include the effects of both β and f (v).
The resulting best-fitting parameters are the most self-consistent
estimates. Previous data sets have lacked the signal-to-noise to allow
a reliable multiparameter fit in this way. Our fitting procedure and
results are described in Section 7.

In Section 8, we examine the luminosity and redshift dependence
of β and combine our results with estimates of b (Verde et al. 2002;
Lahav et al. 2002) to estimate �m, and compare this with other
recent analyses.

In Section 9, we summarize our main conclusions. When con-
verting from redshift to distance we assume the Universe has a flat
geometry with �
 = 0.7, �m = 0.3 and H 0 = 100 h km s−1 Mpc−1,
so that all scales are in units of h−1 Mpc.

2 T H E DATA

2.1 The 2dFGRS data

The 2dFGRS is selected in the photometric bJ band from the Auto-
mated Plate Measuring (APM) galaxy survey (Maddox, Efstathiou
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Figure 1. The redshift completeness masks for the NGP (top) and SGP (bottom). The grey-scale shows the completeness fraction.

& Sutherland 1990) and its subsequent extensions (Maddox et al., in
preparation). The bulk of the solid angle of the survey is made up of
two broad strips, one in the South Galactic Pole (SGP) region cov-
ering approximately −37.◦5 < δ < −22.◦5, 21h40m < α < 3h40m

and the other in the direction of the North Galactic Pole (NGP),
spanning −7.◦5 < δ < 2.◦5, 9h50m < α < 14h50m. In addition to
these contiguous regions, there are a number of circular two-degree
fields scattered randomly over the full extent of the low extinction
regions of the southern APM galaxy survey.

The magnitude limit at the start of the survey was set at bJ = 19.45
but both the photometry of the input catalogue and the dust extinction
map have been revised since and so there are small variations in
magnitude limit as a function of position over the sky. The effective
median magnitude limit, over the area of the survey, is bJ ≈ 19.3
(Colless et al. 2001).

The completeness of the survey data varies according to the po-
sition on the sky because of unobserved fields (mostly around the
survey edges), unfibred objects in observed fields (due to collision
constraints or broken fibres) and observed objects with poor spectra.
The variation in completeness is mapped out using a completeness
mask (Colless et al. 2001; Norberg et al. 2002a) which is shown in
Fig. 1 for the data used in this paper.

We use the data obtained prior to 2002 May, which is virtually the
completed survey. This includes 221 283 unique, reliable galaxy red-
shifts (quality flag �3; Colless et al. 2001). We analyse a magnitude-
limited sample with redshift limits zmin = 0.01 and zmax = 0.20, and
no redshifts are used from a field with <70 per cent completeness.
The median redshift is zmed ≈ 0.11. The random fields, which con-
tain nearly 25 000 reliable redshifts are not included in this analysis.

After the cuts for redshift, completeness and quality we are left with
165 659 galaxies in total, 95 929 in the SGP and 69 730 in the NGP.
These data cover an area, weighted by the completeness shown in
Fig. 1, of 647 deg2 in the SGP and 446 deg2 in the NGP, to the
magnitude limit of the survey.

In all of the following analysis we consider the NGP and SGP
as independent data sets. Treating the NGP and SGP as two inde-
pendent regions of the sky gives two estimates for each statistic,
and so provides a good test of the error bars we derive from mock
catalogues (see below). We have also combined the two measure-
ments to produce our overall best estimate by simply adding the pair
counts from the NGP and SGP. The optimal weighting of the two
estimates depends on the relative volumes surveyed in the NGP and
SGP, but because these are comparable, a simple sum is close to the
optimal combination.

It is important to estimate the effective redshift at which all our
statistics are calculated. As ξ is based on counting pairs of galaxies
the effective redshift is not the median, but a pair-weighted measure.
The tail of high redshift galaxies pushes this effective redshift to
zs ≈ 0.15. Similarly the effective magnitude of the sample we anal-
yse is M s − 5 log h ≈ −20.0, corresponding to L s ≈ 1.4L∗ (using
M∗ − 5 log h = −19.66; Norberg et al. 2002a).

2.2 Mock catalogues

For each of the NGP and SGP regions, 22 mock catalogues were
generated from the 
 cold dark matter (CDM) Hubble Volume sim-
ulation (Evrard et al. 2002) using the techniques described in Cole
et al. (1998), and are designed to have a similar clustering signal to
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the 2dFGRS. A summary of the construction methods is presented
here but for more details see Norberg et al. (2002a) and Baugh et al.
(in preparation).

These simulations used an initial dark matter power spectrum
appropriate to a flat 
CDM model with �m = 0.3 and �
 = 0.7.
The dark-matter evolution was followed up to the present day and
then a bias scheme (model 2 of Cole et al. 1998, with a smoothing
length, RS = 2 h−1 Mpc) was used to identify galaxies from the
dark-matter haloes. The bias scheme used has two free parameters
which are adjusted to match the mean slope and amplitude of the
correlation function on scales greater than a few megaparsec. On
scales smaller than the smoothing length there is little control over
the form of the clustering, but in reality the methods employed work
reasonably well (see later sections).

The resulting catalogues have a bias scheme which asymptotes to
a constant on large scales, giving β = 0.47, but is scale-dependent
on small scales. Apparent magnitudes were assigned to the galax-
ies consistent with their redshift, the assumed Schechter luminosity
function and the magnitude limit of the survey. The Schechter func-
tion has essentially the same parameters as in the real data (see
Norberg et al. 2002a). Then the completeness mask and variable
apparent magnitude limits were applied to the mock catalogues to
reproduce catalogues similar to the real data.

In the analysis which follows, we make use of the real- and
redshift-space correlation functions from the full Hubble Volume
simulation. These correlation functions are determined from a
Fourier transform of the power spectrum of the full Hubble Volume
cube using the real- and redshift-space positions of the mass parti-
cles respectively, along with the bias scheme outlined above. This
allows us to compare our mock catalogue results with those of the
simulation from which they are drawn to ensure we can reproduce
the correct parameters. It also allows us to compare and contrast the
results from the real Universe with a large numerical simulation.

2.3 Error estimates

We analyse each of the mock catalogues in the same way as the real
data, so that we have 22 mock measurements for every measurement
that we make on the real data. The standard deviation between the
22 mock measurements gives a robust estimate of the uncertainty on
the real data. We use this approach to estimate the uncertainties for
direct measurements from the data, such as the individual points
in the correlation function, and for best-fitting parameters such
as s0.

When fitting parameters we use this standard deviation as a weight
for each data point and perform a minimum χ2 analysis to obtain the
best-fitting parameter. The errors that we quote for any particular
parameter are the rms spread between the 22 best-fitting parameters
obtained in the same way from the mock catalogues. This simple way
of estimating the uncertainties avoids the complications of dealing
directly with correlated errors in measured data points, while still
providing an unbiased estimate of the real uncertainties in the data,
including the effects of correlated errors.

Although this approach gives reliable estimates of the uncertain-
ties, the simple weighting scheme is not necessarily optimal in the
presence of correlated errors. Nevertheless, for all statistics that we
consider, we find that the means of the mock estimates agree well
with the values input to the parent simulations. Also, we have applied
the technique described by Madgwick et al. (2003) to decorrelate the
errors for the projected correlation function, using the covariance
matrix estimated from the mock catalogues. We found a 0.1σ dif-
ference between the best-fitting values using the two methods. So,

we are confident that our measurements and uncertainty estimates
are robust and unbiased.

3 E S T I M AT E S O F T H E C O R R E L AT I O N
F U N C T I O N

The two-point correlation function, ξ , is measured by comparing
the actual galaxy distribution to a catalogue of randomly distributed
galaxies. These randomly distributed galaxies are subject to the same
redshift, magnitude and mask constraints as the real data and we
modulate the surface density of points in the random catalogue to
follow the completeness variations. We count the pairs in bins of
separation along the line of sight, π , and across the line of sight, σ , to
estimate ξ (σ , π ). Spherically averaging these pair counts provides
the redshift-space correlation function ξ (s). Finally, we estimate the
projected function �(σ ) by integrating over all velocity separations
along the line of sight and invert it to obtain ξ (r ).

3.1 Constructing a random catalogue

To reduce shot noise we compare the data with a random cata-
logue containing 10 times as many points as the real catalogue.
This random catalogue needs to have a smooth selection function
matching the N(z) of the real data. We use the 2dFGRS luminosity
function (Norberg et al. 2002a) with M∗

bJ
− 5 log h = −19.66 and

α = −1.21 to generate the selection function, following the change
in the survey magnitude limit across the sky. When analysing the
mock catalogues, we use the input luminosity function to generate
the selection function, and hence random catalogues.

As an alternative method, we also fitted an analytical form for
the selection function (Baugh & Efstathiou 1993) to the data, and
generated random catalogues using that selection function. We have
calculated all of our statistics using both approaches, and found that
they gave essentially identical results for the data. When analysing
the mock catalogues, we found that the luminosity function method
was more robust to the presence of large-scale features in the N(z)
data. Thus, all of our quoted results are based on random catalogues
generated using the luminosity function.

3.2 Fibre collisions

The design of the 2dF instrument means that fibres cannot be placed
closer than approximately 30 arcsec (Lewis et al. 2002), and so both
members of a close pair of galaxies cannot be targeted in a single
fibre configuration. Fortunately, the arrangement of 2dFGRS tiles
means that not all close pairs are lost from the survey. Neighbouring
tiles have significant areas of overlap, and so much of the sky is
targeted more than once. This allows us to target both galaxies in
some close pairs. Nevertheless, the survey misses a large fraction
of close pairs. It is important to assess the impact of this omission
on the measurement of galaxy clustering and to investigate schemes
that can compensate for the loss of close pairs.

To quantify the effect of these so-called ‘fibre collisions’ we have
calculated the angular correlation function for galaxies in the 2dF-
GRS parent catalogue, wp(θ ), and for galaxies with redshifts used
in our ξ analysis, wz(θ ). We used the same mask to determine the
angular selection and apparent magnitude limit for each sample as
in Fig. 1. Note that the mask is used only to define the area of anal-
ysis, and the actual redshift completeness values are not used in the
calculation of w. In our ξ analyses we impose redshift limits 0.01 <

z < 0.2, which means that the mean redshift of the redshift sample
is lower than the parent sample. We used the equation of Limber
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Figure 2. Top panel: w(θ ) for the mean of the NGP and SGP redshift
catalogues (solid points), the mean of the masked parent catalogues (solid
line), and the full APM result (error bars). Bottom panel: the parent catalogue
result divided by the redshift catalogue results (uncorrected – solid points;
collision corrected (see Section 3.3) – open points). The solid line is the curve
used to correct the fibre collisions. The top axis converts θ into a projected
separation, σ , at the effective redshift of the survey, zs = 0.15.

(1954) to calculate the scalefactors in amplitude and angular scale
needed to account for the different redshift distributions. The solid
line in Fig. 2 shows wp, and the filled circles show wz after applying
the Limber scalefactors. The error bars in Fig. 2 show w(θ ) from
the full APM survey (Maddox, Efstathiou & Sutherland 1996), also
scaled to the magnitude limit of the 2dFGRS parent sample. On
scales θ � 0.◦03 all three measurements are consistent. On smaller
scales wz is clearly much lower than wp, showing that the fibre-
collision effect becomes significant and cannot be neglected.

The ratio of galaxy pairs counted in the parent and redshift sam-
ples is given by (1 + wp)/(1 + wz), which is shown by the filled
circles in the lower panel of Fig. 2. As discussed in the next section,
we use this ratio to correct the pair counts in the ξ analysis.

3.3 Weighting

Each galaxy and random galaxy is given a weighting factor depend-
ing on its redshift and position on the sky. The redshift-dependent
part of the weight is designed to minimize the variance on the es-
timated ξ (Efstathiou 1988; Loveday et al. 1995), and is given by
1/(1 + 4πn(zi)J 3(s)), where n(z) is the density distribution and
J3(s) = ∫ s

0
ξ (s ′)s ′2 ds ′. We use n(z) from the random catalogue to

ensure that the weights vary smoothly with redshift. We find that
our results are insensitive to the precise form of J 3 but we derived it
using a power law ξ with s0 = 13.0 and γ s = 0.75 and a maximum
value of J 3 = 400. This corresponds to the best-fitting power law
over the range 0.1 < s < 3 h−1 Mpc with a cut-off at larger scales.

We also use the weighting scheme to correct for the galaxies that
are not observed due to the fibre collisions. Each galaxy–galaxy
pair is weighted by the ratio wf = (1 + wp)/(1 + wz) at the relevant
angular separation according to the curve plotted in the bottom panel

of Fig. 2. This corrects the observed pair count to what would have
been counted in the parent catalogue. The open points in Fig. 2,
which have the collision correction applied, show that this method
can correctly recover the parent catalogue result and hence overcome
the fibre-collision problem. Because the random catalogues do not
have any close-pair constraints, only the galaxy–galaxy pair count
needs correcting in this way. We also tried an alternative approach
to the fibre-collision correction that we used previously in Norberg
et al. (2001, 2002b) where the weight for each unobserved galaxy
was assigned equally to its 10 nearest neighbours. This produced
similar results for θ > 0.◦03, but did not help on smaller scales. All
of our results are presented using the wf weighting scheme. Hence
each galaxy, i, is weighted by the factor

wi = 1

1 + 4πn(zi )J3(s)
, (1)

and each galaxy–galaxy pair i, j is given a weight w f wiw j , whereas
each galaxy–random and random–random pair is given a weight
wiw j .

3.4 The two-point correlation function, ξ(σ, π)

We use the ξ estimator of Landy & Szalay (1993)

ξ (σ, π ) = DD − 2DR + R R

R R
(2)

where DD is the normalized sum of weights of galaxy–galaxy pairs
with particular (σ , π ) separation, RR is the normalized sum of
weights of random–random pairs with the same separation in the
random catalogue and DR is the normalized sum of weights of
galaxy–random pairs with the same separation. To normalize the
pair counts we ensure that the sum of weights of the random cat-
alogue equal the sum of weights of the real galaxy catalogue, as a
function of scale. We find that other estimators (e.g. Hamilton 1993)
give similar results.

The N(z) distributions for the data and random catalogues (scaled
so that the area under the curve is the same as for the observed data)
are shown in Fig. 3. It is clear that N(z) for the random catalogues are
a reasonably smooth fit to N(z) for the data. Norberg et al. (2002a)
have shown that large ‘spikes’ in the N(z) are common in the mock
catalogues, and so similar features in the data redshift distributions
indicate normal structure.

The resulting estimates of ξ (σ , π ) calculated separately for the
SGP and NGP catalogues are shown in Fig. 4, along with the com-
bined result. The velocity distortions are clear at both small and
large scales, and the signal-to-noise ratio is in general very high for
σ and π values less than 20 h−1 Mpc; it is ≈6 in each 1 h−1 Mpc
bin at s = 20 h−1 Mpc. At very large separations ξ (σ , π ) becomes
very close to zero, showing no evidence for features that could be
attributed to systematic photometric errors.

We used an earlier version of the 2dFGRS catalogue to carry out
a less detailed analysis of ξ (σ , π ) (Peacock et al. 2001). The current
redshift sample has about 1.4 times as many galaxies, although more
importantly it is more contiguous, and the revised photometry has
improved the uniformity of the sample. Nevertheless, our new results
are very similar to our earlier analysis, demonstrating the robustness
of our results. The current larger sample allows us to trace ξ out to
larger scales with smaller uncertainties. Also, in our present analysis
we analyse mock catalogues to obtain error estimates which are more
precise than the previous error approximation (see Section 7.3).
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Figure 3. Redshift distributions, N(z), for the 2dFGRS data (solid lines) and the normalized random catalogues generated using the survey luminosity function
(dashed lines) for the (a) SGP and (b) NGP.

Figure 4. Grey-scale plots of the 2dFGRS ξ (σ , π ) (in 1 h−1 Mpc bins) for (a) the SGP region, (b) the NGP region and (c) the combined data. Contours are
overlaid at ξ = 4.0, 2.0, 1.0, 0.5, 0.2 and 0.1.

3.5 The redshift-space correlation function, ξ(s)

Averaging ξ (σ , π ) at constant s gives the redshift-space correlation
function, and our results for the NGP and SGP are plotted in Fig. 5
on both log and linear scales. The NGP and SGP measurements
differ by about 2σ between 20 and 50 h−1 Mpc; we find one mock
whose NGP and SGP measurements disagree by this much, and so
it is probably not significant. We tried shifting M∗ by 0.1 mag to
better fit N(z) at z > 0.15 in the SGP, and this moved the data points
by ∼0.2σ for 20 < s < 50 h−1 Mpc.

The redshift-space correlation function for the combined data is
plotted in Fig. 6 in the top panel. It is clear that the measured ξ (s)
is not at all well represented by a universal power law on all scales,
but we do make an estimate of the true value of the redshift-space
correlation length, s0, by fitting a localized power law of the form

ξ (s) =
( s

s0

)−γs

(3)

using a least-squares fit to log(ξ ) as a function of log(s), using two
points either side of ξ (s) = 1. This also gives a value for the local

redshift-space slope, γ s . The best-fitting parameters for the separate
poles and combined estimates are listed in Table 1. In the inset of
Fig. 6 we can see, at a low amplitude, that ξ (s) becomes negative
between 50 � s � 90 h−1 Mpc.

In the bottom panel of Fig. 6 we examine the shape of ξ (s) more
carefully. The points are the data divided by a small-scale power
law fitted on scales 0.1 < s < 3 h−1 Mpc (dashed line). The data are
remarkably close to the power-law fit for this limited range of scales,
and follow a smooth break towards zero for 3 < s < 60 h−1 Mpc.
The measurements from the Hubble Volume simulation are shown
by the solid line, and it matches the data extremely well on scales s >

4 h−1 Mpc. On smaller scales, where the algorithm for placing galax-
ies in the simulation has little control over the clustering amplitude
(as discussed in Section 2.2), there are discrepancies of the order of
50 per cent.

The mean ξ (s) determined from the mock catalogues agrees
well with the true redshift-space correlation function from the full
Hubble Volume. This provides a good check that our weighting
scheme and random catalogues have not introduced any biases in the
analysis.
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Figure 5. The redshift-space correlation function for the NGP (open points)
and SGP (solid points) 2dFGRS data with error bars from the rms of mock
catalogue results. The inset is plotted on a linear scale.

Figure 6. Top panel: the redshift-space correlation function for the com-
bined data (points) with error bars from the rms of the mock catalogue results.
The dashed line is a small-scale power-law fit (s0 = 13 h−1 Mpc, γ s = 0.75)
and the dot-dashed line is the best fit to points around s0 (s0 = 6.82 h−1

Mpc, γ s = 1.57). The inset is on a linear scale. Bottom panel: as above,
divided by the small-scale power law. The solid line shows the result from
the Hubble Volume simulation.

3.6 Redshift-space comparisons

Redshift-space correlation functions have been measured from
many redshift surveys, but direct comparisons between different
surveys are not straightforward because galaxy clustering depends
on the spectral type and luminosity of galaxies (e.g. Guzzo et al.
2000; Norberg et al. 2002b; Madgwick et al. 2003). Direct compar-
isons can be made only between surveys that are based on similar
galaxy selection criteria. The 2dFGRS is selected using pseudo-
total magnitudes in the bJ band, and the three most similar surveys

Table 1. Best-fitting parameters to ξ . For s0 and γ s the fit to ξ (s) uses only
points around s = s0. For rP

0 , γ P
r and A(γ P

r ) the fit to �(σ )/σ uses all points
with 0.1 < σ < 12 h−1 Mpc. For r I

0 and γ I
r the fit to the inverted ξ (r ) uses

all points with 0.1 < r < 12 h−1 Mpc. In each case, the errors quoted are
the rms spread in the results obtained from the same analysis with the mock
catalogues.

Parameter SGP NGP Combined

s0 (h−1 Mpc) 6.92 ± 0.36 6.72 ± 0.41 6.82 ± 0.28

γ s 1.51 ± 0.08 1.64 ± 0.08 1.57 ± 0.07

rP
0 (h−1 Mpc) 5.05 ± 0.32 4.79 ± 0.31 4.95 ± 0.25

γ P
r 1.68 ± 0.06 1.77 ± 0.07 1.72 ± 0.04

A(γ P
r ) 4.17 ± 0.23 3.77 ± 0.28 3.99 ± 0.16

r I
0 (h−1 Mpc) 5.09 ± 0.35 5.08 ± 0.28 5.05 ± 0.26

γ I
r 1.65 ± 0.03 1.70 ± 0.04 1.67 ± 0.03

are the Stromlo-APM survey (SAPM; Loveday et al. 1992),
the Durham United Kingdom Schmidt Telescope (UKST) survey
(Ratcliffe et al. 1998) and the European Southern Observatory (ESO)
Slice Project (ESP; Guzzo et al. 2000). The Las Campanas Redshift
Survey (LCRS; Tucker et al. 1997; Jing et al. 1998) and the Sloan
Digital Sky Survey (SDSS; Zehavi et al. 2002) are selected in the
R band, but have a very large number of galaxies, and so are also
interesting for comparisons.

The non-power-law shape of ξ (s) makes it difficult to compare
different measurements of s0 and γ s , because the values depend sen-
sitively on the range of s used in the fitting procedure. In Fig. 7(a) we

Figure 7. Comparison of 2dFGRS ξ (s) with (a) other bJ-band selected
surveys as indicated and (b) R-band selected surveys as indicated. These
results are discussed in the text.
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compare the ξ (s) measurements directly for the 2dFGRS, SAPM,
Durham UKST and ESP surveys. Our estimate of ξ (s) is close to
the mean of previous measurements, but the uncertainties are much
smaller. Although we quote uncertainties that are similar in size
to previous measurements, we have used the scatter between mock
catalogues to estimate them, rather than the Poisson or boot-strap
estimates that have been used before and which seriously underes-
timate the true uncertainties.

Fig. 7(b) shows the 2dFGRS measurements together with the
LCRS and SDSS measurements. On scales s � 4 h−1 Mpc there
appear to be no significant differences between the surveys, but
for s � 2 h−1 Mpc the LCRS and SDSS have a higher amplitude
than the 2dFGRS. This difference is likely to be caused by the
different galaxy selection for the surveys, although the SDSS results
shown are for the Early Data Release (EDR) and have larger errors
than the 2dFGRS points. The 2dFGRS is selected using bJ, whereas
the SDSS and LCRS are selected in red bands. Because the red
(early-type) galaxies are more strongly clustered than blue (late-
type) galaxies (e.g. Zehavi et al. 2002; and via spectral type, Norberg
et al. 2002b), we should expect that ξ will be higher for red selected
surveys than a blue selected survey. This issue is examined further
in Madgwick et al. (2003).

3.7 The projected correlation function, Ξ(σ)

The redshift-space correlation function differs significantly from the
real-space correlation function because of redshift-space distortions
(see Section 4). We can estimate the real-space correlation length,
r 0, by first calculating the projected correlation function, �(σ ). This
is related to ξ (σ , π ) via the equation

�(σ ) = 2

∫ ∞

0

ξ (σ, π ) dπ, (4)

although in practice we set the upper limit in this integral to πmax =
70 h−1 Mpc. The result is insensitive to this choice for πmax >

60 h−1 Mpc for our data. Because redshift-space distortions move
galaxy pairs only in the π direction, and the integral represents a
sum of pairs over all π values, �(σ ) is independent of redshift-space
distortions. It is simple to show that �(σ ) is directly related to the
real-space correlation function (Davis & Peebles 1983):

�(σ )

σ
= 2

σ

∫ ∞

σ

rξ (r ) dr

(r 2 − σ 2)1/2
. (5)

If the real-space correlation function is a power law, this can be
integrated analytically. We write ξ (r ) = (r/rP

0)−γ P
r , where the ‘P’

superscripts refer to the ‘projected’ values, rather than the ‘inverted’
values which are calculated in Section 3.8 and denoted by ‘I’. With
this notation we obtain

�(σ )

σ
=
(

rP
0

σ

)γ P
r �(1/2)�

((
γ P

r − 1
)
/2
)

�
((

γ P
r

)
/2
) =

(
rP

0

σ

)γ P
r

A
(
γ P

r

)
. (6)

The parameters γ P
r and rP

0 can then be estimated from the measured
�(σ ), giving an estimate of the real-space clustering independent
of any peculiar motions.

The projected correlation functions for the NGP and SGP are
shown in Fig. 8 and the combined data result is shown in Fig. 9.
The best-fitting values of γ P

r and rP
0 for 0.1 < σ < 12 h−1 Mpc are

shown in Table 1. Over this range �(σ )/σ is an accurate power
law, but it steepens for σ > 12 h−1 Mpc. This deviation from
power-law behaviour limits the scales that can be probed using this
approach.

Figure 8. The projected correlation functions for the NGP (open points)
and SGP (solid points) 2dFGRS data with error bars from the rms spread
between mock catalogue results. The inset is plotted on a linear scale.

Figure 9. Top panel: the projected correlation function of the combined
data with error bars from the rms spread between mock catalogue results.
The dashed line is the best-fitting power law for 0.1 < σ < 12 h−1 Mpc
(r0 = 4.98, γ r = 1.72, A = 3.97). The inset is plotted on a linear scale.
Bottom panel: the combined data divided by the power-law fit.

3.8 The real-space correlation function, ξ(r)

It is possible to estimate ξ (r ) by directly inverting �(σ ) without
making the assumption that it is a power law (Saunders, Rowan-
Robinson & Lawrence 1992, hereafter S92). They recast equa-
tion (5) into the form

ξ (r ) = − 1

π

∫ ∞

r

(d�(σ )/dσ )

(σ 2 − r 2)1/2
dσ. (7)
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Figure 10. The mean real-space correlation function determined from the
22 mock catalogues using the method of S92. The solid line is the true ξ (r )
from the Hubble Volume and the agreement is excellent. Note the changed
scale from previous plots.

Assuming a step function for �(σ ) = �i in bins centred on σ i , and
interpolating between values,

ξ (σi ) = − 1

π

∑
j�i

� j+1 − � j

σ j+1 − σ j
ln

(
σ j+1 +

√
σ 2

j+1 − σ 2
i

σ j +
√

σ 2
j − σ 2

i

)
(8)

for r = σ i . S92 suggest that their method is only good for scales
r � 30 h−1 Mpc in the QDOT survey because r becomes comparable
to the maximum scale out to which they can estimate �. We can test
the reliability of our inversion of the 2dFGRS data using the mock
catalogues.

In Fig. 10 we show the mean ξ (r ) as determined from the mock
catalogues using the method of S92. We compare this to the real-
space correlation function determined directly from the Hubble Vol-
ume simulation, from which the mock catalogues are drawn. The
agreement is excellent and shows that the method works and that we
can recover the real-space correlation function out to 30 h−1 Mpc.
Like S92, we find that beyond this scale the method begins to fail
and the true ξ (r ) is not recovered.

We have applied this technique to the combined 2dFGRS data
and obtain the real-space correlation function shown in Fig. 11. The
data are plotted out to only 30 h−1 Mpc due to the limitations in the
method described above. On small scales ξ (r ) is well represented
by a power law, and a best fit over the range 0.1 < r < 12 h−1 Mpc
gives the results for r I

0 and γ I
r shown in Table 1.

The points in the bottom panel of Fig. 11 show the 2dFGRS data
divided by the best-fitting power law. It can be seen that at scales
0.1 < r < 20 h−1 Mpc the data ξ (r ) are close to the best-fitting
power law but do show hints of non-power-law behaviour (see also
discussion below).

3.9 Real-space comparisons

In the inverted ξ (r ) (and possibly �[σ ]) there is a weak excess of
clustering over the power law for 5 < r < 20 h−1 Mpc. This has
previously been called a ‘shoulder’ in ξ (see, for example, Ratcliffe
et al. 1998). Although the amplitude of the feature in our data is
rather low, it has been consistently seen in different surveys, and
probably is a real feature. After submission of this work, Zehavi
et al. (2003) also saw this effect in the SDSS projected correlation

Figure 11. Top panel: the real-space correlation function of the combined
2dFGRS using the method of S92, with error bars from the rms spread
between mock catalogues. The dashed line is the best-fitting power law
(r0 = 5.05, γ r = 1.67). The inset is plotted on a linear scale. Bottom panel:
the data divided by the power-law fit. The solid line is the deprojected APM
result (Padilla & Baugh 2003) as discussed in the text. The dotted line is the
result from the Hubble Volume.

function and explained the inflection point as the transition scale
between a regime dominated by galaxy pairs in the same halo and
a regime dominated by pairs in separate haloes. Magliochetti &
Porciani (2003) have found the same effect when examining corre-
lation functions of different types of 2dFGRS galaxy.

The dotted line in the bottom panel of Fig. 11 shows the Hubble
Volume simulation which agrees well with the data for r > 1 h−1

Mpc. On smaller scales, the Hubble Volume ξ shows significant
deviations from a power law. On these scales, the galaxy clustering
amplitude in the simulation is incorrectly modelled because the
assignment of galaxies to particles is based on the mass distribution
smoothed on a scale of 2 h−1 Mpc (as discussed in Section 2.2).
The solid line in the bottom panel of Fig. 11 is the deprojected APM
result (Padilla & Baugh 2003), scaled down by a factor (1 + zs)α ,
with α = 1.7, suitable for evolution in a 
CDM cosmology. There
is good agreement between the 2dFGRS and APM results which are
obtained using quite different methods.

We have estimated r 0 and γ r by fitting to the projected correlation
function �(σ )/σ , and also by inverting �(σ )/σ and then fitting to
ξ (r ). The best-fitting values from the two methods are shown in
Table 1, and it is clear that they lead to very similar estimates of r 0

and γ r . This confirms that the power-law assumption in Section 3.7
is a good approximation over the scales we consider.

Table 2 lists r 0 and γ r for the 2dFGRS and other surveys estimated
using power-law fits to the projected correlation function �(σ ).
As mentioned in Section 3.5, the SAPM, Durham UKST and ESP
surveys are bJ selected surveys, and so should be directly comparable
to the 2dFGRS. The values of r 0 and γ r for these surveys all agree to
within one standard deviation, except r 0 for the ESP, which appears
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Table 2. Measurements of ξ (r ) from 2dFGRS and other surveys, with the
quoted uncertainties as published. The various authors have used very differ-
ent ways to estimate errors although none has included the effects of cosmic
variance. Because we have used the scatter between mock catalogues to take
account of this, our estimates are actually dominated by cosmic variance.
These results are measured at different effective luminosities, redshifts and
for different galaxy types.

Survey r0( h−1 Mpc) γ r

2dFGRS (P) 4.95 ± 0.25 1.72 ± 0.04
2dFGRS (I) 5.05 ± 0.26 1.67 ± 0.03
SAPM 5.1 ± 0.3 1.71 ± 0.05
ESP 4.15 ± 0.2 1.67+0.07

−0.09
Durham UKST 5.1 ± 0.3 1.6 ± 0.1
LCRS 5.06 ± 0.12 1.86 ± 0.03
SDSS 6.14 ± 0.18 1.75 ± 0.03

to be significantly lower. It is likely that the quoted uncertainties for
the ESP and Durham UKST parameters are underestimated because
they did not include the effect of cosmic variance. Because they
each sample relatively small volumes, this will be a large effect.
The sparse sampling strategy used in the SAPM survey means that
it has a large effective volume, and so the cosmic variance is small.

As in Section 3.5, the red-selected surveys, LCRS and SDSS, are
significantly different from the other surveys. The discrepancies are
most likely due to the fact that the amplitude of galaxy clustering
depends on galaxy type, and that red-selected surveys have a differ-
ent mix of galaxy types. We can make a very rough approximation
of the expected change in ξ by considering how the mean colour
difference of early and late populations changes the relative fraction
of the two populations when a magnitude limited sample is selected
in different pass bands. Zehavi et al. (2002) split their r-selected
SDSS sample into 19 603 early-type galaxies and 9532 late-type
galaxies. The mean (g–r) colours are 0.5 and 0.9, respectively. The
2dFGRS is selected using bJ which is close to g, and so, compared
to the r selection, the median depth for blue galaxies will be larger
that for red galaxies. The number of early and late types will roughly
scale in proportion to the volumes sampled, and so the ratio of early-
to-late galaxies in the 2dFGRS will be roughly ∼(19 603/9532) ×
100.6(0.5−0.9) = 1.18. Note that this colour split leads to a very dif-
ferent ratio of early-to-late galaxies compared to the η split used
by Madgwick et al. (2003). Assuming the early and late correlation
functions trace the same underlying field, the combined correlation
function will be

ξtot =
(

nearlybearly + nlateblate

nearly + nlate

)2

ξmass. (9)

From the power-law fits of Zehavi et al., the ratio of bias values at
1 Mpc is bearly/blate = 4.95. Inserting the different ratios nearly/nlate

appropriate to the red- and blue-selected samples we find that the
expected ratio of ξ for a red-selected sample compared to a blue-
selected sample is roughly 1.36. Scaling the 2dFGRS values of r 0 =
5.05 and γ r = 1.67 leads to a SDSS value of r 0 = 5.95 for γ r = 1.75,
within 1σ of the actual SDSS value. This simple argument indicates
that the observed difference in ξ between the red- and blue-selected
surveys is consistent with the different population mixes expected
in the surveys. The extra surface brightness selection applied to the
LCRS may also introduce significant biases.

Each survey is also likely to have a different effective luminosity
and, as has been shown by Norberg et al. (2001), this will cause
clustering measurements to differ. The relation for 2dFGRS galaxies

found by Norberg et al. (2001) was(
r0

r∗
0

)γr /2

= 0.85 + 0.15

(
L

L∗

)
, (10)

which gives, for L = 1.4L∗ (see Section 2.1), r∗
0 = 4.71 ± 0.24,

which will allow direct comparisons with other surveys.

4 R E D S H I F T- S PAC E D I S TO RT I O N S

When analysing redshift surveys it must be remembered that the
distance to each galaxy is estimated from its redshift and is not the
true distance. Each galaxy has, superimposed on its Hubble motion,
a peculiar velocity due to the gravitational potential in its local
environment. These peculiar velocities can be in any direction and,
because this effect distorts the correlation function, it can be used
to measure two important parameters.

The peculiar velocities are caused by two effects. On small scales,
random motions of the galaxies within groups cause a radial smear-
ing known as the ‘Finger of God’. On large scales, gravitational
instability leads to coherent infall into overdense regions and out-
flow from underdense regions. We analyse the observed redshift-
space distortions by modelling ξ (σ , π ). We start with a model of
the real-space correlation function, ξ (r ), and include the effects of
large-scale coherent infall, which is parametrized by β ≈ �0.6

m /b,
where b is the linear bias parameter. We then convolve this with the
form of the random pairwise motions.

4.1 Constructing the model

Kaiser (1987) pointed out that, in the linear regime, the coherent
infall velocities take a simple form in Fourier space. Hamilton (1992)
translated these results into real space

ξ ′(σ, π ) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ) (11)

where P�(µ) are Legendre polynomials, µ = cos(θ ) and θ is the
angle between r and π . The relations between ξ�, ξ (r ) and β for a
simple power law ξ (r ) = (r/r 0)−γ r are (Hamilton 1992)

ξ0(s) =
(

1 + 2β

3
+ β2

5

)
ξ (r ) (12)

ξ2(s) =
(

4β

3
+ 4β2

7

)(
γr

γr − 3

)
ξ (r ) (13)

ξ4(s) = 8β2

35

(
γr (2 + γr )

(3 − γr )(5 − γr )

)
ξ (r ). (14)

The Appendix has more details of this derivation and gives the
equations for the case of non-power-law forms of ξ .

We use these relations to create a model ξ ′(σ , π ) which we then
convolve with the distribution function of random pairwise motions,
f (v), to give the final model ξ (σ , π ) (Peebles 1980):

ξ (σ, π ) =
∫ ∞

−∞
ξ ′(σ, π − v/H0) f (v) dv. (15)

We choose to represent the random motions by an exponential form

f (v) = 1

a
√

2
exp

(
−

√
2|v|
a

)
(16)

where a is the pairwise peculiar velocity dispersion (often known as
σ 12). An exponential form for the random motions has been found to
fit the observed data better than other functional forms (e.g. Ratcliffe
et al. 1998; Landy 2002, see also Section 6).
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4.2 Model assumptions

In this model we make several assumptions. First, we assume a
power law for the correlation function. The power-law approxima-
tion is a good fit on scales <20 h−1 Mpc but is not so good at
larger scales. This limits the scales which we can probe using this
method. In Section 7, we consider non-power-law models for ξ (r ),
and recalculate equations (12)–(14) using numerical integrals (see
Appendix), allowing us to reliably use scales >20 h−1 Mpc. Sec-
ondly, we assume that the linear theory model described above holds
on scales �8 h−1 Mpc, which is almost certainly not true. We also
consider this in Section 7. Finally, we assume an exponential dis-
tribution of peculiar velocities with a constant velocity dispersion,
a, (equation 16) and this is discussed and justified in Sections 6
and 7.4.

4.3 Model plots

To illustrate the effect of redshift-space distortions on the ξ (σ , π )
plot we show four model ξ (σ , π ) in Fig. 12. If there were no dis-
tortions, then the contours shown would be circular, as in the top
left-hand panel, due to the isotropy of the real-space correlation
function. On small σ scales, the random peculiar velocities cause
an elongation of the contours in the π direction (the bottom left-hand
panel). On larger scales, there is the flattening of the contours (top
right-hand panel) due to the coherent infall. The bottom right-hand
panel is a model with both distortion effects included. Comparing
the models of ξ (σ , π ) to the 2dFGRS measurements in Fig. 4 it is
clear that the data show the two distortion effects included in the

Figure 12. Plot of model ξ (σ , π ) calculated as described in Section 4. The
lines represent contours of constant ξ (σ , π ) = 4.0, 2.0, 1.0, 0.5, 0.2 and
0.1 for different models. The top left-hand panel represents an undistorted
correlation function (a = 0, β = 0), the top right-hand panel is a model with
coherent infall added (a = 0, β = 0.4), the bottom left-hand panel is a model
with just random pairwise velocities added (a = 500 km s−1, β = 0) and
the bottom right-hand panel has both infall and random motions added (a =
500 km s−1, β = 0.4). These four models have r0 = 5.0 h−1 Mpc and γ r =
1.7.

Figure 13. The ratio of ξ (s) to ξ (r ) for the 2dFGRS combined data (solid
points), and the Hubble Volume (solid line). The mean of the mock catalogue
results is also shown (white line), with the rms errors shaded. The error bars
on the 2dFGRS data are from the rms spread in mock catalogue results.

models. In Section 7 we use the data to constrain the model directly,
and to deduce the best-fitting model parameters.

5 E S T I M AT I N G β

Before using the model described above to measure the parameters
simultaneously, we first use methods that have been used in previous
studies. This allows a direct comparison between our results and
previous work.

5.1 Ratio of ξ

The ratio of the redshift-space correlation function, ξ (s), to the real-
space correlation function, ξ (r ), in the linear regime gives an esti-
mate of the redshift distortion parameter, β (see equation 12):

ξ (s)

ξ (r )
= 1 + 2β

3
+ β2

5
. (17)

Our results for the combined 2dFGRS data, using the inverted form
of ξ (r ), are shown in Fig. 13 by the solid points. The mean of the
mock catalogue results is shown by the white line, with the rms
errors shaded and the estimate from the Hubble Volume is shown
by the solid line. The data are consistent with a constant value, and
hence linear theory, on scales �4 h−1 Mpc.

The mock catalogues and Hubble Volume results asymptote to
β = 0.47, the true value of β in the mocks. The 2dFGRS data in
the range 8–30 h−1 Mpc are best fit by a ratio of 1.34 ± 0.13,
corresponding to β = 0.45 ± 0.14. The maximum scale that we can
use in this analysis is determined by the uncertainty on ξ (r ) from
the inversion method of S92 discussed in Section 3.8.

5.2 The quadrupole moment of ξ

We now measure β using the quadrupole moment of the correlation
function (Hamilton 1992)

Q(s) = (4/3)β + (4/7)β2

1 + (2/3)β + (1/5)β2

= ξ2(s)

(3/s3)

∫ s

0

ξ0(s ′)s ′2ds ′ − ξ0(s)

(18)
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Figure 14. The Q factor for the combined 2dFGRS data, restricted to scales
not dominated by noise with error bars from the rms spread in mock catalogue
results. The two dashed lines show the expected answer for different values
of β which approximate the 1σ errors. The solid line shows a model with
β = 0.49 and a = 506 km s−1 (see Section 7.1). The inset shows the result
for the NGP (solid points) and SGP (open points); the error bars are placed
alternately to avoid confusion.

where ξ� is given by

ξ�(s) = 2� + 1

2

∫ +1

−1

ξ (σ, π )P�(µ) dµ. (19)

These equations assume that the random peculiar velocities are neg-
ligible and hence measuring Q gives an estimate of β. The random
uncertainties in this method are small enough that we obtain reliable
estimates on scales <40 h−1 Mpc, as shown by the mock catalogues
(see below), but the data are noisy beyond these scales.

Fig. 14 shows Q estimates for the combined 2dFGRS data with
the inset showing the NGP and SGP separately. The effect of the
random peculiar velocities can be clearly seen at small scales, caus-
ing Q to be negative. The best-fitting value to the combined data
for 30–40 h−1 Mpc is Q = 0.55 ± 0.18, which gives a value for
β = 0.47+0.19

−0.16, where the error is from the rms spread in the mock
catalogue results. The solid line represents a model with β = 0.49
and a = 506 km s−1, which matches the data well (see Section 7.1).
Although asymptoting to a constant, the value of Q in the model is
still increasing at 40 h−1 Mpc. This shows that non-linear effects
do introduce a small systematic error even at these scales, although
this bias is small compared to the random error.

To check whether this method can correctly determine β we use
the mock catalogues. The data points in Fig. 15 are the mean values
of Q from the mock catalogues, with error bars on the mean, and
the dashed line is the true value of β = 0.47. The data points seem
to converge on large scales to the correct value of Q. Fitting to each
mock catalogue in turn for 30–40 h−1 Mpc gives a mean Q = 0.51
± 0.18, corresponding to β = 0.43+0.18

−0.16. As the models showed, the
random velocities will lead to an underestimate of β even at 40 h−1

Mpc, causing the difference between the measured and true values.
This all shows that we can determine β with a slight bias but the
error bars are large compared to the bias.

The Q estimates from the individual mock catalogues show a
high degree of correlation between points on varying scales and
so the overall uncertainty in Q from averaging over all scales >30
h−1 Mpc is not much smaller than the uncertainty from a single

Figure 15. The mean Q factor for the mock catalogues with error bars from
the rms spread in mock catalogue results. The dashed line is the true value
of β = 0.47. The slight bias is caused by the random peculiar velocities as
discussed in the text.

point. It is this fact which makes the spread in results from the mock
catalogues vital in the estimation of the errors on our result (also
see Section 7.3).

6 T H E P E C U L I A R V E L O C I T Y D I S T R I BU T I O N

To this point we have assumed that the random peculiar velocity
distribution has an exponential form (equation 16). This form has
been used by many authors in the past and has been found to fit
the data better than other forms (e.g. Ratcliffe et al. 1998). We test
this for the 2dFGRS data by following a method similar to that
of LSB98. To extract the peculiar velocity distribution, we need
to deconvolve the real-space correlation function from the peculiar
velocity distribution.

6.1 The method

We first take the 2D Fourier transform of the ξ (σ , π ) grid to give
ξ̂ (kσ , kπ ) and then take cuts along the kσ and kπ axes which we de-
note by �(k) and �(k) respectively, so �(k) = ξ̂ (kσ = k, kπ = 0)
and �(k) = ξ̂ (kσ = 0, kπ = k). By the slicing-projection theorem
(see LSB98) these cuts are equivalent to the Fourier transforms of
the real-space projections of ξ (σ , π ) on to the σ and π axes. The pro-
jection of ξ (σ , π ) on to the σ axis is a distortion free measurement
of � but the projection on to the π axis gives us � convolved with
the peculiar velocity distribution, ignoring the effects of large-scale
bulk flows. Because a convolution in real space is a multiplication
in Fourier space, the ratio of �(k) to �(k) is the Fourier transform,
F [ f (v)], of the velocity distribution that we want to estimate. All
that is left is to inverse Fourier transform this ratio to obtain the pe-
culiar velocity distribution, f (v). LSB98 cut their data set at 32 h−1

Mpc and applied a Hann smoothing window; we use all the raw data.
Landy (2002, hereafter L02) used the LSB98 method on the 100-k
2dFGRS Public Release data and his results are discussed below.

Fitting an exponential to the resulting f (v) curve gives a value
for a assuming that the infall contribution to the velocity distri-
bution is negligible. LSB98 and L02 claim that their method is
not sensitive to the infall velocities. We show here that this is not
the case. The additional structure in the Fourier transform of the
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Figure 16. The Fourier transform of the peculiar velocity distribution
for various parameters (see labels). The solid line is for a model with no
smoothing and using all scales <70 h−1 Mpc. The dashed line is for a
model cut at 32 h−1 Mpc and smoothed with a Hann window (as in L02).
The dotted line is the Lorentzian equivalent of the input exponential pe-
culiar velocity distribution (this coincides with the solid line in the top
panels).

Figure 17. The peculiar velocity distribution for various models (see la-
bels). The solid line is the recovered distribution for a model with no smooth-
ing and using all scales <70 h−1 Mpc. The dashed line is the recovered dis-
tribution for a model cut at 32 h−1 Mpc and smoothed with a Hann window.
The dotted line is the input exponential peculiar velocity distribution (this
coincides with the solid line in the top panels).

velocity distribution found by L02 is a direct consequence of the
infall velocities.

6.2 Testing the models

To test the LSB98 method we apply the technique to our models,
described in Section 4, with and without a β = 0.4 infall factor, using
various scales, and with and without a Hann window. In Fig. 16 we
show the Fourier transform of the peculiar velocity distribution and
in Fig. 17 we show the distribution function itself.

It is clear from Fig. 16 that the shape of the Fourier transform at
small k is quite badly distorted by the infall velocities. This leads to a

Figure 18. The Fourier transform of the peculiar velocity distribution for
a model with a = 500 km s−1 (dashed line), a = 300 km s−1 (dotted line).
Also shown is a model with a decreasing from 500 to 300 km s−1 from σ =
0 to σ = 20 h−1 Mpc (solid line) and a model with a increasing from 300
to 500 km s−1 from σ = 0 to σ = 20 h−1 Mpc (dot-dashed line). β = 0.5
for all four models.

systematic error in the actual velocity distribution as seen in Fig. 17,
where the measured peculiar velocity dispersions are biased low,
especially in the case where a smoothing window and a limited range
of scales are used. In particular, the peak of the Fourier transform
is not at k = 0, and the inferred f (v) becomes negative for a range
of velocities (dashed lines in the lower panels of Fig. 17). This
clearly cannot be interpreted as a physical velocity distribution; the
method infers negative values because the input model ξ (σ , π ) is not
consistent with the initial assumption of the method, which is that all
of the distortion in ξ (σ , π ) is due to random peculiar velocities. We
conclude that both types of peculiar velocity need to be considered
when making these measurements, and so our preferred results come
from directly fitting to ξ (σ , π ).

A further complication with the real data is that f (v) may depend
on the pair separation (see discussion in Section 7.3). The solid line
in Fig. 18 shows F [ f (v)] for a model where a varies from 500 km
s−1 at σ = 0 to 300 km s−1 at σ = 20 h−1 Mpc. This is compared to
a model with a = 500 km s−1 (dashed line), a model with a = 300
km s−1 (dotted line) and a model where a varies from 300 km s−1

at σ = 0 to 500 km s−1 at σ = 20 h−1 Mpc (dot-dashed line). The
models with varying a are very close to their respective constant a
models at all k values, showing that this method leads to an estimate
of F [ f (v)] determined mainly by the value of a at small σ .

6.3 The mock catalogues

The mean of the peculiar velocity distributions for the mock cata-
logues is shown in Fig. 19. The distribution is compared to a model,
shown as the solid line, with β = 0.47 and an exponential f (v),
with dispersion, a = 575 km s−1. The exact form of the peculiar
velocities in the Hubble Volume, and hence mock catalogues, is not
explicitly specified and it should not be expected to conform to this
model exactly.

6.4 The 2dFGRS data

The Fourier transform of the peculiar velocity distribution for
the combined 2dFGRS data are shown in Fig. 20 compared to a
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Figure 19. The recovered velocity distribution for the mock catalogues.
Filled points are the mean result with error bars from the scatter between
catalogues. This is compared to a pure exponential distribution with a = 575
km s−1 (dashed line) and a model with a = 575 km s−1 and β = 0.47 (solid
line).

Figure 20. The Fourier transform of the peculiar velocity distribution for
the combined 2dFGRS data (solid points) compared to a model distribution
with a = 570 km s−1 and β = 0.49 (solid line).

best-fitting model with β = 0.49 ± 0.05 and a = 570 ± 25 km s−1.
Fig. 21 shows the peculiar velocity distribution itself compared to
the same model. We showed in Section 6.2 (with Fig. 18) that this
was likely to be the value of a at small σ . The distribution of ran-
dom pairwise velocities does appear to have an exponential form,
with a β influence. Sheth (1996) and Diaferio & Geller (1996) have
shown that an exponential peculiar velocity distribution is a result
of gravitational processes.

Ignoring the infall, L02 found a = 331 km s−1, using the smaller,
publicly available, sample of 2dFGRS galaxies. We have made
the same approximations and we have repeated his procedure on
our larger sample, finding a = 370 km s−1. Using our data grid
out to 70 h−1 Mpc, with no smoothing and ignoring β, gives
a = 457 km s−1. We have shown that the result in L02 is biased
low by ignoring β and that the infall must be properly considered
in these analyses. As shown in Fig. 21, our data are reasonably
well described by an exponential model with β = 0.49 and a =
570 km s−1.

Figure 21. The combined 2dFGRS peculiar velocity distribution (solid
points), compared to a pure exponential distribution with a = 570 km s−1

(dashed line) and a model with a = 570 km s−1 and β = 0.49 (solid line).
The error bars are from the scatter in mock results.

7 F I T T I N G TO T H E ξ(σ,π) G R I D

7.1 Results

We now fit our ξ (σ , π ) data grid to the models described in Section 4,
assuming a power-law form for the real-space correlation function.
This model has four free parameters, β, r 0, γ r and a. The fits to the
data are done by minimizing

E =
∑(

log[1 + ξ ]model − log[1 + ξ ]data

log[1 + ξ + δξ ]data − log[1 + ξ − δξ ]data

)2

, (20)

for s < 20 h−1 Mpc, where δξ is the rms of ξ from the mock
catalogues for a particular σ and π . This is like a simple χ 2 min-
imization, but the points are not independent. We have tried a fit
to ξ directly but found that it gave too much weight to the central
regions and so instead we fit to log [1 + ξ ] so that the overall shape
of the contours has an increased influence on the fit. The best-fitting
model parameters are listed in Table 3. The errors we quote are the
rms spread in errors from fitting each mock catalogue in the same
way.

There are two key assumptions made in the construction of these
models. First, although the contours match well at small scales,
there are good reasons to believe that our linear theory model will
not hold in the non-linear regime for s � 8 h−1 Mpc. Secondly,
we have assumed the power-law model for ξ (r ) and we have seen
evidence that this is not completely realistic. Using non-power-law
forms will also allow us to probe to larger scales.

To test whether our result is robust to these assumptions we first
reject the non-linear regime corresponding to s < 8 h−1 Mpc. Then,
we use the shape of the Hubble Volume ξ (r ) instead of a power law,
and finally we extend the maximum scale to s = 30 h−1 Mpc. We
have shown in Section 3.8 that the Hubble Volume shape gives a
good match to the data over the range 8 < s < 30 h−1 Mpc (the
Appendix gives the relevant equations for performing the β infall
calculation without a power-law assumption).

We find that the best-fitting parameters change very little with
these changes but when using the Hubble Volume ξ (r ), the quality
of the fit improves significantly. The best-fitting model is compared
to the data in Fig. 22. Notice the excellent agreement on small scales
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Table 3. Best-fitting parameters to the ξ (σ , π ) grids with errors from the
rms spread in mock catalogue results.

Parameter SGP NGP Combined

Power law ξ (r ): (0 < s < 20 h−1 Mpc)
β 0.53 ± 0.06 0.48 ± 0.08 0.51 ± 0.05
r0 (h−1 Mpc) 5.63 ± 0.26 5.52 ± 0.29 5.58 ± 0.19
γ r 1.66 ± 0.06 1.76 ± 0.07 1.72 ± 0.05
a (km s−1) 497 ± 24 543 ± 26 522 ± 16

Power law ξ (r ): (8 < s < 20 h−1 Mpc)
β 0.45 ± 0.10 0.35 ± 0.12 0.49 ± 0.09
r0 (h−1 Mpc) 6.03 ± 0.36 6.06 ± 0.41 5.80 ± 0.25
γ r 1.74 ± 0.08 1.88 ± 0.10 1.78 ± 0.06
a (km s−1) 457 ± 49 451 ± 51 514 ± 31

Hubble Volume ξ (r ): (8 < s < 20 h−1 Mpc)
β 0.47 ± 0.12 0.50 ± 0.14 0.49 ± 0.10
a (km s−1) 446 ± 73 544 ± 67 495 ± 46

Hubble Volume ξ (r ): (8 < s < 30 h−1 Mpc)
β 0.48 ± 0.11 0.47 ± 0.13 0.49 ± 0.09
a (km s−1) 450 ± 81 545 ± 85 506 ± 52

Figure 22. Contours of ξ (σ , π ) for the 2dFGRS combined data (solid lines)
and the best-fitting model (see Table 3) using the Hubble Volume ξ (r ) fitted
to scales 8 < s < 30 h−1 Mpc (dashed lines). Contour levels are at ξ = 4.0,
2.0, 1.0, 0.5, 0.2, 0.1, 0.05 and 0.0 (thick line).

even though they are ignored in the fitting process. The best-fitting
parameters are listed in Table 3, and we adopt these results as our
final best estimates finding β = 0.49 ± 0.09.

If we repeat our analysis on the mock catalogues we find a mean
value of β = 0.475 ± 0.090 (cf. the expected value of β = 0.47,
Section 2.2), showing that we can correctly determine β using this
type of fit. When fitting the mock catalogues it has become clear
that β and a are correlated in this fitting procedure, as we have
seen already with other methods. We use the mock catalogues to
measure the linear correlation coefficient, r (Press et al. 1992), which
quantifies this correlation, and find that, between β and a, r = 0.66.
If we knew either parameter exactly, the error on the other would
be smaller than quoted.

We have also tried other analytical forms for the correlation func-
tion and also different scale limits and we have found that some
combinations shift the results by ∼1σ .

7.2 Comparison of methods

We have now estimated the real-space clustering parameters using
three different methods. In Section 3.9, we saw that the projection
and inversion methods gave essentially identical results for r 0 and
γ r whereas using 2D fits we obtain slightly higher values for r 0.

If ξ (r ) was a perfect power law, the different methods would give
unbiased results for the parameters, but we have seen evidence that
this assumption is not true. The methods, therefore, give different
answers as a result of the different scales and weighting schemes
used, as well as the vastly different treatments of the redshift-space
distortions.

7.3 Previous 2dFGRS results

It is worth contrasting our present results with those obtained in a
previous 2dFGRS analysis (Peacock et al. 2001). This was based on
the data available up to the end of 2000: a total of 141 402 redshifts.
The chosen redshift limit was zmax = 0.25, yielding 127 081 galaxies
for the analysis of ξ (σ , π ). The present analysis uses 165 659 galax-
ies, but to a maximum redshift of 0.2. Because galaxies are given
a redshift-dependent weight, this difference in redshift limit has a
substantial effect on the volume sampled. For a given area of sky,
changing the redshift limit from zmax = 0.2 to zmax = 0.25 changes
the total number of galaxies by a factor of only 1.08, whereas the
total comoving volume within zmax increases by a factor of 2. Al-
lowing for the redshift-dependent weight used in practice, the dif-
ference in effective comoving volume for a given area of sky due
to the variation in redshift limits becomes a factor of 1.6. Because
the effective area covered by the present data is greater by a factor
of 165 659/(127 081/1.08) = 1.4, the total effective comoving vol-
ume probed in the current analysis is in fact 15 per cent smaller than
in the 2001 analysis; this would suggest random errors on cluster-
ing statistics about 7 per cent larger than previously. Of course, the
lower redshift limit has several important advantages: uncertainties
in the selection function in the tail of the luminosity function are
not an issue (see Norberg et al. 2002a); also, the mean epoch of
measurement is closer to z = 0. Given that the sky coverage is now
more uniform, and that the survey mask and selection function have
been studied in greater detail, the present results should be much
more robust.

The other main difference between the present work and that of
Peacock et al. (2001) lies in the method of analysis. The earlier
work quantified the flattening of the contours of ξ (σ , π ) via the
quadrupole-to-monopole ratio, ξ 2(s)/ξ 0(s). This is not to be con-
fused with the quantity Q(s) from Section 5.2, which uses an inte-
grated clustering measure instead of ξ 0(s). This is inevitably more
noisy, as reflected in the error bar, δβ = 0.17, resulting from that
method. The disadvantage of using ξ 2(s)/ξ 0(s) directly, however,
is that the ratio depends on the true shape of ξ (r ). In Peacock et al.
(2001), this was assumed to be known from the deprojection of an-
gular clustering in the APM survey (Baugh & Efstathiou 1993); in
the present paper, we have made a detailed internal estimate of ξ (r ),
and considered the effect of uncertainties in this quantity. Apart
from this difference, the previous method of fitting to ξ 2(s)/ξ 0(s)
should, in principle, give results that are similar to our full fit to
ξ (σ , π ) in Section 7.1. The key issue in both cases is the treatment
of the errors, which are estimated in a fully realistic fashion in the
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present paper using mock samples. The previous analysis used two
simpler methods: an empirical error on ξ 2(s)/ξ 0(s) was deduced
from the NGP–SGP difference, and correlated data were allowed
for by estimating the true number of degrees of freedom from the
value of χ2 for the best-fitting model. This estimate was compared
with a covariance matrix built from multiple realizations of ξ (σ , π )
using Gaussian fields; consistent errors were obtained. We applied
the simple method of Peacock et al. (2001) to the current data, keep-
ing the assumed APM ξ (r ), and we obtained the marginalized result
β = 0.55 ± 0.075. The comparison with our best estimate of β =
0.49 ± 0.09 indicates that the systematic errors in the previous anal-
ysis (from, for example, the assumed ξ [r ]) were not important, but
that the previous error bars were optimistic by about 20 per cent.

7.4 Peculiar velocities as a function of scale

There has been much discussion in the literature on whether or not
the pairwise peculiar velocity dispersion, a, is a function of pro-
jected separation, σ . Many authors have used N-body simulations
to make predictions for what might be observed. Davis et al. (1985)
found that the pairwise velocity dispersion of CDM remains approx-
imately constant on small scales, decreases by about 20–30 per cent
on intermediate scales and is approximately constant again on large
scales. Cen, Bahcall & Gramann (1994) found a similar overall be-
haviour, as did Jenkins et al. (1998) whose results are plotted in the
left-hand panel of Fig. 23 as the solid line for a 
CDM cosmology.
The dashed line is from Peacock & Smith (2000), who used the
halo model to predict the peculiar velocities for the galaxy distri-
bution. Kauffmann et al. (1999) and Benson et al. (2000) used the
GIF simulations combined with semi-analytical models of galaxy
formation, and the galaxy predictions of Benson et al. (2000) are
shown by the dotted line. These predictions generally assume σ 8 =
0.9, but there is evidence that σ 8 could be 10 per cent lower than

Figure 23. The variation of a with projected separation, σ . Left-hand panel: 2dFGRS data compared to some analytical models, as indicated in the legend.
Right-hand panel: 2dFGRS data compared to other redshift surveys and simulated catalogues, as indicated in the legend. The 2dFGRS data and simulated
catalogue results use β to calculate the infall velocities whereas the other results assume a functional form (see discussion in Section 7.4).

this (Spergel et al. 2003) and so the pairwise velocity dispersions
implied would also be lower.

Observationally, Jing et al. (1998) measured the pairwise veloc-
ity dispersion in the Las Campanas Redshift Survey and found no
significant variation with scale. We note again that the errors for
the LCRS ignore the effects of cosmic variance and are likely to be
underestimates. Zehavi et al. (2002) used the SDSS data and found
that a decreased with scale for σ � 5 h−1 Mpc. These observations
are plotted in the right-hand panel of Fig. 23. All these observations
have assumed a functional form for the infall velocities (or ‘stream-
ing’) and have not used β directly. We have already shown that
proper consideration of the infall parameter is vital in such studies.
Indeed, Zehavi et al. (2002) say that their estimates of a for σ >

3 h−1 Mpc depend significantly on their choice of streaming model.
This factor, along with a dependence of a on luminosity and galaxy
type, may help to explain the differences between the 2dFGRS and
SDSS results.

The difference in results from Section 6.2, which measured the
value of a at small σ (570 km s−1), and from using the ξ (σ , π ) grid
(506 km s−1), which measures an average value, hints that there
may be such a dependence of a on σ in the 2dFGRS data. We test
for variations in a by repeating the fits described in Section 7.1
using a global β, r 0 and γ r but allowing a to vary in each σ slice.
The results are shown in Fig. 23, compared with the results from
other surveys, and numerical simulations as discussed above. The
value of 506 km s−1 obtained from the 2D fit for scales >8 h−1

Mpc is close to the value at 8 h−1 Mpc where most of the signal is
coming from. The value of 570 km s−1 obtained from the Fourier
transform technique agrees well with the results found for σ < 1
h−1 Mpc. The values of β, r 0 and γ r are essentially unchanged
when fitting in this way. We note again that the effects of the infall
must be properly taken into account in these measurements. We
also note that we used our linear, power-law model on all scales, but
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we have seen that this is a reasonable approximation on non-linear
scales.

We see that the overall shape of the 2dFGRS results are fairly
consistent with, although slightly flatter than, the semi-analytical
predictions, but the amplitude is certainly a little different, which
could be due to the value of σ 8 used in the models, as discussed
above. We also plot the mean of the mock catalogue results (solid
line), and the results of a simulated catalogue (dashed line) of Yang
et al. (2003, with σ 8 = 0.75) and these match the real data well.

8 C O N S T R A I N I N G ΩM

We take the value of β measured from the multiparameter best fit
to ξ (σ , π )

β(L s, zs) = 0.49 ± 0.09, (21)

which is measured at the effective luminosity, L s, and redshift, zs,
of our survey sample. In Section 2.1 we quoted these values, which
are the applicable mean values when using the J 3 weighting and
redshift cuts employed, as Ls ≈ 1.4L∗ and zs ≈ 0.15. We also note
here that, if we adopt an �m = 1 geometry, we find that β = 0.55,
within the quoted 1σ errors.

8.1 Redshift effects

The redshift distortion parameter can be written as

β = f (�m, �
, z)

b
. (22)

where f = d ln D/d ln a, D is the linear fluctuation growth factor
and a is the expansion factor. A good approximation for f , at all z,
in a flat universe, was given by Lahav et al. (1991):

f = �0.6
m + (2 − �m − �2

m

)/
140 ≈ �0.6

m . (23)

So, to constrain �m from these results we need an estimate of b.
There have been two recent papers describing such measurements.

Verde et al. (2002) measured b(Ls, zs) from an analysis of the bis-
pectrum of 2dFGRS galaxies. Their results depend strongly on the
pairwise peculiar velocity dispersion, a, assumed in their analysis.
They used the result of Peacock et al. (2001), who found a = 385
km s−1, lower than our new value of ≈500 km s−1. To derive �m

using these results would not therefore be consistent and so a new
bispectrum analysis is in preparation.

Lahav et al. (2002) combined the estimate of the 2dF power
spectrum, P(k) (Percival et al. 2001), with results previous to the
Wilkinson Microwave Anisotropy Probe (WMAP) from the cosmic
microwave background (CMB) to obtain an estimate of b, but this
value is also dependent on �m. Their likelihood contours1 are re-
produced in Fig. 24, as the dashed lines. They also introduced a
‘constant galaxy clustering’ model for the evolution of b with z.
Following these equations we can evolve our measured β to the
present day and estimate

β(L s, z = 0) = 0.45 ± 0.08 (24)

and these contours are shown by the solid lines in Fig. 24. These
are in good agreement with, and orthogonal to, those of Lahav et al.
(2002).

1 The bias parameter measured by Lahav et al. (2002) depends on τ , the
optical depth of reionization, as b ∝ exp(−τ ). The plotted results do not
include this effect, which could be significant, and this is discussed further
in Section 8.3.

Figure 24. Constraints on �m and b: solid lines, best fit and 1σ error
contours on β from this work, evolved to the present day (see Section 8.1);
dashed lines, 1σ and 2σ error contours from Lahav et al. (2002); dotted
lines, 1σ constraints from WMAP (Spergel et al. 2003).

8.2 Luminosity effects

We note that the above analysis is independent of luminosity as
we examine everything at the effective luminosity of the survey,
L s. From the correlation functions in different volume-limited sam-
ples of 2dFGRS galaxies, Norberg et al. (2001) found a luminosity
dependence of clustering of the form (cf. equation 10)

b/b∗ = 0.85 + 0.15(L/L∗), (25)

which gives an estimate for the bias of the survey galaxies, bs =
1.06b∗ (using L = 1.4L∗), where b∗ is the bias of L∗ galaxies. If
this bias relation holds on the scales considered in this paper then β

will be increased by the same factor of 1.06

β(L∗, zs) = 0.52 ± 0.09 (26)

and evolving β in a ‘constant galaxy clustering’ model (Lahav et al.
2002) then

β(L∗, z = 0) = 0.47 ± 0.08, (27)

which we choose as a fiducial point to allow comparisons with other
surveys with different effective luminosities and redshifts. Lahav
et al. (2002) obtained β(L∗, z = 0) = 0.50 ± 0.06, in their combined
2dFGRS and CMB analysis, completely consistent with our result.

8.3 Comparisons

Percival et al. (2002) combined the 2dFGRS power spectrum with
the pre-WMAP CMB data, assuming a flat cosmology and found
�m(z = 0) = 0.31 ± 0.06. These measurements of �m are also
consistent with a different estimation from the 2dFGRS and CMB
(Efstathiou et al. 2002) and from combining the 2dFGRS with cos-
mic shear measurements (Brown et al. 2003).

Also plotted in Fig. 24 is the recent result from the analysis of
the WMAP satellite data. Spergel et al. (2003) found �m = 0.29 ±
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0.07 using WMAP data alone, although there are degeneracies with
other parameters. It is clear that this is completely consistent with
the other plotted contours. (Spergel et al. 2003) also found that the
epoch of reionization, τ = 0.17, which would reduce the value of
b found by Lahav et al. (2002) by about 16 per cent, still in good
agreement with the results in this paper.

9 S U M M A RY

In this paper we have measured the correlation function, and vari-
ous related quantities using 2dFGRS galaxies. Our main results are
summarized as follows.

(i) The spherical average of ξ (σ , π ) gives the redshift-space cor-
relation function, ξ (s), from which we measure the redshift space
clustering length, s0 = 6.82 ± 0.28 h−1 Mpc. At large and small
scales, ξ (s) drops below a power law as expected, for instance, in
the 
CDM model.

(ii) The projection of ξ (σ , π ) along the π axis gives an estimate
of the real-space correlation function, ξ (r ), which on scales 0.1 <

r < 12 h−1 Mpc can be fit by a power law (r/r 0)−γ r with r 0 =
5.05 ± 0.26 h−1 Mpc, γ r = 1.67 ± 0.03. At large scales, ξ (r )
drops below a power law as expected, for instance, in the 
CDM
model.

(iii) The ratio of real- and redshift-space correlation functions
on scales of 8–30 h−1 Mpc reflects systematic infall velocities and
leads to an estimate of β = 0.45 ± 0.14. The quadrupole moment
of ξ (σ , π ) on large scales gives β = 0.47+0.19

−0.16.
(iv) Comparing the projections of ξ (σ , π ) along the π and σ

axes gives an estimate of the distribution of random pairwise pecu-
liar velocities, f (v). We find that large-scale infall velocities affect
the measurement of the distribution significantly and cannot be ne-
glected. Using β = 0.49, we find that f (v) is well fit by an expo-
nential with pairwise velocity dispersion, a = 570 ± 25 km s−1, at
small σ .

(v) A multiparameter fit to ξ (σ , π ) simultaneously constrains the
shape and amplitude of ξ (r ) and both the velocity distortion effects
parametrized by β and a. We find β = 0.49 ± 0.09 and a = 506 ±
52 km s−1, using the Hubble Volume ξ (r ) as input to the model.
These results apply to galaxies with effective luminosity, L ≈ 1.4L∗

and at an effective redshift, zs ≈ 0.15. We also find that the best-
fitting values of β and a are strongly correlated.

(vi) We evolve our value for the infall parameter to the present
day and critical luminosity and find β(L = L∗, z = 0) = 0.47 ± 0.08.
Our derived constraints on �m and b are consistent with a range of
other recent analyses.

Our results show that the clustering of 2dFGRS galaxies as a
whole is well matched by a low-density 
CDM simulation with
a non-linear local bias scheme based on the smoothed dark-matter
density field. Nevertheless, there are features of the galaxy distri-
bution which require more sophisticated models, for example the
distribution of pairwise velocities and the dependence of galaxy
clustering on luminosity or spectral type. The methods presented
have also been used on subsamples of the 2dFGRS, split by their
spectral type (Madgwick et al. 2003).
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A P P E N D I X A : C O H E R E N T
I N FA L L E QUAT I O N S

Kaiser (1987) pointed out that the coherent infall velocities take a
simple form in Fourier space:

Ps(k) = (1 + βµ2
k

)2
Pr (k). (A1)

Hamilton (1992) completed the translation of these results into real
space

ξ ′(σ, π ) = [1 + β(∂/∂z)2(∇2)−1]2ξ (r ), (A2)

which reduces to

ξ ′(σ, π ) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ), (A3)

where in general

ξ0(s) =
(

1 + 2β

3
+ β2

5

)
ξ (r ), (A4)

ξ2(s) =
(

4β

3
+ 4β2

7

)
[ξ (r ) − ξ (r )], (A5)

ξ4(s) = 8β2

35

[
ξ (r ) + 5

2
ξ (r ) − 7

2
ξ (r )

]
, (A6)

and

ξ (r ) = 3

r 3

∫ r

0

ξ (r ′)r ′2 dr ′, (A7)

ξ (r ) = 5

r 5

∫ r

0

ξ (r ′)r ′4 dr ′. (A8)

In the case of a power-law form for ξ (r ) these equations reduce to the
form shown in equations (12)–(14). In the case of non-power-law
forms for the real-space correlation function these integrals must be
performed numerically.
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