
Mon. Not. R. Astron. Soc. 416, 1822–1835 (2011) doi:10.1111/j.1365-2966.2011.19162.x

Secondary infall model and dark matter scaling relations
in intermediate-redshift early-type galaxies

V. F. Cardone,1,2� A. Del Popolo,3 C. Tortora4 and N. R. Napolitano5

1I.N.A.F. – Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone, Roma, Italy
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ABSTRACT
Scaling relations among dark matter (DM) and stellar quantities are a valuable tool to constrain
formation scenarios and the evolution of galactic structures. However, most of the DM prop-
erties are actually not directly measured, but derived through model-dependent mass-mapping
procedures. It is therefore crucial to adopt theoretically and observationally well founded
models. We use here an updated version of the secondary infall model (SIM) to predict the
halo density profile, taking into account the effects of angular momentum, dissipative friction
and baryons collapse. The resulting family of halo profiles depends only on one parameter,
the virial mass, and nicely fits the projected mass and aperture velocity dispersion of a sample
of intermediate redshift lens galaxies. We derive DM-related quantities (namely the column
density and the Newtonian acceleration) and investigate their correlations with stellar mass,
luminosity, effective radius and virial mass.

Key words: galaxies: elliptical and lenticulars, cD – galaxies: formation – galaxies: kinemat-
ics and dynamics – dark matter.

1 IN T RO D U C T I O N

According to the concordance �CDM model (Carroll, Press &
Turner 1992), dark energy (in the form of a cosmological constant
or a varying scalar field) and dark matter (hereafter, DM) are the
dominant actors on the cosmological scene (Komatsu et al. 2009;
Lampteil et al. 2010; Percival et al. 2010). In particular DM rep-
resents most of the total mass on galactic and cluster scales and
drives the formation and evolution of cosmic structures. Roughly
speaking, DM haloes form when the expanding matter within (and
surrounding) an overdense region experiences deceleration because
of the gravitational force, decouples from the Hubble flow, collapses
and eventually virializes. Models including all these processes have
been realized using different approaches.

N-body simulations have been the primary instrument to fully
implement the non-linearities of the formation process which are
realized in the dark halo growth. Even though they cannot make a
full understanding of the physics of galaxy formation possible, col-
lisionless simulations have been successful in reproducing a wide
range of galaxy properties, e.g. the spherically averaged halo den-
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sity profile, ρDM(r), which has been found to be well described by a
double power-law relation with ρDM ∝ r−3 in the outer regions and
ρDM ∝ r−α at their centres with the exact value of α remaining a
matter of controversy. In the popular NFW model (Navarro, Frenk
& White 1997) they find α = 1 independently on halo mass, while
either a steeper α = 1.5 (Moore et al. 1998; Ghigna et al. 2000;
Fukushige & Makino 2001; Mamon & Lokas 2005) or even shal-
lower values (e.g. Power et al. 2003; Fukushige, Kawai & Makino
2004; Navarro et al. 2004) have been claimed elsewhere. It is also
possible that α is not universal at all, but rather dependent on halo
mass, merger history and substructures (Jing & Suto 2000; Klypin
et al. 2001).

On the contrary, semi-analytical models are more flexible, offer-
ing the possibility to include a vast variety of physical ingredients.
In particular, Gunn & Gott (1972), Gott (1975) and Gunn (1977) in-
troduced the secondary infall model (SIM) to describe the collapse
and virialization of haloes that are spherically symmetric, have suf-
fered no major mergers and have undergone quiescent accretion.
After these first analyses, other works have relaxed the assumption
of purely radial self-similar collapse by including non-radial mo-
tions arising from secondary perturbations and taking care of both
angular momentum and stars to lead shallower or steeper density
profiles depending on the halo mass (see, e.g., Del Popolo 2010 and
references therein).
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Numerical and semi-analytic models generally lead to different
predictions which need a detailed observational scrutiny. Further-
more, the adoption of the proper density model is the basic ingre-
dient to derive the global DM properties which are critical param-
eters in the galaxy formation scenario: e.g. the virial mass which
is considered the driver of the heating process that might affect
the star formation history (Dekel & Birnboim 2006; Cattaneo et al.
2008) and the overall star formation efficiency (Conroy & Wechsler
2009).

From this point of view, scaling relations among DM and stellar
quantities may provide an important test to constrain both the forma-
tion scenarios and the DM properties. Early-type galaxies (ETGs)
are the ideal tools for these aims. First of all they are found to lie on
the so-called Fundamental Plane (FP) which tightly relates the cen-
tral velocity dispersion, effective radius and surface brightness. In
particular, the well-known deviation (or ‘tilt’) of the FP with respect
to the expectation of the virial theorem is still to be fully understood.
The different explanations proposed rely in turn on non-homology,
variations in the stellar M/L ratio with luminosity and a varying
DM content (see, e.g. Busarello et al. 1997; D’Onofrio et al. 2006;
Tortora et al. 2009, T+09 hereafter). Each of these solutions may
tell a different story about the interplay between the DM and the
stellar component, thus, it is clear how the constraints on scaling
relations can help to shed light on the formation and evolutionary
processes.

Recently, there have been growing evidences that the DM mass
fraction in the ETGs’ central regions is an increasing function of
stellar mass (or luminosity) hence supporting the idea that DM might
be the main driver of the FP tilt (Cappellari et al. 2006; Bolton 2007;
Cardone et al. 2009; Hyde & Bernardi 2009; T+09; Auger et al.
2010). On the other hand, the mean 3D DM central density has been
found to decrease with mass and luminosity (Thomas et al. 2009,
T+09, Tortora et al. 2010), while there are contradictory results
on the universality of the column density SDM = MDM,proj/πR2

(where MDM,proj is the projected DM mass within the radius R) with
some results arguing for its constancy over 12 orders of magnitude
in luminosity (Donato et al. 2009; Gentile et al. 2009) and other
works finding a correlation with halo mass (Boyarsky et al. 2009).
Part of this controversy may probably be ascribed to the different
assumptions on the halo model and stellar initial mass function
(IMF) or the adopted scale radius, as recently argued by some of
us (Cardone & Tortora 2010, hereafter CT10). On the other hand,
it is also possible that SDM changes with the morphological type
as suggested by the recent results in Napolitano, Romanowsky &
Tortora (2010), where the central projected density in ETGs is found
to be, on an average, systematically higher than the same quantity
for spiral and dwarf galaxies (see also Boyarsky et al. 2009, hereafter
B09).

In order to further investigate this issue, we present here the
analysis of the above scaling relations based on the SIM density
profile obtained in Del Popolo (2010) adding to the usual recipe of
the gravitational collapse, the effects of ordered and random angular
momentum, dynamical friction and adiabatic contraction (AC) due
to the baryonic collapse.

We use the Einstein radius and velocity dispersion data from
a sample of intermediate redshift (〈z〉 � 0.2) lens galaxies from
the Sloan Lens ACS (SLACS) survey (Auger et al. 2009, A+09,
hereafter) to constrain the model parameters and derive different
scaling relations. A general overview of the model is given in
Section 2, while in Section 3 we introduce the lens sample and
describe the fitting procedure. Our main results are shown in Sec-
tion 4 and discussed in the concluding section, Section 5.

2 TH E H A L O M O D E L

The density profile of DM haloes is obtained here by using the
analytical method described in Del Popolo (2009, hereafter DP09)
to which we refer the interested reader for more details. Here we
give a brief description of the model properties that are of main
interest for our aims.

The halo profiles are derived by assuming the secondary infall
model (Gunn & Gott 1972) where a bound mass shell of the initial
comoving radius xi expands up to a maximum radius (or turnaround
radius) xta. As successive shells expand, they an acquire angular
momentum and then contract on orbits determined by the angular
momentum itself, while dissipative processes and eventual violent
relaxation intervene to virialize the system converting kinetic en-
ergy into random motions. The final density profile may then be
computed as

ρ(x) = ρta(xta)

(x/xta)3

[
1 + d ln (x/xta)

d ln xta

]
(1)

with ρ ta(xta) the density at turnaround and x/xta referred to as the
collapse factor (see equation A18 in DP09). To describe the pro-
tohaloes density profile, DP09 considered the profile of a peak in
the density field generated according to the Baarden et al. (1986)
power spectrum and then took into account angular momentum,
dynamical friction and the presence of baryons following the steps
described below.

First, the angular momentum is decomposed in an ordered
component, related to the tidal torques experienced by proto-
haloes, and a random component connected with random velocities
(Ryden & Gunn 1987). The ordered term is computed following
Ryden (1988), while the random part is assigned to protostructures
according to Avila-Reese, Firmani & Hernandez (1998). A term re-
lated to the dynamical friction force has been explicitly introduced
in the equations of motion and evaluated Kandrup (1980) divid-
ing the gravitational force into an average and a random compo-
nent generated by the clumps in the hierarchical universe. Finally,
some adiabatic contraction of the halo, due to the baryonic col-
lapse, has been taken into account through the formalism of Klypin,
Zhao & Somerville (2002) and Gnedin et al. (2004), also includ-
ing the exchange of angular momentum among baryons and dark
matter.

The final product of this halo formation method gives the DM
density profile as a function of the radius r and the total halo mass
Mvir. The latter is the only parameter needed in order to specify
the halo density, being the halo inner slope α a function of the
virial mass as well. As discussed in DP10, the dependence of α on
Mvir breaks the universality of the halo profiles and favour Burkert
(1995) models at dwarf scales, and models steeper than NFW at
normal galaxy scales.

For the analysis we want to propose in the following, it is more
convenient to handle some analytical halo density profile, thus we
decided to approximate the numerical DP10 models with a gener-
alized NFW density profile (Jing & Suto 2000), which allows us to
accommodate the varying inner slope α as1

ρDM(r, z) = �virρcrit(z)

(
r

Rvir

)−γ (
1 + cvirr

Rvir

)−(3−γ )

, (2)

1 The adoption of an analytical approximation to the numerical output of
the model will make the adoption of the DP09 results easier to handle in the
mass mapping proposed below.
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where ρcrit(z) = 3H 2(z)/8πG is the critical density2 of the Universe
at redshift z and cvir = Rvir/Rs is the halo concentration (with Rs

and Rvir the radius where the logarithmic density slope equals −2
and the virial radius, respectively). Differently from the original
SIM we want to approximate (which is fully assigned by the halo
mass only), the generalized NFW profile is formally a function
of two parameters, namely (cvir, Mvir). Thus, in equation (2), the
dependence on cvir is fictitious and we can fit the same halo profile
with different cvir values by changing the corresponding �vir. Due
to this liberty in the cvir choice, we therefore arbitrarily scale cvir

with the total mass Mvir using the popular relation (Bullock et al.
2001)

cvir = 12.81

(
Mvir

1012 M�

)−0.13

, (3)

and then fit for �vir as a function of cvir obtaining

�vir � 6.626 × 10−3

c0.1
vir

{
c3

vir

[
ln (1 + cvir) − cvir

1 + cvir

]}2.1

. (4)

With the chosen set-up, the analytic expression of the inner loga-
rithmic slope γ as a function of the mass (M12 = Mvir/1012 M�)
turns out to be written as

γ � 0.62 + 1.166M
1/3
12 − 1

1.166M
1/3
12 + 1

. (5)

We have checked that this analytical model fits extremely well the
numerical density profile over the mass range 1010 ≤ M/M� ≤
1014 and is fully described by the virial mass as a single parameter,
as prescribed by the SIM numerical results. Moreover, it is worth
stressing that the use of the above cvir–Mvir relation is just a conve-
nient choice to simplify the search for an analytical approximation
which does not affect the final accuracy of the numerical SIM profile
fitting.3

As a final remark, we warn the reader that the above fitting
formulae for �vir versus cvir and γ versus Mvir have been obtained
by considering haloes at z = 0 (since there is a larger statistics and
better resolution), while we will adopt it also at the intermediate
redshifts of the lenses we will consider later. As can be seen from
fig. 2 in Del Popolo (in preparation), the evolution of γ with z is
actually quite small from z = 0 to 1 over the mass range of interest
here so that we prefer to rely on these well-checked approximations
rather than trying to fit less numerically accurate higher z profiles.

3 TESTING THE SIM MODEL

There are two main characteristics of the SIM halo model obtained
above that make it particularly interesting : (i) it is theoretically
well founded and intuitively incorporates most of the dark and
baryonic collapse physics, and (ii) it ends up with a halo family
which depends on a single parameter (the virial mass) and can
be written analytically as a generalized NFW (once specified the
dependence of the halo normalization on the NFW parameter cvir).

2 We assume a concordance �CDM cosmological model so that
H 2(z)/H 2

0 = �M(1 + z)3 + (1 − �M) with (�M, h) = (0.3, 0.7).
3 In principle, one could have adopted a whatever functional form provided
the relation �vir–cvir is adjusted in such a way that the approximated density
profile still fits the numerical one. For this reason, one has not to update
the cvir–Mvir relation to account for a different cosmology or redshift. In
particular, should one consider systems with z > 0, one must still use
equation (3) without scaling cvir by (1 + z)−1 as usually done in literature.

As a first observational test for this halo model, we start with a
sample of ETGs for which we can use a multitechnique approach as
in CT10. The sample includes 59 ETGs from the lenses catalogue
collected by the SLACS survey (Auger et al. 2009, hereafter A+09)
for which the velocity dispersion σ ap (within a circular aperture of
radius Rap = 1.5 arcsec) and the Einstein radius RE, and hence the
projected mass within it, ME = Mproj(RE), are measured. Following
A+09, we will model the light distribution with a de Vaucouleurs
(1948) profile with the effective radius Re and total luminosity LV

set to the values inferred from the V-band photometry. Finally, we
use the estimate of the total stellar mass, M�, from the SLACS team
(A+09, table 4) where a Salpeter (1955) IMF is assumed.

The median values of Rap/Re and RE/Re (respectively 0.62 and
0.51) indicate that the data probe the galaxy inner regions where
we need to carefully account for the stellar contribution to the
model estimates of σ ap and ME. To this end, we adopt the PS model
(Prugniel & Simien 1997) as its projection closely mimics the Sérsic
(1968) surface brightness profile and provides an analytical form of
the physical quantities of interest.

With the projected profile being a Sersic model, the lensing prop-
erties of the PS model are also analytically computed (Cardone
2004; Eliasdottir & Møller 2007). In particular, the projected mass
within ξ = R/Re is

M�
proj(ξ ) = M�

[
1 − �(bnξ

1/n)

�(2n)

]
(6)

where M� is total stellar mass, �(x, y) and �(x) are incomplete and
complete � functions, and we set n = 4 to mimic the deprojected
de Vaucouleurs (1948) profile used by the SLACS team to fit the
surface brightness of their galaxies.

The stellar and DM mass models are finally used as input for the
computation of the luminosity-weighted velocity dispersion profile.
As a first step, the line-of-sight velocity dispersion is given by
(Mamon & Lokas 2005)

I (R)σ 2
los(R) = GMeρ

e
�

ϒ�

∫ ∞

ξ

K(η/ξ )ρ̃�(η)M̃tot(η)

η
dη, (7)

where I(R) is the Sersic intensity profile; η = r/Re, Me and ρe
�

are the total mass and the stellar density at Re; ϒ� is the stellar
M/L ratio; Mtot(η) is the total mass, K(η/ξ ) is a kernel function
depending on the choice of the anisotropy profile; and the tilted
quantities are normalized with respect to their values at Re. We
consider only isotropic models and take the corresponding K(η/ξ )
from appendix B of Mamon & Lokas (2005). The observed quantity
is then obtained by luminosity-weighting σ los in a circular aperture
of radius Rap. Note that, according to the SDSS survey strategy, Rap

is fixed to 1.5 arcsec so that ξap = Rap/Re changes from one lens to
another.

Having set the stellar component quantities from photometry
and mass estimates, we are left with only one unknown parameter,
namely the halo mass Mvir. We find its fiducial value minimizing
the merit function

χ 2 =
[

σ obs
ap − σ th

ap(Mvir)

εσ

]2

+
[

Mobs
E − M th

E (Mvir)

εE

]2

, (8)

where, as detailed in Cardone et al. (2009), the uncertainties (εσ ,
εE) are obtained by summing in quadrature the observational errors
and the theoretical ones as derived from the propagation of uncer-
tainties on (M�, Re). For each lens, the best-fitting value is the one
minimizing χ 2(Mvir), while 1σ (2σ ) confidence levels are obtained
by solving �χ 2(Mvir) = χ 2(Mvir) − χ 2

min = 1.0 (4.0).
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In order to select only the lenses with a higher significance of
the model fit, one can roughly set a threshold on the reduced χ 2

values. For our best-fitting models, these are typically smaller than
1 (for 1 degree of freedom – two observational constraints versus
one model parameter) mainly because the inclusion of theoretical
errors on (εσ , εE).4 We have therefore decided to be conservative
and define the splitting of the sample on the basis of their observed
uncertainties rather than the significance of the fit, and define a full
(F), a good (G) and the best (B) sample as follows.

The sample F contains all the 59 lenses. The G sample is made
out of 51 lenses with the halo mass in the range of 11 ≤ log Mvir ≤
14 and the best-fitting values for (σap, ME) satisfying

−2.0 ≤ (σ obs
ap − σ bf

ap )/εσ ≤ 2.0,

−2.0 ≤ (Mobs
E − Mbf

E )/εE ≤ 2.0.

The B sample is the most conservative one being made out of 46
lenses with mass in the same range, but with the following quality
parameters:

−1.0 ≤ (σ obs
ap − σ bf

ap )/εσ ≤ 1.0,

−1.0 ≤ (Mobs
E − Mbf

E )/εE ≤ 1.0.

The overall agreement of the best-fitting values of (σap, ME) with
the observed ones is always quite good with rms (1 − σ bf

ap /σ obs
ap ) �

7 per cent (5 per cent) and rms (1−Mbf
E /Mobs

E ) � 13 per cent (9 per
cent) for sample F (B). As a consequence, most of the results we
will discuss in the following are quantitatively (within the errors)
independent of the sample adopted, thus we will refer to sample G
as the trade-off between fit quality and improved statistics.

Looking more closely to the galaxy filling the F sample (i.e. the
bottom rows of Table 1), they mainly differ from the G sample
for their higher log Mvir, exceeding the imposed limit of 1014 M�
fulfilled by samples B and G. This has been set as an upper limit
for virial masses of typical galaxy systems, and also to match the
range of validity of our analytical approximation of the SIM model
(see Section 2).

Such a large log Mvir model estimates might be a warning about
the accuracy of the approximation adopted to convert the SIM den-
sity profile in the one-parameter generalized NFW which tend to
overestimate the virial masses. We have checked though that all (but
one) of the seven most massive systems filling the F sample reside
in overdense regions (following the definition adopted in Treu et al.
2009) so that we cannot exclude the inference that this mass excess
in the final virial mass estimate is real and given by the contribu-
tion of the cluster itself which we cannot constrain with our limited
data and is beyond the purpose of this analysis. Finally, these sys-
tems turn out to have unreasonably large virial masses even if we
would use the NFW rather than the SIM model (see later). Thus,
we can confidently conclude that they might not represent a criti-
cal issue specifically for the SIM model, but rather that the lensing
model is missing some external field to be tracked with forthcoming

4 It is worth noting that such a noise term can be hardly reduced. To under-
stand why, let us consider the case of the projected mass which is the sum of
the stellar and DM terms. The stellar term is proportional to the total stellar
mass and hence is known with an uncertainty obtained by propagating those
on the luminosity and the stellar M/L ratio. This latter is actually the major
source of uncertainty in the final budget and cannot be reduced unless one
rederive the estimate of ϒ� relying on a larger set of colours than the one
used by the SLACS collaboration.

more accurate analyses. To be conservative, in the following, we
will exclude these very massive systems in all the scaling relation
estimates.

Since we have only two observed quantities for each lens, we
expect to determine Mvir on a case-by-case basis with some large
uncertainty (see e.g. Table 1). In fact, according to the standard
propagation of errors, most of the mass-related quantities (such as
the DM mass fraction and the column densities) will be known with
poor precision. As a possible way out, one could try to improve
the constraints by binning the galaxies according to luminosity
or stellar mass and then fitting for a parameter which is assumed
to be the same for all the objects in the same bin (e.g. Cardone
et al. 2009). Unfortunately, this is not possible here because of
the non-universality of the DM mass profile. Indeed, since Mvir is
obviously different from one lens to another, the slope γ and the
concentration cvir will differ too so that the objects in the same bin
would have intrinsically different properties. As a consequence, we
do not attempt any binning and prefer to deal with large error bars
rather than introducing possible systematics in the analysis.

3.1 SIM versus NFW and Burkert models

The above analysis has demonstrated that the proposed SIM model
is able to fit the observed aperture velocity dispersion and projected
mass within the Einstein radius for the SLACS lenses sample with
a reasonable significance. One might want to check whether other
‘standard’ halo density recipes can do a comparable job. We have
commented in Section 2 that our SIM model, because of the de-
pendence of the central slope on the virial mass, is able to match a
wide range of core behaviour from ‘cuspy’ NFW to ‘cored’ Burkert
models. It is then interesting to compare the best-fitting results to
(σap, ME) as done in Section 3 and see whether data are able to
favour one model with respect to the other.

We need to first remark that the main difference among these
three models is that NFW and Burkert density profiles are intrinsi-
cally biparametric (although there is a correlation between the two
parameters in both cases; see Section 3.1.2) while SIM is monopara-
metric by definition. According to Ockham’s razor principle, this is
an important argument to take into account in our final considera-
tions.

3.1.1 SIM versus two-parameter NFW and Burkert profiles

The two parameters of the NFW and Burkert profiles can be simi-
larly recast in terms of the virial mass Mvir and the concentration5

c = Rvir/Rs where Rs is the radius where the slope of the logarith-
mic density equals −2 in the NFW case and the core radius in the
Burkert one. Since we have only two observed quantities for each
lens, it is not possible to determine both (c, Mvir) on a case-by-case
basis, so that we must rely on a different strategy. We use the results
from CT10, where we have therefore binned the SLACS lenses in
10 luminosity bins and expressed (c, Mvir) in terms of quantities
that can be assumed to be equal for all lenses in the same bin. The
parameters (c, Mvir) are then determined a posteriori for each single
lens on the basis of the χ 2 minimization adopted in Section 3.

Both the NFW and Burkert models fit well the lens data, although,
as discussed in CT10, the Burkert model leads to quite small virial

5 Actually, the concentration definition strictly applies to the NFW case. We
decided to redefine it for the Burkert model for convenience, although we
do not assume that this has a defined physical meaning.
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Table 1. Main stellar and DM quantities of the lens ETG sample adopted. We first show the lenses of the B sample, then the ones to be added to
get the G and F samples. Stellar parameters are from the SLACS collaboration (A+09), while DM quantities are derived by our best-fitting SIM
model to the data. Columns are as follows: 1. galaxy ID; 2. V-band luminosity LV ; 3. logarithm of Re; 4. logarithm of the total stellar mass as
taken from A+09 (assuming a Salpeter IMF); 5. model virial mass; 6. 3D DM mass fraction; 7. logarithm of the DM column density SDM(Re);
8. logarithm of DM acceleration; 9. logarithm of the Newtonian stellar acceleration. All the quantities are given with their 1σ errors except for
log LV and log Re that have negligible uncertainties.

Lens ID log LV log Re log M� log Mvir fDM(Re) logSDM(Re) log gDM(Re) log g�(Re)
(log L�) (kpc) (log M�) (log M�) (M� pc−2) (m s−2) (m s−2)

SDSSJ0008−0004 11.11 1.01 11.64 ± 0.14 12.96 ± 0.63 0.46 ± 0.16 3.16 ± 1.10 -9.67 ± 0.20 -9.63 ± 0.14
SDSSJ0029−0055 10.98 0.97 11.58 ± 0.13 13.21 ± 0.84 0.40 ± 0.19 3.10 ± 0.098 −9.69 ± 0.32 −9.60 ± 0.13
SDSSJ0037−0942 11.16 0.94 11.73 ± 0.06 13.67 ± 0.30 0.37 ± 0.18 3.17 ± 0.10 −9.53 ± 0.28 −9.38 ± 0.06
SDSSJ0157−0056 11.25 0.87 11.74 ± 0.10 13.11 ± 0.68 0.29 ± 0.14 3.18 ± 0.19 −9.61 ± 0.26 −9.24 ± 0.10
SDSSJ0216−0813 11.43 1.15 12.03 ± 0.07 13.90 ± 0.33 0.49 ± 0.20 3.23 ± 0.16 −9.42 ± 0.25 −9.51 ± 0.07
SDSSJ0252+0039 10.85 0.76 11.46 ± 0.13 11.96 ± 1.1 0.17 ± 0.09 3.05 ± 2.21 −10.00 ± 0.21 −9.30 ± 0.13
SDSSJ0330−0020 11.07 0.88 11.58 ± 0.09 12.95 ± 0.49 0.36 ± 0.11 3.06 ± 0.14 −9.66 ± 0.16 −9.41 ± 0.09
SDSSJ0728+3835 11.04 0.83 11.69 ± 0.12 12.19 ± 0.96 0.17 ± 0.08 2.92 ± 0.36 −9.92 ± 0.19 −9.21 ± 0.12
SDSSJ0819+4534 10.86 0.96 11.40 ± 0.08 13.79 ± 0.27 0.60 ± 0.21 3.22 ± 0.59 −9.45 ± 0.25 −9.75 ± 0.08
SDSSJ0822+2652 11.09 0.97 11.69 ± 0.13 13.55 ± 0.64 0.40 ± 0.21 3.16 ± 0.27 −9.57 ± 0.33 −9.48 ± 0.13
SDSSJ0903+4116 11.34 1.09 11.84 ± 0.14 12.83 ± 0.74 0.40 ± 0.15 3.13 ± 0.52 −9.74 ± 0.20 −9.58 ± 0.14
SDSSJ0936+0913 11.04 0.90 11.68 ± 0.12 12.93 ± 0.76 0.29 ± 0.13 3.21 ± 3.04 −9.73 ± 0.22 −9.36 ± 0.12
SDSSJ0946+1006 10.95 1.0 11.59 ± 0.12 13.91 ± 0.40 0.55 ± 0.22 3.22 ± 0.143 −9.42 ± 0.28 −9.64 ± 0.12
SDSSJ0959+0410 10.44 0.53 11.15 ± 0.06 13.43 ± 0.37 0.27 ± 0.13 3.16 ± 0.13 −9.53 ± 0.27 −9.15 ± 0.06
SDSSJ1016+3859 10.81 0.67 11.48 ± 0.12 13.44 ± 1.0 0.24 ± 0.17 3.24 ± 0.13 −9.54 ± 0.38 −9.11 ± 0.12
SDSSJ1020+1122 11.13 0.81 11.80 ± 0.12 13.12 ± 0.77 0.20 ± 0.12 3.14 ± 0.65 −9.66 ± 0.29 −9.06 ± 0.12
SDSSJ1023+4230 10.92 0.82 11.57 ± 0.12 13.47 ± 0.61 0.31 ± 0.18 3.18 ± 0.65 −9.58 ± 0.32 −9.30 ± 0.12
SDSSJ1112+0826 11.12 0.88 11.73 ± 0.08 14.00 ± 0.34 0.43 ± 0.20 3.31 ± 0.14 −9.31 ± 0.26 −9.27 ± 0.08
SDSSJ1134+6027 10.81 0.76 11.51 ± 0.12 13.32 ± 0.87 0.27 ± 0.17 3.17 ± 0.12 −9.61 ± 0.35 −9.24 ± 0.12
SDSSJ1142+1001 10.96 0.89 11.55 ± 0.08 13.37 ± 0.46 0.36 ± 0.17 3.13 ± 0.12 −9.62 ± 0.28 −9.44 ± 0.08
SDSSJ1153+4612 10.70 0.64 11.33 ± 0.13 13.40 ± 0.75 0.27 ± 0.17 3.21 ± 0.131 −9.55 ± 0.35 −9.19 ± 0.13
SDSSJ1205+4910 11.1 0.96 11.72 ± 0.06 13.76 ± 0.28 0.43 ± 0.19 3.21 ± 0.10 −9.46 ± 0.26 −9.43 ± 0.06
SDSSJ1218+0830 10.98 0.95 11.59 ± 0.08 13.39 ± 0.42 0.41 ± 0.17 3.09 ± 0.09 −9.65 ± 0.26 −9.56 ± 0.08
SDSSJ1306+0600 10.82 0.84 11.43 ± 0.08 13.92 ± 0.28 0.54 ± 0.19 3.28 ± 0.12 −9.32 ± 0.22 −9.48 ± 0.08
SDSSJ1313+4615 10.94 0.82 11.58 ± 0.08 13.75 ± 0.37 0.38 ± 0.19 3.23 ± 0.12 −9.44 ± 0.29 −9.30 ± 0.08
SDSSJ1318−0313 11.14 1.20 11.67 ± 0.090 13.47 ± 0.32 0.59 ± 0.19 3.12 ± 0.29 −9.70 ± 0.26 −9.96 ± 0.09
SDSSJ1402+6321 11.13 0.94 11.79 ± 0.060 13.38 ± 0.44 0.30 ± 0.15 3.12 ± 0.18 −9.65 ± 0.27 −9.33 ± 0.06
SDSSJ1403+0006 10.82 0.77 11.44 ± 0.08 13.10 ± 0.83 0.29 ± 0.14 3.11 ± 0.11 −9.67 ± 0.29 −9.34 ± 0.08
SDSSJ1416+5136 11.02 0.79 11.64 ± 0.08 13.23 ± 0.57 0.25 ± 0.12 3.14 ± 0.10 −9.61 ± 0.26 −9.17 ± 0.08
SDSSJ1430+4105 11.27 1.07 11.93 ± 0.11 13.86 ± 0.50 0.44 ± 0.21 3.22 ± 0.30 −9.44 ± 0.30 −9.44 ± 0.11
SDSSJ1436−0000 11.17 1.10 11.69 ± 0.09 13.29 ± 0.41 0.49 ± 0.16 3.12 ± 0.57 −9.70 ± 0.23 −9.75 ± 0.09
SDSSJ1451−0239 10.84 0.77 11.39 ± 0.06 13.44 ± 0.37 0.35 ± 0.15 3.12 ± 0.11 −9.59 ± 0.26 −9.39 ± 0.06
SDSSJ1525+3327 11.44 1.23 12.02 ± 0.09 13.29 ± 0.63 0.42 ± 0.19 3.16 ± 1.21 −9.74 ± 0.29 −9.68 ± 0.09
SDSSJ1531−0105 11.12 0.96 11.68 ± 0.09 13.84 ± 0.36 0.47 ± 0.20 3.22 ± 0.25 −9.44 ± 0.27 −9.48 ± 0.09
SDSSJ1538+5817 10.64 0.6 11.28 ± 0.08 12.89 ± 0.57 0.23 ± 0.08 2.99 ± 0.13 −9.67 ± 0.17 −9.15 ± 0.08
SDSSJ1614+4522 10.82 0.94 11.47 ± 0.12 12.66 ± 0.70 0.42 ± 0.13 3.06 ± 1.82 −9.79 ± 0.16 −9.65 ± 0.12
SDSSJ1621+3931 11.15 1.03 11.70 ± 0.07 13.53 ± 0.34 0.44 ± 0.18 3.14 ± 0.18 −9.61 ± 0.27 −9.59 ± 0.07
SDSSJ1627−0053 11.01 0.84 11.70 ± 0.09 13.63 ± 0.51 0.31 ± 0.17 3.20 ± 0.13 −9.50 ± 0.31 −9.23 ± 0.09
SDSSJ1630+4520 11.15 0.90 11.86 ± 0.07 13.08 ± 0.50 0.24 ± 0.09 3.06 ± 0.18 −9.68 ± 0.19 −9.18 ± 0.07
SDSSJ1636+4707 10.99 0.83 11.63 ± 0.08 12.69 ± 0.6 0.25 ± 0.08 2.98 ± 0.41 −9.74 ± 0.16 −9.26 ± 0.08
SDSSJ1644+2625 10.8 0.75 11.43 ± 0.08 13.51 ± 0.47 0.32 ± 0.17 3.17 ± 0.11 −9.56 ± 0.31 −9.31 ± 0.08
SDSSJ2238-0754 10.836 0.766 11.45 ± 0.06 12.94 ± 0.85 0.27 ± 0.12 3.05 ± 0.11 −9.71 ± 0.24 −9.32 ± 0.06
SDSSJ2300+0022 10.98 0.85 11.65 ± 0.07 13.85 ± 0.32 0.42 ± 0.19 3.27 ± 0.12 −9.35 ± 0.25 −9.28 ± 0.06
SDSSJ2303+1422 11.11 0.98 11.71 ± 0.06 13.66 ± 0.31 0.42 ± 0.19 3.15 ± 0.10 −9.55 ± 0.27 −9.49 ± 0.06
SDSSJ2321−0939 10.95 0.87 11.60 ± 0.08 13.53 ± 0.51 0.34 ± 0.18 3.13 ± 0.11 −9.59 ± 0.31 −9.38 ± 0.08
SDSSJ2341+0000 11.06 1.15 11.73 ± 0.08 13.25 ± 0.41 0.50 ± 0.15 3.89 ± 11.2 −9.74 ± 0.21 −9.80 ± 0.08

SDSSJ0737+3216 11.344 1.20 11.96 ± 0.07 13.93 ± 0.28 0.58 ± 0.20 3.22 ± 0.11 −9.42 ± 0.22 −9.67 ± 0.07
SDSSJ1100+5329 11.29 1.14 11.84 ± 0.07 12.93 ± 0.46 0.44 ± 0.11 3.17 ± 1.52 −9.76 ± 0.15 −9.67 ± 0.07
SDSSJ1106+5228 10.73 0.65 11.37 ± 0.06 13.90 ± 0.30 0.39 ± 0.17 3.30 ± 0.142 −9.30 ± 0.25 −9.17 ± 0.06
SDSSJ1204+0358 10.73 0.67 11.45 ± 0.060 13.67 ± 0.35 0.29 ± 0.16 3.23 ± 0.13 −9.45 ± 0.29 −9.12 ± 0.06
SDSSJ1250+0523 11.16 0.85 11.77 ± 0.07 12.27 ± 0.65 0.14 ± 0.06 3.13 ± 2.99 −9.95 ± 0.20 −9.16 ± 0.07
SDSSJ2347-0005 11.33 1.0 11.83 ± 0.08 14.00 ± 0.43 0.49 ± 0.22 3.32 ± 0.17 −9.30 ± 0.28 −9.40 ± 0.08

SDSSJ0044+0113 10.87 0.85 11.47 ± 0.09 14.22 ± 0.31 0.59 ± 0.21 3.38 ± 0.15 −9.20 ± 0.23 −9.47 ± 0.09
SDSSJ0912+0029 11.26 1.08 11.96 ± 0.07 14.05 ± 0.32 0.50 ± 0.19 3.25 ± 0.13 −9.36 ± 0.23 −9.44 ± 0.07
SDSSJ0935−0003 11.52 1.31 11.96 ± 0.07 14.54 ± 0.24 0.80 ± 0.14 3.39 ± 0.13 −9.17 ± 0.16 −9.89 ± 0.07
SDSSJ0956+5100 11.19 0.95 11.81 ± 0.08 14.09 ± 0.33 0.48 ± 0.20 3.32 ± 0.152 −9.27 ± 0.24 −9.32 ± 0.08
SDSSJ1143−0144 11.06 1.02 11.60 ± 0.09 14.15 ± 0.28 0.65 ± 0.20 3.29 ± 0.13 −9.29 ± 0.21 −9.68 ± 0.09
SDSSJ1213+6708 10.92 0.87 11.49 ± 0.09 14.20 ± 0.31 0.59 ± 0.21 3.36 ± 0.15 −9.21 ± 0.23 −9.49 ± 0.09
SDSSJ1719+2939 10.82 0.75 11.46 ± 0.08 14.05 ± 0.32 0.47 ± 0.20 3.36 ± 0.15 −9.23 ± 0.24 −9.27 ± 0.08
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masses and hence unexpectedly low virial M/L values. In order to
make a meaningful comparison, we use the same selection criteria
defined above to define the good (G) and the best (B) samples for
the NFW and Burkert fits. It turns out that the number of lenses
in the G and B samples is (52, 50, 56) and (46, 25, 35) for the
SIM, NFW and Burkert models, respectively. Note that the same
lenses enter the G samples for SIM and NFW with only two cases
excluded for the NFW model because of a larger virial mass. This
is a consequence of the fact that the results from the SIM models
generally fitted a range of masses (see Table 1) that, according to
equation (5), correspond to γ ≥ 1, i.e. more ‘cuspy’ systems.

On the contrary, almost all the lenses enter the G sample in the
Burkert case because they have a far lower virial mass and the three
missing lenses are excluded since they have log Mvir ≤ 11. When
one strengthens the constraint on the precision of the recovered
(σap,ME), the SIM model becomes clearly preferred, its B sample
being the richest one.

The SIM model turns out to be favoured by the AIC and BIC
statistics (Liddle 2004) which measure the significance of the best
fit taking into account the different number of degrees of freedom
by penalizing the introduction of unnecessary parameters. These
two estimators are defined respectively as

AIC = −2 lnLmax + 2n

and

BIC = −2 lnLmax + n ln Ndata,

where Lmax is the maximum likelihood value, n is the number of
model parameters and Ndata is the number of constraints. Assuming a
Gaussian likelihood (as we have implicitly done), it is −2 lnLmax =
χ 2

min, while n = 1(2) for the SIM (NFW and Burkert) model with
Ndata = 2. The SIM model turns out to have the lowest AIC and
BIC values and is therefore the favoured one in comparison to the
NFW and Burkert ones, although the small values of �AIC =
AICSIM − AICNFW and �BIC = BICSIM − BICNFW make the NFW
model statistically equivalent in most cases (and the Burkert model
is generally excluded because of the highest values it gives).

A possible caveat is in order here. Although formally defined in
the same way, the χ 2 values for the SIM, NFW and Burkert models
are not fully equivalent since, for each lens, the total errors (εap, εE)
depend also on the adopted model because of the propagation of the
uncertainties on the stellar masses and the effective radius (see CT10
for details6). Although such differences are actually quite small and
do not impact the relative ranking of the models significantly, we
have nevertheless computed the percentage best-fitting residuals
and found (for the good samples lenses)

rms
[(

σ obs
ap − σ th

ap

)
/σ obs

ap

] = 7, 13, 14 per cent;

rms
[(

Mobs
E − M th

E

)
/Mobs

E

] = 12, 19, 16 per cent

for SIM, NFW and Burkert models, respectively. Again, we find
that the SIM model best reproduces the observed data so that we
can safely argue that it should be preferred with respect to the NFW
and Burkert models. This is one of the central results of this paper,

6 Summarizing, the difference between the theoretically predicted and the
observed values of the velocity dispersion and the projected mass entering
the χ2 evaluation are normalized with respect to the errors, but these errors
are partially model-dependent. For instance, the uncertainty on the theoret-
ically predicted Mproj is propagated from the one on the stellar mass to a
formula which depends on the adopted DM halo profile.

since we seem to have proved that a monoparametric density profile
(including most of the physics of the galaxy collapse) works better
than two-parameter density profiles with a much weaker physical
content (e.g. collapse and evolution of collisionless DM particles).
However, this result is based on a different procedure of fitting, thus
one can argue that the final significance of the fit might have been
affected by the use of binned data to constraint the halo parameters.
In the next section we will use the well-known correlations between
the two density parameters of NFW (and Burkert) profiles to check
whether their one-parameter rewriting can match the one-by-one
data with similar significance.

3.1.2 SIM versus one-parameter NFW and Burkert profiles

For the NFW density profile there is a well-established correlation
between the virial mass and the concentration as found in N-body
simulations. Following the recent analysis in Muñoz-Cuartas et al.
(2011), we therefore set

log cNFW = aNFW(z) log

(
Mvir

h−1 M�

)
+ bNFW(z) (9)

with

aNFW(z) = 0.029z − 0.097,

bNFW(z) = − 110.001

z + 16.885
+ 2469.720

(z + 16.885)2
,

for 10 ≤ log [Mvir/(h−1 M�)] ≤ 15. If we ignore the scatter in
equation (9) as a first approximation, this one-parameter version of
the NFW model can be fitted to the SLACS lenses with the virial
mass being only an unknown quantity. Using this approach, we thus
find a viable solution for all the 59 objects in the sample with 53
(50) lenses satisfying the selection criteria used to define the good
(best) sample for the SIM case. In particular, the quality of the fit
may be quantified by noting that

rms (1 − σ bf
ap /σ obs

ap ) � 4 per cent and rms (1 − Mbf
E /Mobs

E ) �
13 per cent

for the good sample and

rms (1 − σ bf
ap /σ obs

ap ) � 4 per cent and rms (1 − Mbf
E /Mobs

E ) �
11 per cent

for the best one. We have repeated the same exercise with the Burkert
model, by using the relation between the core density ρ0 and the core
radius r0 found in Salucci & Burkert (2000) to reduce the density
model to a one-parameter profile. Imposing this relation and fitting
each single lens using the virial mass as the only parameter, we
have found a viable solution for only six lenses, which suggests
that a monoparametric Burkert profile is incapable of matching the
SLACS data and we do not discuss this case hereafter.7

If we make a more detailed comparison of the SIM model to the
NFW model, we will see that the latter works better in matching the
aperture velocity dispersion, while the former is in a slightly better
agreement with the projected mass values. Overall, however, both
models match the data so well that the choice of which model is most
viable should be driven by physical motivations. We indeed prefer
the SIM model since the mass–central slope relation comes out
from a physical model rather than being the outcome of a numerical
simulation. However, this argument alone does not allow us to

7 Note, however, that this is likely a consequence of having assumed that the
ρ0–r0 relation found at z = 0 applies to any z.
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Figure 1. Best-fitting virial mass (left) and inner slope (right) for the SIM model with Salpeter (x-axis) and Chabrier IMF (y-axis).

definitely abandon other density models and as far as both SIM and
one parameter NFW (as well as the two-parameter version of NFW
and Burkert models, as discussed above) well reproduce the SLACS
lens data, we will hereafter consider all options and will a posteriori
check the difference introduced by the different models.

3.2 Changing from Salpeter to Chabrier IMF

As fiducial values for the stellar mass of each lens, we have adopted
the estimates given in table 4 of Auger et al. (2010) under the as-
sumption of a Salpeter IMF. However, since IMF is still an uncertain
variable in the mass analysis, in this section we want to investigate
the impact of a different IMF choice on the SIM results.

We therefore consider the case of the Chabrier (2001) IMF which
returns stellar masses smaller by a factor of 1.8 with respect to the
ones obtained with the Salpeter IMF. As the Chabrier IMF provides
the lowest masses compatible with the colours of the galaxy, this
will allow us to minimize the contribution to the velocity dispersion
and projected mass by the stellar component.

As for the Salpeter IMF, it turns out that all the lenses may be well
fitted with the best-fitting theoretical values of σ ap and ME within
2σ (1σ ) of the observed ones for 59 (53) out of 59 lenses in the
SLACS sample. Seemingly, the ability of the SIM model to fit the
data is not affected by the IMF choice. However, when looking at
the estimated virial masses for the Chabrier IMF case, the inferred
values turned out to be generally larger (i.e. log Mvir > 14.0) than
the ones obtained by the Salpeter IMF such that only 25 (24) lenses
enter the G (B) sample.

This is made clearer in Fig. 1, where we show that the best-fitting
virial masses for the SIM + Chabrier model are almost 1 order of
magnitude larger than those for the SIM + Salpeter case because
of the lower stellar masses predicted by the Chabrier IMF which
maximize the DM contribution to the central parts. This is ‘seen’
by the SIM model as the presence of a more cuspy profile which
implies a larger γ and a larger Mvir according to equation (5).

Based on the argument of unrealistic virial masses, we are in-
clined to rule out the SIM + Chabrier model. This is however be-
coming a common conclusion from different analyses: e.g. gravita-
tional lensing (see, e.g. Cardone & Tortora 2010; Treu et al. 2010)
and studies of the central DM fraction in local ETGs (Napolitano
et al. 2011) suggest that observations are consistent more with a
Salpeter rather than a Chabrier IMF for ETGs (unless some strong
AC is considered). Moreover, it has also been suggested that the IMF
might vary with luminosity (Renzini & Ciotti 1993; Tortora et al.
2009) with a Salpeter one being generally preferred for brighter
systems (as probed by the SLACS lenses).

4 DARK MATTER SCALI NG R ELATI ONS

Despite the large uncertainties, we have shown that the SIM halo
model is able to fit the combination of galaxy kinematics and lensing
data fairly well. We have also fixed the stellar mass contribution by
assuming the Salpeter IMF; we can now start looking into the DM
properties of the galaxy sample.

The scaling relations we are interested in are commonly written
as power laws and can be conveniently converted into linear rela-
tions in a log–log space, log y = log A + Blog x, with comparable
uncertainties on (log x, log y). As a best-fitting procedure, we will
follow the approach as in CT10 and adopt the Bayesian method
described in D’Agostini (2005; see also Hogg, Bovy & Lang 2010).

For the scaling relations we want to examine, we need to choose
a reference radius where the mass quantities are evaluated. As these
estimates will imply some model extrapolation, this choice is critical
since results can be strongly model-dependent.

Since our data mainly probe the region close to Re, this seems
the natural choice as the reference radius. Sometimes also the core
radius Rc, introduced in the cored density models, and the same
Rs where the logarithmic slope of the density profile is −2, are
taken as reference radii. It is, however, easy to check that both
of these quantities are far larger than Re so that one would stay
in the inconvenient position of deriving column density estimates
for regions much more far away with the distance constrained by
the data extension. As the proposed model has proven to match
the observations around Refairly well, we will compute the scaling
relations at this reference distance.

As a final remark, we stress that using Mvir as a model parameter
allows us to avoid extrapolation of the mass estimates constrained at
Re out to the far larger virial radius, as commonly done in parametric
modelling procedures. This makes our virial quantities intrinsically
more robust.

4.1 Column density

We start by considering the correlations of the DM column density
SDM(R) = M

proj
DM (R)/πR2 with luminosity, stellar mass, effective

radius and virial mass. The best-fitting relations obtained for the
SDM(Re) are8

8 Hereafter, we will discuss only the results for the sample G having checked
that fully consistent constraints are obtained using the F and B samples. This
can also be qualitatively seen in the figures where all the points are plotted
with different symbols.
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Figure 2. Best-fitting relations between the effective column density SDM(Re) and the total luminosity LV , stellar mass M�, effective radius Re and halo mass
M200 from left to right. Data in sample B are plotted as points, while the other data not present in B, but in samples G and F, are plotted as triangles and boxes,
respectively. We do not plot error bars to not clutter the plot. However, typical errors are 〈σ (log M�)/log M�〉 � 1 per cent, 〈σ (log Mvir)/log Mvir〉 � 2 per cent,
〈σ (logSDM(Re))/ logSDM(Re)〉 � 11 per cent, while log LV and log Re have a negligible error. The continuous black line is the best fit made using sample
G (i.e. points and triangles). The red and orange dashed lines are the best fit obtained in CT10, using a NFW + Salpeter IMF and a Burkert + Salpeter IMF,
respectively. The continuous blue line and the cyan-shaded region are respectively the best fit and the region enclosing the data for the results in Tortora et al.
(2010) using a spherical isothermal sphere, SIS (adopting a Salpeter IMF and projected quantities), while the dashed ones are for the same data but using
masses in A+09. Continuous and dashed grey lines are the best fits of local ETGs in T+09, using an SIS and a constant M/L profile, respectively.

logSDM(Re) = 0.06 log
(
LV/1011 L�

) + 3.17,

logSDM(Re) = 0.08 log
(
M�/1011 M�

) + 3.12,

logSDM(Re) = 0.05 log Re + 3.13,

logSDM(Re) = 0.10 log
(
M200/1012 M�

) + 3.02,

which are also shown in Fig. 2 as compared to the individual galaxy
data points. The intrinsic scatter of the fitting procedure, σ int, is
formally negligible for all the scaling relations above and is not
to be considered further on, while the true uncertainty of the fit
is dominated by the data-point scatter, an issue to which we will
come back later on. As a virial mass estimate we use M200 (i.e. the
mass within the radius R200 where the mean density is 200 times the
cosmological mean matter density) for homogeneity with previous
literature studies.

Taking at face values, these relations suggest a non-universality
of SDM(Re) in agreement with what we have found in CT10 using
a different halo model but the same reference radius. A similar
comparison with other results in the literature is not straightforward
because of differences in regard to the models adopted, the radius
where SDM(R) is evaluated for each individual system, and finally
the galaxy sample considered, e.g. using an NFW halo profile, B09
found a strong correlation between SDM(Rs) and the halo mass over
a wide range of masses, ranging from dwarf spheroidal galaxies to
galaxy clusters. On the contrary, Donato et al. (2009, hereafter D09)
using the Burkert (1995, B95 hereafter) profile found a remarkably
constant SDM(Rc) (Rc being the core radius of the B95 model) with
the luminosity on a sample of local spirals and ellipticals. These
‘cored’ profiles are in contrast, though, with our SIM model which
has no core but an inner cusp. Furthermore, as shown in CT10, an
inconvenience with the B95 model is that it does not allow a decent
fit to the SLACS data unless one assumes unreasonably low values
of the virial M/L ratio. Our lens systems, instead, is made of (mainly)
ETGs at an intermediate z, thus partially overlapping with B09 and
completely complementary to the D09 sample. For these systems,
we cannot exclude the possibility that some of the discrepancies
with the results above can be applied to some evolution with the
redshift of the slope of the SDM(Re) versus (LV , M�, Re, M200).

Although not investigated in detail elsewhere (but see, e.g. B09
and NRT10 for some hints), the galaxy morphology can be another
important reason responsible for the discrepancies in the scaling
correlations above. Our data are therefore not the best to solve the
differences between B09 and D09 contrasting results; however, they
might provide a benchmark result for the correlations expected of
ETGs under a generalized halo model with no fixed cuspy density
profile (somehow covering the intermediate range between the B95
and the NFW central behaviour).

This is particularly true due to the uncertainties in the slope and
zero-point of the fitted relations. Although we use a robust Bayesian
fitting method, the confidence regions around the parameter fit are
large (see Table 2) due to the large error bars on the DM-related
quantities. Such uncertainties make any assessment on the non-
universality of the relations rather weak. Indeed, considering the
68 per cent confidence ranges, a zero value for the slope can be
statistically excluded only for the SDM(Re)–M200 relation, which is
however consistent with zero within 95 per cent confidence level
(CL).

Thus, looking at the correlations with the stellar quantities (Re,
M∗, LV ), the SDM(Re) universality cannot be ruled out. On the other
hand, the strong correlation with the halo mass M200 in Fig. 2 works
against the SDM(Re) universality. This might be one reason for the
contrasting results between D09 and B09: in fact the former show
the absence of a trend of column density with luminosity, while the
latter show a strong trend with halo mass, which is along the line of
our conclusions.

However, even if we look at the correlations with luminosity, we
are inclined to argue that the claim of a constant SDM(Re) with lumi-
nosity is motivated for the later type galaxies, while the ETGs have
an intrinsically larger scatter (see also NRT10) which is the effect
of a stronger correlation with the halo mass (see also Section 4.2).

Focusing on the difference produced by the adoption of the dif-
ferent halo profiles, we can now compare the results obtained with
the SIM model with findings in recent literature using the same IMF
and SLACS data set.

CT10 have found lower average DM column densities over the
sample, � logSDM(Re) ∼ 0.1–0.3, with respect to the one obtained
with the SIM. This is due to the fact that the SIM model has an
average central slope, γ ∼ 1.0–1.3, which is steeper than the one of
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Table 2. Constraints on the slope and the zero-point of the correlations involving SDM(Re), Stot, gDM and g� using the sample G. For each parameter, we
report the best fit, mean and median values and the 68 and 95 per cent confidence ranges. Results from the fit to the other samples are fully consistent so that
we will not report them, but make them available on request.

Fit Slope Zero-point

xBF 〈x〉 xmed 68 per cent CL 95 per cent CL xBF 〈x〉 xmed 68 per cent CL 95 per cent CL

SDM(Re)–LV 0.06 0.02 0.02 (−0.09, 0.14) (−0.16, 0.23) 3.1670 3.1671 3.1682 (3.1631, 3.1694) (3.1597, 3.1729)
SDM(Re)–M� 0.08 0.06 0.07 (−0.04, 0.17) (−0.16, 0.28) 3.1204 3.1228 3.1157 (3.0740, 3.1782) (2.9801, 3.2478)
SDM(Re)–Re 0.05 0.07 0.07 (−0.04, 0.19) (−0.17, 0.30) 3.1257 3.0788 3.0506 (3.0117, 3.1882) (2.9229, 3.2960)
SDM(Re)–M200 0.10 0.10 0.10 (0.05, 0.16) (−0.02, 0.21) 3.0189 2.9892 2.9615 (2.9294, 3.0745) (2.8660, 3.1560)

Stot–LV −0.17 −0.19 −0.19 (−0.27, −0.11) (−0.37, −0.02) 3.4390 3.4344 3.4364 (3.4253, 3.4394) (3.4245, 3.4424)
Stot–M� −0.16 −0.16 −0.16 (−0.24, −0.07) (−0.34, 0.02) 3.5390 3.5207 3.5144 (3.4777, 3.5747) (3.4353, 3.6331)
Stot–Re −0.37 −0.34 −0.33 (−0.45, −0.24) (−0.59, −0.13) 3.7635 3.7391 3.7487 (3.6724, 3.8000) (3.5613, 3.9340)
Stot–M200 0.01 0.01 0.01 (−0.06, 0.08) (−0.12, 0.16) 3.4469 3.3381 3.3760 (3.1088, 3.5102) (3.1013, 3.6076)

gDM–LV −0.04 −0.02 −0.01 (−0.17, 0.12) (−0.30, 0.28) −9.628 −9.625 −9.626 (−9.631, −9.615) (−9.635, −9.614)
gDM–M� −0.03 0.00 −0.01 (−0.14, 0.13) (−0.29, 0.29) −9.607 −9.621 −9.611 (−9.702, −9.550) (−9.777, −9.441)
gDM–Re −0.04 0.03 0.03 (−0.12, 0.18) (−0.33, 0.35) −9.590 −9.637 −9.625 (−9.771, −9.535) (−9.921, −9.332)

gDM–M200 0.25 0.24 0.24 (0.17, 0.30) (0.10, 0.37) −9.947 −9.978 −9.961 (−10.130, −9.864) (−10.145, −9.770)

g�–LV −0.42 −0.38 −0.38 (−0.51, −0.26) (−0.63, −0.13) −9.394 −9.395 −9.395 (−9.397, −9.394) (−9.399, −9.391)
g�–M� −0.35 −0.28 −0.28 (−0.41, −0.14) (−0.58, 0.08) −9.180 −9.217 −9.191 (−9.287, −9.179) (−9.422, −9.066)
g�–Re −1.03 −1.02 −1.02 (−1.12, −0.92) (−1.24, −0.80) −8.475 −8.455 −8.428 (−8.529, −8.426) (−8.647, −8.334)

g�–M200 −0.07 −0.07 −0.08 (−0.15, 0.00) (−0.25, 0.10) −9.308 −9.305 −9.306 (−9.378, −9.231) (−9.527, −9.091)

the NFW and implies a projected DM mass within Re larger than
the one obtained with the same NFW.

However, the slope of the SDM(Re) versus (LV , M�, M200) correla-
tions stay very similar for the two halo models (see solid black and
red dashed lines in Fig. 2)9 which means that the details of the cen-
tral DM density are possibly insensitive to the global quantities. On
the contrary, the SDM(Re) seems much more sensitive to the scale of
the luminous matter as the slope of the SDM(Re)–Re correlation is
inverted with respect to NFW. In particular, from Fig. 2, we see that
NFW produces almost similar SDM(Re) for smaller Re (red dashed
line) which means that the two density profiles are very similar for
more compact objects, while it clearly produces a much smaller DM
column density at a larger Re, where the SIM model accommodates
the steeper slopes. Despite the low significance of the trend, this
is a key result of our analysis because this points to a correlation
between the halo central slope and the size of the luminous matter
in the sense that bigger galaxies are formed in more cuspy haloes.
This is qualitatively consistent with what has already been found in
DP09 and Del Popolo & Kroupa (2009), which have suggested that
more massive haloes are cuspier. As a side note, the presence of
steeper cusps for massive systems goes in the same direction of the
effect expected of the canonical AC which seems to be necessary
to model extended kinematics, e.g. using planetary nebulae as mass
tracers, in massive ETGs (Napolitano et al. 2011) and not in more
regular ones (Napolitano et al. 2009). If so, the steeper cusps would
reduce the strength of the actual AC recipe with respect to the clas-
sical prescriptions (Blumenthal et al. 1986; Gnedin et al. 2004) as
reported elsewhere.

9 We note that in particular the correlation with M200 might look somewhat
too shallow to an eyeball check. We have checked that if we use the sample F,
the best-fitting slope increases to 0.13 which is closer to the 0.17 value found
when the NFW model is used (red dashed) similarly to the correlation found
with LV and M�. Moreover, a steeper slope could be found by excluding the
least massive points, although there seems to be nothing unusual for these
lenses to be reasonably excluded here and not elsewhere.

For a comparison with more general mass profiles, T+10 adopted
a singular isothermal model to describe the stellar + DM mass pro-
file. Here the difference is that the stellar masses have been de-
rived using different population models. The solid blue lines in
the two middle panels of Fig. 2 show that their SDM(Re)–M� and
SDM(Re)–Re relations have the opposite trend of the one we have
found from the SIM. Note that a decreasing SDM(Re) with both the
stellar mass and the effective radius is also found by T+09 for local
ETGs, adopting the same mass model and stellar population prop-
erties (grey continue line in Fig. 2), but fitting very central velocity
dispersions. A similar (albeit shallower) decreasing trend and lower
average column densities [of � logSDM(Re) ∼ 0.3–0.5] are also
found from T+10 for a model with a constant M/L model (grey
dashed line in Fig. 2).

As T+10 do not assume a halo density profile, but derive the
DM mass by subtraction of the stellar component from the total
density profile, their approach seems much more dependent on the
stellar population analysis (i.e. IMF, priors on stellar population
parameters, availability of photometric or spectral data, etc.), e.g.
while stellar masses in T+10 are, on average, consistent with the
ones from A+09, some tilt is present and finally propagates to a
different final estimate of SDM(Re). Indeed, adopting the same total
mass model, but the A+09 masses, the SDM(Re)–M� correlation
changes its sign, while the SDM(Re)–Re one becomes shallower
so that the disagreement with our SIM-based results is partially
alleviated.10 This check is a warning to us about the importance of
the mass model and stellar population analysis adopted which, in
principle, is an important player in the definition of the DM scaling
relations.

Keeping this in mind, we decided to check the scaling relations
of the total column density Stot (obtained including the stellar mass
within Re) obtained with the SIM model for our particular stellar

10 Note that the results obtained in T+10, using the two stellar mass sets,
populate similar regions in the space SDM(Re)–M� and SDM(Re)–Re (see
the cyan region and the one enclosed within the blue lines in Fig. 2).
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population and IMF choice. As the best-fitting correlations we find

logStot = −0.17 log
(
LV /1011 L�

) + 3.44,

logStot = −0.16 log
(
M�/1011 M�

) + 3.54,

logStot = −0.37 log Re + 3.74,

logStot = 0.01 log
(
M200/1012 M�

) + 3.34,

whose marginalized constraints on the slopes and the zero-points
are given in Table 2. A zero slope is excluded at the 68 per cent
CL for Stot versus (LV , M�, Re) correlations, while we do not find
any correlation with M200. Thus, the net effect of the inclusion of
the stellar component is to tilt the trend almost uniformly clockwise
towards more negative slopes (and contemporary increase the zero-
point due to the addition of the stellar mass). In fact, we have
checked that the slope in the central regions of our light profiles
become shallower at larger Re, possibly combining with the DM
slope the results above. One of the possible drivers of such trends is
galaxy merging, which has been shown to produce shallower slopes
in simulated haloes (e.g. Boylan-Kolchin & Ma 2004). The trend
of the Stot seems consistent with the recent finding from Auger
et al. (2010) who, adopting a simple power-law density to shape the
full mass profile of the SLACS lenses, have found a strong inverse
correlation of the total density slope with Re.

4.2 Newtonian acceleration

The issue of the universality of the column densitySDM(R) has some
important dynamical consequences if one considers that it can be
easily related to the Newtonian acceleration gDM(r) = GMDM(r)/r2

(Gentile et al. 2009, hereafter G09). In particular, G09 have shown
evidences for the universality of both gDM(Rc) and g�(Rc) with the
label DM (�) referring to DM (stellar) quantities, over a (small)
sample of spirals and ellipticals. Let us first discuss the DM case
evaluating the acceleration at the effective radius to be consistent
with our choice throughout the paper. For the best-fitting relations
(plotted in Fig. 3), we get

log gDM(Re) = −0.04 log
(
LV /1011 L�

) − 9.63,

log gDM(Re) = −0.03 log
(
M�/1011 M�

) − 9.61,

log gDM(Re) = −0.04 log Re − 9.60,

log gDM(Re) = 0.25 log
(
M200/1012 M�

) − 9.95,

where the accelerations are in the units of m s−2. Similarly to the col-
umn densities, we find that the DM Newtonian acceleration has no
correlation with the stellar quantities (LV , M�, Re), while it strongly
correlates with M200. Thus we confirm that gDM is a constant with
respect to the stellar quantities although it is larger than the value
found by G09 for the gDM computed at Rc. The latter is an upper
limit to our Re estimates since generally Rc � Re and for a given
constant core density ρ0 the Newtonian acceleration scales linearly
with radius, i.e. gDM(Re) � gDM(Rc). As already noted by NRT10,
this result works against the universality of the gDM, which instead
seems to scale with the morphological type (and possibly the mass).

The SIM estimates obtained here are discrepant with the results
from CT10 for the NFW and B95 (Fig. 3). In particular our gDM

are located in between the two reference halo models, while the
difference in the slopes with all the quantities are statistically in-
significant. This result is somehow different with respect to the
SDM(Re) in Fig. 2 where the CT10 estimates are almost everywhere
lower than the SIM estimates, which might be traced to the fact that
here we have considered 3D quantities. In particular, the large values
obtained by CT10 for the B95 are related to the fact that typical core
radii in CT10 are smaller than Re thus not representing a real cored
profile, but rather better resembling a pseudo-isothermal sphere,
with a rather steep slope around Re. In fact the deviations are more
marked for the smaller systems which will also have shallower inner
slopes (according to equation 5), and thus are overestimated by the
steeper densities implied by the B95 models. On the other hand, the
gDM(Re) are systematically larger than the values obtained in CT10
for NFW because of the steeper 3D slopes. We remark here that the
3D quantities are more weakly depending on the inner slopes with
respect to the projected ones shown in Fig. 1, a fact that translates
with an null correlation of the gDM with Re.

As to the stellar Newtonian acceleration, we find the following
as best-fitting relations:

log g�(Re) = −0.42 log
(
LV /1011 L�

) − 9.39,

log g�(Re) = −0.35 log
(
M�/1011 M�

) − 9.18,

log g�(Re) = −1.03 log Re − 8.48,

log g�(Re) = −0.07 log
(
M200/1012 M�

) − 9.31,

which clearly demonstrate that this is not a universal quantity (and
indeed the confidence ranges for the slope in Table 2 exclude a zero
slope at the 68 per cent CL) in agreement with CT10. Note, however,
that a correlation of g�(Re) with the stellar quantities (LV , M�, Re)
is expected, being all these quantities involved in its definition. On
the contrary, the correlation with M200 is very weak, which shows

Figure 3. Best-fitting relations between the DM Newtonian acceleration (in units of m s−2) and the total luminosity LV , stellar mass M�, effective radius Re

and halo mass M200 from left to right. Typical error bars are 〈σ [log gDM(Re)]/ log gDM(Re)〉 � 2 per cent. Symbols and lines are the same as those in Fig. 2.
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that there is not any strong dependence of the stellar mass at the
centres on the global DM content.

4.3 Dark matter mass content

In the previous sections we have seen that the total and DM column
densities correlate differently with luminosity, stellar mass and Re,
which will depend on the different spatial distributions of stellar and
dark matter. Here we want to investigate the consequences of the
column density scaling relations in term of the central DM fractions.
To this end, we note that

SDM

Stot
= M

proj
DM (Re)

M�
proj(Re) + M

proj
DM (Re)

= f
proj

DM (Re),

where f
proj

DM (Re) is the projected DM fraction. Considering the best-
fitting values of the correlations of both column densities with stellar
parameters, we obtain that the projected DM fraction within Re

scales with the luminosity, stellar mass and Re, as f
proj

DM (Re) ∝ L0.23
V ,

f
proj

DM (Re) ∝ M�
0.24 and f

proj
DM (Re) ∝ Re

0.42.
The same results are found by the direct fitting of the same

quantities of the individual galaxies, adopting our Bayesian fitting
procedure:

log f
proj

DM (Re) = 0.21 log
(
LV /1011 L�

) − 0.21,

log f
proj

DM (Re) = 0.18 log
(
M�/1011 M�

) − 0.32,

log f
proj

DM (Re) = 0.41 log Re − 0.58,

while the 68 per cent confidence ranges of the slopes are (0.15, 0.26),
(0.12, 0.24) and (0.34, 0.45) for f proj

DM–LV , f proj
DM –M� and f

proj
DM –Re, re-

spectively. We have therefore a clear evidence that the different
scalings of SDM(Re) and Stot with the stellar quantities are an ex-
pected consequence of the varying DM content within the effective
radius.

Similarly, we define the three-dimensional DM fraction as
fDM(Re) = MDM(Re)/[M�(Re) + MDM(Re)] and investigate its cor-
relation with the stellar quantities. Our best-fitting relations are

log fDM(Re) = 0.22 log
(
LV /1011 L�

) − 0.44,

log fDM(Re) = 0.15 log
(
M�/1011 M�

) − 0.53,

log fDM(Re) = 0.59 log Re − 0.98,

while the 68 per cent CL for the slope are (0.08, 0.30), (0.02, 0.24),
(0.36, 0.71), respectively. Despite the large uncertainties, these re-
sults show that brighter, more massive and bigger systems have a
larger DM content within the effective radius, in qualitative agree-
ment with previous results in literature, regardless of the adoption of
deprojected or projected quantities (e.g. Padmanabhan et al. 2004;
Cappellari et al. 2006; T+09; Auger et al. 2010; NRT10; T+10).
We, however, note that our best-fitting relations with LV and M� are
much shallower than what is found in CT10 for the fiducial NFW
model (and Salpeter IMF), but in a good agreement with the ones in
Cardone et al. (2009), where a phenomenologically motivated gen-
eral halo profile was used to fit the same SLACS data considered
here.

4.4 Impact of the IMF choice

All the results discussed so far have been obtained using the SIM
model for the dark halo and a Salpeter IMF. As discussed in

Section 3.3, choosing a Chabrier IMF leads to SIM models hav-
ing a virial mass larger than 1014 M� for more than 50 per cent of
the sample so that we have preferred to exclude the SIM + Chabrier
combination when discussing the scaling relations. This is a rea-
sonable choice under the hypothesis of a universal IMF which does
not depend on galaxy parameters. There are different evidences
that this might not be the case, although there is still not any con-
sensus whether the IMF might change with galaxy morphology,
luminosity/mass and/or stellar population parameters (Davé 2008;
van Dokkum 2008; Holden et al. 2010; Napolitano et al. 2010; van
Dokkum & Conroy 2010, 2011). Here we decided to check what can
be the impact of the IMF choice, by computing the scaling relations
for a mixed sample made out of the 25 lenses in the G sample of the
SIM + Chabrier model and the remaining 26 lenses of the G sample
of the SIM + Salpeter model. In a sense, we are here postulating
an IMF varying with the halo virial mass and approximating such a
variation with a rough step function.

Let us consider first the DM column density within Re. For the
best-fitting relations, we get

logSDM(Re) = −0.003 log (LV /1011 L�) + 3.21,

logSDM(Re) = −0.02 log (M�/1011 M�) + 3.22,

logSDM(Re) = −0.09 log Re + 2.33,

logSDM(Re) = 0.06 log (M200/1012 M�) + 3.11.

Comparing with the values in Table 1, we see that the best-fitting
relations are shallower for (LV , M�) and steeper for (Re, M200).
However, if we consider the 68 per cent confidence ranges, the
slopes are fully consistent so that the change in the slope cannot be
considered statistically significant.

Similarly, the total column density Stot turned out to have the
best-fitting relations with slopes (−0.21, 0.05, −0.04, −0.04) for
(LV , M�, Re, M200), respectively. Also, for these relations the confi-
dence ranges significantly overlap with respect to the Salpeter IMF
(see Table 1) thus the two cases do not differ significantly.

For the DM Newtonian acceleration we obtain

log gDM(Re) = −0.05 log (LV /1011 L�) − 9.45,

log gDM(Re) = −0.07 log (M�/1011 M�) − 9.42,

log gDM(Re) = −0.13 log Re − 9.33,

log gDM(Re) = 0.13 log (M200/1012 M�) − 9.67,

which are comparable with the results for slope and zero-point as in
Table 1. This suggests that the universality (or lack of it) of the DM
Newtonian acceleration is not significantly affected by the choice of
the IMF (a similar result has been found for the stellar Newtonian
acceleration which we do not report here for brevity).

Finally, we have considered the DM mass fraction within Re and
found that

log fDM(Re) = 0.18 log (LV /1011 L�) − 0.30,

log fDM(Re) = −0.10 log (M�/1011 M�) − 0.24,

log fDM(Re) = 0.44 log Re − 0.70.

As expected, these results turned out to be significantly different
from the Salpeter IMF case. In particular, the f DM–LV and fDM–Re

relations turned out to be shallower, while f DM–M� has a negative
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slope and a significant anticorrelation. This is the consequence of the
step of IMF function assumption which produced a significant in-
crease in the fDM(Re) for the lower mass systems with the Chabrier
with respect to the smaller fDM(Re) obtained with the Salpeter
IMF assumed for the more massive ones. The same argument ap-
plies to the f DM–LV and f DM–Re relations which turned out to be
shallower.

As a final remark, we can conclude that scaling relations are
overall mildly affected by the IMF assumption in the dynami-
cal/lensing analysis, with correlations being comparable among
results obtained either assuming a universal (Salpeter) IMF, or a
non-universal mass-dependent IMF (Chabrier for less massive sys-
tems and Salpeter for more massive ones). A universal Chabrier
IMF seems to be ruled out because it produces too many systems
with unrealistically large virial masses for galaxy systems.

5 C O N C L U S I O N S

While there is a general consensus on the ubiquitous presence of
DM in galaxies, there is still an open debate about its mass density
distribution and the role it has exactly played in the galaxy formation
scenario. These are crucial issues since the exact density distribu-
tion and the assembly processes that dark haloes have undergone
might tell more on the actual nature of the DM itself. Scaling rela-
tions among DM-related quantities and stellar properties may give
important hints about the relative interplay between the two main
constituents of galaxies.

In this context, what seems particularly intriguing is the exis-
tence of some universal properties of the DM quantities like the
column density, or even the presence of a characteristic accelera-
tion scale (e.g. Donato et al. 2009; Gentile et al. 2009), which might
be related to common formation processes on many mass scales
or morphological categories. Recent works have argued either in
favour or against the presence of such universal values (B09, CT10,
NRT10). Dealing with DM properties, though, means necessarily to
deal with indirect, model-dependent quantities, which can make the
conclusions on these parameters strongly affected by the particular
model adopted. One approach might be to use models that consider
the widest range of DM properties derived from the N-body cos-
mological simulations, e.g. from the cuspy profiles predicted by the
classical NFW to the ‘cored’ profiles of the B95 (see e.g. CT10).
The disadvantage of this approach is that it gives a partial view
of how the DM scaling relations vary in the two extreme regimes
without allowing a generalization of the results in case the actual
DM properties are in the between.

In an attempt to test more general, theoretically motivated DM
halo profiles, like the one proposed by the secondary infall model
as implemented in DP09, we have modelled the central velocity
dispersion and the projected mass within the Einstein radius of a
large sample of ETG lenses at an intermediate redshift (〈z〉 ∼ 0.2).

In particular, the DP09 models adopted a modified secondary in-
fall scenario including (in a semi-analytic way) the effect of angular
momentum, dynamical friction and adiabatic collapse of baryons.
As a first important result, we have shown that this model is fully
compatible with observations of ETG and well performing in the
data fitting. This is a significant step forward with respect to previous
analyses where SLACS sample have been modelled with standard
NFW (CT10), as the main property of the SIM model is to be fully
assigned by a single parameter (the virial mass) instead of the two
parameters required by more ‘standard’ halo density models such
as NFW (which is specified once the concentration and virial mass

are given) or Burkert profile (characterized by the core radius and
the central density).

Even if we consider the correlations between the halo parame-
ters for the NFW (Navarro, Frenk & White 1996; Bullock et al.
2001; Hennawi et al. 2007) and Burkert profiles (e.g. Salucci &
Burkert 2000), which allow us to rewrite these models as a function
of only one parameter (e.g. the virial mass), we have seen that the
best fit to the observed quantities turned out to be generally poorer
than the one provided by the SIM model (see Section 3), with
only NFW providing a somehow similar significance than the SIM
model. This is mainly because in the typical mass range spanned
by the ETG sample considered here, the SIM model predicts
cuspier profiles according to equation (5), i.e. NFW-like or even
cuspier.

With this novel DM set-up, we have estimated the DM column
density SDM(Re), the Newtonian acceleration gDM(Re) and finally
the DM mass fraction fDM(Re) along with their correlations with
the stellar total luminosity, mass and size. The best-fitting relations
show that SDM(Re) is almost constant (possibly increasing with, if
any) over the range of stellar parameters (LV , M�,Re) probed by
the adopted data set, while it is clearly strongly correlated with the
halo mass M200. This result is actually consistent with both G09,
claiming to have found a characteristic density scale over a large
range of galaxy luminosities, and with B09 who instead have found
a correlation with the dark halo mass.

Similarly we have found an even more remarkably constant
DM Newtonian acceleration gDM(Re) with (LV ,M�, Re), and still a
strong correlation of this quantity with the virial mass. In this case,
though, the absolute constancy of the gDM(Re) does not allow us to
justify the correlation with the virial mass but probably says more
of some intrinsic properties of the dark matter haloes, and of the
non-existence of a universal acceleration scale. In fact, here we have
confirmed an evidence formerly revealed in NRT10, that gDM(Re)
of the ETGs is on average larger than the one obtained for late-type
galaxies (e.g. in Donato et al. 2009, having considered that their
column densities obtained at the core radius are an upper limit for
the same quantity if computed at the Re).

As such, one could argue over the existence of a Newtonian
acceleration growing with the morphological type and (possibly)
with the stellar mass (if including all the Hubble sequence) as well
as shown by the trend with M200.

We need to conclude this reasoning with a caveat, underlying all
analyses based on model-dependent approaches: all DM quantities
correlations against (LV , M�, Re) are critically dependent on the
adopted halo model and stellar IMF (in our case a Salpeter IMF). A
direct comparison with previous literature results is complicated by
systematic effects due to differences in both the halo model (SIM
versus NFW or Burkert) and the radius where the DM quantities
are evaluated (Re versus Rs or Rc). In particular, the comparison of
results obtained with the SIM model with similar works based on
the adoption of the more standard NFW and B95 has highlighted
an interesting correlation between the cuspiness of the dark halo
and the size of the parent galaxies. In the SIM approach, in fact,
larger galaxies seem to assemble in dark haloes having steeper
cusps, while more compact massive ETGs are accommodated on
shallower cusps. This is an interesting hint that might be cross-
checked on hydrodynamical simulations and seems to be a crucial
test for the hierarchical model as a whole.

Finally we stress that there are still some weaknesses in the anal-
ysis proposed, mainly posed by the limited galaxy sample (e.g. the
SLACS sample only probes a quite limited range in both stellar
luminosity and mass), and the large uncertainties on the derived
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quantities. However, we have considered this to be a benchmark
test for more general dark halo model laws based on a simple physi-
cally motivated galaxy model. This is the first step of a broader plan
to improve the testing along different roads. On one hand, a detailed
theoretical investigation is needed to find out quantities that depend
as less as possible on both the adopted halo profile and stellar IMF.
Similarly, one should check whether the choice of Re as a reference
radius where DM quantities are evaluated is the most convenient one
to find a compromise between the need to not extrapolate outside
regions directly probed by data and the halo model characteristics.
On the other hand, stronger constraints on the slope of the investi-
gated correlations could be obtained by narrowing the uncertainties
on the DM quantities. The use of a one-parameter model, like the
SIM, is expected to help by eliminating the degeneracies among
halo parameters which generally plague the analysis adopting the
NFW profiles or similar, and contribute to the overall error budget.
A further improvement would be obtained by fitting the full velocity
dispersion profile rather than only its aperture value, although such
a strategy could be applied only to local ETGs. Finally, a larger
sample spanning a wider range in (LV ,M�, Re, M200) would allow
us to further narrow down the confidence ranges for the slopes of
the investigated correlations by both improving the statistics and
tracking the different trends better.

Should both constancy with stellar luminosity, mass and size,
and independence on the fitting procedure details be successfully
demonstrated, one could safely conclude that a proposed quantity is
indeed universal and use such a result to constrain galaxy formation
and evolution scenarios.
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2009, preprint (arXiv:0911.1774) (B09)
Boylan-Kolchin M., Ma C.-P., 2004, MNRAS, 349, 1117
Bullock J. S., Kolatt T. S., Sigad Y., Somerville R. S., Kravtsov A. V., Klypin

A. A., Primack J. R., Dekel A., 2001, MNRAS, 321, 559
Burkert A., 1995, ApJ, 447, L25
Busarello G., Capaccioli M., Capozziello S., Longo G., Puddu E., 1997,

A&A, 320, 415
Cappellari M. et al., 2006, MNRAS, 366, 1126
Cardone V. F., 2004, A&A, 415, 839
Cardone V. F., Tortora C., 2010, MNRAS, 409, 1570
Cardone V. F., Tortora C., Molinaro R., Salzano V., 2009, A&A, 504, 769
Carroll S. M., Press W. H., Turner E. L., 1992, ARA&A, 30, 499
Cattaneo A., Dekel A., Faber S. M., Guiderdoni B., 2008, MNRAS, 389,

567
Chabrier G., 2001, ApJ, 554, 1274
Conroy C., Wechsler R. H., 2009, ApJ, 696, 620

D’Agostini G., 2005, preprint (arXiv: physics/0511182)
D’Onofrio M., Valentinuzzi T., Secco L., Caimmi R., Bindoni D., 2006,

New Astron. Rev., 50, 447
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