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Dose-response relationships for incidence are based on quantal

response measures. A defined effect is either present or not present

in an individual. The dose-incidence curve therefore reflects dif-

ferences in individual susceptibility (the ‘‘tolerance distribution’’).

At low dose, only the more susceptible individuals manifest the

effect, while higher doses are required for more resistant individ-

uals to be recruited into the affected fraction of the group. Here,

we analyze how such dose-incidence relationships are related to

mechanism-based dose-response relationships for biological effects

described on a continuous scale. As an example, we use the quantal

effect ‘‘cell division’’ triggered by occupancy of growth factor re-

ceptors (R) by a hormone or mitogenic ligand (L). The biologically

effective dose (BED) is receptor occupancy (RL). The dose-BED

relationship is described by the hyperbolic Michaelis–Menten

function, RL/Rtot ¼ L / (L + KD). For the conversion of the dose-

BED relationship to a dose–cell division relationship, the dose-

BED curve has to be combined with a function that describes the

distribution of susceptibilities among the cells to be triggered into

mitosis.We assumed a symmetrical sigmoid curve for this function,

approximated by a truncated normal distribution. Because of the

supralinear dose-BED relationship due to the asymptotic satura-

tion of the Michaelis–Menten function, the composite curve that

describes cell division (incidence) as a function of dose becomes

skewed to the right. Logarithmic transformation of the dose axis

reverses this skewing and provides a nearly perfect fit to a normal

distribution in the central 95% incidence range. This observation

may explain why dose-incidence relationships can often be de-

scribed by a cumulative normal curve using the logarithm of the

administered dose. The dominant role of the tolerance distribution

for dose-incidence relationships is also illustrated with the example

of a linear dose-BED relationship, using adducts to protein or DNA

as the BED. Superimposed by a sigmoid distribution of individual

susceptibilities, a sigmoid dose-incidence curve results. Linearity is

no longer observed. We conclude that differences in susceptibility

should always be considered for toxicological risk assessment and

extrapolation to low dose.
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Textbooks of pharmacology and toxicology describe two
types of dose-response relationships (DRR), one for (1) the
relationship between the concentration of a drug or toxicant
and the intensity or strength of an effect, and another for (2) the
relationship between a dose and an incidence of a defined effect
in a group (Hardman and Limbird, 2001; Klaassen, 2001). By
plotting concentrations or dose on a logarithmic scale, data
from both types become sigmoid. This may explain why
fundamental differences between the two types of DRR are
often overlooked. Differences refer to the quality of the
response variable on the y-axis, the question about the driving
force for the sigmoid shape of the dose-response curves, and
the consequences for extrapolation to low dose.

In the first type DRR, the response variable usually is a
continuous measure (a ‘‘biologically effective dose’’ BED), for
instance, a concentration of a biomarker such as the concen-
tration of a receptor-ligand complex (RL). The relationship
between the concentration of ligand L and BED is described by
the Michaelis–Menten function RL/Rtot ¼ L/(L þ KD), which
starts at point (0, 0) and bends asymptotically to y ¼ 1. Log-
arithmic scaling of the dose scale stretches the low-dose part of
the curve to minus infinity so that the curve becomes sigmoid
simply by data transformation.

The second type DRR (dose-incidence relationship) is based
on a quantal (binary) measure of response, i.e., data points
represent proportions of individuals in a population that show
a defined effect within a defined period of observation. Here,
the distribution of susceptibilities in the given population (also
defined as ‘‘tolerance distribution’’) determines the shape of
dose-incidence curve.
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In toxicological risk assessment, the fundamental difference
between these two types of dose-response relationship is not
always recognized, so that extrapolation of incidence data is
often discussed on the basis of dose-BED relationships alone.
For instance, cancer incidence from exposure to a DNA-reactive
carcinogen is often considered to be linear with low dose, based
on the mechanistic hypothesis that the rate of DNA adduct
formation is proportional to dose at the low dose end. This does
not take into account differences between individuals for the
steps that follow DNA adduct formation. Going directly from
the continuous dose metrics ‘‘levels of DNA adducts’’ to the
quantal dose metrics ‘‘cancer incidence’’ without consideration
of individual susceptibilities is unlikely to provide a correct
estimate of the risk at low dose.

Variability of humans for cancer risk has been introduced as
individual time-to-tumor 30 years ago (Albert and Altshuler,
1976). Statistical aspects (Haseman and Hoel, 1979) and
pharmacokinetic considerations (Hattis et al., 1987) followed.
Differences in individual susceptibility have also been dis-
cussed for the estimation of the proportion of animals outside
a normal range of a biologically important variable (Gaylor and
Slikker, 1990), for risks at low dose (Gaylor and Kodell, 2002),
and for the concept of ‘‘critical effect size’’ when a quantal
response (e.g., fraction of animals with atrophy) is related to

the underlying continuous response, such as degree of atrophy
(Slob, 1999).

Here, we show how a dose-incidence curve can be generated
from a dose-BED relationship. The procedure is exemplified
for cell division triggered by receptor occupancy as a function
of ligand concentration (Andersen et al., 2002). Quantification
includes fitting the composite dose-incidence curves with dif-
ferent models. In this context, we address the question why a
logarithmic scaling of the dose axis often results in a good fit by
a normal distribution. The dominant role of the susceptibility
distribution in determining shapes of dose-incidence curves
will then be illustrated with an example of a linear dose-BED
relationship, such as the formation of macromolecular adducts.
Parts of our analysis include generally accepted facts or have
been mentioned in other contexts, but we are not aware of any
publication where these issues had been presented in the
general manner illustrated and exemplified here with the focus
on applicability to toxicology and risk assessment.

METHODS AND PROCEDURES

From ligand concentration to receptor occupancy. Receptor occupancy is

a nonlinear (hyperbolic) function of local concentration of ligand, as defined by

FIG. 1. Schematic illustration of the generation of a dose-incidence curve (bottom right-hand panel) from a relationship between a concentration of a drug or

toxicant and a continuous-effect measure (the biologically effective dose, BED), by superposition of the dose-BED curve (top right panel) with a susceptibility

distribution. Assumptions are growth receptor–ligand interaction for step 1, superimposed by the symmetrical cumulative normal distribution for cells to initiate

cell division (step 2). Step 3 shows the resulting dose-incidence relationship, which is skewed to the right because of the nonlinear (‘‘supralinear,’’ ‘‘saturating’’)

shape of ligand concentration–BED relationship.
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Michaelis–Menten binding kinetics, RL/Rtot ¼ L/(L þ KD), with R, L, and RL

designating the concentration of receptor, ligand, and receptor-ligand complex,

respectively. KD is the dissociation constant; RL/Rtot represents the biologically

effective dose BED and is the fraction receptor occupancy. It is a continuous

measure with values between 0 and 1. The hyperbolic relationship between

RL/Rtot and L is shown in the top right-hand panel of Figure 1.

Susceptibility of cells to go into division. The minimum BED required for

a cell in an organ to go into division was assumed to follow a normal dis-

tribution (step 2), which is described by mean mu and standard deviation sigma.

For the example shown in Figure 1 (top left-hand panel), we chose mu ¼ 0.5

and sigma ¼ 0.17.

Superposition of the two functions. Superposition of the susceptibility

distribution on the dose-BED curve results in the dose-incidence curve that

follows:

UðððL=ðLþKDÞ Þ�muÞ=sigmaÞ

where U is the cumulative standard normal distribution function

UðxÞ¼
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�N
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which assumes the values 0, 0.5, and 1 for x¼ �N, 0, and þN, respectively.

Fitting lognormal or normal distributions to the dose-incidence cur-

ves. For the fitting of a cumulative lognormal or a cumulative normal dis-

tribution to the calculated dose-incidence curves (result of step 3 in Fig. 1),

means m and standard deviations s of U ((ln (L) �m) / s) or U ((L �m) / s) were

chosen. The central 95% incidence range (0.025 < y < 0.975) was divided up

into one thousand equidistant dose segments, and the thousand incidence

differences between the incidence curve and U were summed up. The result

corresponds to an area, which was used as a measure of fit. The larger the

subsumed area, the worse is the fit. This procedure overcomes differences in the

scaling of the dose axis due to the use of different values for mu and sigma.

Values of m and s were then searched for minimum area between the curves, for

both lognormal and normal curves. This process was applied for a variety of

combinations for mu and sigma (i.e., the means and standard deviations of the

normal susceptibility distribution as shown in step 2 of Fig. 1), and provided the

numbers listed in Table 1.

RESULTS

From a Dose-BED Curve to a Dose-Incidence Relationship

Figure 1 illustrates the procedure to generate a cumulative
dose-incidence curve (bottom right panel) from a dose-BED
curve (top right panel) after transformation with an assumed
normal tolerance distribution (top left panel). The Michaelis–
Menten function for growth receptor–ligand interaction was
used to illustrate step 1. The curve starts at x,y-point (0, 0) and
goes to y ¼ 1 in an asymptotic manner with increasing ligand
concentration. A Michaelis–Menten constant KD ¼ 1 unit of
ligand concentration was assumed for a 50% fraction receptor
occupancy.

Requirements of cells to go into cell division were assumed
to be normally distributed with respect to fractional receptor oc-
cupancy, using mean mu ¼ 0.5 and standard deviation sigma ¼
0.17 for this example (Fig. 1, top left panel). That is, for a cell
with average susceptibility to be triggered into mitosis as
a function of fraction receptor occupancy, 50% of the receptor
molecules must carry a ligand in order for this cell to go into
division. At 33% receptor occupancy (mu – sigma) about 16%
of the cells will divide, at 67% receptor occupancy (mu þ
sigma) about 84% of the cells will be recruited into the effect,
as given by the cumulative normal distribution. Based on KD ¼
1, 33% receptor occupancy is achieved with ligand concentra-
tion 0.5 (RL/Rtot ¼ 0.5/( 0.5 þ 1) ¼ 0.33), 67% occupancy is
achieved with ligand concentration 2 (RL/Rtot ¼ 2/( 2 þ 1) ¼
0.67).

The dose-incidence curve in the bottom right panel of Figure 1
shows the result of the superposition of the tolerance distribu-
tion on the dose-BED curve. A right skew occurs due to the
supralinear shape of the Michaelis–Menten function. Using
a log10 transformation of the dose axis, the concentration values
0.5, 1, and 2 become �0.3, 0, and þ0.3, i.e., the right skew is
reversed to the symmetry of the normal susceptibility distri-
bution. This result is not surprising, since the logarithmic form
of the Michaelis–Menten function, y ¼ 10x / (10x þ 1)
represents a special case of the symmetrical logistic function.
Our example therefore provides a conceptual explanation of
why a lognormal curve may sometimes provide a good fit even
when the tolerance for BED is normally distributed.

Fitting Truncated Normal and Lognormal Curves to the
Dose-Incidence Relationships

Figure 2 shows the best cumulative normal curves (dotted
lines) or cumulative lognormal curves (dashed lines) that could
be fitted to the curve generated by step 3 in Figure 1 (full line).

TABLE 1

Quantitative Analysis of Fit, Comparing Normal Distributions

Fitted to Curves Using Logarithmic or Arithmetic Scaling

of the X- (Dose) Axis

sigma ¼ 0.05 sigma ¼ 0.10

Dose scale logarithmic arithmetic logarithmic arithmetic

mu ¼
0.20 13.91 9.52 24.12 17.93

0.25 9.91 10.15 17.74 19.74

0.30 7.06 10.87 12.67 21.30

0.35 4.85 11.70 8.51 22.91

0.40 3.01 12.66 4.94 24.70

0.45 1.37 13.79 2.27 26.77

0.50 0.50 15.14 2.15 29.18

0.55 1.72 16.77 4.53 32.01

0.60 3.38 18.80 7.91 35.33

0.65 5.25 21.36 11.74 39.20

0.70 7.52 24.70 16.29 43.69

0.75 10.46 29.18 21.94 49.60

0.80 14.58 35.33 28.41 59.78

Note. The true dose-incidence relationship resulted from superposition of

a Michaelis–Menten curve with cumulative normal tolerance distributions

defined by mean mu and standard deviation sigma (see top left panel of Fig. 1).

Values indicate the level of discordance between the true curve and the best fits.
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Fitting was restricted to the central 95% incidence range, which
excludes the asymptotic tails of the normal distribution. The
three panels show the results for three choices of the mean
susceptibility of cells to be triggered into division as a function
of fraction receptor occupancy, mu ¼ 0.2, 0.5, and 0.8. The
standard deviation sigma was 0.05, KD ¼ 1. The solid line
shows the incidence curve, the dotted line represents the best fit
that can be achieved by a truncated normal distribution, and the
dashed line is the best fit for a truncated lognormal distribution.

At low-level receptor occupancy (mu ¼ 0.2; top panel), a
normal distribution provided a slightly better fit than the
lognormal. For mu ¼ 0.5 (center panel), the best fit was
achieved with a lognormal distribution; the overlap of the
dashed and full lines for this case was almost perfect. For mu¼

0.8 (bottom panel) logarithmic representation of the dose axis
gave a better fit than using untransformed dose, although not as
good a fit as at mu ¼ 0.5.

For regulatory purposes, the low end of the distribution is
most important. Figure 2 demonstrates that the lognormal fit
underestimates the incidence at low doses when mu is relatively
small compared to sigma (top panel). When mu is large relative
to sigma (bottom panels), the lognormal distribution over-
estimates the incidence at low doses.

Numeric information on the fits is given in Table 1, for a
range of mu-values (0.2 to 0.8) and for two standard deviations
(sigma ¼ 0.05 or 0.1). The values relate to areas between the
dose-incidence curves for the two examples (the full lines in
Fig. 2) and the respective best-fitting curves (dashed for best-
fitting lognormal distribution, dotted for best-fitting normal
distribution). The smaller the area, the better is the fit. The
lognormal fit was better for all mu-values �0.25, with an
optimum fit at mu ¼ 0.5. The fit provided by the normal
distribution had no optimum but deteriorated monotonically
with increasing mu. These calculations indicate that responses
triggered at high occupancy are more likely to be well
described by lognormal distributions than responses triggered
at low occupancy.

An increase in the standard deviation sigma from 0.05 to 0.1,
i.e., an increase in the span of individual susceptibilities,
resulted in a decreased goodness of fit for both the logarithmic
and arithmetic dose scale. The worsening was more pro-
nounced for the arithmetic dose scale. This means that, the
wider the tolerance distribution, the more can be gained (in
terms of fitting a cumulative normal curve to the data) by
representing the dose-incidence data on a logarithmic dose
scale. For all calculations, KD was chosen equal 1. Using other
values affected only the scaling of the dose axis but did not
change the shape of the curves or the results of the comparative
fitting.

Linear Dose-BED Relationship

Figure 3 shows what happens when a linear dose-BED
relationship (top right panel) is superimposed by a sigmoid
susceptibility distribution. The BED shown in the top right
panel could, for instance, be the rate of covalent binding of
a chemically reactive toxicant (or metabolite) to a biological
macromolecule such as protein or DNA. For this reaction, the
rate of adduct formation with concentration may be approxi-
mately proportional to the concentration of toxicant as long as
enzymatic reactions involved are far below the Michaelis
constant.

One of the consequences of adduct formation with protein
could be cell death. Minor levels of protein damage would
likely be tolerated and not result in cell death. At high damage
levels, on the other hand, all cells would be killed. Therefore,
the proportion of cells that become apoptotic or necrotic
follows the respective tolerance distribution. We assumed

FIG. 2. Fitting a cumulative normal curve (dotted line) or a cumulative

lognormal curve (dashed line) to the dose-incidence curve that resulted from

superposition of a cumulative normal susceptibility distribution on a Michaelis–

Menten curve (full line; the curve generated by step 3 in Fig. 1). The three

panels show best fits for three different means of susceptibility (mu ¼ 0.2, 0.5,

and 0.8 receptor occupancy, respectively, for half of the cells to be triggered to

divide), using the same standard deviation sigma ¼ 0.05. Referring to Fig. 1,

‘‘Incidence’’ is proportion of dividing cells; ‘‘Dose’’ is ligand concentration.
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a symmetrical sigmoid curve (top left panel of Fig. 3). The
bottom right panel shows the result of the superposition. The
dose-incidence curve is sigmoid, i.e., the (sigmoid) tolerance
distribution was more important for the shape of the dose-
incidence curve than the (linear) dose-BED curve.

DISCUSSION

We showed that (1) the shape of a dose-incidence curve is
dominated by the distribution of tolerance of individuals in the
given population and that (2) good fit of a cumulative normal
distribution to incidence data plotted against log (dose) could
be explained by the supralinear shape of the relationship
between administered dose and biologically effective dose.

Sigmoid Tolerance Distributions

Sigmoid shapes of tolerance distributions have been used for
decades, based primarily on empirical observations and the
central limit theorem. In its simplest form, this mathematical
law states that the sum of many (r) independent, identically
distributed random variables is, in the limit as r/N, normally
distributed.

For complex reactions of a cell or organism to a drug or
toxicant, or for multistage requirements as postulated for carci-
nogenesis, the rate of the process is modulated by a number of
factors, all of which contribute to the individual susceptibility.
For instance, the risk of cancer after exposure to an activation-

dependent DNA-reactive carcinogen depends on the activity of
enzymes associated with metabolic activation, detoxification,
and DNA repair, on cell cycle checkpoints, rates of cell division
and apoptosis, as well as on immune responses to eliminate
premalignant cells (Lutz, 2001). The central limit theorem
provides a theoretical basis of using normal distributions.
However, in biological systems, the number of variables is
finite, and biological boundaries are expected to limit the span
of individual susceptibilities. If an individual is ‘‘on the bad
side’’ for too many susceptibility factors, it might no longer be
capable of life. For the model function, this is equivalent to
truncation. The observable tolerance distribution would still be
approximately normal, but the problem of incidences at
negative doses associated with a full normal distribution has
been overcome.

Normal Distributions after Logarithmic Transformation
of the Dose Axis

Dose-incidence relationships are often well described by
cumulative ‘‘lognormal’’ curves, i.e., by cumulative normal
curves with dose plotted on a logarithmic scale. A number of
explanations have been put forward to explain this phenome-
non. According to the central limit theorem of statistics, the
distribution will be lognormal for the product (instead of sum)
of the variables or when the error in measurement is pro-
portional to the value of the measurement (Limpert et al.,
2001). The question whether multiplicative combination of
factors that contribute to susceptibility reflects biology better
than additive combination is an aspect worth further thought.

Other attempts to explain the success of logarithmic dose
transformations included time factors. Koch published two
papers on the logarithm in biology, giving examples of how the
logarithm comes into play in an exact form (Koch, 1966), or as
an approximation (Koch, 1969). For the exact solution, he
considered a toxicant that was excreted with a first-order rate
constant, k, and caused an effect when a minimal concentration
was maintained for a certain period of time. Under these
conditions, if either the elimination constant or the minimum
required time period (but not both) is normally distributed in
the population, a lognormal distribution for dose results.

An early paper that used lognormal distributions for cancer
risk estimation was published by Mantel and Bryan (1961). A
major problem was the estimation of the probit slope which is,
in fact, a measure of the span of individual susceptibilities.
Lognormal distributions of variables have been reviewed not
only for different health risks (Hattis et al., 1999; Hattis and
Silver, 1994) but also for other disciplines, such as geology and
mining, ecology, or food technology (Limpert et al., 2001).

Here, we provided a simple explanation for the logarithm,
which requires neither multiple variables nor time factors. It is
based on the fact that many biologically effective doses show
saturation with administered dose, i.e., exhibit a supralinear
shape at the high-dose end. This behavior results in a right skew

FIG. 3. Schematic illustration of the generation of a dose-incidence curve

for proportion cell death (bottom right-hand panel) from a linear dose-BED

relationship by superposition with a symmetrical susceptibility distribution for

cells to die at a given adduct level. Assumptions are dose-proportional

macromolecular adduct formation superimposed by a cumulative normal

distribution for cell death. The bottom right panel shows the resulting nonlinear

‘‘dose-incidence’’ relationship.
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after superposition with a symmetrical tolerance distribution,
which can brought back to approximate symmetry by using
a logarithmic dose scaling. The example here was based on
receptor-ligand interaction; another example is presented in the
companion article (Andersen et al., in press).

Implications for Risk Assessment

Our examples show how a continuous response measure
can be translated to a quantal (binary) measure. This conver-
sion is key to understanding dose-incidence relationships in
pharmacology and toxicology. While susceptibility distribu-
tions dominate the shape of dose-incidence curves, mechanistic
considerations are still important. They not only determine the
shape of the dose-response curve of step 1 in Figure 1, but they
also give leads to critical factors that modulate susceptibility.
Low-dose extrapolation in risk assessment must include
aspects of individual susceptibility. The question about in-
cidence at low dose is in fact equivalent to the question about
‘‘who is the most susceptible individual?’’ (Lutz, 2002). For
prevention, it might therefore be particularly rewarding to
reduce exposure in those individuals that are most susceptible
and to counteract the factors that are associated with high
susceptibility. As taken from the title of a publication by Dale
Hattis (1996), ‘‘Human interindividual variability in suscepti-
bility to toxic effects [should no longer be] an annoying detail
but a central determinant of risk.’’

ACKNOWLEDGMENTS

We thank Dr. David W. Gaylor for stimulating and informative discussions.

This work was supported by the Long Range Initiative of the European

Chemical Industry Council (CEFIC-LRI) to W.K.L. and by the Long Range

Initiative of the American Chemistry Council (ACC-LRI) to M.E.A.

REFERENCES

Albert, R. E., and Altshuler, B. (1976). Assessment of environmental

carcinogen risks in terms of life shortening. Environ. Health Perspect. 13,

91–94.

Andersen, M. E., Lutz, R. W., Liao, K. H., and Lutz, W. K. (2005). Dose-

incidence modeling: Consequences of linking quantal measures of response

to depletion of critical tissue targets. Toxicol. Sci.. doi:10.1093/toxsci/kfj024.

Andersen, M. E., Yang, R. S., French, C. T., Chubb, L. S., and Dennison, J. E.

(2002). Molecular circuits, biological switches, and nonlinear dose-response

relationships. Environ. Health Perspect. 110(Suppl. 6), 971–978.

Gaylor, D. W., and Kodell, R. L. (2002). A procedure for developing risk-based

reference doses. Regul. Toxicol. Pharmacol. 35, 137–141.

Gaylor, D. W., and Slikker, W. J. (1990). Risk assessment for neurotoxic

effects. Neurotoxicology 11, 211–218.

Hardman, J. G., and Limbird, L. E., Eds. (2001). Goodman and Gilman’s the

Pharmacological Basis of Therapeutics. McGraw-Hill, New York.

Haseman, J. K., and Hoel, D. G. (1979). Statistical design of toxicity assays:

Role of genetic structure of test animal population. J. Toxicol. Environ.

Health 5, 89–101.

Hattis, D. (1996). Human interindividual variability in susceptibility to toxic

effects: From annoying detail to a central determinant of risk. Toxicology

111, 5–14.

Hattis, D., Banati, P., Goble, R., and Burmaster, D. E. (1999). Human

interindividual variability in parameters related to health risks. Risk Anal.

19, 711–726.

Hattis, D., Erdreich, L., and Ballew, M. (1987). Human variability in

susceptibility to toxic chemicals -a preliminary analysis of pharmacokinetic

data from normal volunteers. Risk Anal. 7, 415–426.

Hattis, D., and Silver, K. (1994). Human interindividual variability—A major

source of uncertainty in assessing risks for noncancer health effects. Risk

Anal. 14, 421–431.

Klaassen, C. D., Ed. (2001). Casarett and Doull’s Toxicology: The Basic

Science of Poisons. McGraw-Hill, New York.

Koch, A. L. (1966). The logarithm in biology I. Mechanisms generating the log-

normal distribution exactly. J. Theor. Biol. 12, 276–290.

Koch, A. L. (1969). The logarithm in biology II. Distributions simulating the

log-normal. J. Theor. Biol. 23, 251–268.

Limpert, E., Stahel, W. A., and Abbt, M. (2001). Log-normal distributions

across the sciences: Keys and clues. Bioscience 51, 341–352.

Lutz, W. K. (2001). Susceptibility differences in chemical carcinogenesis

linearize the dose-response relationship: Threshold doses can be defined only

for individuals. Mutat. Res. 482, 71–76.

Lutz, W. K. (2002). Differences in individual susceptibility to toxic effects of

chemicals determine the dose-response relationship and consequences of

setting exposure standards. Toxicol. Lett. 126, 155–158.

Mantel, N., and Bryan, W. R. (1961). ‘‘Safety’’ testing of carcinogenic agents.

J. Nat. Cancer Inst. 27, 455–470.

Slob, W. (1999). Thresholds in toxicology and risk assessment. Int. J. Toxicol.

18, 259–268.

38 LUTZ, LUTZ, AND ANDERSEN


