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Patients with X-linked lymphoproliferative (XLP) disease
due to deficiency in the adaptor molecule signaling lympho-
cytic activation molecule-associated protein (SAP) are highly
susceptible to one specific viral pathogen, the Epstein-Barr
virus (EBV). This susceptibility might result from impaired
CD8" T-cell and natural killer cell responses to EBV infection
in these patients. We demonstrate that antibody blocking of
the SAP-dependent 2B4 receptor is sufficient to induce XLP-
like aggravation of EBV disease in mice with reconstituted
human immune system components. CD8" T cells require
2B4 for EBV-specific immune control, because 2B4 blockade
after CD8" T-cell depletion did not further aggravate symp-
toms of EBV infection.
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X-linked lymphoproliferative disease (XLP) type 1 is caused by
loss-of-function mutations in the SH2DIA gene and results in
increased susceptibility to Epstein-Barr virus (EBV)-associated
conditions. Affected boys develop fulminant infectious mono-
nucleosis, hemophagocytic lymphohistiocytosis, dysgammaglo-
bulinemia, lymphoproliferative disorders, and malignant
lymphoma [1]. The function of the protein encoded by the
SH2DIA gene, the signaling lymphocytic activation molecule
(SLAM)-associated protein (SAP), has been studied to
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understand the cause of this disease [2]. The cytoplasmic SAP
family of adaptors, including SAP and Ewing’s sarcoma activat-
ed transcript 2 in humans, interact with SLAM-related receptors
(ie, SLAM [CD150], 2B4 [CD244], CD84 [SLAMF5], natural
killer, T and B cell antigen [NTB-A; CD352; SLAMF6], Ly9
[CD229] and CD2-like receptor activating cytotoxic cells
[CD319; SLAMF?7]), which are exclusively expressed on hemato-
poietic cells. SLAM receptors transmit activating signals on en-
countering their homotypic self-ligands, with the exception of
2B4, which interacts with its ligand CD48 (SLAMF2), a surface
molecule that is also restricted to the hematopoietic lineage.
These signals are transmitted via SAP by either coupling SLAM
family receptors to SAP-recruited activating signaling cascades
or hindering their association with inhibitory effectors [3]. In the
context of SAP deficiency and EBV infection, 2 of these receptors,
2B4 and NTB-A, have been demonstrated in vitro to be defective
in their signaling function [4-6]. CD8" T and natural killer (NK)
cells from patients with XLP disease display inhibitory rather than
activating signaling after engagement of these receptors [4-6].

In female heterozygote carriers, EBV-specific CD8" T cells
express only wild-type SAP from 1 X chromosome, whereas
CD8" T cells specific for other viruses in the very same individ-
uals can also express mutant SAP and seem to have stochasti-
cally condensed their SAP-encoding X chromosomes [7].
Therefore, alteration of the signal transduction pathways of
SLAM receptors 2B4 and NTB-A in CD8" T cells and NK
cells is thought to be mainly responsible for the increased sus-
ceptibility to EBV infection and its sequelae in patients with
XLP disease type 1. Studies investigating the direct contribution
of SAP-deficient lymphocyte subsets to EBV control in vivo
have not been done. The feasibility of modeling EBV infection
in mice with reconstituted human immune system components
(HIS mice), mirroring key features of human disease, has been
recently described by our laboratory and others, with both
CD8" T and NK cells being protective [8-10]. Moreover, mono-
clonal and oligoclonal lymphoproliferative tumors of B-cell or-
igin develop in 15%-25% of EBV-infected HIS mice [9, 10].
This model system allowed us for the first time to specifically
address manipulations of SAP-dependent receptor signaling
and its consequences for EBV infection in vivo.

MATERIALS AND METHODS

Mice and EBV
NOD/LtSz-scid ILZR\(“ull (NOD-scid y='~ or NSG) mice were
used to generate HIS mice, as described elsewhere [10]. Briefly,
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1-2 x 10° CD34" cells derived from human fetal livers were in-
jected intrahepatically into irradiated newborn mice and used
3-4 month after reconstitution. Green fluorescent protein
transgenic wild-type EBV (B95-8) was titrated on Raji cells to
calculate Raji infecting units. Mice were infected intraperitone-
ally with 1 x 10° Raji infecting units and followed up for 5-6
weeks. The EBV load was measured by means of TagMan (Ap-
plied Biosystems) real-time polymerase chain reaction, as de-
scribed elsewhere [10]. All animal protocols were approved by
the cantonal veterinary office of the canton of Zurich, Switzer-
land (protocol 148/2011). All studies involving human samples
were reviewed and approved by the cantonal ethical committee
of Zurich, Switzerland (protocol KEK-StV-Nr.19/08).

2B4 Blockade and CD8* T-Cell Depletion
For blocking experiments, mice were treated intraperitoneally
with 2 pg of anti-2B4 antibody (clone CO54; immunoglobulin

[Ig] M; provided by A. M.), anti-NTB-A antibody (clone ON56;
IgG2a; provided by A. M.) or isotype controls in phosphate-
buffered saline on the day before infection with EBV and
every second day during the course of infection. CD8" T cells
were depleted with 150 pg of monoclonal antibody against
human CD8 (clone OKT-8; Bio X Cell) via intraperitoneal in-
oculation for 3 consecutive days just before EBV infection and
every second day (50 pg) beginning 2 weeks after infection for
the duration of the experiment.

Flow Cytometry

Peripheral blood mononuclear cells were separated on Ficoll-
Paque gradients, preincubated with unlabeled anti-2B4 (clone
CO54; provided by A. M.) for 30 minutes on ice, or left untreated
and after washing stained with anti-CD56 (clone NCAM16.2; BD
Biosciences), anti-CD3 (clone UCHT1; BioLegend), and anti-2B4
(clone C1.7; BioLegend). Analysis was performed with a LSR
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Figure 1. Human 2B4 signaling is involved in the protective immune response against Epstein-Barr virus (EBV) in mice with reconstituted human immune

system components. A, EBV load in spleens 6 weeks after EBV infection (n = 11). Horizontal bar represents geometric mean; viral loads were compared with
2-tailed Mann—Whitney U test. B, EBV load over time in peripheral blood in mice treated with blocking antibody to 2B4 or immunoglobulin (Ig) M isotype
every other day (n = 10-12 per time point). Results represent mean and standard error of the mean (SEM); *P< .01 (2-way analysis of variance [ANOVA] with
Bonferroni correction). C, Weight loss over time after EBV infection relative to day 0 (n = 15-16). Results represent mean and SEM; *P< .05 (2-way ANOVA
with Bonferroni correction). D, Frequency of tumors at death in mice treated with blocking antibody to 2B4 or IgM isotype (numbers in columns indicate mice
with tumor/total mice); data are composite data from 2 independent experiments.
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Figure 2. Blocking 2B4 in the absence of CD8" T cells does not alter the course of Epstein-Barr virus (EBV) infection. A, EBV load in spleens at the end

paint (5-6 weeks after infection; n=11). Horizontal bar represents geometric mean; viral loads were compared with 2-tailed Mann—Whitney U'test. B, EBV
load over time in peripheral blood in mice depleted of CD8* T cells and either treated with blocking 2B4 antibody, or not (n = 12—15 per time point). Results
represent mean and standard error of the mean (SEM); NS, not significant (2-way analysis of variance [ANOVA] with Bonferroni correction). C, Weight loss
over time after EBV infection relative to day 0 (n = 13-20). Results represent mean and SEM. *P<.05; TP<.001 (2-way ANOVA with Bonferroni correction).
D, Frequency of tumors at death in mice depleted of CD8" T cells and either treated with blocking 2B4 antibody or not, (numbers in columns indicate of mice
with tumor/total mice); data are composite data from 2 independent experiments.

Fortessa cytometer (BD Biosciences), and flow cytometric data
was analyzed with Flow]Jo software v9.8 (Tree Star).

Detection of Human Interferon y

Human interferon (IFN) y in serum from HIS mice was analyzed
with a human IFN-y enzyme-linked immunosorbent assay kit
(Mabtech), in accordance with the manufacturer’s protocols.

Statistical Analysis

Mann-Whitney U test was used to compare viral loads, and
1- or 2-way analysis of variance was used to analyze differences
between groups, as indicated in the figure legends. Differences
were considered statistically significant at P <.05.

RESULTS AND DISCUSSION

To determine the role of 2B4 and NTB-A in EBV infection in
HIS mice, we masked these receptors with specific blocking an-
tibodies. Treatment of HIS mice with anti-NTB-A antibody
(IgG), however, depleted receptor-carrying leukocytes (reduc-
tion by 50% of human CD45" leukocytes), whereas anti-2B4
(IgM) treatment did not (data not shown). The antibody used
to block 2B4 has been well described for its in vitro blocking
activity [11, 12], and it efficiently masked 2B4, thereby showing
its specificity (Supplementary Figure 1A and 2B). The expres-
sion of the 2B4 receptor is highly up-regulated during EBV in-
fection in HIS mice [10],and blocking 2B4 in EBV -infected HIS
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mice led to decreased IFN-y serum levels 4 weeks after infection
(Supplementary Figure 1C), consistent with previous in vitro
data showing that activation of 2B4 is sufficient to induce
IFN-y [4, 5]. This effect was abolished 6 weeks after infection
(Supplementary Figure 1D), when anti-2B4-treated mice
showed viral loads increased by almost 1 log in both spleen
and blood (Figure 1A and 1B).

The increase in IFN-vy at this point to levels similar to or even
higher than those in isotype-treated mice (Supplementary Fig-
ure 1D) might have been provoked by the concurrent higher
viral load and subsequently more severe immunopathology. Fur-
thermore, anti-2B4-treated mice showed signs of exacerbated
disease, as evidenced by weight loss (Figure 1C), and had more tu-
mors (Figure 1D) than control mice, demonstrating a crucial role
for 2B4 signaling in the protective immune response against EBV
in HIS mice. Thus, aspects of SAP-deficient XLP disease (ie, im-
paired viral control and augmented tumorigenesis) can be mim-
icked in HIS mice by using 2B4 blockade during EBV infection.

NK cells accumulate during acute symptomatic EBV infec-
tion in humans [13, 14] and are protective against EBV in
HIS mice [10]. Likewise, CD8" T cells execute antiviral and an-
titumor responses in EBV-infected HIS mice [8, 9]. To deter-
mine which of these lymphocyte populations requires 2B4
signaling, we depleted CD8" T cells during the course of EBV
infection with and without additional 2B4 blockade. In the ab-
sence of CD8" T cells, infected mice demonstrated high viral
loads and suffered from severe weight loss and high tumor bur-
den (Figure 2), confirming previous data [8, 9].

Importantly, when we blocked the 2B4 receptor on top of de-
pleting CD8" T cells, disease severity was identical to that in
CD8" T-cell-depleted mice with intact 2B4 signaling capability
in terms of viral load, weight loss, and tumor incidence (Figure 2).
This suggests that activation of 2B4 signaling on NK cells is not
essential during EBV infection. Rather, our results demonstrate
that abrogated 2B4 signaling pathways in CD8" T cells are
responsible for the aggravated symptoms observed in anti-2B4-
treated nondepleted mice (Figure 1). Therefore, our studies indicate
that CD8" T cells are the critical effector cells, being responsible for
the impaired immune response to EBV in HIS mice.

This is in good agreement with the finding that somatic re-
version of mutated SAP occurs primarily in effector memory
CD8" T cells in patients with XLP disease [15]. Although
5%-10% of these adaptive lymphocytes revert their mutated
SAP gene to become functional, this reversion is very rarely
seen in NK cells [15]. These reverted CD8" T cells regained nor-
mal responses toward EBV-infected cells compared with SAP-
deficient cells of the same host, and patients with SAP reversion
had a prolonged median survival [15].

These clinical data and our findings in EBV-infected HIS
mice imply that compromised CD8" T-cell-mediated immune
control after SAP mutation is the critical immune deficit of
XLP disease. Furthermore, these data suggest that infusion of

autologous CD8" T cells with gene therapy-corrected SAP
should be explored in patients with XLP disease.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases
online (http://jid.oxfordjournals.org). Supplementary materials consist of
data provided by the author that are published to benefit the reader. The
posted materials are not copyedited. The contents of all supplementary
data are the sole responsibility of the authors. Questions or messages regard-
ing errors should be addressed to the author.

Notes

Acknowledgments. We thank Anne Miiller for expert technical support.

Authorship contributions. O. C. performed the experiments; R. C.
determined viral loads; E. M. and A. M. contributed essential reagents;
and O. C. and C. M. designed the research and wrote the manuscript.

Financial support. This work was supported by Cancer Research Swit-
zerland (grant KFS-3234-08-2013), Worldwide Cancer Research (grant 14-
1033), clinical research priority programs KESPM® and KFSP™'" of the
University of Zurich, the Baugarten Foundation, the Sobek Foundation,
Fondation Acteria, the Swiss Vaccine Research Institute and the Swiss Na-
tional Science Foundation (grants 310030_143979 and CRSII3_136241) to
C. M., the German Research Foundation (O. C.), Associazione Italiana Ri-
cerca per la Ricerca sul Cancro (special project 5% 1000 no. 9962 and IG
2014 no. 15704) to A. M., and the Progetto di Ricerca Fondazione Carige
2013 and Progetto di Ricerca di Ateneo 2014 (E. M.).

Potential conflicts of interest. All authors: No potential conflicts of
interest.

All authors have submitted the ICMJE Form for Disclosure of Potential
Conflicts of Interest. Conflicts that the editors consider relevant to the con-
tent of the manuscript have been disclosed.

References

1. Filipovich AH, Zhang K, Snow AL, Marsh RA. X-linked lymphoproli-
ferative syndromes: brothers or distant cousins? Blood 2010; 116:
3398-408.

2. Sayos J, Wu C, Morra M, et al. The X-linked lymphoproliferative-
disease gene product SAP regulates signals induced through the co-
receptor SLAM. Nature 1998; 395:462-9.

3. Veillette A, Pérez-Quintero L-A, Latour S. X-linked lymphoproliferative
syndromes and related autosomal recessive disorders. Curr Opin Aller-
gy Clin Immunol 2013; 13:614-22.

4. Parolini S, Bottino C, Falco M, et al. X-linked lymphoproliferative dis-
ease: 2B4 molecules displaying inhibitory rather than activating func-
tion are responsible for the inability of natural killer cells to kill
Epstein-Barr virus-infected cells. ] Exp Med 2000; 192:337-46.

5. Sharifi R, Sinclair JC, Gilmour KC, et al. SAP mediates specific cytotoxic
T-cell functions in X-linked lymphoproliferative disease. Blood 2004;
103:3821-7.

6. Bottino C, Falco M, Parolini S, et al. NTB-A, a novel SH2DIA-
associated surface molecule contributing to the inability of natural killer
cells to kill Epstein-Barr virus-infected B cells in X-linked lymphopro-
liferative disease. ] Exp Med 2001; 194:235-46.

7. Palendira U, Low C, Chan A, et al. Molecular pathogenesis of EBV sus-
ceptibility in XLP as revealed by analysis of female carriers with hetero-
zygous expression of SAP. PLoS Biol 2011; 9:¢1001187.

8. Yajima M, Imadome KI, Nakagawa A, et al. T cell-mediated control of
Epstein-Barr virus infection in humanized mice. J Infect Dis 2009;
200:1611-5.

9. Strowig T, Gurer C, Ploss A, et al. Priming of protective T cell responses
against virus-induced tumors in mice with human immune system
components. ] Exp Med 2009; 206:1423-34.

806 o JID 2015:212 (1 September) e BRIEF REPORT


http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv114/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv114/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv114/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv114/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiv114/-/DC1
http://jid.oxfordjournals.org
http://jid.oxfordjournals.org

10.

11.

12.

Chijioke O, Miiller A, Feederle R, et al. Human natural killer cells pre-
vent infectious mononucleosis features by targeting lytic Epstein-Barr
virus infection. Cell Rep 2013; 5:1489-98.

Ward J, Bonaparte M, Sacks J, et al. HIV modulates the expression of
ligands important in triggering natural killer cell cytotoxic responses
on infected primary T-cell blasts. Blood 2007; 110:1207-14.

Romo N, Magri G, Muntasell A, et al. Natural killer cell-mediated
response to human cytomegalovirus-infected macrophages is
modulated by their functional polarization. ] Leukoc Biol 2011; 90:
717-26.

13.

14.

15.

Balfour HH, Odumade OA, Schmeling DO, et al. Behavioral, virologic,
and immunologic factors associated with acquisition and severity of pri-
mary Epstein-Barr virus infection in university students. J Infect Dis
2013; 207:80-8.

Azzi T, Lunemann A, Murer A, et al. Role for early-differentiated nat-
ural killer cells in infectious mononucleosis. Blood 2014; 124:2533-43.
Palendira U, Low C, Bell Al et al. Expansion of somatically reverted
memory CD8" T cells in patients with X-linked lymphoproliferative dis-
ease caused by selective pressure from Epstein-Barr virus. ] Exp Med
2012; 209:913-24.

BRIEF REPORT e JID 2015:212 (1 September) e 807




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


