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ABSTRACT
The Kepler mission has yielded the discovery of eight circumbinary systems, all found around
eclipsing binaries with periods greater than 7 d. This is longer than the typical eclipsing binary
period found by Kepler, and hence there is a dearth of planets around the closest binaries. In
this paper, we suggest how this dearth may be explained by the presence of a distant stellar
tertiary companion, which shrunk the inner binary orbit by the process of Kozai cycles and tidal
friction, a mechanism that has been implicated for producing most binaries with periods below
7 d. We show that the geometry and orbital dynamics of these evolving triple star systems are
highly restrictive for a circumbinary planet, which is subject itself to Kozai modulation, on
one hand, and can shield the two inner stars from their Kozai cycle and subsequent shrinking,
on the other hand. Only small planets on wide and inclined orbits may form, survive and allow
for the inner binary shrinkage. Those are difficult to detect.

Key words: methods: numerical – celestial mechanics – planets and satellites: detection –
planets and satellites: dynamical evolution and stability – binaries: close – binaries: eclipsing.

1 IN T RO D U C T I O N

The first two decades of exoplanetary science have yielded many
surprising results. Not only do most stars host orbiting planets
(Cassan et al. 2012), but planets are often found in unexpected
locations and with unexpected properties. For example, hot Jupiters
continue to pose significant theoretical challenges (Triaud et al.
2010; Madhusudhan et al. 2014), while super-Earths were pre-
dicted not to form, and yet they are some of the most abundant
planets known today (Howard et al. 2010; Mayor et al. 2011). Plan-
ets also have been found in binary star systems orbiting one (e.g. 16
Cygni; Cochran et al. 1997) and two (e.g. Kepler-16; Doyle et al.
2011) stars. The parameter space of non-discoveries is shrinking
fast. The field has therefore evolved to a state where an absence of
planets is just as telling as a new discovery.

One conspicuous absence is seen in the Kepler circumbinary
planets (CBPs). So far there have been 10 transiting CBPs discov-
ered by Kepler orbiting eight eclipsing binaries (EBs), including the
three-planet system Kepler-47 (Orosz et al. 2012a). It was pointed
out by Welsh et al. (2014a) that all of the planets have been found
orbiting EBs of periods between 7.4 and 40 d, despite the median
of the EB catalogue being 2.7 d. The discoveries have therefore
been made on the tail of the EB period distribution. The analyses
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of Armstrong et al. (2014) and Martin & Triaud (2014) suggest that
this dearth of planets is statistically significant.

In this paper, we show how this absence of planets may be a
natural consequence of close binary formation, formalizing an ex-
planation that was briefly proposed by Welsh et al. (2014a), Arm-
strong et al. (2014), Martin & Triaud (2014) and Winn & Fabrycky
(2014). A popular theory proposes that most very close binaries
(�7 d) are initially formed at wider separations. The binaries sub-
sequently shrink under the influence of a misaligned tertiary star
and a process known as Kozai cycles with tidal friction (KCTF;
e.g. Mazeh & Shaham 1979; Fabrycky & Tremaine 2007). The dy-
namics of such evolving triple star systems impose strict stability
constraints on any putative CBP orbits around the inner binary. We
will demonstrate that these constraints act to either completely in-
hibit planetary formation and survival or restrict it to small planets
on wide, misaligned orbits.

We point out that Mũnoz & Lai (2015) and Hamers et al.
(2015b) have conducted independent analyses with complementary
techniques, reaching the same general conclusions as this paper.

The plan of this paper is as follows: In Section 2, we discuss
some of the relevant trends seen in the Kepler CBPs. Section 3
is a review of the theory and observations related to close binary
formation via KCTF. In Section 4, we summarize some important
theoretical aspects of three-body dynamics and stability in binary
star systems, and then extend the discussion to the triple star case. In
Section 5, we run N-body simulations on a set of example systems
to test planet stability and binary shrinkage. We then discuss the
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Table 1. The Kepler transiting CBPs.

M1 M2 ain Pin Rp ap Pp �Ip,in acrit

Name (M�) (M�) (au) (d) ein (R⊕) (au) (d) ep (deg) (au) Reference

16 0.69 0.20 0.22 40.1 0.16 8.27 0.71 228.8 0.01 0.31 0.64 Doyle et al. (2011)
34 1.05 1.02 0.23 28.0 0.52 8.38 1.09 288.8 0.18 1.86 0.84 Welsh et al. (2012)
35 0.89 0.81 0.18 20.7 0.14 7.99 0.60 131.4 0.04 1.07 0.50 Welsh et al. (2012)
38 0.95 0.26 0.15 18.8 0.10 4.35 0.47 106.0 0.07 0.18 0.39 Orosz et al. (2012b)
47b 1.04 0.36 0.08 7.4 0.02 2.98 0.30 49.5 0.04 0.27 0.20 Orosz et al. (2012a)
47d 1.04 0.36 0.08 7.4 0.02 – 0.72 187.3 – – 0.20 Orosz (in preparation)
47c 1.04 0.36 0.08 7.4 0.02 4.61 0.99 303.1 <0.41 1.16 0.20 Orosz et al. (2012a)
PH-1/64 1.50 0.40 0.18 20.0 0.21 6.18 0.65 138.5 0.07 2.81 0.54 Schwamb et al. (2013); Kostov et al. (2013)
413 0.82 0.54 0.10 10.1 0.04 4.34 0.36 66.3 0.12 4.02 0.26 Kostov et al. (2014)
3151 0.93 0.19 0.18 27.3 0.05 6.17 0.79 240.5 0.04 2.90 0.44 Welsh et al. (2015)

Figure 1. CBPs discovered so far via Kepler transits: (a) a histogram of periods of the Kepler EB catalogue, with a blue solid vertical line indicating the
median of this population. Red dashed vertical lines indicating the binary periods known to host CBPs, (b) planet semimajor axis versus critical semimajor axis
(equation 4), where the blue shaded region corresponds to unstable orbits. Systems have been labelled by their Kepler number. The outer planets of Kepler-47
are presented by square symbols.

protoplanetary disc environment and the effects of planet migration
and multiplanetary systems in Section 6. In Section 7, we conclude
by summarizing the general argument and looking ahead to future
complementary observations.

2 C BPS D ISCOVERED BY Kepler

The Kepler mission provided four years of near-continuous pho-
tometry of roughly 200 000 stars. As of 2015 May 8, there have
been 2773 Kepler EBs identified (Prsa et al. 2011; Slawson et al.
2011, Kirk et al. in preparation).1 A search for additional transit
signals has led to the discovery of eight circumbinary systems, one
of which contains three planets (Kepler-47) (Welsh et al. 2014a and
references there in).

In Table 1, we summarize the parameters of the 10 transiting
CBPs discovered by Kepler. We list the masses of the two stellar

1 The latest version of the catalogue can be found online at http://
keplerebs.villanova.edu, maintained by Prsa et al. at Villanova University.

components, M1 and M2, the semimajor axis, ain, period, Pin and
eccentricity, ein, of the inner binary orbit. We then list the planetary
parameters: its radius, Rp, semimajor axis, ap, period, Pp, eccen-
tricity, ep and mutual inclination with respect to the inner binary
orbital plane, �Ip,in. We then list the innermost stable orbit for a
CBP, acrit,CB, calculated according to Holman & Wiegert (1999,
see Section 4.1.1 for details). The last column is the discovery
paper reference, including the two independent discoveries of PH-
1/Kepler-64 by Schwamb et al. (2013)2 and Kostov et al. (2013).
The planet masses are not listed because they are generally poorly
constrained.

In the small sample of CBPs, some preliminary trends have
been identified:

(i) The planets have all been discovered orbiting EBs of rela-
tively long periods. In Fig. 1(a), we demonstrate this feature by
plotting a histogram of the Kepler EB periods, which has a median

2 The planet hunters consortium at http://www.planethunters.org/.
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of 2.7 d (blue solid vertical line). The red dashed vertical lines in-
dicate the binary periods around which planets have been found,
of which the shortest is Pin = 7.4 d (Kepler-47). Armstrong et al.
(2014) analysed the Kepler light curves using an automated search
algorithm and debiasing process, and came to the conclusion that
planets are significantly rarer around binaries of periods between
5 and 10 d than around wider binaries. Martin & Triaud (2014)
created synthetic circumbinary distributions and simulated eclipses
and transits observable by Kepler. They concluded that the number
of discoveries would have been roughly doubled if the circumbi-
nary abundance did not drop around binaries with periods shorter
than 5 d.

(ii) Most of the CBPs are found near the dynamical stability limit,
which we demonstrate in Fig. 1(b). Welsh et al. (2014a) proposed
that this was either the result of a physical pile-up of planets or
detection biases, although Martin & Triaud (2014) argued against
the latter explanation.

(iii) The systems are all close to coplanarity. Out of the 10 CBPs
found so far, the most misaligned is Kepler-413 with �Ip,in = 4◦

(Kostov et al. 2014). The mean misalignment is 1.◦7. This is how-
ever an observational bias imposed by the requirement of consecu-
tive transits in the detection method. Significantly misaligned sys-
tems (�10◦) would either avoid transiting or only do so irregularly
(Martin & Triaud 2014), hindering the ability to detect them.

(iv) The planets have only been found within a narrow size range
between 3 and 8.3 R⊕. The lack of Jupiter size and larger planets
might be due to the relative rarity of such big planets and the small
number of detections. The paucity of small planets is probably a
result of the large variations in circumbinary transit timing and
duration, making it difficult to phase-fold the photometric data and
identify shallow transits.

(v) Preliminary calculations indicate that the circumbinary abun-
dance, within the present realm of detections, is ∼10 per cent
(Armstrong et al. 2014; Martin & Triaud 2014), which is similar
to the 13 per cent abundance of Neptune mass and heavier plan-
ets around single stars derived from radial velocity surveys (Mayor
et al. 2011). This circumbinary abundance was calculated based on
only the near-coplanar population that Kepler is sensitive to. If there
exists a presently hidden population of misaligned CBPs, then this
would increase their overall abundance.

3 C LOSE BINA RY FORMATION W ITH
A T E RT I A RY ST E L L A R C O M PA N I O N

A common belief is that short-period binaries are not formed in
situ, because the fragmenting protostellar cloud contains an excess
of angular momentum with respect to the orbital angular momentum
of a very close binary (e.g. Bate 2012). These binaries were likely
formed much farther apart and subsequently evolved to their present
state. An alternate theory for the formation of the closest of binaries
(�7 d) is the combination of tidal interactions and an inclined
perturbing tertiary star. This process is canonically known as KCTF
and was first proposed by Mazeh & Shaham (1979), and later studied
in detail by Eggleton & Kisseleva-Eggleton (2006), Fabrycky &
Tremaine (2007) and Naoz & Fabrycky (2014) among others. In
this section, we summarize this shrinking mechanism.

3.1 The Kozai modulation

To a first approximation, a hierarchical triple star system can be
modelled as an inner binary of two stars and an outer binary com-
posed of the inner binary, located at its centre of mass, and the outer

tertiary star. Both binaries move on Keplerian orbits which we define
using osculating orbital elements for the period, P, semimajor axis,
a, eccentricity, e, argument of periapse, ω and longitude of the as-
cending node, �, where we denote the inner and outer binaries with
subscripts ‘in’ and ‘out’, respectively. The two orbits are inclined
with respect to each other by �Iin,out. The inner binary stars have
masses M1 and M2 and the tertiary mass is M3. In the quadrupole
approximation of the Hamiltonian of the system, the tertiary star
remains on a static orbit whilst its perturbations induce a nodal and
apsidal precession on the inner binary (variations in �in and ωin,
respectively). If the two orbital planes are initially misaligned by
more than a critical value,3 �Iin,out, init > 39.◦2, there is a variation
of ein and �Iin,out on the same period as the precession of ωin, and a
nodal precession of �in on twice this period (see Takeda, Ryosuke
& Rasio 2008, for a more in-depth summary). The quadrupole ap-
proximation works best when aout/ain is very large, and we will
be considering systems like this. An initially circular inner binary
reaches an eccentricity of

ein,max =
(

1 − 5

3
cos2 �Iin,out,init

)1/2

, (1)

whilst the mutual inclination varies between its initial value and the
critical value 39.◦2. These variations together constitute the Kozai
cycles (Kozai 1962; Lidov 1962).4 The time-scale of Kozai cycles
is

τKozai,in � 2

3π

P 2
out

Pin

M1 + M2 + M3

M3

(
1 − e2

out

)3/2
, (2)

(e.g. Mazeh & Shaham 1979; Fabrycky & Tremaine 2007). The
period of Kozai cycles equals τKozai,in multiplied by a factor of
order unity (Ford, Kozinsky & Rasio 2000).

A numerical example is given in Fig. 2, demonstrating that ein

can be excited to very high values. This simulation, and all other
simulations in this paper, was created using the N-body code RE-
BOUND (Rein & Liu 2012).5 The code uses a 14/15th-order integrator
which is not inherently symplectic but uses an adaptive time step to
minimize error propagation generally down to machine precision.
Consequently, it preserves the symplectic nature of Hamiltonian
systems better than typical symplectic integrators (Rein & Spiegel
2015). The code is also suitable for high-eccentricity orbits, like
those experienced during Kozai cycles. All parameters for the inte-
gration were kept at default.

3.2 Suppression of Kozai cycles

Kozai cycles are the result of small perturbations induced by the
tertiary star which build up coherently over the apsidal precession
period. If there is an additional secular perturbation causing an
apsidal precession of the binary on a shorter time-scale, then the
coherent eccentricity modulation is partially lost. Consequently, the
amplitude of the tertiary’s perturbations decreases and the Kozai
effect is suppressed.

3 This critical mutual inclination is for an initially circular inner binary.
The critical value decreases with increasing initial eccentricity in the inner
binary.
4 This effect was first published (in Russian) by Lidov but was independently
discovered by Kozai later that year. It should arguably be called a Lidov–
Kozai cycle but it is more commonly referred to as simply a Kozai cycle, a
convention which we follow in this paper.
5 This easy to use code can be downloaded freely at http://github.
com/hannorein/rebound.

MNRAS 453, 3554–3567 (2015)

http://github.com/hannorein/rebound
http://github.com/hannorein/rebound


No CBPs transiting the tightest binaries 3557

Figure 2. Example of Kozai cycles of ein (a) and �Iin,out (b) for Pin = 100 d,
Pout = 338 yr, M1 = M2 = M3 = M� and �Iin,out,init = 67◦. Both the inner
and outer binaries are on initially circular orbits.

If the inner binary stars are close enough, then apsidal pre-
cession due to general relativity and tidal and rotational bulges can
suppress the Kozai modulation (Wu & Murray 2003; Fabrycky &
Tremaine 2007). Alternatively, a sufficiently close and massive CBP
may also suppress the Kozai modulation by inducing a competing
apsidal advance, an effect we consider later in Section 4.2.3 and has
been studied by Hamers et al. (2015a).

3.3 Tidal shrinkage

Assuming that the Kozai cycles have not been suppressed, the high-
eccentricity excursions lead to close periapse passages between the
two stars of the close binary. During these close encounters there
may be a strong tidal interaction, which can dissipate orbital energy
that causes the inner binary orbit to both shrink and circularize.
The final semimajor axis can be approximated as twice the periapse
distance at closest approach,

ain,final = 2ain,init(1 − ein,max), (3)

although this formula is only valid for when the two stars are close
enough for tidal forces to be significant (Ford & Rasio 2006).

Observational studies of binary and triple star systems (e.g.
Tokovinin 1993, 2004, 2008, 2014a,b; Tokovinin et al. 2006) are
consistent with this shrinkage scenario. Tokovinin et al. (2006)
discovered that 96 per cent of binaries with less than 3 d periods are
surrounded by a tertiary stellar companion. This abundance drops
to 34 per cent for binaries with periods longer than 12 d.

Figure 3. Geometry of a close binary orbited by a planet and a distant
misaligned stellar companion. The orbits are drawn with respect to the centre
of mass of the inner binary. All orbits are actually circular but misaligned
with respect to our line of sight. The planet is coplanar with the inner binary.

4 PL A N E TA RY DY NA M I C S I N
MULTI STELLAR SYSTEMS

There are two possible planetary orbits in binary star systems:

(i) a circumbinary orbit around both stars or
(ii) a circumprimary orbit around one of the two stars.6

These orbits are also sometimes referred to as p-type and s-type
orbits, respectively, but we will not use this nomenclature.

There is an even greater variety of planetary orbits in triple star
systems (see Verrier & Evans 2007 for a classification scheme).
In this paper, we are only concerned with the scenario illustrated
in Fig. 3, where the planet orbits the inner binary and the third
star is on the periphery. The planet may be considered as both on
a circumbinary orbit around the inner binary and on a circumpri-
mary orbit with respect to the outer binary, where the planet orbits
a ‘star’ that is composed of the inner binary. In Section 4.1, we
analyse both types of orbits in the context of binary star systems,
before combining them in the context of triple stellar systems in
Section 4.2.

4.1 Planets in binary star systems

4.1.1 Stability

There are restrictions on where a planet may orbit stably in a binary
star system, primarily as a function of the binary’s semimajor axis
(e.g. Dvorak 1986; Holman & Wiegert 1999). Planets orbiting on
the wrong side of the stability limit are generally ejected from the
system by a process of resonance overlap (Mudryk & Wu 2006).
Assuming circular circumbinary orbits, Holman & Wiegert (1999)
used an empirical fit to N-body simulations to define the stability
limit using a critical semimajor axis,

acrit,CB = ain(1.60 + 5.10ein + 4.12μin − 4.27einμin

− 2.22e2
in − 5.09μ2

in + 4.61e2
inμ

2
in), (4)

where μin = M2/(M1 + M2) is the mass ratio. We have excluded the
fit uncertainties that the authors included in their equation, which
are of the order 5 per cent. Planets must orbit beyond this critical

6 Technically, a circumprimary orbit only refers to when a planet orbits
the bigger of the two stars and an orbit around the smaller star is a cir-
cumsecondary orbit, but for simplicity in this paper we will use the term
circumprimary to refer to either case.
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semimajor axis, lest they are ejected from the system. In the alter-
native case of a circular circumprimary orbit, Holman & Wiegert
(1999) similarly calculated a stability criterion of

acrit,CP = aout(0.46 − 0.63eout − 0.38μout + 0.59eoutμout

+ 0.15e2
out − 0.20e2

outμout), (5)

where μout = M3/(M1 + M2 + M3) is the mass ratio. Equation (5)
does not account for eccentric planets. In this configuration, the
planet must orbit within this critical semimajor axis in order to
maintain stability. Both equations (4) and (5) were derived for a
binary eccentricity between 0 and 0.7–0.8, and a binary mass ratio
between 0.1 and 0.9.

The analysis of Holman & Wiegert (1999) was restricted to
coplanar orbits. Doolin & Blundell (2011) showed that in the cir-
cumbinary case acrit is only a weakly decreasing function with
mutual inclination, and that stable circumbinary orbits are possible
at all misalignments, including retrograde orbits.

4.1.2 Secular evolution

A CBP experiences a nodal and apsidal precession, of ωp and �p,
respectively, both of which occur at approximately the same rate
but in opposite directions (e.g. Lee & Peale 2006). The time-scale
of this precession is

τprec,p � 4

3

(
P 7

p

P 4
in

)1/3
(M1 + M2)2

M1M2

(
1 − e2

p

)2

cos �Ip,in
, (6)

which is adapted from Farago & Laskar (2010) to be in terms
of orbital periods. For circular binaries, the mutual inclination �I
remains constant, but for eccentric binaries it may vary slightly
(Farago & Laskar 2010; Doolin & Blundell 2011).

A circumprimary orbit will also experience a precession ωp

and �p. If the orbit is misaligned by at least 39.◦2 with respect to the
outer binary, it will undergo Kozai cycles, as was seen for stellar
binaries in Section 3.1, with a time-scale

τKozai,p � 2

3π

P 2
out

Pp

M1 + Mp + M2

M2

(
1 − e2

out

)3/2
. (7)

Note that Kozai cycles only apply to circumprimary orbits, and not
to circumbinary ones.

4.2 Planets in triple star systems

4.2.1 Stability

Because a planetary orbit in a triple star system has both circumbi-
nary and circumprimary characteristics, it must obey both stability
constraints acrit,CB (equation 4) and acrit,CP (equation 5). If aout/ain is
sufficiently large, then acrit,CP > acrit,CB, and hence there is a region
of stable planetary orbits. In Fig. 4, we illustrate these combined
stability limits, using a simple example of ain = 0.5 au, aout = 30 au,
equal mass stars and coplanar and circular orbits.

Verrier & Evans (2007) analysed this scenario with coplanar
and circular orbits and concluded that this joint application of equa-
tions (4) and (5) is a valid description of planetary stability in triple
star systems. This implies that the perturbations from the inner and
outer binaries act somewhat independently. This assumption was
seen to become less valid when the inner and outer binary orbits
were made eccentric, resulting in a smaller stability region than
what is defined by equations (4) and (5). This additional instability
was attributed to combined perturbations from the ensemble of three

Figure 4. Stability limits in a triple star system from equations (4) and (5),
for M1 = M2 = M3 = M�, ain = 0.5 au, aout = 30 au, ein = eout = 0 and all
orbits are coplanar. The two blue-shaded regions are unstable for planetary
orbits and the white region in between is stable. Note that this does not take
into account eccentric planets.

stars. Verrier & Evans (2007) did not test planet eccentricity, which
would no doubt make the stability constraints even more restrictive.

4.2.2 Secular evolution

A planet orbiting within the stability region of a misaligned triple
system is perturbed by two competing secular effects: precession
due to the inner binary and Kozai cycles due to the outer binary.
Kozai cycles in the planet may be suppressed by the precession
induced by the inner binary, like what was discussed in the case
of triple star systems in Section 3.2. An approximate criterion for
suppression of Kozai cycles is

τprec,p < τKozai,p. (8)

In reality, there is likely to be a transition between the two competing
secular effects when their time-scales are similar. Verrier & Evans
(2009) showed that the inner binary can ‘protect’ the planet through
this suppression of Kozai cycles. On the other hand, planets left
to undergo high-amplitude Kozai cycles were seen by Verrier &
Evans (2009) to become unstable rapidly. Some alternative means
of suppressing Kozai cycles, such as general relativistic precession
and tidal and rotational bulges in the stars, are not applicable here.
This is because these effects are only non-negligible for planets
very close to the stars, and such orbits are prohibitively unstable for
CBPs. The Kozai effect may also be suppressed by perturbations
from an additional planet, but we do not consider multiplanetary
systems in this analysis (see Section 6.3 for a short discussion on
the effects of additional planets).

We have not followed the analytic derivation to the octopole
order, which can lead to secular resonance between different pre-
cession terms resulting in ∼0.1 eccentricity fluctuations over semi-
major axis ranges of ∼10 per cent (Naoz et al. 2013). This ef-
fect may lead to additional unstable regions in the CBP parameter
space. As the binary orbit shrinks under KCTF, the planet precession
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time-scale increases as τprec,p ∝ P −4/3
in , whilst τKozai,p remains con-

stant. This means that the relative influence of Kozai cycles on the
planet will increase and may start to dominate.

4.2.3 KCTF suppression due to planetary mass

Just as Kozai cycles of the planet may be suppressed by the apsidal
motion induced by the host binary, the inner binary might fail to
excite to high eccentricity as a result of apsidal precession due to
the mass of the planet. In effect, if the planet’s tidal force exceeds
that of the tertiary star, the host binary precesses too quickly for
the tertiary to secularly excite its eccentricity. This is possible even
for small planetary masses, because the planet is much closer to
the binary than the third star is, and tidal effects scale as separation
cubed.

For Kozai cycles analysed to quadrupole order, we follow Fab-
rycky & Tremaine (2007) Section 3.2 to compute the maximum
eccentricity of the binary in the presence of additional precession.
For a triple system, there are two constants of motion:

F ′ = −2 − 3e2 + (3 + 12e2 − 15e cos2 ω) sin2 �I, (9)

H ′ = (1 − e2)1/2 cos �I, (10)

where the former is a non-dimensionalized form of the Hamilto-
nian term defining the interaction between the two orbits, and the
latter is a non-dimensionalized form of the z-component of angular
momentum,7 which is the component of the angular momentum of
the binary along the total angular momentum of the system. In this
context, e and ω are for inner binary and �I is the mutual inclination
of the two orbits.

In the case of a quadruple system, we may consider each level
of the hierarchy as an orbit of a body around the centre of mass of
the interior bodies. Averaging over the orbital trajectories gives the
following averaged Hamiltonian (e.g. Ford et al. 2000):

〈F〉 = Fin + Fp + Fout + 〈Fin,p〉 + 〈Fp,out〉 + 〈Fin,out〉, (11)

〈Fin〉 = −GM1M2

2ain
, (12)

〈Fp〉 = −G(M1 + M2)Mp

2ap
, (13)

〈Fout〉 = −G(M1 + M2 + Mp)M3

2aout
, (14)

〈Fin,p〉 = −GM1M2Mp

M1 + M2

a2
in

8a3
out(1 − e2

out)3/2

× (
2 + 3e2

in − (3 + 12e2
in − 15e2

in cos2 ωin,p) sin2 �Iin,p

)
,

(15)

〈Fp,out〉 = −G(M1 + M2)MpM3

(M1 + M2 + Mp

a2
p

8a3
p(1 − e2

p)3/2

×
(

2 + 3e2
p − (3 + 12e2

p − 15e2
p cos2 ωp) sin2 �Ip,out

)
, (16)

〈Fin,out〉 = −GM1M2M3

M1 + M2

a2
in

8a3
out(1 − e2

out)3/2

× (
2 + 3e2

in − (3 + 12e2
in − 15e2

in cos2 ωin) sin2 �Iin,out

)
.

(17)

7 This corrects a misprint in equation 17 of Fabrycky & Tremaine (2007).

Suppose the binary begins on a circular orbit, with a copla-
nar exterior planet (�Ip,in = 0). The planet’s orbit continues on a
nearly coplanar orbit, for the same reason that its Kozai cycles are
suppressed, as just described in Section 4.2.2. We no longer have
conservation of F′, but rather conservation of 〈F〉. In the secular
problem, without tidal dissipation, ain, ap and aout are all conserved,
so the Keplerian Hamiltonian terms, equations (12)–(14), are indi-
vidually conserved. The other subcomponents can trade energy.

Now define

α ≡ Mp

M3

a3
out(1 − e2

out)
3/2

a3
p(1 − e2

p)3/2
, (18)

β ≡ (M1 + M2)2Mp

M1M2(M1 + M2 + Mp)

(
ap

ain

)2

, (19)

which measure the numerical dominance of the different terms. For
typical CBPs, β 
 1 because Mp < M2(ap/ain)2. In that case, 〈Fp,out〉
is negligible compared with 〈Fin,p〉 and 〈Fin,out〉, and we can find a
relatively simple closed-form solution of the eccentricity maximum
of the binary. This is accomplished by making the substitution

sin2 �Iin,out = 1 − cos2 �Iin,out = 1 − cos2 �Iin,out,init(1 − e2
in)−1,

(20)

due the initial condition ein,init = 0 and the conservation of H′.
The result is an implicit equation of ein versus ωin. The maximum
eccentricity occurs at ωin = ±π/2, which we insert and manipulate
to yield:

ein,max =
(

1 − 5

3 − α
cos2 �Iin,out,init

)1/2

. (21)

This expression recovers equation (1) in the limit α → 0, and
shows that the maximum value of eccentricity cycles declines with
increasing planet mass until no eccentricity is excited for masses
above:

Mp,crit = 3M3

a3
p(1 − e2

p)3/2

a3
out(1 − e2

out)3/2
. (22)

Alternately, for known CBP systems, we may view this as a limit
on the properties of a tertiary that can cause the binary to shrink by
Kozai cycles with tidal friction:(

M3

a3
out(1 − e2

out)3/2

)
crit

= Mp

3a3
p(1 − e2

p)3/2
, (23)

where the left- and right-hand sides quantify the strength of the
tidal force from the tertiary star and planet, respectively. Kozai is
suppressed on the inner binary when the left-hand side is larger.
The only known CBP that has a third distant companion is PH-
1/Kepler-64; this companion is itself a binary (Ba–Bb) of total
mass ∼1.5 M�. The planet’s mass is not known, but its radius of
∼6 R⊕ suggests its mass is at least of order Neptune’s, i.e. 15 M⊕.
The critical value of the planet’s tidal parameter, the right-hand
side of the last equation, is therefore 6 × 10−5 M� au−3. On the
other hand, the projected separation of Ba–Bb to the host binary
is ∼1000 au. Supposing its eccentricity is very high and so its
semimajor axis is only aout = 500 au, then the critical value of the
parameters is reached only for eout = 0.998. This is too high to allow
the planet to remain dynamically stable. Hence, we essentially rule
out the possibility that this companion will excite Kozai cycles in
the planet-hosting binary, because the planet precesses its host too
fast to allow this to happen.
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Table 2. Parameters for the primordial triple star system
and CBP.

Inner binary (one set of parameters)
M1 1 M�
M2 0.5 M�
ain 0.4827 au
Pin 100 d
ein 0

CBP (18 sets of parameters)
Mp 0
ain 1.5–10 au
Pin 548–9430 d
ep 0
�Ip,in 0

Outer binary (two sets of parameters)
M3 0.6 M�
aout 100 au
Pout 2.52 × 105 d
eout 0, 0.25
�Iin,out 74◦

5 N- B O DY SI M U L ATI O N S O F A SE T
O F E X A M P L E SY S T E M S

In this section, we use N-body simulations to determine regions
where planets may be able to form and survive in evolving triple
star systems, and whether or not the binary will be allowed to shrink
under KCTF. We take a stable orbit to be a necessary but probably
not sufficient condition for planetary formation. We are therefore
considering the most optimistic scenario possible. Additional ef-
fects are considered afterwards in Section 6. The entire argument is
summarized in Section 7.1.

5.1 A primordial inner binary

For our first suite of N-body simulations, we constructed an example
primordial triple star system, with an interior CBP, using the param-
eters listed in Table 2. For the inner binary, we tested a single set of
parameters, where the orbit was arbitrarily chosen at 100 d and the
stellar masses were the average values for the circumbinary systems
discovered by Kepler (M1 = 1 M� and M2 = 0.5 M�). The inner
eccentricity was set to zero initially, although it rose dramatically
during Kozai cycles.

The tertiary star was given a mass M3 = 0.6 M�, correspond-
ing to the median observed outer mass ratio qout = 0.4, and placed
at a typical separation of 100 au (Tokovinin 2008). The mutual in-
clination �Iin,out = 74◦ was chosen such that the inner binary would
ultimately shrink to a 5 d period, according to equation (3), where
ein,max = 0.93 (equation 1). We tested two different tertiary star or-
bits where we only changed eout = 0 and 0.25, to test the effect it
has on planetary stability. We also tested eout = 0.5 but found that
almost all systems were unstable in this configuration so we have
omitted these results for simplicity. The requirement that eout < 0.5
for stability is restrictive because observations show this to be a
typical outer eccentricity (Tokovinin 2008).

Orbiting around the inner binary, we placed a massless planet
on a circular and coplanar orbit, like in Fig. 3. The behaviour and
stability of the planet are largely functions of the ap, as this de-
termines the relative perturbing strengths from the inner and outer
binaries. For the simulations, we tested 18 different values of ap

between 1.5 and 10 au, in steps of 0.5 au.

Figure 5. Competing secular time-scales on the planet: circumbinary pre-
cession (equation 6), induced by the inner binary on the planet, and Kozai
cycles (equation 7), induced by the third star at 100 au. The circumbinary
precession time-scale is shown in different shades of blue for different val-
ues of Pin, starting from 100 d (dark blue) to 5 d (light blue). The Kozai
time-scale is shown for eout = 0 (maroon) and 0.25 (red) and is independent
of Pin. This plot covers the simulated range of ap between 1.5 and 10 au.

The range of semimajor axes was chosen based on the relative
Kozai and precession time-scales on the planet. We plot these com-
peting time-scales in Fig. 5 as a function of ap. The Kozai time-scale
in the planet is a monotonic decreasing function of ap (equation 7).8

We plot τKozai,p the two values of eout. On this logarithmic scale, eout

does not have a discernible effect on τKozai,p. The circumbinary pre-
cession time-scale (equation 6), on the other hand, increases with
ap. For Pin = 100 d, there is a turnover between the two time-scales
at approximately ap = 7 au. For farther out planetary orbits, we ex-
pect the planet to undergo Kozai cycles and obtain an eccentricity
ep,max = 0.93, leading to ejection. For smaller ap, we expect Kozai
to be suppressed and the planet to remain stable, as long as it is
beyond the circumbinary stability limit in equation (4).

Using the REBOUND code, we ran N-body integrations for the
total of 36 simulations. These were run over 100 Myr, which lets
us cover almost 100 Kozai time-scales (τKozai,in = 1.17 × 106 yr
from equation 2). When the tertiary star is eccentric, there is also a
longer octupole time-scale,

τoct,in ∼
(

aout(1 − e2
out)

eoutain

)1/2

τKozai,in (24)

(Antognini 2015). In our example, τ oct, in = 3.27 × 107 yr, and hence
we are covering a couple of these time-scales, but may be missing
some dynamical effects that develop over many time-scales. In our
simulations, a planet was considered unstable if it were ejected from
the system.

In Fig. 6, we plot ep over time for a selection of simulations:
ap = 1.5, 2, 3.5, 4, 7, 8 and 9 au . In each plot, we show the result
for eout = 0 (dark blue) and 0.25 (light blue). For reference, in the
bottom-right figure we show the inner binary over time. The max-
imum ein is negligibly different in the two cases: ein,max = 0.9239
for eout = 0 and ein,max = 0.9241 for eout = 0.25 but the Kozai mod-
ulation period changes significantly: ∼10 yr for a circular tertiary
and ∼5.5 yr for an eccentric tertiary.

8 To apply this equation to a triple star system, one replaces M1 by M1 + M2

and M2 by M3.
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Figure 6. First seven figures: evolution over 100 Myr of the planet eccentricity in a primordial triple star system, where ain = 0.4827 au (Pin = 100 d),
aout = 100 au (Pout = 2.52 × 105 d) and eout = 0 (dark blue) and 0.25 (light blue) and the inner binary starts on a circular orbit. The planet is massless and
starting on an orbit that is circular and coplanar with the inner binary. Each subplot shows a different value of ap (see Table 2 for all the simulation parameters).
Bottom-right figure: evolution of the inner binary eccentricity for eout = 0 (dark blue) and 0.25 (light blue).

For ap = 1.5 au neither configuration is stable, as in each
case the planet is ejected as soon as the inner binary reaches its
eccentricity maximum for the first time. When the planet is a little
farther from the inner binary, at 2 au, and eout = 0, its eccentricity
rises to 0.1 periodically, coinciding with when the inner binary

undergoes its Kozai modulation, but the planet nevertheless remains
stable over 100 Myr. This roughly calculated inner stability limit
coincides well with equation 4 from Holman & Wiegert (1999),
where acrit,CB = 1.94 au for ein = ein,max = 0.94. When eout is
increased to 0.25, the planet is no longer stable at 2 au. In fact, the
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shortest period planet that was stable over 100 Myr for eout = 0.25
was ap = 3.5 au, although even in this configuration the planet
obtained significant eccentricity that may have led to instability on
a longer time-scale. For ap = 4 au, there is no large eccentricity
variation and the results eout = 0 and 0.25 are almost identical. This
may be considered the inner stability limit for eout = 0.25.

The inner stability limits for eout = 0 (2 au) and 0.25 (4 au)
are significantly different. This is despite the maximum inner bi-
nary eccentricity being practically the same in the two cases.
Qualitatively, the difference in stability limits likely due to an in-
creased eccentricity obtained by the planet, due to the eccentric
third star, pushing the planet closer to the inner binary and causing
instability.

For eout = 0.25, the planet remains stable for ap < 8 au. For a
circular tertiary, the planet remains stable a little father out, before
reaching instability at 9 au. This is near where τKozai,p was seen to
become shorter than τ prec,p in Fig. 5. These outer stability limits are
on a significantly shorter period than predicted by the circumpri-
mary stability limit in equation (5) from Holman & Wiegert (1999):
35.54 au for eout = 0 and 24.54 au for eout = 0.25. This is be-
cause Holman & Wiegert (1999) was calculated for a circular and
coplanar planet, and not one that may potentially undergo Kozai
cycles.

In Fig. 7, we plot �Ip,in for the same simulations, and �Iin,out

in the bottom-right figure. An ejection is often preceded by a large
rise in the mutual inclination. For stable systems, there is a trend for
the planets closer to the inner binary to remain close to coplanarity,
whilst the planets farther away obtain at least a few degrees of mutual
inclination. This means that even if Kozai cycles are suppressed,
the tertiary star still has a perturbing effect.

5.2 What planets would suppress the KCTF process?

The next question we have to consider is whether our binary orbit,
with its primordial orbit of 100 d, will undergo KCTF without
suppression by the planet. In Fig. 8, we plot ein over time for a planet
at 5 au with different planetary masses, in steps of 0.000 05 M�.
In this simulation, eout = 0. We compare these simulations with the
analytic prediction from equation (21), showing that it is accurate
to within roughly 5 per cent. This small discrepancy may arise from
equation (21) being derived under the assumption that β = 0 in
equation (19).

For a massless planet, ein,max = 0.9345, and the expected
final period of the inner binary is 5 d (equation 3). A planet
of mass 0.000 05 M� = 16.65 M⊕ causes a small reduction in
ein,max = 0.9150. When mp is increased to 0.000 15 M� = 50 M⊕,
the binary eccentricity is limited to 0.7875. In this scenario, it is
likely that the inner two stars never get close enough for tidal
forces to have a noticeable effect over their lifetime, and hence
there is likely to be no tidal shrinkage. A further increase in mp to
0.0002 M� = 67 M⊕ completely suppresses the Kozai modulation.

For planets at the inner (2 au) and outer (8 au) edges of the
stability range, the critical planet masses for Kozai suppression
from equation (22) are 5 M⊕ (0.016MJup) and 300 M⊕ (0.94MJup),
respectively.

5.3 A shrinking inner binary

If the planet mass is sufficiently small such that the inner binary
Kozai cycles are not suppressed, one would expect its orbit to shrink

from ain,init = 0.4827 au (100 d) to ain,final = 0.0655 au (5 d),
according to the approximation in equation (3). As the inner binary
shrinks to 5 d, the circumbinary precession time-scale increases
(equation 6). We demonstrate this in Fig. 5 by plotting τ prec,p for
multiple values of Pin. The time-scale turnover point shifts from
ap = 7 au for a 100 d binary to ap = 3 au for a 5 d binary. The
Kozai time-scale on the planet does not change as the binary shrinks,
because Pp and Pout are essentially static.

We simulated all stable systems from Section 5.1 (ap between
2 and 8 au for eout = 0 and ap between 4 and 7 au for eout = 0.25)
with shorter binary periods at 25, 10 and 5 d, and looked for ejected
planets. The simulations were over 25 Myr, which covers possible
Kozai cycles for the planet but not for the shrunken inner binary,
for which the Kozai time-scale becomes very long. This integration
time is considered reasonable because planets were already seen to
survive high-eccentricity excursions by the wider primordial binary,
which should have a more destabilizing effect than shorter period
inner binaries.

In Figs 9 and 10 we plot ep and �p, in for three examples:

(i, upper panel) For ap = 4 au and eout = 0, the planet has a small
eccentricity for Pin = 100, 25 and 10 d. Around the primordial 100 d
binary, there is a bump in ep near 10 and 20 Myr, corresponding
to Kozai cycles of the inner binary. This bump is not seen for
shorter period binaries because the Kozai cycles are longer than
25 Myr. When the binary has shrunk to 5 d, the tertiary star’s strong
influence on the planet causes a significant raise in its eccentricity,
yet it remains stable. There is an increase in the variation of �Ip,in

as Pin decreases.
(ii, middle panel) For ap = 4 au and eout = 0.25, the results are

qualitatively the same as in the case of a circular tertiary star.
(iii, lower panel) For ap = 5 au and eout = 0, the planet obtains

a high eccentricity when the binary has reached a 10 d period, but
remains stable. For a 5-d period binary, the planet does not survive
for more than a couple of million years, because the very short-
period inner binary is no longer able to shield the planet from the
perturbations from the tertiary star. This ejection is accompanied by
a significant increase in �Ip,in.

From the suite of simulations, we derived rough stability limits as
a function of Pin. In Fig. 11, we plot the inner and outer stability lim-
its as functions of Pin, for eout = 0 (dark blue, solid) and 0.25 (light
blue, dashed). Because the circumbinary precession time-scale gets
longer during the shrink, the tertiary star has an increasing influence
over the planet. We found that this caused the outer stability limit
to move inwards as Pin decreased.

As Pin decreases the inner stability limit should also move
inwards (e.g. acrit,CB = 0.14 au for Pin = 5 d from equation 4).
However, this is not a physically meaningful limit for any orbiting
planets because they had to form around the wider primordial binary
where acrit = 2 au. Therefore, we define the inner stability limit as
a constant, derived from the case of the primordial binary.

Overall, the shrinking of the binary via KCTF can be seen as
a destabilizing process, as only planets formed relatively close to
the inner binary have a change of surviving the shrinking process.
There is only a narrow 2 au region where a planet could possibly
form and survive, assuming that the tertiary star has a circular orbit.
For eout = 0.25, the inner and outer stability limits are the same
(at 4 au) when Pin reaches 5 d, and hence the likelihood of both
forming a planet in these circumstances and having it survive the
KCTF process down to a 5 d inner binary is small.
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Figure 7. First seven figures: evolution over 100 Myr of the mutual inclination between the planet and the inner binary in a primordial triple star system,
where ain = 0.4827 au (Pin = 100 d), aout = 100 au (Pout = 2.52 × 105 d) and eout = 0 (dark blue) and 0.25 (light blue) and the inner binary starts on a circular
orbit. The planet is massless and starting on an orbit that is circular and coplanar with the inner binary. Each subplot shows a different value of ap (see Table 2
for all the simulation parameters). Note the changing scale on the y-axis as a function for different ap. Bottom-right figure: evolution of the mutual inclination
between the inner and outer binaries for eout = 0 (dark blue) and 0.25 (light blue).
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Figure 8. Inner binary eccentricity over time for ap = 5 au, eout = 0 and
a varied Mp. Solid lines are from numerical integration and horizontal
dashed lines are the eccentricity maxima calculated using equation (21). For
mp = 0.0002 M�, both the numerical and analytic results show ein,max = 0,
i.e. a line across the bottom horizontal axis.

6 A D D I T I O NA L C O N S T R A I N T S O N PL A N E T
F O R M ATI O N A N D E VO L U T I O N

6.1 Protoplanetary disc environments

Our analysis so far has been limited to N-body orbital dynamics.
However, planets are believed to form in discs and only under certain
favourable conditions. These necessary conditions further restrict
the possible range of disc radii that can allow planet formation in a
stellar triple system.

A circumbinary disc is expected to have a truncated inner
edge near the N-body stability limit (Artymowicz & Lubow 1994).
However, it is considered theoretically challenging to form CBPs
close to this inner edge, due to secular forcing excreted by the
binary that creates a hostile region for planetesimal accretion (Lines
et al. 2014). The favoured theory is that planets are formed farther
out in the disc in a more placid environment, before migrating
inwards and halting near the inner truncation radius of the disc
(Pierens & Nelson 2013; Kley & Haghighipour 2014). This theory
naturally explains the pile-up of planets in Fig. 1(b). The fact that the
abundance of CBPs appears to be similar to that around single stars
further supports this theory. A similar abundance implies a similar
formation efficiency and environment, and a circumbinary disc only
resembles a circumstellar disc far away from the inner binary. The
implication is that a true inner limit for planet formation may be
substantially farther out than the limit of equation (4).

The formation of a circumprimary planet is also constrained
by the interaction with the outer star, due to an outer truncation
of the disc and perturbations on the planetesimals within. Like for
the circumbinary case, the outer truncation radius in this case is
also similar to the N-body stability limit (Artymowicz & Lubow
1994). However, here again the formation of planets in a circumpri-
mary disc in the presence of a massive, inclined stellar companion
can pose a significant theoretical challenge (Batygin, Morbidelli &
Tsiganis 2011). Theoretical studies expect the particles in the pro-
toplanetary disc to undergo significant modulations in eccentricity
and inclination with different periods and amplitudes at different
radial distances, making planetesimal collisions destructive rather
than accretive (e.g. Marzari, Thébault & Scholl 2009). This matches
our results which show stable orbits, but with large fluctuations in
eccentricity and inclination. In Fig. 12, we demonstrate this further
with a zoomed version of the variation of �Ip,in from Fig. 7 for
ap = 7 au and eout = 0.25. The fluctuations are of a couple of de-
grees in amplitude and on a short time-scale with respect to planet
formation. It is possible, however, that if these fluctuations are suf-

ficiently mild they may be damped by the self-gravity of the disc
(Batygin et al. 2011) or viscous dissipation (Martin et al. 2014).

Like in the circumbinary case, the perturbations on the disc
will be strongest near the outer truncation radius. This suggests
a more restrictive outer formation boundary. These considerations
are in accordance with observations showing that the properties
of planets in circumprimary orbits are roughly indistinguishable to
planets around single stars only if the binary companion is farther
than ∼100 au (Duchene 2009), although the observational evidence
for this is currently based on low number statistics. This finding is
consistent with the scenario that giant planets are formed behind the
snow line at ∼5 au (e.g. Roberge & Kemp 2010), and that formation
may be inhibited if the snow line is too close to or beyond the outer
stability limit.

6.2 Planet migration

Our analysis so far has only considered planets with static semimajor
axes. However, as previously discussed, the favoured paradigm is
that the CBPs generally migrate inwards before being halted near
the inner edge of the disc. The disc dispersal time-scale (Alexander
2012) is expected to be much shorter than the KCTF time-scale
(Fabrycky & Tremaine 2007), and hence any migration will only
occur around the primordial binary.

This migration may have a positive or negative effect on planet
survival, depending on the relative time-scales of the inner binary
Kozai cycles and disc migration. The disc truncation radius corre-
sponds closely to the stability limit, which is in turn a function of
ein. If the planet migrates quickly and reaches the inner edge of the
disc while the inner binary is still circular, then it will have migrated
in too far and will be ejected once ein is subsequently excited during
Kozai cycles. Alternatively, if the planet migrates slowly then the
inner binary will have already undergone a full Kozai cycle and
the disc will be truncated farther out, meaning that the planet will
not get too close. According to Section 5.3, having the planet near
this edge will aid its later survival as the inner binary shrinks under
KCTF.

6.3 Multiplanetary systems

Our analysis has assumed that there is only one CBP in the system;
however, with the discovery of Kepler-47 it is known that multi-
planet circumbinary systems do exist in nature. Multiplanet stabil-
ity has been analysed in circumbinary systems (Kratter & Shannon
2013; Hinse et al. 2015) but never in the presence of a third star.

When there are multiple planets in the system, then there may
be planet scattering events (e.g. Chatterjee et al. 2008 in the context
of planets around single stars). This process may even be amplified
in multistellar systems due to the eccentricity variations induced
in the planets (like in Fig. 6), leading to more close encounters.
Planet–planet scattering may lead to the orbits being pushed either
inwards or outwards, potentially moving planets into unstable orbits.
A planet may also induce an apsidal precession on other planets,
which could possibly suppress Kozai perturbations from the tertiary
star.

If KCTF proceeds unhindered by the multiplanet system, the
host binary will shrink and the secular time-scale it imparts on the
planets will sweep over a large range. This evolution would be sim-
ilar to a sweeping secular resonance (Nagasawa, Lin & Thommes
2005): when the difference in binary-forced precession frequen-
cies of the planets matches the precession frequencies between the
planets, it may lead to eccentricity excitation and perhaps destabi-
lization.
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Figure 9. Evolution of the planet’s eccentricity over 25 Myr around an
inner binary of period 100, 25, 10 and 5 d, in the presence of an outer
tertiary star at 100 au. In the top figure, ap = 4 au and eout = 0. In the
middle figure, ap = 4 au and eout = 0.25. In the bottom figure, ap = 5 au
and eout = 0.

7 SU M M A RY A N D D I S C U S S I O N

7.1 The general argument

We here summarize our explanation for the lack of observed
transiting planets around very short period binaries, due to

Figure 10. Evolution of the mutual inclination between the planet and the
inner binary, starting coplanar, over 25 Myr around an inner binary of period
100, 25, 10 and 5 d, in the presence of an outer tertiary star at 100 au, for the
same simulations as in Fig. 9. In the top figure, ap = 4 au and eout = 0. In
the middle figure, ap = 4 au and eout = 0.25. In the bottom figure, ap = 5 au
and eout = 0.

the KCTF process. Below is a list of all the key ingredients
and constraints.

(i) The planet forms around a long-period primordial binary un-
dergoing high-eccentricity Kozai cycles induced by the distant com-
panion.

(ii) To avoid ejection, the planet cannot be too close to the ec-
centric inner binary, so it can only reside on a relatively wide orbit:
ap � 4abin.
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Figure 11. Numerically determined inner and outer stability limits for the
planet as a function of Pin for eout = 0 (dark blue, solid) and 0.25 (light blue,
dashed). The inner stability limit is defined from the test of the primordial
binary in Section 5.1, and this does not change as the binary shrinks.

Figure 12. Short-term variation in �Ip,in of a planet on an initially coplanar
orbit at 7 au around a primordial 100 d binary with a circular tertiary star at
100 au, taken from the simulations in Fig. 7.

(iii) However, the planet also cannot orbit too far from the inner
binary, in order to have its Kozai cycles induced by the tertiary
suppressed by the binary.

(iv) If the tertiary star is eccentric, as is often the case, then the
region of stability is even smaller.

(v) If the planet is sufficiently massive and on a sufficiently close
but stable orbit, it may inhibit the Kozai modulation of the binary,
and therefore prevent KCTF shrinkage.

(vi) Assuming that the binary orbit is able to shrink, some planets
become unstable, because the suppression of the Kozai cycle by the
binary (constraint iii) becomes too weak.

(vii) Even if Kozai cycles of the planet are suppressed by the
inner binary, it still obtains some variation in �Ip,in.

(viii) Considering the disc environment within which planets
form leads to further restrictions being imposed, because the in-
ner and outer edges of the truncated disc are probably too chaotic
for planet formation.

(ix) Finally, planet migration has the potential to either help or
hinder the survival of planets.

There is only a small parameter space where the planet can form,
survive and not inhibit KCTF on the binary. In our example in this
section only roughly Neptune-mass planets between 2 and 3 au

fulfilled all of the above criteria. Furthermore, the surviving planets
were misaligned by over 10◦. This triple star configuration would
be even more restrictive if the perturbing strength of the tertiary
were increased by (i) an increased mass ratio M3/(M1 + M2), (ii)
a decreased semimajor axis ratio aout/ain, (iii) an increased eout

or (iv) an increased mutual inclination �Iin,out, leading to higher
eccentricity Kozai cycles.

We conclude that most triple star systems evolving under
KCTF are not conducive to hosting planets. Alternatively, they host
planets biased towards small masses, long periods and misaligned
orbits, which are difficult to detect via transits.

The known CBPs around wider binaries likely formed in a
more placid environment, suggesting that companion stars either
do not exist or are too far away to have an effect, like in PH-
1/Kepler-64. We await future observations to confirm this. The fact
that these planets have been found near the inner stability limit
suggests that the binary orbit has not shrunk over a long time-scale
(e.g. via KCTF) after planet migration has finished.

Our analysis could be further extended by testing a wider
range of orbital parameters to quantify different regimes of secular
evolution of planets in triple star systems, similar to the approach
taken in Takeda et al. (2008), but this is beyond the scope of the
current more qualitative investigation.

Whilst this general argument developed may account for the
majority of the non-detections of transiting planets around short-
period binaries, it may not be the only effect present. Very close
binaries are tidally locked, which increases the rotation speed and
can lead to increased stellar activity. The standard Kepler 30-minute
cadence may lead to insufficient sampling at the shortest periods.
And finally, Martin & Triaud (2015) calculated that some of the
closest EBs may be sufficiently inclined with respect to our line
of sight that transits by coplanar planets are not geometrically
possible.

7.2 Looking ahead

Some level of planet formation and survival might be possible in
this shrinking binary scenario; however, the bias towards planets
with small masses and wide, misaligned orbits creates significant
detection limitations. To find such planets, it is likely that new
techniques will need to be developed. The four years of Kepler
photometric data are yet to be exhaustively searched, and may still
yield discoveries of misaligned planets via eclipse timing variations
(Borkovits et al. 2011), or transits on non-EBs (Martin & Triaud
2014), particularly on binaries found with the BEER technique
(Faigler et al. 2012). A reobservation of the Kepler field by the
future PLATO satellite may lead to transits on the existing sample
of EBs by new planets that have precessed into view. Radial velocity
surveys can detect misaligned CBPs; however, short-period binaries
are tidally locked, leading to an increased rotation velocity that
decreases spectral precision.

There is also potential for gravitational lensing and direct imag-
ing (Delorme et al. 2013; Thalmann et al. 2014) discoveries of
long-period CBPs. Finally, GAIA astrometry will be sensitive to
potentially hundreds of giant CBPs on periods of a few years, and
can even provide a direct measurement of the mutual inclination
(Sahlmann, Triaud & Martin 2015).

Continued observations, whether they reinforce this dearth or
lead to surprising new discoveries, will allow this relatively new
problem in exoplanetary astrophysics to shed new light on a funda-
mental field of stellar physics.
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King A., 2014, ApJ, 792, L33
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