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Background: Although impaired nitric oxide produc-
tion contributes importantly to salt-sensitivity, the role of
the endothelial isoform of nitric oxide synthase (eNOS)
has received little attention. In the present study we com-
pared the effects of a high-salt diet on the blood pressure
response of eNOS knockout (eNOS�/�) and control
(eNOS�/�) mice.

Methods: Mean arterial pressure (MAP), heart rate,
pulse pressure, and activity levels were recorded by telem-
etry in mice fed a regular-salt diet (0.7% NaCl) followed
by 6 weeks on either a high-salt (8% NaCl) or regular-salt
diet.

Results: The eNOS�/� mice exhibited a 15% increase
in MAP and a 2- to 2.5-fold increase in salt-sensitivity
relative to the control strain. Salt-induced increases in

MAP were well sustained in eNOS�/�, whereas in
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eNOS�/� the initial increase was biphasic. The effects of
salt on MAP were particularly pronounced during loco-
motor activity, during the dark phase, and at the peak
levels of MAP recorded over the course of the day. The
high-salt diet also led to a transient increase in the pro-
portion of time spent active. Levels of heart rate and pulse
pressure were relatively unaffected by the high-salt diet.

Conclusion: The eNOS�/� mice exhibit an increased
blood pressure response to a high-salt diet. This finding
suggests that eNOS normally provides an important contri-
bution to the body’s adaptation to a salt load and that reduced
production of NO by eNOS may promote salt-sensitivity and
salt-induced hypertension. Am J Hypertens 2006;19:
1264–1269 © 2006 American Journal of Hypertension, Ltd.
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Impaired production of nitric oxide (NO) contrib-
utes importantly to salt-induced hypertension.1 Salt-
induced increases in NO production are attenuated

in animal models of salt-sensitivity.1–3 In such cases,
administration of L-arginine restores NO production and
reduces salt-sensitivity1,4–6 Conversely, NO synthase
(NOS) inhibition produces salt-sensitivity in otherwise
salt-resistant animals.7–10 Similar associations between
NO production and salt-sensitivity have been described in
hypertensive patients.11–16

Nitric oxide is produced by three isoforms of NO
synthase. Each isoform has the potential to influence the
regulation of blood pressure (BP) through their presence
within the vascular endothelium (eNOS [NOS-3]), ner-
vous system (nNOS [NOS-1]), and kidney including the
renal tubules (eNOS, iNOS [NOS-2], and nNOS) and
macula densa (nNOS).17 The use of NOS inhibitors with
relative specificity for nNOS or iNOS9,10,18 implicates
reduced NO production by these two NOS isoforms as
possible contributors to salt-induced hypertension. An im-
pact of eNOS on salt-sensitivity might also be anticipated
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based on its influence on the renal cortical and medullary
circulations19 and renal tubular salt transport20 and its con-
tribution to the actions of several natriuretic substances.21–23

The objective of the present study was to test the hypoth-
esis that mice with targeted disruption of the eNOS gene
would have an increased BP response to salt loading. In
contrast to recently published study findings,24 our results
demonstrate a 2- to 2.5-fold enhancement of salt-sensitiv-
ity in eNOS knockout mice, suggesting that the eNOS
isoform contributes importantly to the BP response to salt
loading.

Methods
Animals

Control mice (eNOS�/�, C57BL/6J) and eNOS-deficient
mice25 (eNOS�/�, B6.129P2-NOStm1Unc; backcrossed to
a C57Bl/6J background) were bred locally or purchased
from Jackson Laboratories. Mice were fed a standard
regular-salt (RS) feed containing 0.4% sodium (0.7% so-
dium chloride), 1.0% calcium, 0.9% potassium and 0.8%
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phosphorus (Lab diet 5P00, Richmond, IN). A high-salt
(HS) diet was created by added additional salt to bring the
level to 8% NaCl. The recording room had an average
temperature of 23° � 0.5°C and was maintained on a 12-h
light, 12-h dark cycle. Experiments were approved by the
Memorial University of Newfoundland Animal Care
Committee.

Experimental Protocol

Mice (male, 11 to 18 weeks) were implanted with a telemeter
(DSI #TA11PA-C20) via the carotid artery under ketamine/
xylazine anesthesia (90 and 10 mg/kg intraperitoneally).26

The experimental diet was initiated 17 to 21 days after
telemeter implantation. The BP data were recorded by telem-
etry 7 days, 2 days, and 1 day before, and 1 to 6, 13, 20, 27,
34, and 41 days after the switch to the experimental diet.

Telemetry

Data was sampled at 500 Hz for 3 sec at 30-sec intervals.26

The 24-h data sets were processed using in-house routines
(download link: http://www.med.mun.ca/basic/pages/faculty/
vanvliet.htm). The average of the offset measured at 37°C
before implantation (2.9 � 0.4 mm Hg) and after removal
(3.9 � 0.4 mm Hg) was subtracted from the collected data
before analysis. The proportion of time spent active (Active
Time) was calculated by dividing the number of sample
periods for which the activity signal was �0 by the total
number of samples. The intensity of activity was calculated26

as the mean of log (activity) for values of activity �0.

Statistical Analysis

Data are reported as the mean � SEM. The protocol was
divided into four phases for statistical analysis: 1) control,
2) early (week 1), 3) middle (weeks 2–3), and 4) late
(4–6). The Dunnett test was used for comparisons be-
tween control and experimental periods. A general linear

Table 1. Control period hemodynamics in the four

Characteristic

Contr

Control diet
group (n � 7)

24-h MAP (mm Hg) 108 � 1
Light-period MAP (mm Hg) 100 � 2
Dark-period MAP (mm Hg) 116 � 1
Range of 24 h MAP (mm Hg) 54 � 2
24-h Minimum MAP (mm Hg) 83 � 1
24-h Maximum MAP (mm Hg) 137 � 1
24-h Pulse pressure (mm Hg) 30 � 1
24-h Heart rate (beats/min) 578 � 10
24-h Active time (% time active) 37 � 2
24-h Intensity of activity (a.u.) 1.2 � 0.1

a.u. � arbitrary units; MAP � mean arterial pressure.
* P � .05 between strains, within the same diet group.
model analysis of variance followed by a Tukey test was
FIG. 1. The effect of regular-salt (RS) versus high-salt (HS) diet on
mean arterial pressure (MAP) in control (eNOS�/�) and eNOS
knockout (eNOS�/�) mice. Data are shown for the average of the
entire day (24-h MAP, top) as well as the individual 12-h light and
12-h dark periods of the day (middle and bottom, respectively).
N � 6 to 8 except on day 2 for which N � 4 for the eNOS�/� HS
groups of mice

ol mice eNOS knockout mice

High salt diet
group (n � 7)

Control diet
group (n � 8)

High salt diet
group (n � 6)

105 � 1 123 � 2* 121 � 2*
97 � 1 113 � 2* 113 � 1*

112 � 1 131 � 3* 130 � 3*
54 � 2 79 � 8* 71 � 5
81 � 1 89 � 1* 90 � 2

135 � 1 168 � 7* 161 � 3*
31 � 2 33 � 2 34 � 2.4

542 � 11 547 � 9 571 � 10
36 � 3 43 � 5 40 � 1.5

1.2 � 0.0 1.2 � 0.1 1.2 � 0.1
group. Control values are given in Table 1. See Table 2 for statistical
comparisons.
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used to evaluate differences between groups. A value of
P � .05 was used as the limit of statistical significance.

Results
Changes in MAP Values

The eNOS�/� mice were hypertensive, with significant
increases in their 24-h MAP, 12-h light-period MAP, 12-h
dark period MAP, and daily maximum MAP (Table 1). MAP
was significantly increased by the high-salt diet in both

Table 2. Between-group comparisons of salt-induc

Characteristic
Early ph

(week

24-h MAP
eNOS�/� RS v eNOS�/� HS *
eNOS�/� HS v eNOS�/� HS *
eNOS�/� RS v eNOS�/� RS NS
eNOS�/� RS v eNOS�/� HS *

Light-period MAP
eNOS�/� RS v eNOS�/� HS *
eNOS�/� HS v eNOS�/� HS *
eNOS�/� RS v eNOS�/� RS NS
eNOS�/� RS v eNOS�/� HS NS

Dark-period MAP
eNOS�/� RS v eNOS�/� HS *
eNOS�/� HS v eNOS�/� HS *
eNOS�/� RS v eNOS�/� RS NS
eNOS�/� RS v eNOS�/� HS *

Range of MAP
eNOS�/� RS v eNOS�/� HS NS
eNOS�/� HS v eNOS�/� HS NS
eNOS�/� RS v eNOS�/� RS NS
eNOS�/� RS v eNOS�/� HS *

Minimum MAP
eNOS�/� RS v eNOS�/� HS NS
eNOS�/� HS v eNOS�/� HS *
eNOS�/� RS v eNOS�/� RS NS
eNOS�/� RS v eNOS�/� HS NS

Maximum MAP
eNOS�/� RS v eNOS�/� HS *
eNOS�/� HS v eNOS�/� HS *
eNOS�/� RS v eNOS�/� RS NS
eNOS�/� RS v eNOS�/� HS *

24-h Pulse pressure
eNOS�/� RS v eNOS�/� HS NS
eNOS�/� HS v eNOS�/� HS NS
eNOS�/� RS v eNOS�/� RS NS
eNOS�/� RS v eNOS�/� HS NS

24-h heart rate
eNOS�/� RS v eNOS�/� HS NS
eNOS�/� HS v eNOS�/� HS NS
eNOS�/� RS v eNOS�/� RS NS
eNOS�/� RS v eNOS�/� HS NS

Active time
eNOS�/� RS v eNOS�/� HS *
eNOS�/� HS v eNOS�/� HS NS
eNOS�/� RS v eNOS�/� RS NS
eNOS�/� RS v eNOS�/� HS *

HS � high salt diet; NS � not significant; RS � regular salt diet. In
* P � .05 for specified comparison (Tukey test).
eNOS�/� and eNOS�/� mice (Fig. 1, Table 2). In
eNOS�/� mice, the increase in MAP was relatively modest
(5.9 � 0.6 mm Hg at day 2) and biphasic, the response being
significant during the early phase (24-h and dark-period data)
and late phases (dark-period data). In contrast, the response
of eNOS�/� mice was significantly greater and well sus-
tained. After initially peaking on day 2 (10.8 � 1.3 mm Hg
above control levels), the 24-h MAP slowly climbed to the
overall peak response occurring on the last day of the exper-
iment (15.1 � 3.3 mm Hg above control levels). The effects
of salt on MAP were most pronounced during the dark period

esponses

Middle phase
(weeks 2–3)

Late phase
(weeks 4–6)

* *
* *

NS NS
NS NS

NS *
NS *
NS NS
NS NS

* *
* *

NS NS
NS *

* *
NS NS
NS NS
NS NS

NS NS
* *

NS *
NS NS

* *
NS *
NS NS
NS NS

NS NS
NS NS
NS NS
NS *

NS *
NS *
* *

NS NS

NS NS
NS NS
NS NS
NS NS

ty of Activity results are not shown (ANOVA, NS).
ed r

ase
1)
of the day (Fig. 1, Table 1).
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Distribution of MAP Values

The BP of C57Bl/6J mice was bimodally distributed
(Fig. 2), the left and right modes of the distribution cor-
responding to values recorded during periods of inactivity
and activity, respectively.26 After 6 weeks on the high-salt
diet, the BP distribution of eNOS�/� mice was wider,
with significant increases in the daily maximum MAP and
daily MAP range, but little to no change in the daily
minimum MAP level (Fig. 3, Table 2). In contrast, little to
no change was observed in the MAP distributions of
eNOS�/� mice fed a high-salt diet (Figs. 2 and 3, Table 2).

Pulse Pressure

Pulse pressure tended to increase on the high-salt diet, but
this tendency reached significance only in the case of the
eNOS�/� mice (Fig. 4, Table 2).

Heart Rate

In eNOS�/� mice, the high-salt diet was associated with
a tendency for the HR to decrease from that of the control

FIG. 2. Frequency distributions of mean arterial pressure in a typ-
ical control (eNOS�/�, top) and eNOS knockout mouse (eNOS�/�,
bottom). Distributions are shown for the control period (regular-
salt diet, dark columns) and on the final day (day 42) of the
high-salt diet (hatched columns).
group, reaching significance in the late phase (Fig. 4,
Table 2). No significant changes were observed in the
heart rate of eNOS�/� mice.

Locomotor Activity

In both the eNOS�/� and eNOS�/� mice, the percent-
age of time spent active initially increased when the mice
were placed on the high-salt diet and gradually decreased
toward baseline levels as the protocol progressed (Fig. 5,
Table 2). No significant changes were observed in the
intensity of activity (Fig. 5, Table 2).

Discussion
Impaired nitric oxide production is associated with salt-
sensitivity of BP.1 However, the role of individual NOS
isoforms is not well understood. Our data demonstrate that

FIG. 3. Effect of a regular-salt (RS) versus high-salt (HS) diet on
the daily range, minimum and maximum mean arterial pressure
(MAP) in control (eNOS�/�) and eNOS knockout (eNOS�/�) mice.
N � 6 to 8 except on day 2 for which N � 4 for the eNOS�/� HS

group. Control values are given in Table 1. Statistical comparisons
are shown in Table 2.
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eNOS knockout mice exhibit increased salt-sensitivity of
BP. This finding suggests that, in addition to its roles as a
regulator of regional blood flow and basal BP, the eNOS

FIG. 4. The effect of a regular-salt (RS) and high-salt (HS) diet on
24-h pulse pressure and heart rate in control (eNOS�/�) and eNOS
knockout (eNOS�/�) mice. N � 6 to 8 except on day 2 for which N �
4 for the eNOS�/� HS group. Control values are given in Table 1.
See Table 2 for statistical comparisons.

FIG. 5. The effect of a regular-salt (RS) versus high-salt (HS) di
eNOS�/� mice. N � 6 to 8 except on day 2 for which N � 4 for the
statistical comparisons. a.u.� arbitrary units.
isoform also participates in the body’s adaptation to a salt
load. In turn, this suggests that impaired production of NO
by eNOS could contribute importantly to salt sensitivity
and salt-induced hypertension.

Salt-induced increases in the BP of eNOS�/� mice
were �2 to 2.5 fold greater than that of the control strain
(Fig. 1). This effect of salt appeared to be caused by a
pronounced rightward expansion of the MAP distribution
with little to no change in the left-hand edge of the
distribution (Fig. 2). This conclusion is consistent with the
observed increases in the maximum and 24-h mean MAP
level, and the absence of any significant change in the
minimal MAP level. Consistent with previous reports in
rats27,28 and mice,29 the greatest effects of salt on MAP
occurred during the dark phase of the day (Fig. 1) and
during bouts of locomotor activity, irrespective of the time
of day (data not shown).

Our conclusion differs markedly from that of a recent
study by Mattson and Meister.24 In their study, eNOS�/�
mice of the same sex, genetic background, and origin were
reported to be completely salt resistant. The two studies
differed in many respects. In the study by Mattson and
Meister,24 BP was measured by catheter during brief
(3-h/day) recordings made over a 3-day control and 3-day
experimental period, 3 to 5 days after catheter installation.
In contrast, the present study was based on continuous
recordings by telemetry from undisturbed mice commenc-
ing 10 to 14 days after telemeter implantation and con-
tinuing during 42 days exposure to the high-salt diet. Heart
rates differed markedly between the two studies (640 to
667 min�1 v �580 min�1 in the present study). However,

the percentage and level (intensity) of activity in eNOS�/� and
�/� HS group. Control values are given in Table 1. See Table 2 for
et on
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the most important difference may be the level of salt
loading. In the present study, salt loading was achieved by
providing an 8% NaCl diet as is often used in rodent
studies. Based on measured food consumption rates in our
mice, we estimate the salt load in our experiments to be
�5 mEq Na/day. In contrast, the salt load in the study by
Mattson and Meister24 was �1 mEq Na/day delivered by
intravenous infusion of saline. It is quite possible that we
would not have observed salt-sensitivity if we had used
this lower level of salt loading. However, it is important to
note that the 8% salt diet used in our study was sufficient
to elevate BP even in the control strain of C57Bl/6J mice
(consistent with previous studies in this strain29,30), whereas
control mice showed no response to salt loading in the study
by Mattson and Meister.24 This is an essential point, as salt
resistance in the control mice has the potential to mask an
effect of a gene on salt-sensitivity. The moderate salt-
sensitivity displayed by our control mice while consuming
an 8% salt diet suggests that this protocol is highly appro-
priate for investigating the genetic determinants of salt-
sensitivity in mice of a C57Bl/6J background.

In summary, our results suggest that the eNOS isoform
provides an important contribution to the BP response to
salt-loading. Reductions in NO production by eNOS (eg,
because of quenching by reactive oxygen species, endog-
enous NOS inhibitors, substrate or cofactor limitations)
may promote salt-sensitivity and salt-induced hyperten-
sion.
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