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The seed magnetic field generated during recombination
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ABSTRACT
Non-linear dynamics creates vortical currents when the tight-coupling approximation between
photons and baryons breaks down around the time of recombination. This generates a magnetic
field at second order in cosmological perturbations, whose power spectrum is fixed by standard
physics, without the need for any ad hoc assumptions. We present the fully general relativistic
calculation of the magnetic power spectrum, including the effects of metric perturbations,
second-order velocity and photon anisotropic stress, thus generalizing and correcting previous
results. We also show that significant magnetogenesis continues to occur after recombination.
The power spectrum

√
k3PB decays as k4 on large scales, and grows as k0.5 on small scales,

down to the limit of our numerical computations, ∼1 Mpc. On cluster scales, the created field
has a strength of ∼3 × 10−29 G.

Key words: magnetic fields – plasmas – relativistic processes – scattering – cosmology:
theory.

1 IN T RO D U C T I O N

Evidence is growing for magnetic fields on larger and larger
scales in the Universe (see e.g. the reviews by Giovannini 2004
and Subramanian 2007). In galaxies, the fields have strength of
the order of μG, ordered on scales ∼1–10 kpc. Fields of strength
∼1–10−2 μG on scales ∼0.1–1 Mpc have been detected in galaxy
clusters, and there is evidence of magnetic fields in superclusters.
Recently, new evidence has been presented for intergalactic mag-
netic fields: high-energy gamma-rays from distant sources can ini-
tiate electromagnetic pair cascades when interacting with the ex-
tragalactic photon background; the charged component of the cas-
cades will be deflected by magnetic fields, affecting the images of
the sources. Using observations from Fermi, a lower bound of the
order of 10−16 G has been claimed for the strength of fields in the
filaments and voids of the cosmic web (Ando & Kusenko 2010;
Essey, Ando & Kusenko 2010; Neronov & Vovk 2010; Dolag et al.
2011).

The origin of these fields is still unclear (see e.g. Brandenburg
& Subramanian 2005; Kulsrud & Zweibel 2008; Kandus, Kunze
& Tsagas 2010). They could have been generated via astrophysical
processes during the non-linear collapse stage of structure forma-
tion. There remain unresolved difficulties in explaining how these
astrophysical seed fields lead to fields of the observed strength
and coherence scales. Alternatively, the fields could be primordial
seed fields – created in the very early Universe, during inflation,
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or during subsequent phase transitions. In principle, inflation can
generate fields on all scales – but unknown physics must be invoked
to achieve non-minimal coupling of the electromagnetic field. The
electroweak and QCD transitions can only produce fields on very
small scales, up to the Hubble radius at magnetogenesis [and their
amplitude is strongly constrained by their gravitational wave pro-
duction before nucleosynthesis (Caprini, Durrer & Fenu 2009)].

Primordial magnetogenesis also takes place in the cosmic plasma
after particle/anti-particle annihilation. This avoids the problem of
exotic physics that faces inflationary magnetogenesis – standard
Maxwell theory and standard cosmological perturbations in the
cosmic plasma inevitably lead to magnetic fields. It also avoids the
small coherence scale problem facing electroweak and QCD fields.
However, the problem is the weakness of the fields, since this effect
occurs at second and higher order in cosmological perturbations.

The key question is how weak is the field and how does it vary with
scale? Differing qualitative estimates of the field strength have been
given by Hogan (2000), Berezhiani & Dolgov (2004), Gopal & Sethi
(2005), Siegel & Fry (2006), Kobayashi et al. (2007) and Maeda
et al. (2009). The power spectrum was first numerically computed
by Matarrese et al. (2005), which differs significantly from ours.
More recently, Ichiki et al. (2007) presented a power spectrum that
is closer to our result. We discuss below the differences between
previous results and ours. Our analysis is the first complete general
relativistic computation of the power spectrum, taking into account
all effects.
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Figure 1. Left: magnetic field spectrum today. Right: comoving magnetic field strength today at a given scale.

Our result is shown in Fig. 1. The power spectrum behaves as

√
k3PB ∝

{
k4 k � keq

k0.5 k � keq .
(1)

On cluster scales the comoving field strength is

B1 Mpc ∼ 3 × 10−29 G. (2)

Thus, the field generated around recombination is too weak to
act as a seed for the observed field strength of the order of μG.
Adiabatic contraction of the magnetic flux lines during non-linear
collapse of structures provides an enhancement of ∼103, while the
non-linear dynamo mechanism has an amplification factor of ∼108

(with many remaining uncertainties). Note that hydrodynamical and
turbulence effects during non-linear collapse themselves generate a
field of the order of 10−20 G – which is also too small to account for
the observed galactic and cluster fields (Kulsrud & Zweibel 2008).

The field (2) is also too weak to imprint detectable effects on
the cosmic microwave background (CMB). Nevertheless, it is a real
property of the standard cosmological model, and may have some
impact on early structure formation during the ‘dark ages’ if it is
the only primordial field. [See e.g. Sethi & Subramanian (2009) and
Schleicher et al. (2010) for the role of magnetic fields in structure
formation during the dark ages.]

As shown below, the magnetic field is given by(
a2Bi

)′ = −a2εijk∂j [(1 + � − �) Ek], (3)

Ei ≈ −4ργ σT

3e

(
	vi

bγ + 2

5

i

jv
j
b

)
, (4)

where �, � are first-order metric perturbations, 	vi
bγ = vi

b −
vi

γ is the photon–baryon velocity difference and 
i
j is the photon

quadrupole moment, from anisotropic stress. This leads to three
types of source terms for magnetogenesis:

(a2B)′ = S1

[
	v

(2)
bγ

]
+ S2

[{
δ(1)
γ + �(1) − � (1)

}
	v

(1)
bγ

]
+ S3

[

(1)

γ v
(1)
b

]
. (5)

The first source term is second order, while the other two are
quadratic in first-order quantities. The contributions of the source
terms to the power spectrum are shown in Fig. 5 (left).

Our paper builds on the physical analysis of non-linear plasma
dynamics presented in Maartens, Gebbie & Ellis (1999), Matarrese

et al. (2005), Ichiki et al. (2007), Kobayashi et al. (2007), Takahashi,
Ichiki & Sugiyama (2008), Maeda et al. (2009) and Pitrou (2009).
The key features of the dynamics are as follows.

(i) The electric field ensures that the proton–electron relative ve-
locity is always strongly suppressed in comparison with the photon–
electron relative velocity – even at high energies when the Compton
interaction is stronger than the Coulomb interaction.

(ii) Vorticity induced in the electron fluid is thus transferred al-
most entirely to the protons, and the baryon vorticity evolution
is determined by the two-fluid dynamics of photons and baryons,
which is very close to the equations of CMB dynamics. We use the
second-order Boltzmann code of Pitrou (2009).

(iii) The limits ve − vγ → 0 and vp − ve → 0 are not equivalent
to setting vp = ve = vγ in the momentum exchange equations, and
the limit must be taken consistently.

(iv) At the first order, cosmological vector perturbations are zero
after inflation, in the standard model. Magnetogenesis requires vor-
tical currents, and these can therefore only be generated at the
second order, via mode–mode coupling of the first-order scalar per-
turbations. This remains true even in the presence of topological
defects, which are active sources for vector perturbations: at the
first order, the vector perturbations induced by the defects cannot
break vorticity conservation in the cosmic plasma (Hollenstein et al.
2008).

(v) On large scales there is some cancellation amongst the source
terms in (5) (this is evident from Fig. 5). Neglecting any of the effects
can thus lead to unreliable results.

(vi) The magnetic field continues to be created after recombina-
tion, due to the residual non-zero ionization fraction. If the numeri-
cal integration is stopped at recombination, then the comoving field
is underestimated by a factor of ∼10 (see Fig. 5).

The plan of the paper is as follows. In the next section, we re-
view and clarify the magnetic and electric field generation beyond
the tight-coupling limit. In Section 3, we detail the numerical in-
tegration of the differential evolution equations at second order in
cosmological perturbations that we perform in order to solve for the
magnetic field spectrum. We also provide analytical insight into the
time and scale behaviours of the numerical results. We compare our
results with previous work in Section 4. Details of some calculations
are given in the Appendices.
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2 U N D E R S TA N D I N G T H E O R I G I N
OF THE MAG NETIC FIELD

2.1 Interactions in the cosmic plasma

The stress-energy tensor of a species s satisfies

∇νT
μν

s =
∑

r

Cμ
sr ,

∑
s

∇νT
μν

s = 0 , (6)

where Cν
sr(= −Cν

rs) encodes all the effects of interactions with
species r. Relative to observers with four-velocity uμ, the energy
density transfer rate is −uμCμ

sr and the momentum density transfer
rate is Cμ⊥

sr = hμ
ν Cν

sr, where the projector is hν
μ ≡ δν

μ + uμuν .
The Euler equation for a species s is given in general by

∇νT
νμ⊥

s =
∑

r

Cμ⊥
sr . (7)

The kinematics of uμ are described by decomposing its covariant
derivative as (Maartens et al. 1999; Tsagas, Challinor & Maartens
2008)

∇μuν = 1

3
θhμν + σμν + ωμν − uμu̇ν , (8)

where θ is the volume expansion, σμν is the projected (i.e. orthog-
onal to uμ), symmetric and trace-free shear, ωμν is the projected
antisymmetric vorticity and u̇μ = uν∇νuμ is the projected acceler-
ation. The vorticity vector is defined as

ων ≡ εμνλω
νλ , εμνλ ≡ uτ ετμνλ , (9)

where the totally antisymmetric tensor is defined by ε0123 = √−g.
[Note that our sign convention for ωμν and definition of ωμ recover
the Newtonian limit, and differ from Maartens et al. (1999) and
Tsagas et al. (2008).]

In the period of interest, from the end of particle/anti-particle
annihilation up to now (Tγ � 500 keV, z � 2 × 109), the relevant
species are protons, electrons, photons and, when recombination
occurs, hydrogen atoms. Neutrinos affect only the background dy-
namics and the gravitational potentials in the Einstein equations.
The Faraday tensor of the electromagnetic field defines electric and
magnetic fields measured by uμ observers:

Eμ = F μνuν, Bμ = 1

2
εμνλFνλ . (10)

Protons and electrons couple to the electromagnetic field through
the term C

μ
sF = F μ

νj
ν
s , where s = p, e and jν

s is the electric four-
current. Then ∇νT

μν
F = − ∑

s F μ
νj

ν
s . We have jμ

s = qsnsu
μ
s , where

qs is the particle charge, ns is the number density (in the rest frame)
and the four-velocity of species s is

uμ
s = γs(u

μ + vμ
s ), uμvμ

s = 0, γs = (
1 − v2

s

)−1/2
. (11)

Here, γsv
μ
s is the relative velocity of s measured by uμ. Maxwell’s

equations are given in Appendix A.
The momentum transfer rates are given by

Cμ⊥
pe = −e2nenpηC	vμ

pe , 	vμ
pe ≡ γpv

μ
p − γev

μ
e , (12)

Cμ⊥
eγ = −4

3
neργ σT

(
	vμ

eγ + 2

5

μ

ν vν
e

)
, (13)

Cμ⊥
pγ = −4

3
β2npργ σT

(
	vμ

pγ + 2

5

μ

ν vν
p

)
, β ≡ me

mp
, (14)

C
μ⊥
sF = qsns

(
Eμ + εμντ v

ν
s B

τ
)
, s = e, p . (15)

The radiation energy density ργ , the quadrupole of the radia-
tion temperature anisotropy 
μν , and the number densities ns

are as measured by uμ observers. In the rest-frame uμ
s , the elec-

trons and protons are well approximated by pressure-free matter,
T μν

s = ρrest
s uμ

s uν
s , where ρrest

s is the rest-frame density measured by
uμ

s . In the uμ frame, there is effective pressure, momentum density
and anisotropic stress: T μν

s = ρsu
μuν + Psh

μν + 2q (μ
s uν) + πμν

s ,
where (Maartens et al. 1999)

ρs ≡ msns = γ 2
s ρrest

s , Ps = 1

3
v2

s ρs , (16)

qμ
s = ρsv

μ
s , πμν

s = ρs

(
vμ

s vν
s − 1

3
v2

s h
μν

)
. (17)

The Thomson cross-section is σT = 8πα2/(3m2
e), and the Coulomb

interaction is governed by the electrical resistivity

ηC = πe2√me ln �

T 3/2

� 10−12 s

(
1 + z

103

)−3/2 (
ln �

10

)
, (18)

where � is the Coulomb logarithm. On cosmological time-scales the
magnetic field diffuses below a length-scale ∼√

ηC/H0 ∼ 100 au,
so that diffusion can safely be ignored (Ichiki et al. 2007). The
characteristic time-scales for electrons interacting via the Coulomb
and Thomson interactions are

τC = me

e2neηC
� 20 s

xe

(
1 + z

103

)−3/2

, xe ≡ ne

ne + nH
, (19)

τT = me

σTργ

� 5 × 108 s

(
1 + z

103

)−4

, (20)

where ne is the number density of free electrons and xe is the
fraction of free electrons. We used ne0 + nH0 � 3 × 10−7 cm−3

(Takahashi 2008). The time-scale which characterizes the evolution
of the plasma can be taken as

τevo(z) = min {τS(z), τ1 Mpc(z)}

= min

{
1√

H (z)σTne(z)
,

1

(1 + z)k1 Mpc

}
. (21)

Here τ S is the Silk damping time and 1 Mpc is taken as the minimum
comoving scale on which we can trust a second-order perturbative
analysis up to redshift z = 0.

2.2 Electric field

The Euler equation (7) for the proton and electron velocities is given
by (Maartens et al. 1999)

msns

(
v̇μ⊥

s + u̇μ + Kμ
s

) = Cμ⊥
sr + Cμ⊥

sγ + C
μ⊥
sF , (22)

where s, r = p, e and

Kμ
s =

(
ṅs

ns
+ 4

3
θ + u̇νv

ν
s + 1

ns
vν

s Dνns + Dνv
ν
s

)
vμ

s

+ (σμ
ν − ωμ

ν) vν
s + vν

s Dνv
μ
s . (23)

The covariant spatial derivative Dμ is defined in (A6). The first
term on the right of (23) describes not only the evolution due to the
expansion of the Universe which conserves the particles, but also
the evolution of the number density due to recombination which
does not conserve the particles when hydrogen atoms are formed
around recombination.
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From now on, we expand in perturbations around a Friedmann
background, up to the second order. The metric in the Poisson gauge
is

ds2 = a2
[−(1 + 2�) dη2 + 2Si dxi dη + (1 − 2�) dx2

]
, (24)

where Si is a vector perturbation (∂iSi = 0) and enters only at
second order. Perturbed quantities are expanded according to X =
X̄ + X(1) + X(2). Only the first order of scalar perturbations �

and � will enter the evolution equation of the magnetic field, so
we omit the superscripts for them. The explicit form of the term
v̇μ⊥

s + u̇μ + Kμ
s in (22) is then given by (C1), with ws = 0 = c2

s .
We set ne = np ≡ n, since we find that the final expression of the

resulting electric field is not affected by ne − np, in agreement with
Takahashi et al. (2008).

In order to obtain a dynamical equation for the velocity difference
	vμ

pe = vμ
p − vμ

e , we use (22) to obtain

men
(
	v̇μ⊥

pe + 	Kμ
pe

) = (1 + β)enEμ + Cμ⊥
pe − Cμ⊥

eγ

+ β
(
Cμ⊥

pe + Cμ⊥
pγ

)
. (25)

The Lorentz force term in (15) has been neglected since it is of
higher order. We define the baryon velocity as the velocity of the
centre of mass of the charged particles, then

(mp + me)v
μ
b = mpv

μ
p + mev

μ
e , (26)

vμ
p = v

μ
b + β

1 + β
	vμ

pe, vμ
e = v

μ
b − 1

1 + β
	vμ

pe. (27)

In principle, the baryon velocity can be different from the velocity of
hydrogen, i.e. of electrons and protons recombined, but the thermal
collision ensures that hydrogen atoms follow closely the electrons
and protons.

Using (25)–(27) and the explicit forms (12)–(14) of the collision
terms, we obtain

me

(
	v̇μ⊥

pe + 	Kμ
pe

) = (1 + β)eEμ − (1 + β)e2nηC	vμ
pe

+ 4

3
σTργ

[ (
1 − β3

) (
	v

μ
bγ + 2

5

μ

ν vν
b

)

− 1 + β4

1 + β

(
	vμ

pe + 2

5

μ

ν 	vν
pe

)]
.

(28)

We show below that the 
μ
ν 	vν

pe term can be neglected, since it is
of higher order.

Equation (28) shows that an electric field can be generated
by non-zero velocity differences 	vpe and 	vγ b. The Maxwell
equation (A2) shows that then Bμ can be generated, provided that
Eμ is transverse. We will show that the generated electric field keeps
electrons and protons more bound together and therefore leads to a
decrease in 	vpe, which becomes negligible compared to 	vγ e.

Neglecting third-order terms, the Maxwell equation (A3) can be
rewritten in terms of the velocity difference 	vμ

pe as

	vμ
pe = 1

en

(
curl Bμ − Ėμ⊥ − 2

3
θEμ + σμνEν

)
, (29)

where we used (A5).
In order to estimate the magnitudes of the various contributions

in the stationary regime, we expand all evolving quantities in fre-
quency space:

Mμ(x, η) =
∫ ∞

0
dωM̂μ(x, ω)eiωη, (30)

where the mode M̂μ has characteristic oscillation frequency ω �
τ−1

evo . In terms of the characteristic time-scales (19) and (20), we find

from (28) and (29) that

Êμ

[
(1 + β) + O

(
ηCτC

τ 2
evo

+ i
4

3

ηC

τevo
+ i

ηCτC

τevoτT

)]

= ηC,eff

[
(1 + β) + O

(
i

ηCτC

ηC,effτevo

)]
curl B̂μ

− 4me

3eτT

(
1 − β3

) [
	v̂

μ
bγ + 2

5

μ

ν v̂ν
b

]
, (31)

where we used 	Kpe = O(	v̇pe), and we defined (Ichiki et al.
2007)

ηC,eff ≡ ηC

[
1 + 4

(
1 + β4

)
3 (1 + β)2

τC

τT

]
. (32)

Given the hierarchy of the different time-scales involved in (31),
it follows that the largest contribution to the resulting electric field
is given by the velocity difference 	v

μ
bγ . This can be seen in Fig. 2,

where we plot the different ratios of typical time-scales that enter in
(31). Specifically, all the plotted ratios are always well below unity
for the period of interest, from very large redshift until today, even
accounting for recombination around z � 1080. This allows us to
write

Eμ � ηC,eff curl Bμ

− 4me

3eτT

1 − β3

1 + β

(
	v

μ
bγ + 2

5

μ

νv
ν
b

)
. (33)

In order to compute the final magnetic field produced by such an
electric field, we consider the curl of the electric field, governed by
Maxwell’s equation (A2). In frequency space

i
B̂μ

τevo
� −ηC,eff curl curl B̂μ

+ 4me

3eτT

1 − β3

1 + β
curl

(
	v̂

μ
bγ + 2

5

μ

ν v̂ν
b

)
. (34)

Remembering that the magnetic field is divergence free, we can
compare the first two terms of the above equation. Their ratio in
Fourier space is of the order of (τ evoηC,effk2)−1 � τ evo/ηC,eff . There-
fore, on all scales of interest, we can conclude that the contribution
of the ηC,eff curl B̂μ term in (33) is negligible compared to the last
term.

Figure 2. Evolution with redshift of different ratios between character-
istic times that arise in (31), compared with unity (thick black line):
ηCτC/(τ 2

evo) (thin solid), ηC/τ evo (thin dashed), ηCτC/(τ evoτT) (dotted),
ηCτC/(ηC,effτ evo) (dot–dashed) and ηC,eff /τ evo (thick dashed). (The jumps
in the curves occur at reionization.)
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The above considerations remain valid once we approach recom-
bination time, as long as the residual fraction of free electrons xe is
not too small. This is to ensure that the approximations of the ratios
of time-scales made to obtain (33) remain valid. This is indeed the
case, and it can be checked from Fig. 2, since xe ∼ 10−3 to 10−4 af-
ter last scattering (Seager, Sasselov & Scott 1999; Takahashi 2008)
until reionization.

We are therefore left with the following expression for the electric
field produced by the tiny velocity difference between electrons and
protons:

Eμ = −1 − β3

1 + β

4ργ σT

3e

(
	v

μ
bγ + 2

5

μ

ν vν
b

)
. (35)

It is important to note that this expression does not contain the
number density of free electrons ne. Therefore, the electric field
produced by this mechanism before recombination is still present
after last scattering (see also Takahashi 2008) and can in principle
continue to generate a magnetic field after recombination.

We can now also finally prove that

	vμ
pe � 	vμ

eγ . (36)

Using (35) and (34) without the ηC,eff term and in the Maxwell
equation (29) leads to an estimation of the order of magnitude of
velocity differences:

	vμ
pe ∝ ηCτC

τevoτT
	v

μ
bγ , 	vμ

pγ � 	v
μ
bγ � 	vμ

eγ . (37)

The order of magnitude of the ratio 	vμ
pe/	v

μ
bγ is shown in Fig. 2

and remains well below unity for all relevant times, even when the
Coulomb scattering becomes less efficient than Compton scattering,
that is for z � 106.

It also follows from (37) and (13) that we can rewrite (35) as

e(ne + nH)xeE
μ = C

μ⊥
bγ = ∇νT

μν⊥
b , (38)

where we neglect terms of the order of β and where here the baryon
index ‘b’ encompasses protons, electrons and hydrogen atoms.

As a conclusion of this section, we stress again that when we
assume that electrons and photons are tightly coupled, as was origi-
nally considered by Harrison (1970), then the electrons and protons
are even more tightly coupled by the electromagnetic field which is
generated, so that the electrons and protons can still be considered,
from the point of view of photons, as a single fluid of baryons. As a
consequence, taking 	vμ

eγ → 0 at early times has to be performed
consistently by keeping 	vμ

pe � 	vμ
eγ when taking the limit. For

the tight-coupled limit, this is crucial, since it corresponds exactly
to the limit ve = vγ = vp = 0, and the collision terms cannot be
evaluated directly from their expressions (12)–(15).

2.3 Local inertial frame (tetrad)

It is convenient to express all quantities in a local inertial frame,
defined by an orthonormal tetrad ea(a = 0, 1, 2, 3):

ea
μeb

νgμν = ηab, ea
μeb

νg
μν = ηab. (39)

The tetrad indices are distinguished from general coordinate indices
by underlining, and i, j , k . . . = 1, 2, 3. We choose a comoving
tetrad, so that e0 is the fundamental observer four-velocity: e0

μ =
uμ. In the background, ē0

μ = ūμ = (a−1, 0). The perturbed tetrad
is given in Appendix B. Derivatives along the tetrad vectors are
defined by

∂a ≡ ea
ν∂ν . (40)

Covariant derivatives in the tetrad frame are computed using the
affine connections given in Appendix B.

Tetrads make the physical meaning of all non-scalar quantities
more transparent. In linear perturbation theory, it is common prac-
tice to decompose perturbed quantities in a background tetrad. For
instance, the velocity is often decomposed as ui

(1) ≡ a−1vi
(1), to-

gether with u
(1)
i = av

(1)
i , which means implicitly that v

(1)
i ≡ δij v

j
(1).

Thus vi
(1) coincides with v

i

(1) = ēi
j u

j
(1). Introducing tetrads is the

natural generalization of this standard procedure when considering
higher order perturbations, and this has already been used, for exam-
ple, to decompose velocities (Senatore, Tassev & Zaldarriaga 2009;
Fitzpatrick, Senatore & Zaldarriaga 2010). The non-linear evolu-
tion of the distribution of photons is well suited to computation in
a tetrad frame (Pitrou 2009).

2.4 Magnetic field

The Maxwell equation (A2) becomes in the tetrad basis

∂0(a2Bi) = −a2εi�k∂�

[
(1 + � − �) Ek

]
. (41)

Equivalently, we can use derivatives in the coordinate basis(
a2Bi

)′ = −a2εi�k∂�

[
(1 + � − �) Ek

]
, (42)

where we have used the fact that the electric field is at least a first-
order quantity, and the magnetic field a second-order quantity. The
gravitational potentials in this expression occur only at first order.
Equation (42) is compatible with Maeda et al. (2009), which can be
seen via Ek = ek

iEi .
To obtain (41), we need

(curl E)i = εi�k∇�Ek = εi�k∂�

[
(1 − �)Ek

]
, (43)

which uses the affine connections up to the first order given in
Appendix B. Also,

ei
μεμνλu̇νEλ = εi�k u̇�Ek = −εi�kE�∂k� , (44)

which follows from

u̇i = (
uμ∇μuν

)
ei

ν = (∇0e
0
ν

)
ei

ν = �
0

0 i = ∂i� . (45)

In addition, we omitted terms like �εi�k∂�Ek and �εi�k∂�Ek in
deriving (42), since the electric field contributes only at the first
order – and at this order, it is curl-free. For the same reason, we can
also replace ∂� by a−1∂�.

In summary, magnetogenesis is governed by (42) and (38), i.e.

(
a2Bi

)′ = − a2

e(ne + nH)xe
εi�k∂

�
[
(1 + � − �) C

k

bγ

]

= − a2

e(ne + nH)xe
εi�k∂

�
[
(1 + � − �) ∇νT

νk

b

]
, (46)

where here, as in (38), the baryon index ‘b’ encompasses electrons,
protons and hydrogen atoms. Finally, note that the value of the
magnetic field depends of course on the observer. Its value in the
baryon frame is related to its value (42) in the fundamental frame
by

B
i

b = Bi − εi�k vb �Ek . (47)

2.5 Numerical computation

In order to solve the evolution equation for the magnetic field, we
need to solve the Boltzmann hierarchy for baryons and photons to
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compute the source of the electric field in (35). The basic idea is
to decompose the directional dependence of radiation in the local
inertial frame into multipoles:


i1 ...i�
(x)ni1 . . . ni� =

∫
d3k

(2π)3/2

∑
m


m
�(k)G�m(k, x, n), (48)

G�m(k, x, n) = i−�

(
4π

2� + 1

)1/2

eiki x
i

Y �m
(
ni

)
. (49)

We suppress the time dependence for convenience.
Terms quadratic in first-order perturbations appear as convolu-

tions, and we introduce the notation

K{f1f2}(k) ≡
∫

d3k1d3k2

(2π)3/2
δ3

D(k1 + k2 − k)f1(k1)f2(k2) . (50)

A Fourier mode qi is decomposed on the helicity basis of the back-
ground space–time as

qi = δij qj = q(+)ē
i
(+) + q(−)ē

i
(−) + q(0)ē

i
(0) , (51)

q(h) = qi ē
∗ i
(h) . (52)

The background helicity basis vectors ē(h), with helicity h = 0, ± are
defined in Pitrou (2009). The azimuthal direction h = 0 corresponds
to scalar perturbations and is aligned with the total Fourier mode,
i.e. ē(0) = k̂, while h = ± corresponds to vector perturbations.
At the first order, when the mode is aligned with the azimuthal
direction since q = k, there are only scalar perturbations. For vector
quantities like the electric field, we need to use a helicity basis e(h)

on the perturbed space–time, and this is built by the identification
of ē(h) with e(h), i.e. ēi

(h) = e
i

(h). Vector quantities like the electric
field Ei are then expanded as

Xi = X(+)e
i

(+) + X(−)e
i

(−) + X(0)e
i

(0) , (53)

X(h) = Xie
∗i

(h) . (54)

On this basis, the Maxwell equation (42) becomes (explicitly
giving the perturbative order of quantities)[
a2B

(2)
(±)(k)

]′

= ∓ka2
[
E

(2)
(±)(k) + K

{[
�(1) − � (1)

]
E

(1)
(±)

}
(k)

]
. (55)

We projected (42) along e
(h)∗
i and used

iεi�kk�e
(±)
k = ±ke

i

(±) , ie(±)∗
i εi�kk�Xk = ±kX(±) . (56)

Note that there are only contributions from h = ± and we thus
recover that scalar perturbations cannot generate a magnetic field
and vortical perturbations are required to source the magnetic field.
Using the multipole decomposition of (35), and neglecting β � 1,
we finally obtain

[
a2B

(2)
(±)(k)

]′
= ±ka2 4σTρ̄γ

3e

[
V

(2)
(±)(k)

+K
{[

δ(1)
γ + �(1) − � (1)

]
V

(1)
(±)

}
(k)

−K
{∑

h

κ(±1, h)

5



±1+h(1)
2 v

(1)
b(−h)

}
(k)

]

≡ ±ka2 4σTρ̄γ

3e

[
S

(±)
1 (k) + S

(±)
2 (k) + S

(±)
3 (k)

]
,

(57)

where

V(h) ≡ vb(h) − vγ (h) (58)

and δγ = δργ /ρ̄γ . Also,

κ(h, 0) =
√(

4 − h2
)
, κ(h,±1) = −

√
(2 ± h)(3 ± h)

2
. (59)

The last equality in (57) defines the contribution of each line above:
S

(±)
1 is the purely second-order contribution from V (2); S

(±)
2 is the

δγ V contribution and S
(±)
3 is the 
2vb contribution.

Although V
(1)

(±)(k) vanishes at first order since there are no vector

perturbations, V
(1)

(±)(k1) and V
(1)

(±)(k2) do not vanish in general, since
the modes k1 and k2 are not necessarily aligned with the azimuthal
direction k̂ = k/k. We first need to obtain their expression when
the modes k1 or k2 are aligned with the azimuthal direction, and
then we perform a rotation of the azimuthal direction (Pitrou 2009).

In order to explicitly take into account the symmetry of the con-
volution products in (57), we can symmetrize the source terms.
At first order, there are only scalar perturbations, and all first-
order tensorial quantities are gradients of scalar functions, so that
X

(1)
i1 ...in

= X
(1)
i1...in

= ∂i1 . . . ∂inX
(1). Most of the source terms are of

the form εi�k∂� (X Yk) = εi�k∂� (X∂kY ), and once projected along
e

(±)∗
i they contribute to the generation of the magnetic field propor-

tionally to

ē∗ i
(±) [X∂iY ] (k)

= i

2

∫
d3q

(2π)3/2
q(±) [X(k − q)Y (q) − X(q)Y (k − q)]. (60)

Here, X and Y denote δγ , V (1), vb, �, �.
This symmetrization, which is always possible, shows that for

these types of terms, the configurations of (k, k1, k2) with k1 =
k2 will not contribute in the convolution. Only couplings from a
quadrupolar quantity to gradient terms, which are of the type

εi�k∂�

(
X

j
k∂j Y

)
= εi�k∂�

(
∂k∂

jX∂j Y
)

, (61)

as in the last line of (57), can have contributions to the convo-
lution coming from configurations with k1 = k2. The generated
magnetic field is thus severely suppressed at early times for these
configurations since the quadrupole of radiation is suppressed in the
tight-coupling regime.

3 N UMERI CAL RESULTS

3.1 Transfer functions

In order to obtain the final magnetic field spectrum produced via
this mechanism, we numerically integrate the evolution equations
for cosmological perturbations up to the second order, since we
have to take into account even the behaviour of the second-order
velocity difference between baryons and photons V

(2)
(h) (k, η). We use

throughout the cosmological parameters of WMAP7 (Komatsu et al.
2011).

For a variable X, the first-order transfer function is X(1)(k, η) =
X (1)(k, η)�in(k), where �in is the gravitational potential deep in the
radiation era. Because of statistical isotropy, the first-order transfer
function depends only on the magnitude of the Fourier mode and not
on its direction. This is, however, only strictly true for multipoles
like 
m

2 and V (h) defined from non-scalar quantities if the azimuthal
direction is aligned with k̂, and considering only scalar perturba-
tions at the first order the contributions for h �= 0 vanish. However,
when using these first-order transfer functions in the quadratic terms
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of the second-order equations, we must rotate these multipoles ac-
cording to the angles between k̂1, k̂2 and k̂. This is to ensure that
the multipoles remain defined with respect to the total momentum
k̂ (Pitrou 2009).

The second-order transfer function X (2)(k1, k2, η) is defined by

X(2)(k, η) = K {X (2)(k1, k2, η)�in(k1)�in(k2)
}

(k). (62)

Without loss of generality we enforce X (2)(k1, k2, η) =
X (2)(k2, k1, η) in numerical calculations. The transfer functions of
the first- and second-order quantities needed in the source terms are
obtained by a joint solution of the Boltzmann equation (for photons
and neutrinos), the conservation and Euler equations (for baryons
and cold dark matter) and the Einstein equations (for metric pertur-
bations). They are found numerically using the same techniques as
in Pitrou, Uzan & Bernardeau (2010).

The transfer function of the magnetic field can be split into the dif-
ferent contributions of the S

(±)
i sources defined in (57). The transfer

functions of these contributions are related to the transfer functions
of the sources through

BSi
(±)(k1, k2, η) = 4σTk

3ea2

∫ η

dη′a2ρ̄γS (±)
i

(
k1, k2, η

′) , (63)

and this is how we obtain the complete time behaviour of the mag-
netic field. A crucial point that will turn out to have important conse-
quences is that the final redshift for numerical integration should be
taken after the recombination epoch. The electric field that results
from the small electron–proton velocity difference and that gives
rise to a magnetic field is still present after last scattering, when
the fraction of free electrons xe is tiny but still does not completely
vanish (see also Takahashi 2008).

In order to compute the equal time correlation functions of the
magnetic field, we need the power spectrum of the initial potential,
defined by

〈�in(k)�∗
in(q)〉 ≡ δ(k − q)P (k). (64)

If the source terms are Gaussian random variables, we can apply
Wick’s theorem, and the contributions of the two polarizations h =
± add up quadratically:

〈B(k, η)B∗(k′, η)〉

= 2δ3
D(k − k′)
(2π)3

∫
d3q P (q)P (|k − q|)

× {|B(+)(q, k − q, η)|2 + B(+)(q, k − q, η)B∗
(+)(k − q, q, η)

}
= 4δ3

D(k − k′)
(2π)3

∫
d3q P (q)P (|k − q|)|B(+)(q, k − q, η)|2

≡ δ3
D(k − k′)PB (k, η), (65)

where B(±) = ∑
i BSi

(±). In the last line we have defined the power
spectrum of the magnetic field PB. Its value today is plotted in Fig. 5.

In order to have a deeper analytical understanding of the resulting
magnetic field spectrum, we study each contribution Si indepen-
dently. There are cross-correlations in (65), but our aim is to assess
the relative importance of the different contributions; the P

Si
B are

defined by replacing B(+) with BSi
(+) in (65).

3.2 δγ �vbγ contribution

The velocity difference between baryons and photons is severely
suppressed in the tight-coupling limit relative to other perturbations
like δγ ; we expand this tiny velocity difference in terms of the
expansion parameter k/τ ′ � 1, where τ ′ = neσ Ta is the derivative

of the optical depth for the Thomson scattering. At first order in k/τ ′,
in the radiation-dominated background on super-Hubble scales,

V
(1)

(0) (k, η) � R
k

τ ′

(
δγ

4
− Hvb(0)

k

)
∝ k3 η5

η2
eq

, (66)

δγ (k, η) � const . (67)

Using R = 3ρ̄b/(4ρ̄γ ) ∝ a, 1/τ ′ ∝ a−2 and a ∝ η, we get

S (+)
2 (|k − q|, q, η) ∝ q̂(+)

(
q3 − |k − q|3) η5

η2
eq

. (68)

Then (63) gives the early-time and large-scale behaviour of BS2
(±),

and the resulting magnetic field power spectrum behaves as

P
S2
B (k, η) ∝ k2

∫
d3q |q̂(+)|2P (q)P (|k − q|)

× [
q6 − q3|k − q|3] η4

η4
eq

.
(69)

For a scale-invariant initial power spectrum, P(q) ∝ q−3,

P
S2
B (λk, η) = λ5P

S2
B (k, η), (70)

as can be seen just by a change of variable in the integral of (69).
In Ichiki et al. (2007), it is found that P

S2
B (λk, η) = λ4P

S2
B (k, η).

The disagreement appears to arise since Ichiki et al. (2007) infer the
dependence on k from the q � k contribution to the integral in (69)
– but the main contribution to that integral is also limited to q � k
given the argument at the end of Section 2.5. We finally find that
for the S2 source term, the power spectrum of the magnetic field
behaves as√

k3P
S2
B (k, η) ∝ k4 η2

η2
eq

. (71)

This behaviour in k and η at early times when the mode is still
super-Hubble is confirmed by numerical integration, as is evident
from Fig. 3 (left).

3.3 �2vb contribution

Similar analytical arguments apply to the magnetic field generated
by the source S3. The tight-coupling expansion of the source is


0
2(k, η) ∝ k

τ ′ v
γ
0 ∝ k2 η3

ηeq
, vb(0)(k, η) ∝ kη (72)

in a radiation background on super-Hubble scales. This implies that
the S3 contribution to the magnetic field power spectrum behaves as√

k3P
S3
B (k, η) ∝ k4 η

ηeq
. (73)

It has the same k dependence as (71) but a different η dependence.
The analytical form is verified by the numerical output shown in
Fig. 3 (right).

3.4 �v
(2)
bγ contribution

For the purely second-order part S1, the only way to assess its con-
tribution is to consider the tight-coupling expansion of the evolution
equation for the vorticity of baryons. Indeed, we need to evaluate
first the total contribution

∑
i Si at lowest order in tight coupling,

and the detail of this derivation is given in Appendix C2. It follows
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Figure 3. Left: magnetic field spectrum P
S2
B (k, η) from only the S2 contribution in (57), for different k/keq, with values increasing from bottom to top. Right:

magnetic field spectrum P
S3
B (k, η) from only the S3 contribution in (57).

Figure 4. Left: magnetic field spectrum P
S1
B (k, η) from only the S1 contribution in (57), for different k/keq, with values increasing from bottom to top. Right:

magnetic field spectrum PB(k, η) for all contributions.

that
∑

i Si behaves as (k/τ ′)(kη)2 ∝ k3η5/η2
eq, which implies that

for the total magnetic field

√
k3PB (k, η) ∝ k4 η2

η2
eq

. (74)

This behaviour is confirmed by numerical integration, as shown in
Fig. 4 (right). Since S2 ∝ k3η5/η2

eq, S3 ∝ k3η4/ηeq and
∑

i Si ∝
k3η5/η2

eq, we obtain that S1 ∝ k3η4/ηeq. Thus S3 contributes to the
magnetic field power spectrum as√

k3P
S1
B (k, η) ∝ k4 η

ηeq
, (75)

which is verified in Fig. 4 (left).

3.5 Magnetic power spectrum

From these plots it is evident that the magnetic field is still gener-
ated after recombination. This is the reason that it is important to set
the final time of integration after recombination, since the largest
contribution comes from this last period of generation. Indeed, be-
fore reaching the usual ‘final’ stage where the magnetic field is no

longer sourced but only redshifts with time (B ∝ a−2), we observe
a bump in the resulting magnetic field spectrum, corresponding to
the recombination time. This should be interpreted as an increase in
magnetic field generation due to decoupling of photons and baryons.

In the decoupling regime the fluid of photons and baryons is no
longer equivalent to a perfect fluid. The departure from tight cou-
pling may be interpreted via non-adiabatic pressure perturbations,
which can source the total vorticity (Kobayashi et al. 2007; Lu et al.
2009; Christopherson, Malik & Matravers 2009; Christopherson &
Malik 2010). It is not a priori evident that this could lead to an
increase in the magnetic field generation. On the one hand, the total
vorticity is sourced when interactions between baryons and photons
are less efficient, but on the other hand, there is less vorticity ex-
change between photons and baryons since the collisions are less
efficient. In the ideal limit where the decoupling is complete, the
vorticity of photons and baryons is adiabatically evolving according
to (C6), whereas the total vorticity is sourced by the gradients in the
total non-adiabatic pressure. This is possible because the vorticities
of the different fluids do not add up linearly to give the total vorticity
as can been seen from (C4).

However, when decoupling occurs, we observe that there is in
fact an increased generation of magnetic field in that phase, and
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Figure 5. Left: magnetic field spectrum today (solid). Contributions from the different sources in (5) are distinguished: second-order velocity term S1 (dot–
dashed), quadratic term S2 in velocity and density (dashed), quadratic term S3 in anisotropic stress and velocity (dotted). Right: comoving magnetic field
strength at a given scale at times 1 + z = 1, 10, 100, 1000 corresponding, respectively, to solid, dashed, dotted and dot–dashed lines. (Dashed and solid lines
cannot be distinguished.)

this essentially comes from the factor xe in (46), i.e. from the fact
that the magnetic field is generated via the residual ionized fraction.
More precisely, the generation of the magnetic field is proportional
to ∂[j∇μT

μ
b k]/xe and not to ∂[j∇μT

μ
b k], so even when ∇μT

μ
b k → 0

around decoupling, ∇μT
μ

b k/xe can still have sizeable values. This
last significant stage of magnetic field generation is counterbalanced
and finally stopped by the redshifting of photon energy density
(ρ̄γ ∝ a−4). It can be seen from (57) that the background radiation
energy density controls the efficiency of the total magnetic field
production after recombination.

The power spectrum of the magnetic field is shown in Fig. 5
(left). The behaviour on large scales (∝ k4) is explained above. The
behaviour on small scales is complex, since it depends mainly on the
generation between horizon crossing time and Silk damping time.
During that period, the analysis which we restricted to super-Hubble
scales does not apply – and the adiabatic redshifting does not apply
either, since the magnetic field continues to be generated. For k �
keq, a reasonable linear approximation is log(

√
k3PB ) ∝ 0.5 log k.

3.6 Magnetic amplitude

The magnetic field amplitude smoothed over a comoving scale λ is

B2
λ = 1

V

∫
d3 y〈B(x)B∗(x + y)〉 exp

(
− y2

2λ2

)

= 1

2π2

∫ kdamp

0
dk k2PB (k) exp

(
−k2λ2

2

)
, (76)

where the normalization volume is V = ∫
d3 y exp[−y2/(2λ2)] =

λ3(2π)3/2. Note that the integral is insensitive to the upper cut-off,
which may be taken to infinity, since λ � λdamp. The magnetic field
strength is shown in Fig. 5 (right).

The field strength at 10 Mpc is approximately 10−29 G and three
times as much on cluster scales 1 Mpc. Given the slope of the
spectrum, this is expected to grow to larger values for smaller scales.
Our numerical integration does not allow us to investigate smaller
scales since the numerical integration time increases dramatically
with kmax. In addition, the results become unreliable on small scales
where density perturbations have become non-linear by z = 0. On

the comoving scale of the Hubble radius at equality, the strength is
∼10−30 G.

3.7 Frame dependence

At early times when photons and baryons are tightly coupled, the
magnetic field measured in the baryon–photon fluid is not generated
at lowest order in the tight-coupling expansion. This is shown in
Appendix D2. Only higher orders in the tight-coupling expansion
contribute to magnetogenesis. However, since most of the magnetic
field production occurs when the tight-coupling expansion breaks
down around recombination, this suppression is only relevant at
early times, before recombination, and for modes which remain for
the longest time in the tight-coupled regime, i.e. for large scales.
Therefore, the difference between the magnetic field in the funda-
mental frame and in the baryon frame decreases, and they are nearly
equal today, as shown in Fig. 6. This shows that at 1 + z = 1000

Figure 6. Magnetic field strength at a given scale as measured in the fun-
damental frame at 1 + z = 1 (continuous) and 1 + z = 1000 (dashed), and
as measured in the baryon frame at 1 + z = 1 (dotted) and 1 + z = 1000
(dot–dashed). Dotted and continuous lines cannot be distinguished.
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there is a suppression for large scales in the baryon frame, but today
there is no more suppression since most of the magnetic field has
been generated around recombination time.

4 D ISCUSSION AND COMPARISON
WITH PREVIOUS RESULTS

Our approach is the first complete analysis of magnetogenesis
around recombination, in the sense that it does not neglect any
term in the second-order equation for the generation of the mag-
netic field – previous work has omitted at least one of the terms.
Therefore our results will necessarily differ from existing partial
results, and we discuss briefly how some of these differences arise.

Two general points can be highlighted.

(i) Numerical computation is essential to obtain the magnetic
power spectrum – and even for a reliable estimate of the magnetic
field strength. For example, Kobayashi et al. (2007) and Maeda
et al. (2009) use similar analytical methods and incorporate the
same source terms, but the two estimated field strengths on the
recombination Hubble scale differ by orders of magnitude. A full
numerical integration is needed, especially to take into account all
orders in the tight-coupling expansion. This was initiated by Ichiki
et al. (2007), and we have built on their work.

(ii) Neglecting any of the source terms for magnetogenesis not
only leads to inaccurate predictions – it also misses the fact the
separate source terms do not simply add up linearly. The total of the
different contributions is suppressed in the tight-coupling regime
on large scales by a factor (kη)2: the details are given in Appendix
D1. As a consequence, discarding some terms implies that this
suppression in the tight-coupling regime is neglected, which leads
to an overestimate of the magnetic field generated. This is especially
critical for the largest scales where tight coupling is valid at the latest
times.

In Hogan (2000), Gopal & Sethi (2005) and Siegel & Fry (2006),
the anisotropic stress contribution, S3 in (57), and the second-order
velocity contribution, S1, are neglected. It is apparent from the
power spectrum plot in Fig. 5 that both of these contributions are
substantial and cannot be neglected for a reliable prediction of the
magnetic field. In addition, these references omit the scalar metric
perturbations. Metric perturbations and the second-order velocity
are included in Matarrese et al. (2005), Kobayashi et al. (2007) and
Maeda et al. (2009), but the anisotropic stress is neglected.

In Ichiki et al. (2007), the anisotropic stress is included, but the
second-order velocity contribution is neglected. In addition to this
difference from our work, we find a different time and momentum
dependence for the large-scale and early-time behaviour of the S2

and S3 contributions. We then find
√

k3PB ∝ k4 while they find
∝ k7/2.

The first numerical prediction of the magnetic power spectrum
was given by Matarrese et al. (2005), neglecting anisotropic stress
but including second-order velocity. However, our power spectrum
is significantly different from theirs. Part of the difference is due
to anisotropic stress, but there is a further difference arising from
the treatment of velocities. The evolution equation for the magnetic
field can be given by (46). It is true that in the tight-coupled regime
(see Appendix C for details), the velocities of electrons, protons and
photons can be approximated to be equal. However, it is erroneous
to use εi�k∂�∇μT

μ
γ k = 0 to estimate the vorticity evolution. Indeed,

in order to cancel the collision term when taking the tight-coupling
limit, we have to consider a combination which uses the action

reaction law and for which the collision terms do not appear. It is
given by the total fluid vorticity conservation equation:

εi�k∂�∇μT
μ
γ k + εi�k∂�∇μT

μ
b k = 0 . (77)

In the tight-coupled limit, the fluid of baryons and the fluid of ra-
diation exchange vorticity, essentially because the dilution of their
energy density is different, and this exchange of vorticity is then
required to maintain equal velocities at all times. In Matarrese et al.
(2005) it is implicitly assumed that Cμ⊥

γ e can be neglected because
the velocity of electrons is assumed to be close to that of photons.
However, as we discussed in Section 2, the limit has to be consistent
with (37), and this collision term is precisely responsible for the vor-
ticity exchange between photons and electrons, and thus between
photons and baryons – and it cannot be ignored. The vorticity evolu-
tion in the tight-coupling limit should be computed using (D6), i.e.
by substituting the tight-coupling solution of velocities and energy
density perturbations in (46).

In Kobayashi et al. (2007), it is shown that there can be no
generation of magnetic field in the photon frame at strictly less than
the first order in tight coupling (if there is no initial vorticity). Note
that what we call first order in tight coupling (see also Pitrou 2011)
is called second order in tight coupling by Kobayashi et al. (2007)
and Maeda et al. (2009). In our case, we focus on C

μ
bγ , whereas they

focused on (k/τ ′)Cμ
bγ where τ ′ is the interaction rate and k/τ ′ is the

parameter of the tight-coupling expansion. The result of Kobayashi
et al. (2007) is compatible with our results in Appendix D2, since
in the tight-coupled regime the photon frame is the baryon frame.
Thus, the magnetic field in the photon frame will be generated only
starting from the next order, i.e. at the first order in the tight-coupling
expansion. Our numerical approach does not rely on a tight-coupling
expansion since we integrate the full system of equations, and in
that sense we consider necessarily the full tight-coupling expansion
in our computation. We checked numerically that at early times,
when photon–baryon coupling is efficient, the magnetic field in the
baryon frame is severely suppressed compared to the magnetic field
in the fundamental frame.

5 C O N C L U S I O N

We have performed for the first time a full numerical computa-
tion of the seed magnetic field generated by non-linear dynamics,
taking into account all general relativistic effects and all source
terms. We discussed the range of applicability of the mechanism
on cosmological scales and concluded that the generation of the
magnetic field is directly related to the Compton drag by photons
on baryons. Even in the tight-coupling regime, photons exchange
vorticity with baryons and the magnetic field is created. Since the
electric field that sources the magnetic field does not depend on the
fraction of free electrons, the magnetic field is still generated after
recombination, given that there is a relic fraction of charged parti-
cles, and we find that the largest production takes place in this final
stage.

Our results are summarized in Fig. 1. The power spectrum (left-
hand plot) behaves as

√
k3PB ∝

{
k4 k � keq

k0.5 k � keq.
(78)

On cluster scales the comoving field strength is (right plot)

B1 Mpc ∼ 3 × 10−29 G. (79)
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APPENDI X A : MAXWELL’S EQUATI ONS

Maxwell’s equations ∇ [λFμν] = 0 and ∇νFμν = jμ in a general
space–time take the form (Kobayashi et al. 2007; Tsagas et al.
2008)

DμBμ = −ωμEμ, DμEμ = ωμBμ + � , (A1)

Ḃ⊥
μ + 2

3
θBμ − (

σμν − ωμν

)
Bν

= −curl Eμ − εμνλu̇
νEλ, (A2)

Ė⊥
μ + 2

3
θEμ − (

σμν − ωμν

)
Eν

= curl Bμ + εμνλu̇
νBλ − Jμ , (A3)

where Eμ, Bμ are as defined by (10). Here, the total four-current is
jμ = jμ

e + jμ
p and it is split as

jμ = �uμ + J μ , � = −uμjμ , J μ = hμ
ν jν , (A4)

where �, Jμ are the charge density and current measured by uμ

observers. By (11),

� = e
(
γpnp − γene

)
, J μ = e

(
γpnpv

μ
p − γenev

μ
e

)
. (A5)

The derivative Dμ is the projected covariant derivative and it defines
a covariant curl (Maartens et al. 1999; Tsagas et al. 2008):

Dμf = hν
μ∇νf , DμSν = hλ

μhν
τ∇λS

τ , (A6)

curl Sμ = εμνλDνSλ . (A7)

We work in Gaussian units so that the fine structure constant is α =
e2/(4π) = 1/137.036 and the magnetic field strength is measured in
Gauss.

APPENDI X B: TETRADS

The tetrad basis is given up to the second order in scalar perturba-
tions by

e0
μ = 1

a

(
1 − � + 3

2
�2

)
δ

μ
0 − 1

a
Siδ

μ
i , (B1)

ei
μ = 1

a

(
1 + � + 3

2
�2

)
δ

μ
i , (B2)

e0
μ = a

(
1 + � − 1

2
�2

)
δ0
μ , (B3)

ei
μ = a

(
1 − � − 1

2
�2

)
δi
μ + 1

a
Siδ0

μ . (B4)

This choice of tetrad is discussed in Pitrou (2009) (see also Durrer
1994; Pitrou 2007; Senatore et al. 2009). The covariant derivative
of a tensor in the tetrad basis is given by

∇aX
c

b = eμ
a ∂μX

c

b − �
d

a bX
c

d + �
c

a dX
d

b , (B5)

where indices are lowered and raised with ηab and ηab. The affine
connections in the background are

�̄i0k = −�̄ik0 = −H
a

δik , H ≡ a′

a
, (B6)

and the perturbed forms are

�
(1)
00i = −�

(1)
0i0 = − 1

a
∂i�

(1) , �
(1)
0ik = 0 , (B7)
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�
(1)
i0k = −�

(1)
ik0 = 1

a

[
H�(1) + � (1)′

]
δik , (B8)

�
(1)
�ik = −�

(1)
�ki = − 2

a
∂[k�

(1)δi]� . (B9)

APPENDIX C : EULER AND VO RTICITY
E QUAT I O N S

C1 Euler equation

For a perfect fluid with equation of state ws ≡ P̄s/ρ̄s and speed of
sound c2

s ≡ dPs/dρs, the term on the left of the Euler equation (7)
is given to the second order in the tetrad basis by (Pitrou, Uzan &
Bernardeau 2008; Pitrou 2009)

a∇μT
μ

s i

ρ̄s(1 + ws)
= us

i
′ + (

1 − 3c2
s

)Hus
i + c2

s

1 + ws
∂i δs + ∂i�

+ 1 + c2
s

1 + ws

[(
δsu

s
i

)′
+ H (1 − 3ws) δsu

s
i + δs∂i�

]
− 4� ′us

i

+∂j

(
us

iu
j
s

)
− (� + �)

[
us

i
′ + H (

1 − 3c2
s

)
us

i

]
− ∂i

(
�2

)
+ �

[
us

i
′ + (

1 − 3c2
s

)Hus
i + c2

s

1 + ws
∂iδs + ∂i�

]

+ c2
s
′

1 + ws
δsu

s
i − c2

s
′

3H(1 + ws)2
δs∂iδs. (C1)

C2 Vorticity evolution

The vorticity tensor of species ‘s’ is

ωs
μν = hs α

μ hs β
ν ∇[αu

s
β] , (C2)

and the vorticity vector is given by (9). In the tetrad basis, up to the
second order,

ωs
i = εik�ω

k�
s , (C3)

aωs
ik = ∂[iu

s
k] + us

[i∂k](� + �) + us
[iu

s
k]

′ . (C4)

The evolution of the vorticity is deduced from (7) and (C1). For a
non-interacting perfect fluid, up to the second order (Christopherson
et al. 2009; Lu et al. 2009)

1

ρ̄s(1 + ws)
∂[i∇μT

μ
s k] = ωs

ik
′ + (

2 − 3c2
s

)Hωs
ik = 0 . (C5)

This can be recast as[
ρ̄s(1 + ws)a

5ωs
i

]′
= 0 . (C6)

For an interacting fluid,

ωs
ik

′ + (
2 − 3c2

s

)Hωs
ik

= 1

a

∑
r

{
us

[iC
sr
k]

′ + ∂[i

(
1 − � − 1 + c2

s

1 + ws
δs

)
Csr

k]

}
. (C7)

A P P E N D I X D : MAG N E TO G E N E S I S IN T I G H T
C O U P L I N G

D1 Magnetic field in fundamental frame

In the case where there are only interactions between baryons and
photons, C

μ
bγ + C

μ
γ b = 0, and

∂[i∇μT
μ

b k] + ∂[i∇μT
μ
γ k] = 0 . (D1)

In the tight-coupled limit where the interaction rate becomes very
high, photons and baryons behave like a single fluid, with

wf = 1

3 + 4R
, c2

s,f = 1

3(1 + R)
, R ≡ 3ρ̄b

4ρ̄γ

. (D2)

The energy density contrasts at the first order are

δ
(1)
f � (1 + wf )δ

(1)
b , δ

(1)
b � 3

4
δ(1)
γ . (D3)

The velocities of baryons and photons are the same in this regime

ub
i � u

γ
i � uf

i ⇒ ω
i

f � ωi
γ � ω

i

b . (D4)

By (C5) and (D1),

0 � ωf
ik

′ + H (
2 − 3c2

f

)
ωf

ik = [ρ̄f (1 + wf )a5ωf
ik]′

ρ̄f (1 + wf )a5
. (D5)

This can be used to infer the source term for magnetogenesis
in (46). In the tight-coupled regime, ∂[i∇μT

μ
b k] can be estimated by

using (D4) and (D3) in the baryon version of (C1). Then, subtracting
∂[i∇μT

μ
f k] = 0, we obtain

1

ρ̄b
∂[i∇μT

μ
b k] = 3c2

f Hωf
ik

+ c2
f

a

{
3H

1 + wf

(
1 − c2

f + Rc2
f

)
∂[i δfv

f
k] + 3H∂[i(� − �)vf

k]

+∂[i

(
−3� ′ + ∂j v

j

f

)
vf

k] − 1

1 + wf
∂[i�∂k]δf

}
. (D6)

From (46) it then follows that in the tight-coupled regime, the
evolution of the magnetic field is given by

exe

mp

(
a2Bi

)′

a2
= 3

2
c2

f Hω
i

f

− c2
f

a
εi�k

{
3H

1 + wf

(
1 − c2

f + Rc2
f

)
∂[�δfv

f
k]

+∂[�

(
−3� ′ + ∂j v

�

f

)
vf

�] − 1

1 + wf
∂[��∂k]δf

}
,

(D7)

where we used ρb = (mp + me)(ne + nH) � mp(ne + nH). Note
that 3c2

f H = d ln[ρ̄b/(ρ̄b + 4/3ρ̄γ )]/dη. Since the vorticity in the
tight-coupled plasma obeys (D5), the first term on the right-hand
side of (D7), which is linear in the vorticity, can only source the
magnetic field if there is initially vorticity in the plasma. This is
the term responsible for the Harrison mechanism (Harrison 1970;
Hollenstein et al. 2008). All other terms which are quadratic can
source the magnetic field even if there is no initial vorticity.

However, on large scales in the radiation era there is a suppres-
sion of the total contribution of these quadratic terms. From the
large-scale radiation era relations at the first order,

2H∂iv
i

f � ∇2� , δf � −2� , (D8)

it follows that at lowest order the quadratic terms are estimated by
∂iX∂j Y ∼ ∂i�∂j�. Hence the quadratic source terms are sup-
pressed by a factor (kη)2, since at lowest order all contributions
are of the type ∼∂[i�∂j ]� = 0. This implies that

√
k3PB (k, η) ∝

k4η2/η2
eq, that is

∑
i Si ∝ k3η5/η2

eq.
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D2 Magnetic field in baryon frame

From (47) we obtain

B
i

b − Bi = −εi�kvb
�Ek = − 1

e(ne + nH)xe
εi�kvb

�∇μT
μ

b k

= mp

aexe

c2
f

(1 + wf )
εi�kvf

�∂kδf , (D9)

where the second equality holds in the tight-coupled regime. Using
the first-order version of the Euler equation (C1) for the plasma, i.e.
with ∇μT

μi

f = 0, and using also the first-order evolution equation
for the plasma density contrast,(

δf

1 + wf

)′
= 3� ′ − ∂iv

i , (D10)

we deduce that in the tight-coupled regime

exe

mp

(
a2B

i

b

)′

a2
= 3c2

f Hω
i

f = −
(
a2ω

i

f

)′

a2
. (D11)

At early times in the radiation era we have xe � 1, and then we
obtain a conservation equation up to the second order:[
a2

(
e

mp
B

i

b + ω
i

f

)]′
� 0 . (D12)

This is precisely the Harrison mechanism, but up to the second
order.

In the tight-coupled regime, in the plasma frame, the magnetic
field can only be generated if there is initial vorticity, i.e. through the
Harrison mechanism. We recover here the results in Kobayashi et al.
(2007) and Maeda et al. (2009). The magnetic field measured in a
different frame is only due to the contribution of the electric field
to this change of frame. In the fundamental frame, this contribution
in the tight-coupled regime is given by the second and third lines
of (D7). Note that the electric field is generated at first order in
cosmological perturbations even in the lowest order of the tight-
coupling approximation and even in the plasma frame.
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