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This paper deals with asymptotically efficient estimation in exchangeable nonlinear
dynamic panel models with common unobservable factors. These models are rele-
vant for applications to large portfolios of credits, corporate bonds, or life insurance
contracts. For instance, the Asymptotic Risk Factor (ARF) model is recommended
in the current regulation in Finance (Basel II and Basel III) and Insurance (Solvency
II) for risk prediction and computation of the required capital. The specification
accounts for both micro- and macrodynamics, induced by the lagged individual ob-
servations and the common stochastic factors, respectively. For large cross-sectional
and time dimensions n and T , we derive the efficiency bound and introduce com-
putationally simple efficient estimators for both the micro- and macroparameters.
The results are based on an asymptotic expansion of the log-likelihood function in
powers of 1/n, and are linked to granularity theory. The results are illustrated with
the stochastic migration model for credit risk analysis.

1. INTRODUCTION

This paper considers the asymptotically efficient estimation of nonlinear dy-
namic panel models with common unobservable factors. We focus on exchange-
able specifications that are appropriate to analyze the set of histories of a
large homogeneous population of individuals featuring serial and cross-sectional
dependence. Such a framework is often encountered in credit risk applications.
For instance, for the risk analysis in portfolios of corporate debt, the panel data
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are the default, loss given default, and rating migration histories of a large pool
of firms in a given industrial sector and country. The common factors represent
latent macrovariables, such as the sector and country specific business cycle, that
introduce dependence across the nonlinear individual risks, such as default, loss
given default, or migration correlations. The purpose of the analysis is to predict
the future risk in a large portfolio of corporate bonds or credit derivatives issued
by the firms in the pool. The panel data may also correspond to other risk char-
acteristics in a pool of corporate loans, household mortgages, or life insurance
contracts, such as prepayment, lapse, or mortality.

The model considered in this paper involves both micro- and macrodynamics.
Conditional on a given factor path, the individuals are assumed independent and
identically distributed (i.i.d.), with the histories of observations yi,t , t varying, fol-
lowing the same time-inhomogeneous Markov process for any individual i . The
transition density h(yi,t |yi,t−1, ft ; β) between dates t − 1 and t depends on the
(multivariate) factor value ft and the unknown parameter β. The microdynamics
is captured by the lagged individual observation yi,t−1 and unknown parameter β.
The macrodynamics is driven by the time-varying stochastic common factor ft .
The latter follows a Markov process with transition density g( ft | ft−1; θ), which
depends on the unknown parameter θ . In credit risk applications, the common fac-
tor ft has to be considered unobservable in order to account for systematic risk.
When this common factor is integrated out, it introduces both non-Markovian
serial dependence within the individual histories, and cross-sectional depen-
dence between individuals. The variables yi,t are either real-valued or discrete
(as for default and rating histories in the credit risk application), while the com-
ponents of the vector ft are real valued (corresponding to a continuum of latent
states). The model is potentially nonlinear in both micro- and macrodynamics.

When the cross-sectional dimension n is fixed and the time dimension T tends
to infinity, the Maximum Likelihood (ML) estimators of microparameter β and
macroparameter θ are asymptotically normal and efficient.1 However, this asymp-
totic scheme is not appropriate for a setting involving very large n and moderately
large T , as in credit risk applications. For instance, for corporate rating data the
number of firms is typically of order n � 10,000, while the number of dates is
about T � 20 with yearly data. In applications to mortgage or life insurance, we
typically have n � 100,000 − 1,000,000 contracts and T � 200 months. More-
over, the numerical computation of the ML estimate is complicated, since the
likelihood function involves a large dimensional integral with respect to (w.r.t.)
the unobservable factor path.

The aim of this paper is to derive the asymptotic efficiency bound for estimating
both the microparameter β and the macroparameter θ and to introduce asymptot-
ically efficient estimators of β and θ that are easier to compute than the ML esti-
mator. We consider the double asymptotics n,T → ∞, such that T ν/n = O(1),
with either ν > 1, for estimators maximizing a first-order expansion of the
log-likelihood function w.r.t. 1/n, or ν > 3/2, for estimators maximizing a more
accurate second-order expansion. We summarize our theoretical contributions as
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follows. First, we show that the efficiency bound for the microparameter β does
not depend on the parametric model defining the macrodynamics. In particular,
this bound coincides with the parametric efficiency bound with known transi-
tion of the factor, and also with the semiparametric efficiency bound when the
transition of the factor is left unspecified. Second, the efficiency bound for the
macroparameter θ is the same as if the factor values were observable. These find-
ings correspond to oracle properties w.r.t. the factor dynamics for the micropa-
rameter, and w.r.t. the factor values for the macroparameter. Third, the asymptotic
efficiency bound can be reached by optimizing approximated likelihood functions
which do not involve integrals w.r.t. the factor path.

In Section 2 we introduce the nonlinear dynamic panel model with common
factors. To provide motivation and grounding on potential applications, we first
describe the Asymptotic Single Risk Factor (ASRF) model, which is the simplest
benchmark model suggested for the regulation of credit risk in Basel II [Basel
Committee on Banking Supervision (BCBS, 2001, 2003)]. Then, we present
the general specification and discuss the stationarity and ergodicity assumptions
needed for the asymptotic analysis. Our theoretical results are mainly based on
a second-order asymptotic expansion of the log-likelihood function in powers of
1/n given in Section 3. The basic idea behind this expansion is that the integration
of the latent factor path is performed along the lines of the Laplace approximation.
In Section 4 we introduce estimators of both micro- and macroparameters that do
not involve numerical integration w.r.t. the unobservable factor. These estima-
tors are obtained by maximizing approximations of the log-likelihood function
at order 1/n, and 1/n2, respectively. They are called Cross-Sectional Asymp-
totic (CSA) and Granularity Adjusted (GA) maximum likelihood estimators,
respectively. We study the asymptotic properties of these estimators under suit-
able identification conditions and prove their asymptotic efficiency. In Section 5
we introduce an asymptotically efficient estimation approach, in which the esti-
mators of the micro- and macroparameters can be computed in two steps. The
estimator of the microcomponent is a fixed effects estimator, which considers the
factor values as nuisance parameters. The estimator of the macroparameter is ob-
tained by maximizing the likelihood function of the macrodynamics, in which
the unobservable factor values are replaced by suitable cross-sectional factor
approximations. In Section 6, the results of the paper are applied to the stochastic
migration model used for credit risk analysis. In this model, the observable
endogenous variable corresponds to the rating and the common stochastic fac-
tors account for migration correlation. The patterns of the efficiency bound and
the computation of the efficient estimators are illustrated for this example. We
also investigate the finite-sample properties of the estimators in a Monte-Carlo
experiment. Section 7 concludes. Appendix A.1 provides the regularity condi-
tions for the large sample properties of the estimators. The proofs of the results
are gathered in Appendices A.2 and A.3. The proofs rely on some Limit Theo-
rems for uniform stochastic convergence with panel data and technical Lemmas.
The details of these Theorems and Lemmas are provided online at Cambridge
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964 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

Journals Online in supplementary material to this article. Readers may refer to the
supplementary material associated with this article, available at Cambridge
Journals Online (journals.cambridge.org/ect).

2. EXCHANGEABLE NONLINEAR PANEL MODEL WITH
COMMON FACTORS

Exchangeable nonlinear panel models with common factors are the basis for
risk analysis of homogeneous retail portfolios encountered in Finance and
Insurance. Before describing the general specification, we review as an illustra-
tion the Asymptotic Single Risk Factor (ASRF) model introduced for default risk
analysis by Vasicek (1987, 1991).

2.1. The Asymptotic (Single) Risk Factor (ASRF) model for default

The general specification considered in Section 2.2 is motivated by the ASRF
model introduced by Vasicek (1987, 1991) and based on the Value of the Firm
model (Merton, 1974). This model, possibly extended to include more factors,
is recommended for the analysis of credit risk in Pillar 1 of Basel II regulation,
concerning the minimum required capital, and in Pillar 2, concerning internal risk
models (BCBS, 2001, 2003). The objective is to analyze the risk of a portfolio
of loans or credit derivatives, included in the balance sheet of a bank or credit
institution. These portfolios may contain several millions of individual contracts
(assets) and have to be segmented into subportfolios, which are homogeneous
by the type of contract (asset) and by the type of borrowers, including at least
their ratings among their characteristics. The ASRF model is applied to these
homogeneous subportfolios separately (or jointly), with parameters and factors
which can depend on the segment. The sizes of these subportfolios may still be
rather large including some ten thousands of individual loans for mortgages and
credit cards, for instance.

The basic Vasicek model is written for firms, but the same approach is
applicable to household borrowers. Let us consider a given subpopulation and
a single-factor model. This model introduces the asset Ai,t and liability Li,t as la-
tent variables. Then, the latent model is written on the log-ratio of asset to liability
y∗

i,t = log(Ai,t/Li,t ) as:

y∗
i,t = α +γ Ft +σui,t , i ∈ Pa Rt , t = 1, . . . ,T,

where Pa Rt denotes the Population-at-Risk, that is the set of firms in the port-
folio which are still alive at time t , and where the common factor (Ft ) and the
errors

(
ui,t
)

are independent standard Gaussian white noise processes. This spec-
ification distinguishes the idiosyncratic risks ui,t , which can be diversified, and
the undiversifiable systematic risk Ft . The latter component is introduced to rep-
resent risk dependence. It is especially important for financial stability analysis.
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Indeed, the standard stress testing methodology corresponds to assessing the im-
pact of extreme shocks on some components of the systematic risk factor. The
coefficients α,γ,σ are independent of the individuals, according to the definition
of a homogeneous portfolio. The parameters and factors depend on the segment,
but the index of the segment is omitted for expository purpose.2 The observed en-
dogenous variable is the indicator for the default event that occurs when the asset
is below liability:

yi,t = 1lAi,t <Li,t = 1ly∗
i,t <0.

We deduce the Probability of Default (PD) at date t conditional on the common
factor:

P Dt = P[yi,t = 1|yi,t−1 = 0, Ft
]= � [−(α/σ )− (γ /σ ) Ft ] , (2.1)

where � denotes the cumulative distribution function (c.d.f.) of the standard
normal distribution. Thus, the conditional probability of default is time-varying
and driven by the common stochastic factor Ft . To summarize, the qualitative
observations yi,t are independent conditional on the factor path with Bernoulli
distribution:

yi,t |Ft ∼ B (1, P Dt ) . (2.2)

We get a probit model in which the explanatory variable Ft is unobservable and
captures the systematic default risk. This basic static model can be extended by
allowing for several factors in the given subpopulation, for dynamics of the com-
mon factors (e.g., Duffie and Singleton, 1998; Loeffler, 2003; Dembo, Deuschel,
and Duffie, 2004; McNeil and Wendin, 2007; Duffie, Eckner, Horel, and Saita,
2009), and for a joint analysis of more than two rating levels by means of stochas-
tic migration models describing the transitions between rating classes AAA, AA,
. . . , C, D, say (see Section 6 and references therein).

The unconditional probability of default is P D = P[yi,t = 1]
= �

(− α/
√

γ 2 +σ 2
)
, whereas the unconditional default correlation between

any two firms i and j is:

ρ = Corr
(

yi,t , yj,t
)=



(
−α/

√
γ 2 +σ 2,−α/

√
γ 2 +σ 2; ρ∗

)
− P D2

P D(1− P D)
, (2.3)

where ρ∗ = γ 2/
(
γ 2 +σ 2

)
is the asset correlation, that is the correlation between

the log asset/liability ratios of any two firms, and 
(., .; ρ∗) denotes the joint cdf
of the bivariate standard Gaussian distribution with correlation coefficient ρ∗. In
the new regulation for credit risk, the required capital depends on the values of
P D and ρ∗, that is, indirectly on the values α/σ and γ/σ , and is especially sen-
sitive to the asset correlation parameter ρ∗. In standard implementations of the
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966 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

above risk factor model, the unknown parameters P D and ρ∗ are replaced by
their empirical counterparts, which are close to the true values when the subpop-
ulation sizes are large. This explains the term “asymptotic” appearing in the usual
methodology. However, it is important to check if not only consistency, but also
efficiency can be attained by computationally simple estimators of the structural
parameters.3

The above ASRF model assumes that the individual fixed effects depend on
the segment only, that is, the individual fixed effects αi , γi , σi , say, are iden-
tical for two individuals in the same segment. This model assumption is com-
patible with the two-step approach considered in credit risk applications. First,
models with individual fixed effects are used to get the homogeneous subport-
folios; then the ASRF model is written for each homogeneous subportfolio to
derive the distribution of the future portfolio value and the corresponding 1%
quantile, called CreditVaR. Such a two-step procedure has been preferred in the
current regulation for at least the following reasons: first, in the standard reg-
ulation approach that applies for the banks with the least advanced risk man-
agement systems, a common segmentation can be proposed by the regulator
itself. Thus, the risk analysis is performed by the banks with the same segmen-
tation, which facilitates the aggregation of bank portfolios when analyzing the
global risk of the system. Second, and more importantly, the introduction of sev-
eral millions of individual fixed effects beyond segment effects would diminish
the estimated magnitude of idiosyncratic risks. In a regulatory perspective, this
would yield a significantly lower level of required capital. Indeed, the reserves
for credit risk are typically computed with unknown parameters directly replaced
by their estimates.4 Finally, models without individual fixed effects are com-
mon in the credit risk literature on bankruptcy prediction (e.g., Shumway, 2001;
Chava and Jarrow, 2004; Campbell, Hilscher, and Szilagyi, 2008), where indi-
vidual heterogeneity is accounted for by observable characteristics. Duffie et al.
(2009) estimate their model on US corporate default data and find that the inclu-
sion of individual fixed effects does not lead to a significant improvement of the
results.

2.2. The general specification

The basic ASRF model can be extended to include any number of factors and
any type of parametric nonlinear dynamics. This extended model is introduced in
this section. Let us consider panel data yi,t for a large homogeneous population
of individuals i = 1, . . . ,n observed at dates t = 1, . . . ,T . We assume that there
exists a common (multidimensional) factor such that5:

A.1: Conditional on the factor path ( ft ), the individual histories
(

yi,t , t =
1,2, . . .

)
, for i varying, are i.i.d. time-inhomogeneous Markov processes of

order 1, with transition probability density function (p.d.f.) h
(

yi,t |yi,t−1, ft ; β
)

and unknown parameter β ∈ B, where B ⊂ Rq .
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EFFICIENCY IN LARGE PANELS WITH COMMON FACTORS 967

A.2: The factor ( ft ) is an exogenous Markov process of order 1 in Rm , that is, the
conditional distribution of ft given the past of the factor ft−1 = ( ft−1, ft−2, . . .

)
and of the individual histories yi,t−1 = (yi,t−1, yi,t−2, . . .), i = 1, . . . ,n, depends
on ft−1 only, with transition p.d.f. g( ft | ft−1; θ) and unknown parameter θ ∈ �,
where � ⊂ Rp.

We denote by β0 and θ0 the true values of parameters β and θ , respectively. Factor
ft is assumed unobservable.6 Thus, it has to be integrated out to derive the joint
density of observations yi,t . The latent factor introduces both non-Markovian in-
dividual dynamics and dependence across individuals. The exogeneity assump-
tion means that: (i) there is no feedback from one specific individual history on
the future factor values and (ii) the lagged factor value includes all informative
macrosummaries of the past. The distribution of the individual histories (yi,t ) is
exchangeable, i.e., invariant by permutation of the individuals. The exchangeabil-
ity property is equivalent to the existence of a factor representation (de Finetti,
1931; Hewitt and Savage, 1955).7 Such exchangeability assumptions have been
introduced in the literature on linear dynamics (see, e.g., Andrews, 2005; Hjellwig
and Tjostheim, 1999). The focus of our paper is on the efficient estimation of both
microparameter β and macroparameter θ in the nonlinear exchangeable panel
model A.1 and A.2.

Without Assumption A.2 on the parametric factor dynamics, the model intro-
duced in Assumption A.1 might be seen as a model with time fixed effects instead
of individual fixed effects. Thus, we might expect to derive the asymptotic re-
sults from the nonlinear panel literature with individual fixed effects by simply
interchanging the roles of individual and time indices i and t , and the sizes n
and T . For instance, Hahn and Newey (2004) consider estimation of nonlinear
panel models with fixed individual effects, but their results cannot be applied to
our framework, because they assume independence across time as well as in the
cross-section. Moreover, this intuition is not correct, since there are important
differences between our setting and the ones considered by the individual fixed
effects panel literature:

(i) In applications to credit risk the size n of the segment is much larger than the
number T of dates, and, therefore, the incidental parameter problem (for the
pioneering paper, see Neyman and Scott, 1948; for a review, see Lancaster,
2000) is much less pronounced with time fixed effects than with individ-
ual fixed effects. In particular, bias corrections in the first-order asymptotic
distributions are not required in our setting, since we assume T/n → 0.

(ii) Assumption A.2 shows that the nonlinear panel model with common fac-
tor is a time series model introduced for prediction purpose. This fact is
illustrated in Section 2.1 on default risk analysis, in which the final aim
is the computation of reserves by means of a quantile of the conditional
distribution of the future portfolio value, that is, the CreditVaR. There-
fore, we are interested not only in the microparameter β, but also in the
macroparameter θ .
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968 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

(iii) The parametric Assumption A.2 on the factor dynamics provides addi-
tional information, which might allow for a more efficient estimation of the
microparameter β.

To establish the large sample properties of the estimators, we introduce the next
Assumptions A.3, A.4, and A.5. Assumptions A.3 and A.4 concern the station-
arity and mixing properties of the factor process, and of the individual histories
conditional on the factor process, respectively.

A.3: The process ( ft ) is strictly stationary and geometrically strong mix-
ing, that is, α(s) = O(ρs) as s → ∞, for some ρ ∈ (0,1), where α(s) =

sup
A∈Ht−∞,B∈H∞

t+s

|P(A∩ B)−P(A)P(B)| denotes the alpha mixing coefficient at lag

s ∈ N, and Ht−∞ = σ( ft , ft−1, . . .) and H∞
t+s = σ( ft+s, ft+s+1, . . .) denote the

sigma-fields generated by process ( ft ) up to time t, and from time t + s onward,
respectively.

A.4: Conditional on the factor path ( ft ), the individual process
(

yi,t
)

is beta
mixing, such that the conditional beta mixing coefficients:

βt (s) ≡ sup
A∈B(R)

∫ ∣∣P[yi,t ∈ A|yi,t−s = η, ft , ft−1, . . . , ft−s+1
]

− P[yi,t ∈ A| ft
]∣∣λ(η)dη, s ∈ N,

are measurable functions of ft and satisfy βt (s) → 0 as s → ∞, for any t and
P-a.s., where B(R) denotes the Borel sigma-field on R, λ is a strictly positive
p.d.f. on R, and ft = ( ft , ft−1, · · · ).
Assumption A.4 requires that the Markov transition distribution of yi,t conditional
on yi,t−s and the factor path converges to the long-run conditional distribution of
yi,t , denoted P[·| ft ], as the lag s tends to ∞. The conditional long-run distribu-
tion P[·| ft ] at date t , and the conditional beta mixing coefficients βt (s) at date t ,
depend on the factor path ft , and thus are stochastic. The beta mixing coefficients
βt (s) are assumed to converge to zero as lag s increases, for any factor path, im-
plying the irrelevance of the initial values of the yi,t ’s in the long-run conditional
on the factor path. The convergence rate can be geometric, for instance. The inte-
gration w.r.t. the factor path is expected to decrease the decay rate of the mixing
coefficients (Granger and Joyeux, 1980). However, by the Lebesgue Theorem,
under Assumption A.4 the integrated mixing coefficients E0 [βt (s)] are such that
E0 [βt (s)] → 0 as s → ∞. The decay of the integrated mixing coefficients im-
plies that the initial values of the yi,t ’s have no effect in the long run even after
integrating out the factors. As usual, it is convenient for expository purpose to
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disregard the short run effect of the initial observations by introducing a suitable
assumption on their distribution.

A.5: The initial observations yi,0, with i = 1, . . . ,n, are i.i.d. conditional on
the factor path ( ft ), with distribution corresponding to the long-run distribution
P[·| f0] at time t = 0.

Assumption A.5 implies that at each date t the distribution of yi,t conditional
on the factor path is the long-run distribution P[·| ft ]. We get a time homogene-
ity property conditional on the factor path, as the conditional distribution of yi,t

depends on date t by means of the factor path ft only.

3. THE LIKELIHOOD EXPANSION

The joint density of yT = (
yi,t , t = 1, . . . ,T, i = 1, . . . ,n

)
and fT = ( ft ,

t = 1, . . . ,T ) (conditional on the initial values) is given by:

l
(

yT , fT ; β,θ
)=

n

∏
i=1

T

∏
t=1

h
(

yi,t |yi,t−1, ft ; β
) T

∏
t=1

g( ft | ft−1; θ) (3.1)

= lmicro
(

yT | fT ; β) lmacro
(

fT ; θ) , (say).

If the factors were observable, the terms lmicro
(

yT | fT ; β) and lmacro
(

fT ; θ)
would correspond to the conditional microdensity of the endogeneous variables,
and the macrodensity of the factors, respectively. Since the factors are unobserv-
able, the density of observations yT is obtained by integrating out the factor path
fT :

l
(

yT ; β,θ
)=

∫
· · ·
∫ T

∏
t=1

n

∏
i=1

h
(

yi,t |yi,t−1, ft ; β
) T

∏
t=1

g( ft | ft−1; θ)
T

∏
t=1

d ft

=
∫

· · ·
∫

exp

{
n

T

∑
t=1

(
1

n

n

∑
i=1

logh
(

yi,t |yi,t−1, ft ; β
))}

×
T

∏
t=1

g( ft | ft−1; θ)
T

∏
t=1

d ft . (3.2)

This likelihood function involves an integral with a large dimension increasing
with T , which complicates the analytical study of the Maximum Likelihood (ML)
estimators and the numerical computation of the ML estimates.8 However, for
large n, this integral can be approximated along the lines of the Laplace approxi-
mation (Laplace, 1774). Laplace approximations can be found in the econometric
literature as early as Holly and Phillips (1979) and Phillips (1983) for the deriva-
tion of the marginal distribution of instrumental variable estimators. Tierney and
Kadane (1986) used this device to derive the posterior distribution in Bayesian
statistics. More recently, the Laplace approximation has been used in Arellano
and Bonhomme (2009) to derive the bias of the integrated likelihood in nonlinear
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970 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

panel models with individual fixed effects. Huber, Scaillet, and Victoria-Feser
(2009) use the Laplace approximation to develop a tractable estimator for a mul-
tivariate logit model in a latent factor framework in finance. In our setting with se-
rially dependent factors, the Laplace approximation is applied to an integral w.r.t.
the full path of time effects. Specifically, we start by defining for any parameter
value β ∈ B and date t = 1, . . . ,T the cross-sectional ML estimator of the factor
value:

f̂n,t (β) = arg max
ft ∈Fn

n

∑
i=1

logh
(

yi,t |yi,t−1, ft ; β
)
, (3.3)

where the compact set Fn ⊂ R
m grows when n → ∞ as described by Assump-

tion H.6 in Appendix A.1. Then, by a Taylor expansion of the integrand in the

RHS of equation (3.2) around
(

f̂n,1(β)′, . . . , f̂n,T (β)′
)′

that is the maximizer of
T

∑
t=1

n

∑
i=1

logh(yi,t |yi,t−1, ft ; β) w.r.t. the factor path, we get:

l
(

yT ; β,θ
)=

T

∏
t=1

n

∏
i=1

h
(

yi,t |yi,t−1, f̂n,t (β) ; β
) T

∏
t=1

g
(

f̂n,t (β) | f̂n,t−1 (β) ; θ
)

×
∫

· · ·
∫

exp

{
−1

2

T

∑
t=1

√
n
(

ft − f̂n,t (β)
)′

In,t (β)
√

n
(

ft − f̂n,t (β)
)}

× exp

{
T

∑
t=1

ψn,t ( ft , ft−1; β,θ)

}
T

∏
t=1

d ft ,

where

In,t (β) = −1

n

n

∑
i=1

∂2 logh

∂ ft∂ f
′
t

(
yi,t |yi,t−1, f̂n,t (β) ; β

)
, (3.4)

and the term ψn,t is defined in (A.3) in Appendix A.2.1. By introducing the

change of variables zt = √
n
[
In,t (β)

]1/2 (
ft − f̂n,t (β)

) ⇐⇒ ft = f̂n,t (β) +
1√
n

[
In,t (β)

]−1/2
zt , for t = 1, . . . ,T , and expanding function exp

(
∑t ψn,t

)
in a

power series of the n−1/2zt , the multivariate integral in the expression of the like-
lihood can be written as a linear combination of power moments of the standard
Gaussian distribution, with coefficients depending on the observations. The next
proposition gives the expansion for the (nT -standardized) log-likelihood function
of the sample:

LnT (β,θ) = 1

nT
log l

(
yT ; β,θ

)
, (3.5)

as a power series of 1/n, and controls the stochastic order of the remainder term.
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PROPOSITION 1. Let Assumptions A.1–A.5 and H.1–H.12 in Appendix A.1
be satisfied.

(i) If n,T → ∞ such that T ν/n = O(1), for a value ν > 1, we have:

LnT (β,θ) = L∗
nT (β)+ 1

n
L1,nT (β,θ)+
nT (β,θ), (3.6)

where

L∗
nT (β) = 1

nT

T

∑
t=1

n

∑
i=1

logh
(

yi,t |yi,t−1, f̂n,t (β) ; β
)

, (3.7)

L1,nT (β,θ) = −1

2

1

T

T

∑
t=1

logdet In,t (β)

+ 1

T

T

∑
t=1

log g
(

f̂n,t (β) | f̂n,t−1 (β) ; θ
)

, (3.8)

with In,t (β) defined as in (3.4), and the term 
nT (β,θ) is such that
sup

β∈B,θ∈�
|
nT (β,θ)| = op(1/n) w.r.t. the true distribution.

(ii) If n,T → ∞ such that T ν/n = O(1), for a value ν > 3/2, we have:

LnT (β,θ) =L∗
nT (β)+ 1

n
L1,nT (β,θ)+ 1

n2L2,nT (β,θ)+
̃nT (β,θ), (3.9)

where the term 
̃nT (β,θ) is such that sup
β∈B,θ∈�

|
̃nT (β,θ)| = op
(
1/n2).

When the factor is one-dimensional, i.e., m = 1, the expression of term
L2,nT (β,θ) is given by:

L2,nT (β,θ) = 1

8

1

T

T

∑
t=1

J4,n,t (β)+ 1

2

1

T

T

∑
t=1

D20,nt (β,θ)

+ 1

2

1

T

T

∑
t=2

D02,nt (β,θ)+ 5

24

1

T

T

∑
t=1

[
J3,nt (β)

]2

+ 1

2

1

T

T

∑
t=1

[
D10,nt (β,θ)

]2 + 1

2

1

T

T

∑
t=2

[
D01,nt (β,θ)

]2

+ 1

2

1

T

T

∑
t=1

J3,n,t (β)D10,nt (β,θ)

+ 1

2

1

T

T

∑
t=2

J3,n,t−1(β)D01,nt (β,θ)

+ 1

T

T

∑
t=2

D10,n,t−1(β,θ)D01,nt (β,θ), (3.10)
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972 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

with Jp,nt (β) = 1

n

n

∑
i=1

∂ p logh

∂ f p
t

(
yi,t |yi,t−1, f̂n,t (β) ; β

)
[In,t (β)]−p/2, for

p = 3,4, and Dpq,nt (β,θ) = ∂ p+q log g

∂ f p
t ∂ f q

t−1

(
f̂nt (β)| f̂n,t−1(β); θ

)
[In,t (β)]−p/2

[In,t−1(β)]−q/2, for p,q = 0,1,2.

Proof. See Appendix A.2.1. n

Function L∗
nT (β), called profile log-likelihood function, is the micro log-

likelihood of β concentrated w.r.t. the factor values, as if the latter ones were
nuisance parameters. It contains the information on β which is independent of
the factor dynamics. Proposition 1 shows that the leading term in the asymptotic
expansion of the log-likelihood function LnT (β,θ) in powers of 1/n involves pa-
rameter β only and is equal to L∗

nT (β). The next term L1,nT (β,θ) at order 1/n is
the first to provide information on parameter θ characterizing the factor dynam-
ics. It corresponds to the macro log-likelihood after replacing the unobservable
factor values with cross-sectional approximations depending on β. The log-det
component comes from the Jacobian in the change of variable for Laplace ap-
proximation. The term of order 1/n2 involves first- and second-order derivatives
of the macro log-density function, and third- and fourth-order derivatives of the
micro log-density w.r.t. the factor value. Its specific expression seems difficult
to interpret in the general framework. It is possible to derive L2,nT (β,θ) also in
the multiple factor case (m ≥ 2), but its expression is notationally cumbersome
and is not provided here. Functions L∗

nT (β), L1,nT (β,θ), and L2,nT (β,θ) do not
involve integrals w.r.t. the factor path, but only nonlinear aggregates of sample
observations. In fact, all multidimensional integrals are included in the residual
terms op(1/n), or op(1/n2). Thus, Propositions 1 (i) and (ii) provide closed-form
approximations of the log-likelihood function at order op(1/n), and op(1/n2),
respectively. The condition T ν/n = O(1), ν > 1, is used in Appendix A.2.1
to control the stochastic remainder term in the Laplace approximation at order
op(1/n). This condition constrains the growth rate of the dimension T m of the
integral in equation (3.2) relatively to the cross-sectional size n, which plays the
role of the parameter tending to infinity in our application of the Laplace approxi-
mation method. The more restrictive condition T ν/n = O(1), ν > 3/2, is used to
derive the more accurate log-likelihood approximation at order op(1/n2).

The true log-likelihood function LnT (β,θ) is invariant to one-to-one transfor-
mations of the factor vector f → φ( f ), say, where φ is any invertible mapping in
R

m . The leading term L∗
nT (β) in the log-likelihood expansion is invariant to such

transformations, since it corresponds to the concentrated micro log-likelihood.
As a consequence, also the terms L1,nT (β,θ) and L2,nT (β,θ) at order 1/n and
1/n2 are invariant to one-to-one factor transformations, as can be directly veri-
fied from their expressions in (3.8) and (3.10) (for m = 1). In particular, the in-

variance of L1,nT (β,θ) explains the log-det component −1

2

1

T

T

∑
t=1

logdet In,t (β).
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This component corresponds to the term introduced by Cox and Reid (1987) in
their modified profile likelihood (see also Sweeting, 1987).9

We can interpret the leading term in the expansions given in Proposition 1 as
an example of the asymptotic equivalence of frequentist and Bayesian methods
in large sample (see, e.g., Bickel and Yahav, 1969; Ibragimov and Has’minskii,
1981). To get the intuition, let time dimension T be fixed and parameter θ be
given for a moment. Then, our specification with stochastic common factor can
be seen as a Bayesian approach w.r.t. parameter β and time effects fT . The prior

distribution is such that the density of fT given β is
T
∏

t=1
g ( ft | ft−1; θ), indepen-

dent of β, and the prior distribution of β is diffuse. Then, the posterior density
of (β, fT ) corresponds to the RHS of equation (3.1), while the posterior density
of β corresponds to the RHS of equation (3.2), up to multiplicative constants.
Thus, as n → ∞, the “Bayesian” log posterior density LnT (β,θ) approaches the
log-likelihood L∗

nT (β), which is the “frequentist” log-likelihood for β concen-
trated w.r.t. parameters ft , t = 1, . . . ,T . The asymptotic irrelevance of the second
term in the RHS of (3.6), or (3.9), involving the transition density of the factor
corresponds to the irrelevance of the prior distribution in large samples. Our re-
sults show that this asymptotic equivalence is still valid when the number of time
effects parameters tends to infinity: T → ∞, such that T ν/n → 0, ν > 1.10

4. MAXIMUM LIKELIHOOD AND MAXIMUM APPROXIMATED
LIKELIHOOD ESTIMATORS

4.1. The estimators of micro- and macroparameters

The ML estimator of (β,θ) is derived by maximizing the log-likelihood func-
tion LnT (β,θ) defined in equation (3.5). Alternative estimators can be defined
by maximizing jointly w.r.t. β and θ approximations of the log-likelihood func-
tion at probability order 1/n, and 1/n2, respectively. From Proposition 1(i), an
approximation at order op(1/n) is given by:

LCSA
nT (β,θ) = L∗

nT (β)+ 1

n
L1,nT (β,θ). (4.1)

This approximation defines the cross-sectional asymptotic (CSA) log-likelihood
function. Similarly, from Proposition 1(ii) an approximation valid up to order
op(1/n2) is:

LGA
nT (β,θ) = L∗

nT (β)+ 1

n
L1,nT (β,θ)+ 1

n2L2,nT (β,θ). (4.2)

This approximated log-likelihood function defines the granularity adjusted (GA)
log-likelihood function. Then, we define the maximum likelihood and maximum
approximated likelihood estimators as follows:
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974 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

DEFINITION 1.

(i) The maximum likelihood estimator is
(
β̃nT , θ̃nT

)= argmax
β∈B,θ∈�

LnT (β,θ).

(ii) The CSA maximum likelihood estimator is(
β̃CSA

nT , θ̃CSA
nT

)= argmax
β∈B,θ∈�

LCSA
nT (β,θ).

(iii) The GA maximum likelihood estimator is(
β̃GA

nT , θ̃GA
nT

)
= argmax

β∈B,θ∈�
LGA

nT (β,θ).

The CSA and GA maximum likelihood estimators are computationally more con-
venient than the standard ML estimator, since the CSA and GA log-likelihood
functions do not involve integrals w.r.t. the factor path. The difference between the
GA and CSA maximum likelihood estimators is called the granularity adjustment.
This terminology is explained by the link with the recent literature on granular-
ity adjustment in credit risk (see, e.g., BCBS, 2001; Gordy, 2003). This literature
focuses on the computation of risk measures, such as the Value-at-Risk, for large
homogeneous portfolios of n assets, whose values are affected by systematic risk
factors. The basic idea is to expand the risk measure around the cross-sectional
asymptotic limit of an infinitely fine grained portfolio (n = ∞), and compute
the adjustment at order 1/n (for a general presentation of granularity for risk
measures, see Gagliardini, Gouriéroux, and Monfort, 2012, Section 5). A similar
approach is applied here on the likelihood function and ML estimators instead of
being applied on the future portfolio value distribution and its quantiles.

4.2. Identification

To analyze the asymptotic properties of the estimators in Definition 1, we in-
troduce suitable identification assumptions for the micro- and macroparameters.
Identification is ensured by the global and local behavior of the large sample limit
of the likelihood function around the true parameter value. We exploit the asymp-
totic expansion of the log-likelihood function in Proposition 1 and consider the
case in which the next two conditions are satisfied: (i) the microparameter β is
identifiable from the leading term L∗

nT (β) and (ii) the full parameter vector (β,θ)
is identifiable from the log-likelihood approximation at first-order in 1/n, that is,
the CSA log-likelihood LC S A

nT (β,θ). The cases in which the identification of the
microparameter requires the first-order term n−1L1,nT (β,θ), or the identification
of some parameters requires the second-order term n−2L2,nT (β,θ), lead to differ-
ent asymptotic behaviors of the estimators and are not considered in this paper. Let
us now derive the identification assumptions, starting from the microparameter.

(i) Let us first define the population counterpart of the cross-sectional estimate
of the factor value:

ft (β) = arg max
f ∈Rm

E0
[
logh

(
yi,t |yi,t−1, f ; β) | ft

]
, (4.3)
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where E0
[
.| ft
]

denotes the expectation w.r.t. the true conditional distribu-
tion of

(
yi,t , yi,t−1

)
given ft = ( ft , ft−1, . . .). The pseudo-true factor value

ft (β) maximizes the limiting cross-sectional log-likelihood at date t for
given parameter value β. It is a function of both parameter β and factor
path ft . Thus, ft (β) is a stochastic process, for any β ∈ B. We assume
that the pseudo-true factor value is globally and locally identified (see As-
sumption H.2 in Appendix A.1). By the properties of the Kullback-Leibler
discrepancy, at true parameter value β0, the pseudo-true factor value ft (β0)
coincides with the true factor value ft , P-a.s., for any t .

Let us now define the function:

L∗ (β) = plim
n,T →∞

L∗
nT (β) = plim

n,T →∞
1

nT

T

∑
t=1

n

∑
i=1

logh
(

yi,t |yi,t−1, f̂n,t (β) ; β
)

= E0
[
logh

(
yi,t |yi,t−1, ft (β) ; β)] , (4.4)

where the convergence is uniform w.r.t. β ∈ B and is proved in Lemma 1(i)
(see supplementary material). Intuitively, function L∗(β) is the asymptotic
micro log-likelihood concentrated w.r.t. the stochastic process ( ft ). The as-
sumptions below concern the identification of parameter β.

A.6 (Global identification assumption for β): The mapping β → L∗ (β) is
uniquely maximized at the true parameter value β0.

A.7 (Local identification assumption for β): The matrix I ∗
0 = −∂2L∗ (β0)

∂β∂β
′ is

positive definite.

The matrix I ∗
0 is given by:

I ∗
0 = E0

[
Iββ(t)− Iβ f (t)I f f (t)

−1 I fβ(t)
]

= E0
[
UitU

′
i t

]
, (4.5)

where Iββ(t), I f f (t), Iβ f (t), and I fβ(t) = Iβ f (t)′ denote the blocks of the condi-
tional information matrix at date t :

I (t) = E0

[
−∂2 logh

(
yi,t |yi,t−1, ft ; β0

)
∂
(
β

′
, f

′
t
)′

∂
(
β

′
, f

′
t
) | ft

]
, (4.6)

and Uit = ∂ logh(yi,t |yi,t−1; ft ; β0)

∂β
− Iβ f (t)I f f (t)

−1 ∂ logh(yi,t |yi,t−1; ft ; β0)

∂ ft
.

Thus, I ∗
0 is the variance-covariance matrix of the residual Uit in the orthogonal

conditional projection of the score w.r.t. the microparameter on the score w.r.t the
factor value given ft .

(ii) Let us now consider the macrocomponent of the log-likelihood. Under
Assumptions A.6 and A.7, parameter β can be estimated at a rate faster
than the rate for parameter θ . Hence, the relevant criterion for iden-
tification of θ is the mapping θ → L1(β0,θ), where L1(β,θ) is the
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976 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

large sample limit of L1,nT (β,θ) in equation (3.8). We have L1(β0,θ) =
E0
[
log g( ft | ft−1; θ)

]
, up to a term constant in θ [see Lemma 1(ii) in

the supplementary material]. Thus, the identification assumptions for the
macroparameter are the following:

A.8 (Global identification assumption for θ ): The mapping θ →
E0
[
log g( ft | ft−1; θ)

]
is uniquely maximized at the true parameter value θ0.

A.9 (Local identification assumption for θ ): The matrix I1,θθ =
E0

[
−∂2 log g ( ft | ft−1; θ0)

∂θ∂θ
′

]
is positive definite.

Assumptions A.8 and A.9 are the standard global and local identification condi-
tions for estimating parameter θ in a model with observable factor values.

4.3. Asymptotic properties of the estimators

We consider the asymptotic properties of the CSA, GA, and true ML estima-
tors in Definition 1 under Assumptions A.1–A.9 and H.1–H.14 in Appendix A.1.
Assumptions A.1–A.9 are invariant to one-to-one transformations of the factor
vector (if the transformation is independent of the parameters β, θ ), whereas some
of the Assumptions H.1–H.14 are not. Moreover, the CSA, GA, and true ML esti-
mators are numerically invariant to one-to-one transformations of the factor. Thus,
in order to establish their asymptotic properties it is enough that the regularity
conditions H.1–H.14 in Appendix A.1 are satisfied for a suitable choice of the
factor representation.

Let us first study the probability order of the difference between the CSA and
GA ML estimators on the one hand, and the true ML estimators on the other hand.

PROPOSITION 2. Under Assumptions A.1–A.9 and H.1–H.14, the CSA, GA,
and true infeasible ML estimators in Definition 1 are such that:

β̃CSA
nT − β̃nT = op(1/n), θ̃CSA

nT − θ̃nT = Op

(
(logn)δ1√

n

)
, (4.7)

β̃GA
nT − β̃nT = op(1/n), θ̃GA

nT − θ̃nT = Op

(
(logn)δ1√

n

)
, (4.8)

for a constant δ1 > 0, if n,T → ∞ such that T ν/n = O(1), ν > 1, and:

β̃CSA
nT − β̃nT = Op(1/n2), θ̃CSA

nT − θ̃nT = Op(1/n), (4.9)

β̃GA
nT − β̃nT = op(1/n2), θ̃GA

nT − θ̃nT = op(1/n), (4.10)

if n,T → ∞ such that T ν/n = O(1), ν > 3/2.

Proof. See Appendix A.2.2. n
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Proposition 2 states that the CSA, GA, and true ML estimators are asymp-
totically equivalent and provides the probability orders of this equivalence.
If T ν/n = O(1), ν > 3/2, from equations (4.9) and (4.10) the GA maximum
likelihood estimator provides a more accurate approximation of the true ML es-
timator compared to the CSA maximum likelihood estimator. The accuracy of
the approximation is superior for the micro- than for the macroparameters. Under
the less restrictive condition T ν/n = O(1), ν > 1, from equations (4.7) and (4.8)
the CSA and GA ML estimators have the same order of accuracy in approximating
the true ML estimator, and this accuracy is again superior for the microparameters.

The joint asymptotic distribution of the estimators of the micro- and macropa-
rameters is given in the next proposition.

PROPOSITION 3. Let Assumptions A.1–A.9 and H.1–H.14 be satisfied, and
let (β̂nT , θ̂nT ) be either the CSA, GA, or true ML estimator in Definition 1. Then,
if n,T → ∞ such that T ν/n = O(1), ν > 1, estimator (β̂nT , θ̂nT ) is consistent
and asymptotically normal:

⎡
⎣

√
nT
(
β̂nT −β0

)
√

T
(
θ̂nT − θ0

)
⎤
⎦ d−→ N

((
0
0

)
,

(
B∗

ββ B∗
βθ

B∗
θβ B∗

θθ

))
, (4.11)

with asymptotic variance-covariance matrix

B∗ =
(

B∗
ββ B∗

βθ

B∗
θβ B∗

θθ

)
=
((

I ∗
0

)−1 0

0 I −1
1,θθ

)
,

where I ∗
0 = E0

[
Iββ(t)− Iβ f (t)I f f (t)

−1 I fβ(t)
]

and I1,θθ =

E0

[
−∂2 log g ( ft | ft−1; θ0)

∂θ∂θ
′

]
.

Proof. See Appendix A.2.3. n

Proposition 3 states that the CSA, GA, and ML estimators are asymptotically
normal with different rates of convergence for the micro- and macrocomponent
that are root-nT and root-T , respectively, if T ν/n = O(1), ν > 1. The asymp-
totic variance-covariance matrix B∗ defines the joint efficiency bound for esti-
mating both micro- and macroparameters (β,θ). Matrix B∗ is block-diagonal for
the micro- and macrocomponents, with the diagonal blocks corresponding to the

Hessian matrices I ∗
0 = −∂2L∗ (β0)

∂β∂β
′ and I1,θθ = −∂2L1 (β0,θ0)

∂θ∂θ
′ . The zero out-

of-diagonal blocks in the efficiency bound imply that parameters β and θ can
be considered independently for estimation purpose. This justifies ex-post their
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978 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

interpretation as micro- and macroparameters, respectively, since parameter β
(respectively θ ) contains no macro-information (respectively no micro-
information) under identification Assumptions A.6–A.9. The condition T ν/n =
O(1), ν > 1, implies that the asymptotic distributions of the estimators are cen-
tered. Thus, in our framework there is no incidental parameter bias (see, e.g.,
Neyman et al., 1948; Lancaster, 2000).

The result in Proposition 3 is a consequence of the expansion of the likeli-
hood function in Proposition 1. Indeed, under identification Assumptions A.6–
A.7 and the regularity conditions in Appendix A.1, for large n and T the
relevant term for estimation of parameter β is L∗

nT (β). The corresponding limit
log-likelihood function is L∗ (β), and the efficiency bound B∗

ββ for β is the in-
verse of the Hessian I ∗

0 . Similarly, the efficiency bound B∗
θθ for θ is the inverse

of the Hessian I1,θθ . Moreover, the (standardized) ML estimators of β and θ
are asymptotically independent. Therefore, the efficiency bound B∗

ββ for β given
in Proposition 3 is the same as the efficiency bound for β with known transi-
tion density of the factor. Finally, the information matrix I ∗

0 is smaller than the
information matrix I ∗∗

0 = E0
[
Iββ(t)

]
corresponding to the case of observable

factor, while matrix I1,θθ is equal to the information for θ with observable fac-
tor. Estimator θ̂nT is asymptotically equivalent to the infeasible ML estimator

θ̂∗∗
T = argmax

θ

T

∑
t=1

log g ( ft | ft−1; θ) that uses the true factor values. Therefore, the

unobservability of the factor has no efficiency impact asymptotically for estimat-
ing θ , but has an impact for estimating β. Indeed, the factor values can be esti-
mated at a rate close to 1/

√
n (see Proposition 5 below), a rate which is faster

than the rate 1/
√

T for estimating θ , if T ν/n = O(1), ν > 1, and slower than the
rate 1/

√
nT for estimating β.

Proposition 3 shows that the computationally convenient CSA and GA ML
estimators are asymptotically efficient estimators of parameters β and θ (see
also Section 5 for other asymptotically efficient estimators). This result con-
cerns first-order asymptotics only. It is out of the scope of the present paper to
get the higher-order expansion of the asymptotic distribution of the standardized

estimators

[√
nT
(
β̂nT −β0

)′
,
√

T
(
θ̂nT − θ0

)′]′
in the sense of Ghosh and Sub-

ramanyam (1974) and Pfanzagl and Wefelmeyer (1978), for instance to correct for
the higher-order bias in n and/or T . It is likely difficult to derive the higher-order
expansions due to the double asymptotics and the different rates of convergence
of the estimators of micro- and macroparameters. The GA ML estimator is closer
to the infeasible ML estimator than the CSA ML estimator is, if T ν/n = O(1),
ν > 3/2, and likely inherits its finite-sample properties. In some applications
to credit risk, the ML and GA ML estimators can feature worse finite-sample
properties than the CSA ML estimator (see Gourieroux and Jasiak, 2012). There-
fore, we may expect different higher-order expansions for the CSA and GA ML
estimators.

terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466614000024
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:35:51, subject to the Cambridge Core

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466614000024
https:/www.cambridge.org/core


EFFICIENCY IN LARGE PANELS WITH COMMON FACTORS 979

4.4. Semiparametric efficiency

The efficiency bound B∗
ββ for parameter β in Proposition 3 is independent of

the parametric model g( ft | ft−1; θ), θ ∈ Rp, for the transition density of the
factor, that is, factor distribution free. This suggests that the efficiency result
extends to a semiparametric setting. Specifically, the asymptotic semiparametric
efficiency bound B for β is the efficiency bound for estimating β in the semi-
parametric model in which the transition g( ft | ft−1) of the factor is a functional
parameter. The semiparametric efficiency bound B can be computed by using
Stein’s heuristic (Stein, 1956; Severini and Tripathi, 2001). More precisely, let
gθ = g( ft | ft−1; θ) be a well-specified parametric model for the transition of ft

with parameter θ ∈ Rp that satisfies Assumptions A.8 and A.9 and the regularity
conditions H.11–H.14 in Appendix A.1, and let B∗

ββ(gθ ) be the corresponding
parametric efficiency bound for estimating β.

DEFINITION 2. The semiparametric efficiency bound B is defined by:

B = max
gθ

B∗
ββ(gθ ),

where the maximization is performed w.r.t. the well-specified parametric models
gθ for the transition of ft that satisfy Assumptions A.8 and A.9 and H.11–H.14.

The result in Proposition 3 shows that B∗
ββ(gθ ) is independent of gθ . Therefore,

we deduce:

COROLLARY 4. Under Assumptions A.1–A.7 and H.1–H.10, and if
n,T → ∞ such that T ν/n = O(1), ν > 1, the semiparametric efficiency
bound for β is equal to the parametric efficiency bound: B = B∗

ββ =
E0

[
Iββ(t)− Iβ f (t)I f f (t)

−1 I fβ(t)
]−1

.

Thus, any well-specified parametric model gθ is the least-favorable one in
the sense of Chamberlain (1987). Proposition 3 and Corollary 4 show that the
knowledge of the parametric model for the transition of the factor, and even the
knowledge of the transition itself, are irrelevant for the asymptotically efficient
estimation of microparameter β.11

4.5. Approximation of the factor values

Given a consistent estimator of the microparameter β, we can use the cross-
sectional aggregate f̂n,t (β) to get consistent approximations of the factor value
ft .12

DEFINITION 3. Let β̂nT denote either the CSA, GA, or true ML estimator of
the microparameter β in Definition 1. Then a cross-sectional approximation of
the factor value at date t is:
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980 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

f̂nT,t = f̂n,t

(
β̂nT

)
,

for t = 1, . . . ,T , where f̂n,t (β) is defined in equation (3.3).

For any given date t , the factor approximation f̂nT,t depends on the whole indi-
vidual histories and is a kind of smoothed factor value. Its asymptotic properties
are given in the next proposition.

PROPOSITION 5. Suppose Assumptions A.1–A.9 and H.1–H.14 hold, and let
n,T → ∞ such that T ν/n = O(1), ν > 1. Then:

(i) For any date t , conditional on ft we have:
√

n
(

f̂nT,t − ft

)
d−→

N
(
0, I f f (t)

−1).
(ii) sup

1≤t≤T

∥∥∥ f̂nT,t − ft

∥∥∥= Op

(
(logn)δ2√

n

)
, where δ2 = γ2 +γ3/2+2/d3 +1/2

and constants γ2,γ3 ≥ 0, d3 > 0 are defined in Assumptions H.7–H.9 in
Appendix A.1.

Proof. See Appendix A.2.4. n

Conditionally on the factor path, the factor approximation converges to the true
factor value ft at rate 1/

√
n. Since β̂nT is root-nT consistent, estimator f̂nT,t is

asymptotically equivalent to the infeasible ML estimator f̂n,t (β0) for known mi-
croparameter β0. The asymptotic variance I f f (t)−1 of f̂nT,t is the inverse of the
Fisher information for estimating ft in the cross-section at date t with known β0.
The uniform convergence in Proposition 5(ii) follows from the convergence of
f̂n,t (β) to ft (β) uniformly in β ∈ B and t = 1, . . . ,T (see Limit Theorem 1
in the supplementary materials) and the root-nT consistency of estimator β̂nT

(see Proposition 3). Proposition 5(ii) is not invariant to one-to-one transforma-
tions of the factor, since the regularity assumptions include tail conditions on the
factor distribution (see Assumptions H.7–H.9).

5. TWO-STEP EFFICIENT ESTIMATORS

In this section we introduce another asymptotically efficient estimation approach,
in which the estimators of the micro- and macroparameters can be computed in
two steps and are easy to interpret.

DEFINITION 4. The two-step estimator is defined by:

β̂∗
nT = argmax

β∈B

T

∑
t=1

n

∑
i=1

logh
(

yi,t |yi,t−1, f̂n,t (β) ; β
)

,
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EFFICIENCY IN LARGE PANELS WITH COMMON FACTORS 981

and:

θ̂∗
nT = argmax

θ∈�

T

∑
t=1

log g
(

f̂ ∗
nT,t | f̂ ∗

nT,t−1; θ
)

,

where f̂n,t (β) is defined in equation (3.3) and f̂ ∗
nT,t = f̂n,t

(
β̂∗

nT

)
for t = 1, . . . ,T .

In the first step, the estimator β̂∗
nT of the microparameter is obtained by max-

imizing the profile likelihood function L∗
nT (β) defined in equation (3.7). Thus,

β̂∗
nT is the time fixed effects estimator of β which considers the ft values as addi-

tional unknown parameters. Since the function L∗
nT (β) does not involve the tran-

sition p.d.f. of the factor, the estimator β̂∗
nT does not depend on the specification

of the factor dynamics. In this sense, β̂∗
nT is a semiparametric estimator, which is

not the case for the CSA and GA ML estimators. Estimator β̂∗
nT is used to derive

cross-sectional approximations f̂ ∗
nT,t of the factor values. These cross-sectional

factor approximations correspond to the ML estimates of the time fixed effects.
In the second step, the approximations of the factor values are used to derive

the approximation of the macrolikelihood function
T

∑
t=1

log g
(

f̂ ∗
nT,t | f̂ ∗

nT,t−1; θ
)

.

By maximizing this approximate likelihood w.r.t. θ , we get an estimator of the
macroparameter.

The asymptotic distribution of the two-step estimator is given in the next
proposition.

PROPOSITION 6. Suppose Assumptions A.1–A.9 and H.1–H.14 hold, and let
n,T → ∞ such that T ν/n = O(1), ν > 1. Then the estimators in Definition 4 are
such that:

(i) β̂∗
nT − β̃nT = Op(1/n), θ̂∗

nT − θ̃nT = Op

(
(logn)δ1√

n

)
, for δ1 > 0 as in

Proposition 2.

(ii) The estimator (β̂∗′
nT , θ̂∗′

nT )′ is consistent and asymptotically normal such
that:⎡
⎣

√
nT
(
β̂∗

nT −β0

)
√

T
(
θ̂∗

nT − θ0

)
⎤
⎦ d−→ N

((
0
0

)
,

(
(I ∗

0 )−1 0

0 I −1
1,θθ

))
,

where matrices I ∗
0 and I1,θθ are given in Proposition 3.

Proof. See Appendix A.2.5. n

From Propositions 2 and 6(i), the two-step estimator of the microparameter
provides a less accurate approximation of the true ML estimator compared with
the CSA and GA ML estimators. However, the semiparametric estimator β̂∗

nT still
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982 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

achieves asymptotically the (semi)parametric efficiency bound. In other words,
the conditional likelihood estimator of β (based on concentrating out the ft ) is
first-order asymptotically equivalent to the full likelihood estimator of β.

The first-order asymptotic distribution of the fixed effects estimator β̂∗
nT in

Proposition 6(ii) is not surprising in view of Theorem 1 in Hahn et al. (2004),
who consider a nonlinear setting with microdensity h(yi,t |αi ; β) and individual
fixed effects αi . In particular, the interpretation of the asymptotic variance I ∗

0 in
equation (4.5) as the outer product of the residual in the orthogonal projection of
the score w.r.t. the microparameter on the score w.r.t. the fixed effect is the same
as in Theorem 1 in Hahn et al. (2004). However, Proposition 6 cannot be obtained
by interchanging the individual and time indices, and also the sizes n and T , and
by letting ρ → 0 in Hahn et al. (2004), where their parameter ρ > 0 is such that
n/T → ρ. Indeed, in our paper the microdensity h(hi,t |yi,t−1, ft ; β) depends on
the lagged variable yi,t−1, the latent factor ft features a dynamic, and our asymp-
totic results are under a probability measure such that the time effects ft define
a stochastic process with parametric dynamics and are not a sequence of fixed
constants. Hahn and Kuersteiner (2002) consider a linear dynamic panel model
with individual fixed effects13 and prove that the (bias-corrected) fixed effects es-
timator is asymptotically efficient in the sense of Hayek’s convolution theorem.
Proposition 6 differs from Hahn et al. (2002), since we define the efficiency bound
as the asymptotic variance of the ML estimator under a parametric dynamics of
the stochastic time effects.

6. STOCHASTIC MIGRATION MODEL

In this section we illustrate the finite sample properties of the two-step estimators
in Definition 4 with a stochastic migration model.

6.1. The model

The stochastic migration model has been introduced to analyze the dynamics of
corporate ratings and is a basic element for the prediction of future credit risk in a
homogeneous pool of credits (e.g., Gupton, Finger, and Bhatia, 1997; Gordy and
Heitfield, 2002; Gagliardini and Gouriéroux, 2005a, 2005b; Feng, Gouriéroux,
and Jasiak, 2008; Koopman, Lucas, and Monteiro, 2008). A basic stochastic mi-
gration model is the ordered qualitative model with one factor, which extends the
ASRF model of Section 2.1 to more than two alternatives. Let us denote by yi,t ,
with t varying, the sequence of ratings for corporation i . The possible ratings are
k = 1,2, . . . , K , say.14 The microdynamics is deduced from the latent model for
the log asset/liability ratios:

y∗
i,t = αl +γl ft +σlui,t , i ∈ Rl,t−1, t = 1, . . . ,T,

where Rl,t−1 denotes the set of companies with rating yi,t−1 = l at time t − 1.
The idiosyncratic shocks ui,t are i.i.d. across companies and time with cdf G
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EFFICIENCY IN LARGE PANELS WITH COMMON FACTORS 983

that corresponds, for instance, to the standard normal distribution for the probit
model, when G(x) = �(x), and to the logistic distribution for the logit model,
when G(x) = 1/

(
1+ e−x

)
. The intercept αl , the factor sensitivity γl , and the

idiosyncratic volatility σl depend on the lagged rating l. Thus, in this model the
homogeneous segments correspond to the rating classes. The current ratings are
deduced by discretization of the log asset/liability ratios:

yi,t = k, if ck−1 < y∗
i,t ≤ ck,

for k = 1, . . . , K , where c1 < c2 < .. . < cK−1 are unknown thresholds and
c0 = −∞, cK = +∞. Then, the microdynamics is defined by the rating transition
matrices conditional on the factor value:

πlk,t = P[yi,t = k|yi,t−1 = l, ft
]

= G

(
ck −γl ft −αl

σl

)
− G

(
ck−1 −γl ft −αl

σl

)
,

where ck , αl ,γl ,σl , for k, l = 1, . . . , K , are unknown microparameters. Thus, we
have a set of ordered probit or logit models with latent factors and common pa-
rameters, since the thresholds ck appear in each row of the transition matrix. The
ratios al,k,t = (ck −γl ft −αl)/σl in the above transition probabilities identify
semiparametrically the microparameters and the factor values up to location and
scale transformations. Assumptions A.6 and A.7 for semiparametric identifica-
tion are satisfied if we impose the constraints c1 = 0, σ1 = 1, α1 = 0, γ1 = 1
when K > 2, and additionally σ2 = 1 when K = 2 (see Appendix A.3). For
instance, the vector of free microparameters is β = (αl ,γl ,σl , l = 2, . . . , K ,ck,
k = 2, . . . , K ) when K > 2. Finally, in the microdynamics we assume for illustra-
tion a single common factor ft , which follows a linear Gaussian autoregressive
process:

ft = μ+ρ ft−1 +σηt , (6.1)

where (ηt ) is I I N (0,1), and μ, ρ, and σ are unknown macroparameters.

6.2. Estimation of the microparameters

The micro log-density is given by:

logh
(

yi,t |yi,t−1, ft ; β
)=

K

∑
k=1

K

∑
l=1

1
{

yi,t = k, yi,t−1 = l
}

log

[
G

(
ck −γl ft −αl

σl

)
− G

(
ck−1 −γl ft −αl

σl

)]
.
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984 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

The estimators of the factor values given β are:

f̂n,t (β) = argmax
ft

K

∑
k=1

K

∑
l=1

Nlk,t log

[
G

(
ck −γl ft −αl

σl

)

−G

(
ck−1 −γl ft −αl

σl

)]
, t = 1, . . . ,T,

(6.2)

and depend on the data through the aggregate counts Nlk,t of transitions from
rating l at time t − 1 to rating k at time t , for k, l = 1, . . . , K and t = 1, . . . ,T .
The two-step (semi)parametrically efficient estimator of the microparameter is:

β̂∗
nT = argmax

β

K

∑
k=1

K

∑
l=1

T

∑
t=1

Nlk,t log

[
G

(
ck −γl f̂n,t (β)−αl

σl

)

− G

(
ck−1 −γl f̂n,t (β)−αl

σl

)]
. (6.3)

This estimator is computed from the aggregate data on rating transition counts
(Nlk,t ).

To compare the finite-sample distribution of estimator β̂∗
nT and the semipara-

metric efficiency bound, we perform a Monte-Carlo study. We consider the two-
state case K = 2 and assume a logistic function G. Under the semiparametric
identification constraints c1 = α1 = 0 and γ1 = σ1 = σ2 = 1, the microparameter
to estimate is β = (γ2,α2)

′. The parameter values used in the Monte-Carlo study
are displayed in Table 1.

In Figures 1 and 2, we consider the sample sizes n = 200, T = 20, and
n = 1000, T = 20, respectively. In each figure, the two panels display the fi-
nite sample distributions of the estimators of the two microparameters (solid
lines) that are the components of β̂∗

nT . We also display for each microparame-
ter the Gaussian distribution (dashed lines) with mean equal to the true parameter
value and variance equal to the semiparametric efficiency bound divided by nT .
The estimator β̂∗

nT is computed from equation (6.3) by numerical optimization.
To evaluate the profile microloglikelihood function for any given β, the esti-
mate f̂n,t (β) in equation (6.2) is computed by grid search. As expected from
the stochastic migration literature, the γ2 parameter, which represents the sensi-
tivity of the transition probabilities with respect to the systematic factor, is the
most difficult to estimate. Its asymptotic variance is larger and the convergence
of the finite sample distribution to the asymptotic one is slower. A comparison of

TABLE 1. Parameter values

α1 = 0 γ1 = 1 σ1 = 1 α2 = −0.5 γ2 = 1 σ2 = 1
c0 = −∞ c1 = 0 c2 = +∞ μ = 0.1 ρ = 0.5 σ = 0.5
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FIGURE 1. Distribution of the two-step semiparametrically efficient estimators of the
microparameters, sample size n = 200 and T = 20.
The solid lines give the p.d.f. of the two-step semiparametrically efficient estimators of parameter γ (upper Panel, true
value 1) and parameter α (lower Panel, true value −0.5). The p.d.f. is computed by a kernel density estimator. Sample
sizes are n = 200 and T = 20. The dashed lines in the two Panels give the p.d.f. of a normal distribution centered at
the true value of the parameter and with variance equal to the semiparametric efficiency bound divided by nT .

Figures 1 and 2 shows that the standard deviations of the estimators decrease by
a factor of about 2 when passing from n = 200 to n = 1000, as suggested by the
rate of convergence

√
nT of the microparameters estimators. Finally, the latter

estimators feature a rather small finite sample bias.
The semiparametric efficiency bound for β = (γ2,α2)

′ is easily derived from
Proposition 3 and is given by:

B∗
ββ = E0

[
μ1,t−1π12,t

(
1−π12,t

) ·μ2,t−1π22,t
(
1−π22,t

)
μ1,t−1π12,t

(
1−π12,t

)+μ2,t−1π22,t
(
1−π22,t

)
γ 2

2

(
f 2
t ft

ft 1

)]−1

,

where π12,t = 1/(1 + e− ft ), π22,t = 1/(1 + e−γ2 ft −α2), and μ1,t−1 =
P
[
yi,t−1 = 1| ft−1

] = 1 − μ2,t−1. The matrix B∗
ββ involves the probabilities

μ1,t−1 and μ2,t−1 of the lagged states, conditional on the factor path, and the
conditional variances of the indicator of state 2, that are π21,t (1 − π21,t ) and
π22,t (1 − π22,t ), respectively, according to the previous state. The matrix B∗

ββ

depends on macroparameters μ,ρ,σ 2 by means of the expectation E0.
Let us now study the pattern of the semiparametric efficiency bound of pa-

rameter γ2 as a function of the autoregressive coefficient ρ and the unconditional
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986 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

FIGURE 2. Distribution of the two-step semiparametrically efficient estimators of the
microparameters, sample size n = 1000 and T = 20.
The solid lines give the p.d.f. of the two-step semiparametrically efficient estimators of parameter γ (upper Panel, true
value 1) and parameter α (lower Panel, true value −0.5). The p.d.f. is computed by a kernel density estimator. Sample
sizes are n = 1000 and T = 20. The dashed lines in the two Panels give the p.d.f. of a normal distribution centered at
the true value of the parameter and with variance equal to the semiparametric efficiency bound divided by nT .

variance σ 2

1−ρ2 of the factor process ( ft ). Figure 3 displays the asymptotic standard

deviation
( 1

nT B∗
γ2γ2

)1/2 as a function of these two macroparameters, where n =
1000 and T = 20, and the semiparametric efficiency bound B∗

γ2γ2
is approximated

numerically by Monte-Carlo integration. The values of the microparameters and
of μ are given in Table 1. The semiparametric efficiency bound is decreasing w.r.t.
the factor variance. The pattern is almost flat w.r.t. the autoregressive coefficient ρ
of the factor, except for values of ρ close to 1, where the semiparametric efficiency
bound diverges to infinity.

6.3. Estimation of the macroparameters

Let us now consider the efficient estimation of the macroparameter θ =(
μ,ρ,σ 2

)′. The estimator is based on the cross-sectional approximations of the

factor values f̂ ∗
nT,t = f̂n,t

(
β̂∗

nT

)
from equations (6.2) and (6.3). The estimators μ̂

and ρ̂ are obtained by OLS on the regression:

f̂ ∗
nT,t = μ+ρ f̂ ∗

nT,t−1 +ut , t = 2, . . . ,T .

The estimator of parameter σ 2 is given by σ̂ 2 = 1

T −1

T

∑
t=2

û2
t , where ût = f̂ ∗

nT,t −
μ̂− ρ̂ f̂ ∗

nT,t−1 are the OLS residuals. The estimator θ̂∗ = (μ̂, ρ̂, σ̂ 2
)′

achieves the
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FIGURE 3. Semiparametric efficiency bound of the microparameter γ2.

The figure displays
( 1

nT B∗
γ2γ2

)1/2, where B∗
γ2γ2

is the semiparametric efficiency bound for parameter γ2

and n = 1000,T = 20, as a function of the autoregressive coefficient ρ and the variance σ2

1−ρ2 of the factor

process ( ft ).

asymptotic efficiency bound with observable factor, that is, the Cramer-Rao bound
for θ in the linear Gaussian model (6.1). Thus, the asymptotic efficiency bound is
such that the estimators of (μ,ρ)′ and σ 2 are asymptotically independent, root-T
consistent, with asymptotic variance:

B∗
(μ,ρ) = σ 2

0 E0

[(
1 ft

ft f 2
t

)]−1

=
⎛
⎝σ 2

0 +μ2
0

1+ρ0
1−ρ0

−μ0(1+ρ0)

−μ0(1+ρ0) 1−ρ2
0

⎞
⎠ ,

for (μ,ρ)′, and B∗
σ 2 = 2σ 4

0 , for σ 2.
Figures 4 and 5 display the distributions (solid lines) of the efficient estimators

μ̂, ρ̂, and σ̂ 2 in the Monte-Carlo study for sample sizes n = 200, T = 20, and
n = 1000, T = 20, respectively. The parameter values are given in Table 1. We
also display Gaussian distributions (dashed lines) centered at the true values of
the parameters, with variances equal to the efficiency bounds divided by T . As
expected, it is more difficult to estimate the autoregressive coefficient ρ and the
variance σ 2 than to estimate the intercept μ. The estimators ρ̂ and σ̂ 2 feature
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FIGURE 4. Distribution of the two-step efficient estimators of the macroparameters,
sample size n = 200 and T = 20.
The solid lines give the p.d.f. of the two-step efficient estimators of parameter μ (upper Panel, true value 0.1),
parameter ρ (central Panel, true value 0.5), and parameter σ2 (lower Panel, true value 0.25). The p.d.f. is computed
by a kernel density estimator. Sample sizes are n = 200 and T = 20. The dashed lines in the three Panels give the
p.d.f. of a normal distribution centered at the true value of the parameter and with variance equal to the efficiency
bound divided by T .

moderate downward biases. By comparing Figure 4 and Figure 5, we notice that
the standard deviations of the estimators are rather similar for the two sample
sizes and do not scale with n. Moreover, by comparing Figure 2 and Figure 5,
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FIGURE 5. Distribution of the two-step efficient estimators of the macroparameters,
sample size n = 1000 and T = 20.
The solid lines give the p.d.f. of the two-step efficient estimators of parameter μ (upper Panel, true value 0.1),
parameter ρ (central Panel, true value 0.5), and parameter σ2 (lower Panel, true value 0.25). The p.d.f. is computed
by a kernel density estimator. Sample sizes are n = 1000 and T = 20. The dashed lines in the three Panels give the
p.d.f. of a normal distribution centered at the true value of the parameter and with variance equal to the efficiency
bound divided by T .

it is seen that the discrepancy between the finite-sample distribution and the
asymptotic efficiency bound is more pronounced for the macroparameters than
for the microparameters for our sample sizes. These findings are a consequence
of the different convergence rates of the two types of estimators that are

√
T and√

nT , respectively.

7. CONCLUDING REMARKS

We consider nonlinear dynamic panel models with common unobservable fac-
tors, in which it is possible to disentangle the micro- and the macrodynamics,
the latter ones being captured by the factor dynamics. Such models are often en-
countered in finance and insurance when the joint individual risk dynamics are
followed in large homogeneous pools of individual contracts such as corporate
loans, household mortgages, or life insurance contracts. In such applications the
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model allows to disentangle the dynamics of systematic and unsystematic risks.
These models are also appropriate for extracting the business cycle from tendency
surveys (Gouriéroux and Monfort, 2009), to disentangle inequality and mobility
features in the dynamic analysis of income distributions, or to analyze longevity
risk (e.g., Lee and Carter, 1972; Schrager, 2006; Gouriéroux and Monfort, 2008).
The considered specifications include both segment fixed effects and dynamic fac-
tors, but no individual fixed effects. For large cross-sectional and time dimensions
n,T → ∞, such that T ν/n = O(1), ν > 1, we have derived the semiparamet-
ric efficiency bound of the parameter β characterizing the microdynamics. This
semiparametric efficiency bound takes into account the factor unobservability and
coincides with the bound for known factor transition. The efficiency bound for
parameter θ characterizing the macrodynamics is the same as if the factor were
observable. Moreover, we have shown that the efficiency bound for (β,θ) can be
reached by estimators that do not involve numerical integration w.r.t. the factor
path and thus are easy to implement. These results require a large cross-sectional
dimension to approximate the likelihood function by a closed form expression.
When T ν/n = O(1), ν > 3/2, the higher-order terms in this expansion around
n = ∞ are the basis for granularity adjustments, which yield asymptotically effi-
cient estimators that are more accurate approximations of the true ML estimator.
For prediction purposes, it could be useful to include time-invariant observable
individual characteristics xi in the microdensity h(yi,t |yi,t−1, xi , ft ; β). The
results in the paper can be easily extended to this case.

The condition T ν/n = O(1), ν > 1, implies that in our framework the inciden-
tal parameters problem does not induce a bias in the first-order asymptotic distri-
bution of the estimators. An interesting venue for future research is to investigate
the properties of the CSA, GA, and true ML estimators, as well as of the two-step
estimators, when T/n converges to a nonzero constant. This asymptotic scheme
is common in the panel literature with individual fixed effects, which focuses on
bias correction of the fixed effects estimator (for analytical bias correction, see,
e.g., Woutersen, 2002; Hahn et al., 2004; Arellano and Hahn, 2006; Bester and
Hansen, 2009; Hahn et al., 2011 and for bias correction by jackknife and indi-
rect inference, see, e.g., Hahn et al., 2004; Dhaene, Jochmans, and Thuysbaert,
2006; Gourieroux, Phillips, and Yu, 2010). When n,T → ∞ such that T/n → c
(say), c > 0, it is possible to prove that the fixed effects estimator β̂∗

nT , as well as
the CSA and GA ML estimators of β are asymptotically normal, with variance-
covariance matrix (I ∗

0 )−1, and feature an asymptotic bias in the general nonlinear
case. In the case of a linear dynamic panel model with time effects, the results in
Hahn and Moon (2006) imply that the fixed effects estimator of the autoregressive
parameter is asymptotically unbiased. Moreover, since the true ML estimator of β
admits an interpretation as a random effects estimator (see Section 3), the results
in Hahn, Kuersteiner, and Cho (2005) and Arellano and Bonhomme (2009) sug-
gest that the true ML estimator of parameter β could be first-order asymptotically
unbiased when T/n → c, c > 0. The proof of this conjecture is beyond the scope
of the present paper.
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NOTES

1. See, e.g., Douc, Moulines, and Rydèn (2004) for the asymptotic properties of the ML estimator
in autoregressive models with Markov regimes.

2. When the subpopulation index k, with k = 1, . . . , K , is introduced explicitly, the variables are
triply indexed by k, i, t , and the latent model becomes y∗

k,i,t = αk + γk Fk,t + σkuk,i,t , where k =
1, . . . , K , i ∈ Pa Rk,t and t = 1, . . . ,T . The subpopulations fixed effects are αk , γk , σk and the model
allows for a crossing of fixed effects γk with time stochastic effects Fk,t . Moreover, we get a joint
multifactor model, whenever the factors Fk,t are different among classes.

3. The underestimation of the asset correlation parameter in 2007–2008 played a key role in the
underpricing of Collateralized Debt Obligations (CDO) contracts and lead to severe losses during the
recent subprime crisis.

4. In Basel II regulation, the lack of accuracy on estimated model parameters might be taken into
account by means of reserves for estimation risk. However, in the current implementation, these re-
serves are usually set to zero. Moreover, the updating of the estimated individual fixed effects would
induce a large volatility of the required capital for credit risk, with undesirable effects on financial
market stability.

5. In an unobservable factor model, the factor process is usually defined up to some nonlinear
dynamic transformation. Assumptions A.1 and A.2 have to be satisfied for an appropriate choice of
factor ft . As a consequence, the Markov assumption on factor ft is rather mild. For instance, let
us consider a dynamic model with a factor ft satisfying Assumption A.1 and admitting a nonlin-
ear moving average representation ft = a(εt ,εt−1; θ), say, with εt ∼ I I N (0,1). Then Assumptions
A.1 and A.2 are satisfied with ft replaced by f ∗

t = (εt ,εt−1)′ and h(yi,t |yi,t−1, ft ; β) replaced by
h∗(yi,t |yi,t−1, f ∗

t ; β∗) = h(yi,t |yi,t−1,a(εt ,εt−1; θ); β), where β∗ = (β ′,θ ′)′.
6. As in the ASRF model for default, we can introduce explicitly the fixed effects of the segments,

that is, the factors fk,t can differ among the segments and parameters βk , θk can depend on k, with
k = 1, . . . , K .

7. More precisely, by the de Finetti-Hewitt-Savage theorem, the infinite sequence of histories yi =
(yi,t , t = 1, · · · ,T ), i = 1,2, · · · , is exchangeable if and only if there exists a sigma-field F such
that yi , i = 1,2, · · · , are i.i.d. conditional on F [see also Kingman, 1978]. Here, we assume that the
sigma-field F is generated by the finite-dimensional Markov process ( ft ).

8. In such a model with unobservable factors, the ML estimate could be computed numerically by
means of an Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977). The EM
algorithm applies recursively the Expectation step, which computes the function:

Q
[
(β,θ)|(β(p),θ(p))

]
= E

(β(p),θ(p))

[
log l

(
yT , fT ; β,θ

) |yT
]
,

and the Maximization step, providing the next value of the parameter as:

(
β(p+1),θ(p+1)

)
= argmax

(β,θ)
Q
[
(β,θ)|

(
β(p),θ(p)

)]
.

In our nonlinear dynamic framework, the Expectation step requires the numerical approximation of
function Q by means of a Gibbs sampler [see, e.g., Cappé, Moulines, and Rydén (2005) for gen-
eral properties, and Fiorentini, Sentana, and Shephard (2004) and Duffie et al. (2009) for applications
to credit and finance]. The closed form expression of the approximate likelihood function given in
Proposition 1 avoids the numerically cumbersome expectation step, while controlling the approxima-
tion error.

9. When the microparameter β and the time effect ft are information orthogonal, that is,

E0

[
− ∂2 logh(yi,t |yi,t−1, ft ; β0)

∂β∂ f ′
t

| ft

]
= 0, P-a.s., the score w.r.t. β of the approximated log-

likelihood in Proposition 1(i) corresponds to the score of the profile log-likelihood in
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Cox and Reid (1987) and to the score of the penalized log-likelihood in Bester and Hansen (2009),
up to order op(1/n). When information orthogonality does not apply, the scores of the three log-
likelihoods differ at order Op(1/n).

10. See Belloni and Chernozhukov (2009) for another extension of the asymptotic normality of the
(quasi-) posterior distribution when the number of parameters increases with the sample size. This
extension is derived under different regularity conditions.

11. The proof of Proposition 3 shows that the CSA and GA ML estimators of parameter β based
on a misspecified factor model remain consistent and first-order asymptotically efficient (but not the
CSA and GA ML estimators of parameter θ ).

12. Approximations of factor values in panel data with large cross-sectional and time dimensions
have been proposed in, e.g., Forni and Reichlin (1998), Forni, Hallin, Lippi, and Reichlin (2000), Bai
and Ng (2002), Stock and Watson (2002), and Connor, Hagmann, and Linton (2012). All these papers
consider linear factor models for the microdynamics.

13. See also Hahn and Kuersteiner (2011) for the nonlinear case.
14. In practice, the alternative k = K corresponds typically to default, which is an absorbing state.

Then, the stationarity and mixing conditions in Assumptions A.3 and A.4 are not satisfied and the esti-
mators might be inconsistent. A stationary and mixing framework can be recovered if we assume that
the number n of operating firms in the portfolio is kept constant in time by replacing each defaulted
firm by a new one, whose initial rating is randomly distributed across classes k = 1, . . . , K −1 accord-
ing to some distribution. This mechanism reflects the “static pool” definition of Standard & Poor’s (see
Brady and Bos, 2002). Then, the methodology can be applied considering the model for the transi-
tions between rating classes k = 1, . . . , K −1 (see Gagliardini and Gouriéroux 2005b). For expository
purpose, we do not consider an absorbing state here and refer to Gagliardini and Gouriéroux (2005b,
Section 4.2), for more details.
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APPENDIX A

In Appendix A.1 we provide the list of regularity conditions for the asymptotic analysis.
The proofs of Propositions 1, 2, 3, 5, and 6 are given in Appendix A.2. They rely on
Limit Theorems 1–3 and Lemmas 1–8, which are provided in the supplementary material.
Appendix A.3 presents the proof of identification of the microparameters in the stochastic
migration model. We denote by ‖A‖ the Frobenius norm of matrix A. Moreover, bi , ci ,
di , and γi , for i = 1,2, . . ., denote constants in the regularity conditions, while C1,C2, . . .
denote generic constants used in the proofs.

A.1. Regularity conditions

In addition to Assumptions A.1–A.9, we use the regularity conditions given below to de-
rive the large sample properties of the estimators. Due to the invariance of the true and
approximate log-likelihood functions under one-to-one factor transformations f → φ( f ),
the validity of Propositions 1, 2, 3, and 6 only requires that the regularity conditions are
satisfied for a suitable choice of the factor process.

H.1: The parameter sets B ⊂ Rq and � ⊂ Rp are compact. The true parameter values β0
and θ0 are interior points of sets B and �, respectively.

H.2: For any date t ∈ N, the mapping (β, f ) → Lt (β, f ) =
E0
[
logh

(
yi,t |yi,t−1, f ; β) | ft

]
is continuous on the set B × R

m, for any factor
path ft outside a set N with probability zero. For any given β ∈ B, the mapping
f → Lt (β, f ) admits a unique maximum, denoted by ft (β), for any factor path

ft outside N . Moreover, E0

[
∂ logh(yi,t |yi,t−1, ft (β); β)

∂ ft
| ft

]
=0 and the matrix

E0

[
−∂2 logh(yi,t |yi,t−1, ft (β); β)

∂ ft∂ f ′
t

| ft

]
is positive definite, for any β ∈ B and any factor

path ft outsideN .
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H.3: The microdensity is such that (i) sup
{

h(yi,t |yi,t−1, ft ; β) : yi,t , yi,t−1 ∈ R,

ft ∈ Rm ,β ∈ B} < ∞, and (ii) E0

⎡
⎣ sup

β∈B

∣∣∣∣∣∂
|α| logh(yi,t |yi,t−1, ft (β); β)

∂α(β ′, f ′
t )

′

∣∣∣∣∣
8
⎤
⎦ < ∞, for

any multi-index α ∈ Nq+m with |α| ≤ 3.

H.4: Let us define ξt,1 = max{ξ∗
t,1,ξ∗∗

t,1}, where ξ∗
t,1 =(

inf
β∈B inf

f ∈Rm :‖ f − ft (β)‖≤η∗ λt (β, f )

)−1
, λt (β, f ) > 0 is the smallest eigenvalue of

the positive definite matrix It (β, f ) ≡ E0

[
−∂2 logh(yi,t |yi,t−1, f ; β)

∂ f ∂ f ′ | ft

]
, η∗ > 0, and

ξ∗∗
t,1 = sup

α∈Nq+m :|α|≤5
sup
β∈B

E0

⎡
⎣ sup

f ∈Rm :‖ f − ft (β)‖≤η∗

∣∣∣∣∣∂
|α| logh(yi,t |yi,t−1, f ; β)

∂α(β ′, f ′)′

∣∣∣∣∣
2

| ft

⎤
⎦.

Then, sup
t∈N

P
[
ξt,1 ≥ u

]≤ b1 exp
(− c1ud1

)
as u → ∞, for some constants b1,c1,d1 > 0.

H.5: The stationary process ξt,2 = sup
β∈B

‖ ft (β)‖ is such that P
[
ξt,2 ≥ u

] ≤
b2 exp

(− c2ud2
)

as u → ∞, for some constants b2,c2,d2 > 0.

H.6: The set Fn ⊂ R
m is (i) compact and convex, for any n ∈ N, and such that

(ii) Brn (0) ⊂ Fn, where Brn (0) denotes the open ball in Rm centered at 0 and with radius

rn = [(2/c2) log(n)
]1/d2 and (iii) Fn ⊂ BRn (0), where Rn = O([log(n)]γ1) for a constant

γ1 with γ1 ≥ 1/d2.

H.7: There exists a constant γ2 ≥ 0 such that:

Kt ≡ inf
n≥1

inf
β∈B inf

f ∈Fn : f �= ft (β)
[log(n)]γ2

2K Lt ( f, ft (β); β)

‖ f − ft (β)‖2 > 0,

for any t, P-a.s., where K Lt ( f, ft (β); β) ≡ E0

[
log

(
h(yi,t |yi,t−1, ft (β); β)

h(yi,t |yi,t−1, f ; β)

)
| ft

]
.

H.8: There exists a constant γ3 ≥ 0 such that:

Rt ≡ sup
n≥1

[log(n)]−γ3 E0

[
sup
β∈B

sup
f ∈Fn

∥∥∥∥∂ logh(yi,t |yi,t−1, f ; β)

∂(β ′, f ′)′
∥∥∥∥4

| ft

]
< ∞,

for any t, P-a.s. Moreover, E0

[
R2

t

]
< ∞.

H.9: Let ξt,3 = max{�t ,K−1
t }, where

�t ≡ sup
n≥1

sup
β∈B

sup
f ∈Fn

[log(n)]−γ3 E0

[∥∥∥∥∂ logh(yi,t |yi,t−1, f ; β)

∂ f

∥∥∥∥2
| ft

]
and Kt is de-

fined in Assumption H.7. Then, sup
t∈N

P
[
ξt,3 ≥ u

] ≤ b3 exp
[− c3ud3

]
as u → ∞, for some

constants b3,c3,d3 > 0.
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H.10: (i) There exists a constant γ4 ≥ 0 such that sup
t∈N

P[ξt,4 ≥ u] ≤ b4 exp
(− c4ud4

)
,

as u → ∞, for some constants b4,c4,d4 > 0, where
ξt,4 = sup

n≥1
sup

f ∈Fn

sup
β∈B

[log(n)]−γ4 E0
[| logh(yi,t |yi,t−1, f ; β)| | ft

]
. (ii) There exists a

constant γ5 ≥ 0 such that

E0

[
sup
β∈B

sup
f ∈Fn

| logh(yi,t |yi,t−1, f ; β)|4
]

= O
(
[log(n)]γ5

)
and

E0

[
sup
β∈B

sup
f ∈Fn

∥∥∥∥∂ logh(yi,t |yi,t−1, f ; β)

∂(β ′, f ′)′
∥∥∥∥
]

= O
(
[log(n)]γ5

)
.

(iii) Conditions (i) and (ii) are satisfied when replacing logh(yi,t |yi,t−1, f ; β) by
∂ |α| logh(yi,t |yi,t−1, f ; β)

∂α(β ′, f ′)′ , for any multi-index α ∈ Nq+m with |α| ≤ 5.

H.11: The stationary distribution Pθ of Markov process ( ft ) associated with the transition

density g( ft | ft−1; θ) is such that sup
θ∈�

Pθ [ ft ∈ Fc
n ] = O

(
e−γ6n2)

, for a constant γ6 > 0.

H.12: The function G(Ft ; θ) = log g( ft | ft−1; θ), where Ft = ( f ′
t , f ′

t−1)′, is:

(i) differentiable w.r.t. Ft ∈ R
2m and θ ∈ �, and such that

(ii) E0

[
sup
θ∈�

sup
β∈B

∥∥∥∥∂G(Ft (β); θ)

∂θ

∥∥∥∥
]

< ∞ and (iii) sup
t∈N

P
[
ξt,5 ≥ u

] ≤

b5 exp
( − c5ud5

)
, as u → ∞, for some constants b5,c5,d5 > 0, where

ξt,5 = sup
θ∈�

sup
β∈B

sup
F∈R2m :‖F−Ft (β)‖≤η∗

∥∥∥∥∥∂ |α|G(F ; θ)

∂ Fα

∥∥∥∥∥, η∗ > 0, for any multi-index

α ∈ N2m such that |α| ≤ 3.

H.13: Assumption H.12 is satisfied for G(Ft ; θ) = ∂2 log g( ft | ft−1; θ)

∂θ∂θ ′ ,

= ∂2 log g( ft | ft−1; θ)

∂θ∂ f ′
t

, and = ∂2 log g( ft | ft−1; θ)

∂θ∂ f ′
t−1

.

H.14: The macroscore is such that E0

[∥∥∥∥∂ log g( ft | ft−1; θ0)

∂θ

∥∥∥∥4
]

< ∞.

Assumption H.1 is a standard condition on parameter sets and true parameter values.
Assumptions H.2–H.4 concern the micro log-density and the pseudo-true factor values.
Specifically, Assumption H.2 corresponds to the global and local identification conditions
for the pseudo-true factor value ft (β) as the maximizer of the asymptotic cross-sectional
likelihood function. The pseudo-true factor value ft (β) is well-defined for any factor path
outside a negligible set N , which can be selected uniformly w.r.t. the microparameter
β ∈ B. The definition of ft (β) is independent of the version of the conditional expectation
E0
[
logh

(
yi,t |yi,t−1, f ; β) | ft

]
. Indeed, the functions Lt (β, f ) corresponding to two ver-

sions of the conditional expectation E0
[
logh

(
yi,t |yi,t−1, f ; β) | ft

]
, for (β, f ) varying,

coincide on a countable dense subset of B×Rm , for any factor path outside a negligible
set N . By the continuity condition is Assumption H.2, these two functions coincide on
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the entire set B×Rm , for any factor path outside N . By Lemma 2 in Jennrich (1969), the
pseudo-true factor value ft (β) is a measurable function of the factor path ft for any β ∈ B
and is a continuous function of β for any factor path ft outside a negligible set. Then, As-
sumption A.3 implies the strict stationarity and ergodicity of the pseudo-true factor value
ft (β), for any given value of β ∈B, and of the process sup

β∈B
‖ ft (β)‖. In Assumption H.3(i)

the microdensity is upper bounded, uniformly w.r.t. the factor value and microparameter.
Assumption H.3(ii) requires finite higher-order moments for logh(yi,t |yi,t−1, f ; β) and
its derivatives w.r.t. β and f , evaluated at f = ft (β), uniformly in β ∈ B. Assumption H.4
strengthens the local identification condition of the pseudo-true factor value in Assumption
H.2. It requires that matrix It (β, f ) is positive definite for any factor value f in a neigh-
borhood of ft (β), uniformly w.r.t. the microparameter β ∈ B, and for any factor path ft ,
P-a.s. Moreover, Assumption H.4 implies a tail condition on the distribution of the positive
process ξ∗

1,t . This condition is satisfied, when the factor paths associated with very small
eigenvalues λt (β, f ), for some parameter value β ∈B and factor value f close to ft (β), are
sufficiently infrequent. Assumptions H.4 also implies a tail condition for the distribution
of process ξ∗∗

t,1 involving higher-order derivatives of the micro log-density function. If ξ∗
t,1

and ξ∗∗
t,1 are measurable functions of the factor path, the process ξt,1 is strictly stationary

from Assumption A.3, and we can dispense with the sup over t in the bound. Assump-
tions H.1–H.4 and their implications are used to show that the Regularity Conditions RC.2
and RC.3 in Limit Theorem 3 are satisfied when proving the uniform convergence of the
profile log-likelihood function L∗

nT (β), and of its second-order derivative matrix w.r.t. β
[see Lemmas 1(i) and 6(1i) in the supplementary material].

Assumptions H.5, H.6(i) and (ii), and H.7–H.9 are used in Limit Theorem 1 to derive
the uniform rate of convergence of the factor approximations. Specifically, Assumption
H.5 concerns the tail of the stationary distribution of process sup

β∈B
‖ ft (β)‖. Assumptions

H.6(ii) and (iii) introduce lower and upper bounds on the growth rate of set Fn as n → ∞.
These bounds are given in terms of expanding balls with radii of the order of powers of
log(n). Under Assumptions H.5 and H.6(ii), the pseudo-true factor value ft (β) is in Fn ,
for any 1 ≤ t ≤ T and β ∈ B, with probability approaching (w.p.a.) 1 at rate O(T/n2).
Assumption H.7 concerns the identifiability of the pseudo-true factor values from the
asymptotic cross-sectional log-likelihood function. For any given microparameter value
β and date t , the mapping f → K Lt ( f, ft (β); β) is a Kullback-Leibler divergence of the
conditional p.d.f. h(·|·, f ; β) parametrized by f ∈ Fn from the pseudo-true conditional
p.d.f. h(·|·, ft (β); β) given ft under misspecification. From the global identification As-
sumption H.2, we have K Lt ( f, ft (β); β) > 0, for any factor value f �= ft (β), parameter
value β, and date t , P-a.s. Assumption H.7 strengthens this condition by requiring that
mapping f → K Lt ( f, ft (β); β) is bounded below by a quadratic function proportional
to the squared distance ‖ f − ft (β)‖2, uniformly in β ∈ B, f ∈ Fn , and n ∈ N. The scale
factor is allowed to converge to zero at most at a logarithmic rate, as set Fn increases.
Assumption H.8 introduces a uniform bound on the higher-order moments of the score of
the log-density w.r.t. factor value f ∈ Fn and parameter β ∈ B. The conditional moment
of order 4 is allowed to diverge at a logarithmic rate as Fn increases. Assumption H.9 is a
tail condition on the distribution of the processesK−1

t and �t . These processes correspond
to the inverse of the measure Kt related to the conditional Kullback-Leibler discrepancy
for cross-sectional factor approximation, and the measure �t of second-order conditional
moment of the score of the log-density w.r.t. ft : they are both functions of the factor path
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ft . Assumption H.9 is satisfied when the probability mass ofKt in a neighborhood of zero,
and the probability mass for large values of �t , are small.

Assumption H.10 introduces tail conditions and uniform bounds on conditional mo-
ments of the log microdensity, and of its derivatives w.r.t. factor ft and parameter β. This
assumption is used in Lemma 2 (see the supplementary material) to show the convergence
in probability of the cross-sectional log-likelihood function, and of its derivatives w.r.t. the
factor values, uniformly over the parameter value β ∈ B, factor value f ∈ Fn , and dates
1 ≤ t ≤ T .

Assumptions H.11–H.14 concern the macro log-density and its derivatives w.r.t. fac-
tor values and macroparameter θ . Specifically, Assumption H.11 requires that the tail of
the stationary distribution of the factor process is sufficiently thin, uniformly w.r.t. the
macroparameter θ . This condition is used in Proposition A.2 (see Appendix A.2.1) to
show that the contribution to the log-likelihood function coming from factor paths ad-
mitting some values outside set Fn is asymptotically negligible. Assumptions H.12(i) and
(ii) require that function log g( ft | ft−1; θ) is differentiable w.r.t. the factor values and the
macroparameter θ , with uniformly finite expectation of the first-order derivative w.r.t. θ .
Assumption H.12(iii) is a condition on the tail of process ξt,5 involving the derivatives
of log g( ft | ft−1; θ) w.r.t. the factor values. Assumption H.14 is a bound on the fourth-

order moment of the macroscore
∂ log g( ft | ft−1; θ0)

∂θ
. Assumptions H.12–H.14 are used

to show that Regularity Condition RC.1 in Limit Theorem 2 is satisfied when proving the

convergence ofL1,nT (β,θ), and of the Hessian
∂2L1,nT (β,θ)

∂θ∂θ ′ , uniformly in β ∈B, θ ∈ �

[see Lemmas 1(ii) and 6(1ii) in the supplementary material].

A.2. Proofs of the asymptotic results

A.2.1. Proof of Proposition 1
(i) Preliminary expansions

Let us write the joint density in equation (3.2) as l
(

yT ; β,θ
) =∫

exp
[
nφnT (fT ; β)

]
gT (fT ; θ)dfT , where fT = ( f ′

1, f ′
2, . . . , f ′

T )′ ∈ R
T m , function

φnT is defined by φnT (fT ; β) =
T

∑
t=1
Ln,t ( ft ; β), with Ln,t ( ft ; β) =

1

n

n

∑
i=1

logh(yi,t |yi,t−1, ft ; β), and gT (fT ; θ) =
T

∏
t=1

g( ft | ft−1; θ). Let εn ↓ 0 be a

sequence indexed by n, and let Bεn (f̂nT (β)) denote the open ball in RT m with radius
εn centered in f̂nT (β) = ( f̂n,1(β)′, . . . , f̂n,T (β)′)′. The integral in l

(
yT ; β,θ

)
can be

decomposed as:

l
(

yT ; β,θ
)=

∫
Bεn (f̂nT (β))

exp
[
nφnT (fT ; β)

]
gT (fT ; θ)dfT

+
∫

Bεn (f̂nT (β))c∩FnT

exp
[
nφnT (fT ; β)

]
gT (fT ; θ)dfT

+
∫

Bεn (f̂nT (β))c∩F c
nT

exp
[
nφnT (fT ; β)

]
gT (fT ; θ)dfT , (A.1)
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where FnT = Fn ×·· ·×Fn ⊂ RT m and Fn ⊂ Rm is the sequence of sets involved in the
definition of estimator f̂n,t (β) [see equation (3.3)].

Let us consider the first integral in the RHS of equation (A.1). We apply the Laplace
approximation method with an explicit expression for the remainder term.

PROPOSITION A.1. We have:∫
Bεn (f̂nT (β))

exp
[
nφnT (fT ; β)

]
gT (fT ; θ)dfT

=
(

2π

n

)T m/2
exp
[
nTL∗

nT (β)+ TL1,nT (β,θ)
]
�nT (β,θ),

where

�nT (β,θ) = 1

(2π)T m/2

∫
ZnT (β)

exp

(
−1

2

T

∑
t=1

z′
t zt

)

· exp

[
T

∑
t=1

ψn,t

(
f̂n,t (β)+ [In,t (β)]−1/2

√
n

zt , f̂n,t−1(β)

+ [In,t−1(β)]−1/2
√

n
zt−1; β,θ

)]
dz, (A.2)

the function ψn,t is defined by:

ψn,t ( ft , ft−1; β,θ) = n
[Ln,t ( ft ; β)−Ln,t

(
f̂n,t (β); β)]

+ n

2

[
ft − f̂n,t (β)

]′[In,t (β)
][

ft − f̂n,t (β)
]

+ log g( ft | ft−1; θ)− log g
(

f̂n,t (β)| f̂n,t−1(β); θ), (A.3)

and the integration domain isZnT (β) =
{

z = (z′
1, . . . , z′

T )′ ∈ RT m :
T

∑
t=1

z′
t In,t (β)−1zt ≤

nε2
n

}
.

Proof of Proposition A.1. By the definition of function ψn,t in equation (A.3), we have:

∫
Bεn (f̂nT (β))

exp
[
nφnT (fT ; β)

]
gT (fT ; θ)dfT

=
T

∏
t=1

n

∏
i=1

h
(

yi,t |yi,t−1, f̂n,t (β) ; β
) T

∏
t=1

g
(

f̂n,t (β) | f̂n,t−1 (β) ; θ
)

·
∫

Bεn (f̂nT (β))
exp

{
T

∑
t=1

(
ψn,t ( ft , ft−1; β,θ)

− n

2
[ ft − f̂n,t (β)]′[In,t (β)][ ft − f̂n,t (β)]

)}
dfT .
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Let us introduce the change of variable from ft to zt = √
n[In,t (β)]1/2[ ft − f̂n,t (β)], for

t = 1, . . . ,T . Then, we get:∫
Bεn (f̂nT (β))

exp
[
nφnT (fT ; β)

]
gT (fT ; θ)dfT

=
(

2π

n

)T m/2 T

∏
t=1

[
det In,t (β)

]−1/2 ·
T

∏
t=1

n

∏
i=1

h
(

yi,t |yi,t−1, f̂n,t (β) ; β
)

×
T

∏
t=1

g
(

f̂n,t (β) | f̂n,t−1 (β) ; θ
)

�nT (β,θ). (A.4)

By the definition of functions L∗
nT (β) and L1,nT (β,θ) in equations (3.7)–(3.8), the con-

clusion follows. n

Let us now consider the next two terms in the RHS of equation (A.1). We bound these
two terms at the beginning of the proof of Proposition A.2. The second integral in the
RHS of equation (A.1) is asymptotically negligible for the expansion of the log-likelihood
function in powers of 1/n, if the sequence εn converges to zero slowly enough, namely if

T

nε2
n

= O(n−μ1) for some μ1 > 0. This condition on sequence εn = o(1) can be satisfied if

T ν/n = O(1), with ν > 1. The third integral in the RHS of equation (A.1) is asymptotically
negligible if the set Fn expands fast enough as n → ∞, whereas the tails of the factor
distribution are not too heavy (see Assumption H.11).

PROPOSITION A.2. Under Assumptions A.1–A.5 and H.1–H.12, if T ν/n = O(1),

for ν > 1, and
T

nε2
n

= O(n−μ1), for μ1 > 0, then:

LnT (β,θ) = L∗
nT (β)+ 1

n
L1,nT (β,θ)+ 1

nT
log
[
�nT (β,θ)+op

(
n−μ2

)]
,

for any μ2 > 0, where the term op
(
n−μ2

)
is uniform w.r.t. β ∈ B, θ ∈ �, and function

�nT (β,θ) is defined in equation (A.2).

Proof of Proposition A.2 . (*) The second integral in the RHS of equation (A.1) is such
that:∫

Bεn (f̂nT (β))c∩FnT

exp
[
nφnT (fT ; β)

]
gT (fT ; θ)dfT

=
T

∏
t=1

n

∏
i=1

h
(

yi,t |yi,t−1, f̂n,t (β) ; β
)

·
∫

Bεn (f̂nT (β))c∩FnT

exp
(
−n
[
φnT

(
f̂nT (β); β

)
−φnT (fT ; β)

])
gT (fT ; θ)dfT

≤
T

∏
t=1

n

∏
i=1

h
(

yi,t |yi,t−1, f̂n,t (β) ; β
)

exp(−nτnT (β))

= exp
[
nTL∗

nT (β)−nτnT (β)
]
, (A.5)

where

τnT (β) = inf
fT ∈Bεn (f̂nT (β))c∩FnT

[φnT (f̂nT (β); β)−φnT (fT ; β)]. (A.6)
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1002 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

(**) The third integral in the RHS of equation (A.1) is such that:

∫
Bεn (f̂nT (β))c∩F c

nT

exp
[
nφnT (fT ; β)

]
gT (fT ; θ)dfT

≤ H̄nT
Pθ [fT ∈ Fc

nT ] ≤ H̄nT TPθ
[

ft ∈ Fc
n
]= O

(
T H̄nT e−γ6n2

)
, (A.7)

uniformly in β ∈ B,θ ∈ �, where H̄ = sup{h(yi,t |yi,t−1, ft ; β) : yi,t , yi,t−1 ∈ R, ft ∈
R

m ,β ∈ B} < ∞ [Assumption H.3(i)] and γ6 > 0 (Assumption H.11).
(***) Then, from equation (A.1), inequality (A.5), the bound in (A.7), and Proposition

A.1, we get:

l
(

yT ; β,θ
)=
(

2π

n

)T m/2
exp
[
nTL∗

nT (β)+ TL1,nT (β,θ)
][

�nT (β,θ)+�nT (β,θ)
]
,

(A.8)

where

0 ≤ �nT (β,θ) ≤
(

2π

n

)−T m/2
exp
[
T |L1,nT (β,θ)|]

·
{

exp
[−nτnT (β)

]+ exp
[
nT (|L∗

nT (β)|+C1)−γ6n2
]}

, (A.9)

for a constant C1 > 0. To bound the RHS of inequality (A.9) we need the uniform
asymptotic behavior of functions L∗

nT (β) and L1,nT (β,θ). These functions involve mix-
tures of cross-sectional and time series aggregates. By using results in Bosq (1998) and
Davidson (1994), we prove in Lemma 1 in the supplementary material that L∗

nT (β) and
L1,nT (β,θ) converge in probability to the corresponding population quantities L∗(β) =
E0[logh(yi,t |yi,t−1, ft (β); β)] and:

L1(β,θ) = −1

2
E0
[
logdet It, f f (β)

]+E0[log g( ft (β)| ft−1(β); θ)], (A.10)

where It, f f (β) = E0

[
−∂2 logh

(
yi,t |yi,t−1, ft (β) ; β)

∂ f ∂ f ′ | ft

]
, uniformly in β ∈ B, θ ∈ �.

Moreover, sup
β∈B

|L∗(β)| < ∞ and sup
β∈B,θ∈�

|L1(β,θ)| < ∞ from Assumptions H.1, H.3,

H.4, and H.12. We deduce that:

sup
β∈B
L∗

nT (β) = Op(1), sup
β∈B,θ∈�

L1,nT (β,θ) = Op(1). (A.11)

Let us now prove that:

inf
β∈B τnT (β) ≥ C2

ε2
n

[log(n)]C3
, (A.12)

w.p.a. 1, for some constants C2,C3 > 0, where τnT (β) is defined in equation (A.6).
We have:
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inf
β∈B

τnT (β) = inf
β∈B

inf
fT ∈Bεn (f̂nT (β))c∩FnT

T

∑
t=1

[Ln,t
(

f̂n,t (β); β)−Ln,t ( ft ; β)]

= inf
β∈B

inf
fT ∈Bεn (f̂nT (β))c∩FnT

T

∑
t=1

Ln,t
(

f̂n,t (β); β)−Ln,t ( ft ; β)

‖ f̂n,t (β)− ft‖2
‖ f̂n,t (β)− ft‖2

≥
(

inf
1≤t≤T

inf
β∈B

inf
ft ∈Fn

Ln,t
(

f̂n,t (β); β)−Ln,t ( ft ; β)

‖ f̂n,t (β)− ft‖2

)
ε2

n .

In Lemma 2 in the supplementary material we prove that the term in the round brackets
is lower bounded by C2[log(n)]−C3 , w.p.a. 1, for some constants C2,C3 > 0. Then, the
lower bound (A.12) follows.

From inequalities (A.9) and (A.12), the bounds in (A.11), and condition
T

nε2
n

=
O(n−μ1), μ1 > 0, we get:

sup
β∈B

sup
θ∈�

�nT (β,θ)

≤ exp

{
− C2nε2

n

[log(n)]C3

[
1+ Op

(
T [log(n)]C3

nε2
n

)
+ O

(
T [log(n)]C3+1

nε2
n

)]}

+ exp
{
−γ6n2 [1+ Op(T/n)

]}
= op(n−μ2),

for any μ2 > 0. By taking the log on equation (A.8), Proposition A.2 follows. n

(ii) CSA log-likelihood expansion [proof of Proposition 1(i)]
In order to derive an expansion of the log-likelihood function at order op(1/n) from

Proposition A.2, we have to control the term �nT (β,θ) uniformly in β ∈ B, θ ∈ �. Since
�nT (β,θ) can take values both above, or below, 1, we need a uniform upper bound on the
absolute value of log�nT (β,θ). Such a bound is provided next.

PROPOSITION A.3. Under Assumptions A.1–A.5 and H.1–H.12, if T ν/n = O(1), for

ν > 1, and
T

nε2
n

= O(n−μ1), for μ1 > 0, then:

LnT (β,θ) = L∗
nT (β)+ 1

n
L1,nT (β,θ)+ 1

nT
log
[
�nT (β,θ)+op

(
n−μ2

)]
,

and:

|log(�nT (β,θ))| ≤ C4T εn[log(n)]C5 , (A.13)

uniformly in β ∈ B,θ ∈ �, w.p.a. 1, for any μ2 > 0 and some constants C4,C5 > 0.

Proof of Proposition A.3. (*) Let us perform a Taylor expansion of function
ψn,t defined in equation (A.3) around ( ft , ft−1) = ( f̂n,t (β), f̂n,t−1(β)), and then

use this expansion to derive an upper bound for term ψn,t
(

f̂n,t (β) +
1√
n

[In,t (β)]−1/2zt , f̂n,t−1(β)+ 1√
n

[
In,t−1 (β)

]−1/2 zt−1; β,θ
)

in the RHS of equation
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1004 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

(A.2). To simplify the notation, we consider the case m = 1. We get for z ∈ZnT (β):∣∣∣∣ψn,t

(
f̂n,t (β)+ 1√

n

[
In,t (β)

]−1/2 zt , f̂n,t−1 (β)+ 1√
n

[
In,t−1 (β)

]−1/2 zt−1; β,θ

)∣∣∣∣
≤ 1

3!
√

n
J̃3,nt (β)|zt |3 + 1√

n
D̃10,nt (β,θ)|zt |+ 1√

n
D̃01,nt (β,θ)|zt−1|, (A.14)

where J̃3,nt (β) = ∣∣In,t (β)
∣∣−3/2 sup

ft ∈Sn,t (β)

∣∣∣∣∣∂
3Ln,t ( ft ; β)

∂ f 3
t

∣∣∣∣∣, set Sn,t (β) is defined by:

Sn,t (β) =
{

f ∈ Rm : | f − f̂n,t (β)| ≤ εn

}
, (A.15)

and D̃pq,nt (β,θ) = ∣∣In,t (β)
∣∣−p/2 ∣∣In,t−1 (β)

∣∣−q/2 sup
ft ∈Sn,t (β), ft−1∈Sn,t−1(β)∣∣∣∣∣∂

p+q log g

∂ f p
t ∂ f q

t−1

(
ft | ft−1; θ)

∣∣∣∣∣, for p + q = 1. We use Lemma 3 in the supplementary

material to get upper bounds for the coefficients J̃3,nt (β), D̃10,nt (β,θ), and D̃01,nt (β,θ)
in the RHS of inequality (A.14), uniformly in β ∈ B, θ ∈ � and 1 ≤ t ≤ T . By exploiting
the tail conditions in Assumptions H.4 and H.12(iii), and T ν/n = O(1), ν > 1, the bounds
diverge slowly with sample sizes n,T , namely as powers of log(n). More precisely, let us
define the sequence:

κn = 2[log(n)/C6]C7 , n ∈ N, (A.16)

where constants C6,C7 > 0 are such that C6 ≤ min{c1,c5} and C7 ≥ max{3/d1,2/d5}, for
c1,d1 and c5,d5 defined in Assumptions H.4 and H.12(iii), respectively. If z ∈ ZnT (β),

we have ‖z‖2 ≤ [ sup
1≤t≤T

sup
β∈B

In,t (β)
]
nε2

n . This implies |zt | ≤ ‖z‖ ≤ √
nεnκ

1/2
n for any t ,

w.p.a. 1, since sup
1≤t≤T

sup
β∈B

In,t (β) ≤ κn w.p.a. 1 from Lemma 3(ii). Then, by Lemma

3(iii) and (iv) and inequality (A.14), we get:∣∣∣∣∣
T

∑
t=1

ψn,t

(
f̂n,t (β)+ 1√

n

[
In,t (β)

]−1/2 zt , f̂n,t−1(β)+ 1√
n

[
In,t−1 (β)

]−1/2 zt−1; β,θ

)∣∣∣∣∣
≤ 1

3!
κ

3/2
n εn‖z‖2 +2T κ

3/2
n εn, (A.17)

uniformly in β ∈ B, θ ∈ �, w.p.a. 1.
(**) Let us now use inequality (A.17) to derive uniform upper and lower bounds for

�nT (β,θ), whose expression is given in equation (A.2).
(a) Uniform upper bound. From inequality (A.17) we have (for m = 1):

�nT (β,θ) ≤ e2T κ
3/2
n εn

(2π)T/2

∫
RT

exp

(
−1

2

(
1− 1

3
κ

3/2
n εn

)
‖z‖2

)
dz = e2T κ

3/2
n εn(

1− 1
3κ

3/2
n εn

)T/2

∼ exp

(
13

6
T κ

3/2
n εn

)
, (A.18)

uniformly in β ∈ B, θ ∈ �.
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(b) Uniform lower bound. If ‖z‖2 ≤ nε2
n inf

1≤t≤T
inf

β∈B In,t (β), then z ∈ ZnT (β). Moreover,

from Lemma 3(i) we have inf
1≤t≤T

inf
β∈B In,t (β) ≥ κ−1

n , w.p.a. 1. Thus, from (A.2) and (A.17)

we get:

�nT (β,θ) ≥ e−2T κ
3/2
n εn

(2π)T/2

∫
‖z‖2≤nε2

n/κn

exp

(
−1

2

(
1+ 1

3
κ

3/2
n εn

)
‖z‖2

)
dz

= e−2T κ
3/2
n εn

(2π)T/2

∫ √nε2
n/κn

0

∫
ST −1

exp

(
−1

2

(
1+ 1

3
κ

3/2
n εn

)
r2
)

r T −1dz′dr,

w.p.a. 1, where r T −1dz′dr is the integration element in spherical coordinates in dimension

T and ST −1 denotes the unit sphere in dimension T . By using
∫

ST −1
dz′ = 2πT/2

�(T/2)
and

the change of variable from r to u = 1

2

(
1+ 1

3
κ

3/2
n εn

)
r2, we get:

�nT (β,θ) ≥ e−2T κ
3/2
n εn(

1+ 1
3κ

3/2
n εn

)T/2
1

�(T/2)

∫ an

0
uT/2−1 exp(−u)du,

where an = 1

2
nε2

nκ−1
n

(
1+ 1

3
κ

3/2
n εn

)
. The quantity qnT = 1

�(T/2)

∫ an

0
uT/2−1

exp(−u)du is the value at an of the cumulative distribution function (cdf) of a Gamma
distribution γ (T/2) with parameter T/2. Equivalently, qnT = P[XnT ≤ 1], where the
random variable XnT is such that an XnT ∼ γ (T/2). The moment generating function

of XnT is MnT (s) = E
[
exp(−s XnT )

] =
(

1+ s

an

)−T/2
, for s ∈ R+. Thus, MnT (s) ∼

exp

(
− T s

2an

)
→ 1, as n,T → ∞, for any s ∈ R+, since T/an = o(1) from the condi-

tion
T

nε2
n

= O(n−μ1), μ1 > 0. Thus, XnT converges in distribution to the constant 1, as

n,T → ∞. This implies qnT = 1+o(1). Thus, we get:

�nT (β,θ) ≥ e−2T κ
3/2
n εn(

1+ 1
3κ

3/2
n εn

)T/2 (1+o(1)) ∼ exp

(
−13

6
T κ

3/2
n εn

)
, (A.19)

uniformly in β ∈ B, θ ∈ �, w.p.a. 1. From bounds (A.18)-(A.19), and the expression of κn
in (A.16), the upper bound (A.13) in Proposition A.3 follows. n

To prove the CSA expansion in Proposition 1(i), we use Proposition A.3. If n,T → ∞
such that T ν/n = O(1), for ν > 1, then there exists a sequence εn ↓ 0 such that

T

nε2
n

=
O(n−μ1), for some μ1 > 0, and εn[log(n)]C5 = o(1), for constant C5 of Proposition
A.3. Thus, from Proposition A.3 and equation (A.8), we deduce that equation (3.6) holds

with 
nT (β,θ) = 1

nT
log
[
�nT (β,θ)+�nT (β,θ)

]
, where �nT (β,θ) ≥ 0, �nT (β,θ) =

op(n−μ2), for any μ2 > 0, and | log�nT (β,θ)| = op(T ), uniformly in β ∈ B, θ ∈ �.
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1006 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

Then, from the monotonicity of the logarithm, we have w.p.a. 1:


nT (β,θ) ≤ 1

nT
max{log[2�nT (β,θ)], log[2�nT (β,θ)]}

≤ O

(
1

nT

)
+ 1

nT
max{log[�nT (β,θ)],0} = op(1/n),

and 
nT (β,θ) ≥ 1

nT
log[�nT (β,θ)] = op(1/n), uniformly in β ∈ B and θ ∈ �. Proposi-

tion 1(i) follows.

(iii) GA log-likelihood expansion [proof of Proposition 1(ii)]
In order to derive an expansion of the log-likelihood function at order op(1/n2), we

need a more accurate analysis of the term �nT (β,θ) compared to Proposition A.3.
A uniform asymptotic expansion for �nT (β,θ) at order op(T/n) is provided in Propo-
sition A.4 below under an additional condition on the convergence rate of sequence εn ,
namely

√
T ε2

n = O(n−μ3), with μ3 > 0. This condition is compatible with condition
T

nε2
n

= O(n−μ1), with μ1 > 0, if n,T → ∞ such that T ν/n = O(1), with ν > 3/2.

PROPOSITION A.4. Under Assumptions A.1–A.5 and H.1–H.12, if T ν/n = O(1),

with ν > 3/2, and if εn is such that
T

nε2
n

= O(n−μ1) and
√

T ε2
n = O(n−μ3), for some

μ1,μ3 > 0, then:

LnT (β,θ) = L∗
nT (β)+ 1

n
L1,nT (β,θ)+ 1

nT
log
[
�nT (β,θ)+op

(
n−μ2

)]
,

for any μ2 > 0, and:

�nT (β,θ) = 1+ T

n
L2,nT (β,θ)+op(T/n), (A.20)

uniformly in β ∈ B, θ ∈ �.

Proof of Proposition A.4. We perform a Taylor expansion of function ψn,t in (A.3)
around ( ft , ft−1) = ( f̂n,t (β), f̂n,t−1(β)). The expansion is of fifth-order for the part of
the function in the RHS of the first line in equation (A.3), and of third order for the part
of the function in the second line in equation (A.3), so that the remainder term involves a
power n−3/2. To simplify the notation, we consider the case m = 1. We get:

ψn,t

(
f̂n,t (β)+ 1√

n

[
In,t (β)

]−1/2 zt , f̂n,t−1(β)+ 1√
n

[
In,t−1 (β)

]−1/2 zt−1; β,θ

)

= 1

3!
√

n
J3,nt (β)z3

t + 1

4!n
J4,nt (β)z4

t + 1√
n

D10,nt (β,θ)zt + 1√
n

D01,nt (β,θ)zt−1

+ 1

2n
D20,nt (β,θ)z2

t + 1

2n
D02,nt (β,θ)z2

t−1 + 1

n
D11,nt (β,θ)zt zt−1

+ Rn,t (zt , zt−1; β,θ), (A.21)

where the remainder term is such that:

|Rn,t (zt , zt−1; β,θ)| ≤ 1

5!n3/2 J̃5,nt (β)|zt |5

+ 1

3!n3/2

3

∑
j=0

(
3

j

)
D̃3− j, j,nt (β,θ)|zt |3− j |zt−1| j , (A.22)
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with J̃5,nt (β) = ∣∣In,t (β)
∣∣−5/2 sup

ft ∈Sn,t (β)

∣∣∣∣∣∂
5Ln,t ( ft ; β)

∂ f 5
t

∣∣∣∣∣, set Sn,t (β) is defined

in equation (A.15), and D̃pq,nt (β,θ) = ∣∣In,t (β)
∣∣−p/2 ∣∣In,t−1(β)

∣∣−q/2

sup
ft ∈Sn,t (β), ft−1∈Sn,t−1(β)

∣∣∣∣∣∂
p+q log g

∂ f p
t ∂ f q

t−1

(
ft | ft−1; θ)

∣∣∣∣∣, for p + q = 3. Let us write the

exponential exp

(
T

∑
t=1

ψn,t

)
in equation (A.2) as a series, and interchange the series and

the integral by applying the Lebesgue theorem on the bounded domain ZnT (β). We get

�nT (β,θ) =
∞
∑
j=0

1

j!
�j,nT (β,θ), where

�j,nT (β,θ) = 1

(2π)T/2

∫
ZnT (β)

exp

(
− 1

2
‖z‖2

)

·
[

T

∑
t=1

ψn,t

(
f̂n,t (β)+ [In,t (β)]−1/2

√
n

zt , f̂n,t−1(β)+ [In,t−1(β)]−1/2
√

n
zt−1; β,θ

)] j

dz.

(A.23)

We analyze the terms �j,nT (β,θ), for j = 0,1, . . ., separately. By replacing expansion
(A.21) into equation (A.23), we show below that:

�0,nT (β,θ) = 1+op(T/n), (A.24)

�1,nT (β,θ) = 1

8n

T

∑
t=1

J4,nt (β)+ 1

2n

T

∑
t=1

D20,nt (β,θ)+ 1

2n

T

∑
t=2

D02,nt (β,θ)

+op(T/n), (A.25)

�2,nT (β,θ) = 5

12n

T

∑
t=1

J3,nt (β)2 + 1

n

T

∑
t=1

D10,nt (β,θ)2 + 1

n

T

∑
t=2

D01,nt (β,θ)2

+ 1

n

T

∑
t=1

J3,nt (β)D10,nt (β,θ)+ 1

n

T

∑
t=2

J3,n,t−1(β)D01,nt (β,θ)

+ 2

n

T

∑
t=2

D10,n,t−1(β,θ)D01,nt (β,θ)+op (T/n) , (A.26)

and:

∞
∑
j=3

1

j!
|�j,nT (β,θ)| = op(T/n), (A.27)

uniformly in β ∈ B,θ ∈ �. By combining equations (A.24)-(A.27), equation (A.20) fol-
lows.

(a) Proof of equivalence (A.24). We have �0,nT (β,θ) = 1

− 1

(2π)T/2

∫
ZnT (β)c

exp

(
−1

2
‖z‖2

)
dz. Let us derive an upper bound for the integral

1

(2π)T/2

∫
ZnT (β)c

exp

(
−1

2
‖z‖2

)
z2k

t dz, with k ∈ N and t = 1, . . . ,T . If z ∈ ZnT (β)c,
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1008 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

we have ‖z‖2 ≥ [ inf
1≤t≤T

inf
β∈B In,t (β)

]
nε2

n ≥ nε2
nκ−1

n , w.p.a. 1, from Lemma 3(i) . We get:

1

(2π)T/2

∫
ZnT (β)c

exp

(
−1

2
‖z‖2

)
z2k

t dz

≤ 1

(2π)T/2

∫
‖z‖2≥nε2

nκ−1
n

exp

(
−1

2
‖z‖2

)
z2k

t dz

≤ 1

(2π)T/2T

∫ ∞√
nε2

nκ−1
n

∫
ST −1

exp
(− r2/2

)
r T +2k−1dz′dr

= 1

T 2T/2−1�(T/2)

∫ ∞√
nε2

nκ−1
n

exp
(− r2/2

)
r T +2k−1dr, (A.28)

uniformly in 1 ≤ t ≤ T and β ∈ B, where we have used spherical coordinates as in the

proof of Proposition A.3. By the change of variable from r to u = 1

2
r2, we have:

1

2T/2−1�(T/2)

∫ ∞√
nε2

nκ−1
n

exp
(− r2/2

)
r T +2k−1dr

= 2k�(T/2+ k)

�(T/2)

1

�(T/2+ k)

∫ ∞
ān

e−uuT/2+k−1du, (A.29)

where ān = 1

2
nε2

nκ−1
n . The RHS involves the survivor function of the Gamma distribution

γ (T/2+k) evaluated at ān . Since ān → ∞ as n → ∞, to upper bound the RHS of equation
(A.29) it is enough to bound the right tail of the cdf of the Gamma distribution from above.
By repeated partial integration, we get for any s ≥ 1 and δ ≥ 1:

1

�(δ)

∫ ∞
s

e−uuδ−1du = e−ssδ−1

�(δ)
+ e−ssδ−2

�(δ −1)
+·· ·+ e−ssl+1

�(l +2)
+ 1

�(l +1)

∫ ∞
s

e−uul du

≤ e−s(sδ−1 + sδ−2 +·· ·+ sl+1)+
∫ ∞

s
e−uudu

≤ (�δ�+1)e−ssδ−1, (A.30)

where �δ� denotes the integer part of δ and l = δ − �δ� is the decimal part of δ. From
inequality (A.28) and equation (A.29), and by using bound (A.30) with s = ān and δ =
T/2+ k, we get:

sup
1≤t≤T

sup
β∈B

1

(2π)T/2

∫
ZnT (β)c

exp

(
−1

2
‖z‖2

)
z2k

t dz

≤ 2k�(T/2+ k)

�(T/2)

T/2+ k +1

T
e−ān āT/2+k−1

n .

By the Stirling’s formula, we have
�(T/2+ k)

�(T/2)
= O(T k) for large T . Moreover, from

condition
T

nε2
n

= O(n−μ1), μ1 > 0, we have:

e−ān āT/2+k−1
n = exp

{
−nε2

n
2κn

[
1+o

(
T κn log(n)

nε2
n

)]}
≤ exp

(
−nε2

n
4κn

)
= o(n−μ4),
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EFFICIENCY IN LARGE PANELS WITH COMMON FACTORS 1009

for any μ4 > 0. Thus, we get for any k ∈ N:

sup
1≤t≤T

sup
β∈B

1

(2π)T/2

∫
ZnT (β)c

exp

(
−1

2
‖z‖2

)
z2k

t dz = op
(
n−μ4

)
, (A.31)

for any μ4 > 0. In particular, equivalence (A.24) follows.
(b) Proof of equivalence (A.25). By the symmetry of the domain of integration ZnT (β)

we have:

�1,nT (β,θ) = 1

4!n

T

∑
t=1

J4,nt (β)a2,nT,t (β)+ 1

2n

T

∑
t=1

D20,nt (β,θ)a1,nT,t (β)

+ 1

2n

T

∑
t=2

D02,nt (β,θ)a1,nT,t−1(β)

+
T

∑
t=1

1

(2π)T/2

∫
ZnT (β)

exp

(
−1

2
‖z‖2

)
Rn,t (zt , zt−1; β,θ)dz,

(A.32)

where we use the notation ak,nT,t (β) = 1

(2π)T/2

∫
ZnT (β)

exp

(
−1

2
‖z‖2

)
z2k

t dz. To con-

trol the RHS of equation (A.32), we use Lemma 4 in the supplementary material, which
provides uniform upper bounds for terms Jp,nt (β) and Dpq,nt (β,θ) involving higher-
order partial derivatives w.r.t. the factor values. From inequality (A.22) and Lemma 4,

the last term in the RHS of equation (A.32) is Op

(
T κn

n3/2

)
= op(T/n), uniformly in

β ∈ B,θ ∈ �, where sequence κn is defined in (A.16). By using the bound in (A.31),
we have a2,nT,t = 3 + op(n−μ5) and a1,nT,t = 1 + op(n−μ5), uniformly in t = 1, . . . ,T
and β ∈B, for any μ5 > 0. Then, from equation (A.32) and Lemma 4 in the supplementary
material, we get equivalence (A.25).

(c) Proof of equivalence (A.26). By the symmetry of domain ZnT (β), we have:

�2,nT (β,θ) = 1

(3!)2n

T

∑
t=1

J3,nt (β)2a3,nT,t (β)+ 1

n

T

∑
t=1

D10,nt (β,θ)2a1,nT,t (β)

+ 1

n

T

∑
t=2

D01,nt (β,θ)2a1,nT,t−1(β)

+ 2

3!n

T

∑
t=1

J3,nt (β)D10,nt (β,θ)a2,nT,t (β)

+ 2

3!n

T

∑
t=2

J3,n,t−1(β)D01,nt (β,θ)a2,nT,t−1(β)

+ 2

n

T

∑
t=2

D10,n,t−1(β,θ)D01,nt (β,θ)a1,nT,t−1(β)+ Op

(
T 2κ2

n

n2

)
.

From equation (A.31) we get a3,nT,t (β) = 15 + op(n−μ6) uniformly, for any μ6 > 0.
Then, from Lemmas 3 and 4 in the supplementary material, equivalence (A.26) follows.
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1010 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

(d) Proof of equivalence (A.27). We use Lemma 5 in the supplementary material, which
provides the following uniform upper bounds for �j,nT (β,θ), for any integer j ≥ 3:

�j,nT (β,θ) ≤ C∗
j

(
T 2κ

j
n

n2

)
, (A.33)

and:

�j,nT (β,θ) ≤ C8κ
2 j
n j!

(
T

n
+√

T ε2
n

) j
, (A.34)

uniformly in β ∈ B,θ ∈ �, w.p.a. 1, for some constants C∗
j > 0, j = 3,4, . . ., and C8 > 0,

and where sequence κn is defined in (A.16). The sequence of constants C∗
j in bound (A.33)

diverges rapidly as j increases, and the sequence C∗
j κ

j
n /j! might not be summable. This

explains why, for any given J ≥ 3 independent of n and T , we use the bound in (A.33) for
j ≤ J and the bound in (A.34) for j > J , to get w.p.a. 1:

∞
∑
j=3

1

j!
|�j,nT (β,θ)| ≤

J

∑
j=3

C∗
j

T 2κ
j

n

j!n2 +
∞
∑

j=J+1
C8κ

2 j
n

(
T

n
+√

T ε2
n

) j

=
J

∑
j=3

C∗
j

T 2κ
j

n

j!n2 +C8
ρ J+1

nT
1−ρnT

= op(T/n)+ Op

(
ρ J+1

nT

)
,

uniformly in β ∈ B, θ ∈ �, where ρnT = κ2
n

(
T

n
+√

T ε2
n

)
= o(n−μ7), for any μ7 such

that 0 < μ7 < min{μ3,1 − 1/ν}, if T ν/n = O(1), for ν > 3/2, and
√

T ε2
n = O(n−μ3),

μ3 > 0. If we choose J ≥ max{3,1/μ7 − 1}, we get ρ J+1
nT = o

(
n−1), which implies

equation (A.27). n

From Lemmas 3 and 4 in the supplementary material, we have that
T

n
L2,nT (β,θ) =

op(1), uniformly in β ∈ B, θ ∈ �. Then, from Proposition A.4 and the expansion of the
logarithm in a neighborhood of 1, Proposition 1(ii) follows.

A.2.2. Proof of Proposition 2. The proof is in two steps. We first show the consistency
of the estimators, which is then used to derive the stochastic difference between the
estimators.

(i) Consistency of the estimators
Let us prove the consistency of the estimators when n,T → ∞ such that T ν/n = O(1),

ν > 1. We start with the ML estimator (β̃nT , θ̃nT ). Let us first prove that β̃nT is consistent.
For any ε > 0 we have:

P

[
‖β̃nT −β0‖ ≥ ε

]
≤ P
[

sup
β∈B:‖β−β0‖≥ε

LnT (β, θ̃nT ) ≥ LnT (β̃nT , θ̃nT )

]

≤ P
[

sup
β∈B:‖β−β0‖≥ε

LnT (β, θ̃nT ) ≥ LnT (β0,θ0)

]
.
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EFFICIENCY IN LARGE PANELS WITH COMMON FACTORS 1011

By using Proposition 1(i), Lemma 1(i) in the supplementary material, and the second bound
in (A.11), we get:

P

[
‖β̃nT −β0‖ ≥ ε

]
≤ P
[

sup
β∈B:‖β−β0‖≥ε

L∗(β)−L∗(β0) ≥ op(1)

]
, (A.35)

where L∗(β) is the probability limit of L∗
nT (β) defined in equation (4.4). The probability

in the RHS of inequality (A.35) is o(1), since sup
β∈B:‖β−β0‖≥ε

L∗(β)−L∗(β0) < 0 by global

identification Assumption A.6, continuity of function L∗(β), and compactness of set B.
Let us now show that θ̃nT is consistent. For any ε > 0 we have:

P

[
‖θ̃nT − θ0‖ ≥ ε

]
≤ P
[

sup
θ∈�:‖θ−θ0‖≥ε

LnT (β̃nT ,θ) ≥ LnT (β̃nT , θ̃nT )

]

≤ P
[

sup
θ∈�:‖θ−θ0‖≥ε

LnT (β̃nT ,θ) ≥ LnT (β̃nT ,θ0)

]
.

Using Proposition 1(i), Lemma 1(ii), and the consistency of β̃nT , the RHS probability is
such that:

P

[
sup

θ∈�:‖θ−θ0‖≥ε
LnT (β̃nT ,θ) ≥ LnT (β̃nT ,θ0)

]

= P
[

sup
θ∈�:‖θ−θ0‖≥ε

1

n
[L1,nT (β̃nT ,θ)−L1,nT (β̃nT ,θ0)] ≥ op (1/n)

]

= P
[

sup
θ∈�:‖θ−θ0‖≥ε

L1(β0,θ)−L1(β0,θ0) ≥ op (1)

]
,

where L1(β,θ) is the probability limit of L1,nT (β,θ) defined in equation (A.10). There-
fore, we get:

P

[
‖θ̃nT − θ0‖ ≥ ε

]
≤ P
[

sup
θ∈�:‖θ−θ0‖≥ε

L1(β0,θ)−L1(β0,θ0) ≥ op (1)

]
.

The RHS probability is o(1), since sup
θ∈�:‖θ−θ0‖≥ε

L1(β0,θ)−L1(β0,θ0) < 0 from global

identification Assumption A.8, continuity of mapping θ →L1(β0,θ), and the compactness
of set �. The consistency of θ̃nT follows.

The proof of the consistency of
(
β̃C S A

nT , θ̃C S A
nT

)
and

(
β̃G A

nT , θ̃G A
nT

)
is similar, by

replacing criterion LnT (β,θ) with LC S A
nT (β,θ), and LG A

nT (β,θ), respectively, in the above
arguments.

(ii) Stochastic difference between estimators (proof of Proposition 2)
Since the CSA, GA, and true ML estimators are consistent, the stochastic difference

between these estimators can be derived along the lines of Robinson (1988, Theorem 1).
However, we have to carefully take into account the double asymptotics in n and T . We
provide the proof for n,T → ∞ such that T ν/n = O(1) with ν > 1 (the proof for ν > 3/2
is similar).
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1012 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

Let us first prove the stochastic difference between
(
β̃C S A

nT , θ̃C S A
nT

)
and

(
β̃nT , θ̃nT

)
[equivalence (4.7) in Proposition 2]. From the first-order conditions of the true and CSA
ML estimators, Proposition 1(i) and the mean value Theorem, we have:

0 =
∂LnT

(
β̃nT , θ̃nT

)
∂
(
β

′
,θ

′)′ =
∂LC S A

nT

(
β̃nT , θ̃nT

)
∂
(
β

′
,θ

′)′ +
∂
nT

(
β̃nT , θ̃nT

)
∂(β ′,θ ′)′

= ∂2LC S A
nT

(
β̄nT , θ̄nT

)
∂
(
β

′
,θ

′)′
∂
(
β

′
,θ

′)
(

β̃nT − β̃C S A
nT

θ̃nT − θ̃C S A
nT

)
+

∂
nT

(
β̃nT , θ̃nT

)
∂(β ′,θ ′)′ , (A.36)

where β̄nT is between β̃nT and β̃C S A
nT (componentwise), and similarly for θ̄nT . From

section (i) above,
(
β̄nT , θ̄nT

)
converges to (β0,θ0) in probability. Let us now use

Lemma 6 in the supplementary material, which provides the uniform convergence of
functions L∗

nT , L1,nT , L2,nT , 
nT , 
̃nT in the asymptotic expansion of the log-
likelihood function, and of their partial derivatives. From Lemmas 6(1), (2iii) and (iv)

we get
∂2LC S A

nT

(
β̄nT , θ̄nT

)
∂β∂β

′ = −I∗
0 +op(1),

∂2LC S A
nT

(
β̄nT , θ̄nT

)
∂θ∂θ

′ = − 1

n
I1,θθ +op(1/n)

and
∂2LC S A

nT

(
β̄nT , θ̄nT

)
∂β∂θ

′ = Op(1/n), where matrices I∗
0 and I1,θθ are defined in As-

sumptions A.7 and A.9. Moreover, from Lemma 6(3), we have
∂
nT

(
β̃nT , θ̃nT

)
∂(β ′,θ ′)′ =[

op(1/n), Op

(
[log(n)]C9

n3/2

)]′
, for a constant C9 > 0. From equation (A.36) we deduce:

− I∗
0

(
β̃nT − β̃C S A

nT

)
+op

(
β̃nT − β̃C S A

nT

)
+ Op

(
1

n

(
θ̃nT − θ̃C S A

nT

))
= op(1/n),

(A.37)

− I1,θθ

(
θ̃nT − θ̃C S A

nT

)
+op

(
θ̃nT − θ̃C S A

nT

)
+ Op

(
β̃nT − β̃C S A

nT

)
= Op

(
[log(n)]C9

n1/2

)
.

(A.38)

Since matrix I∗
0 is positive definite, and θ̃nT − θ̃C S A

nT = op(1) by consistency of the esti-

mators, equation (A.37) implies β̃nT − β̃C S A
nT = op(1/n), that is the first equation in the

equivalence (4.7) in Proposition 2. Then, since I1,θθ is a positive definite matrix, equation
(A.38) implies the second equation in the equivalence (4.7) in Proposition 2 (with δ1 = C9).

To derive the stochastic difference between the true and GA ML estima-
tors [equivalence (4.8) in Proposition 2], we use that LnT (β,θ) = LG A

nT (β,θ) +

̃nT (β,θ), where 
̃nT (β,θ) = 
nT (β,θ) − 1

n2L2,nT (β,θ). From Lemma 6(2ii),

(3), we get sup
β∈B,θ∈�

∥∥∥∥∥∂
̃nT (β,θ)

∂β

∥∥∥∥∥ = op(1/n) and sup
β∈B,θ∈�

∥∥∥∥∥∂
̃nT (β,θ)

∂θ

∥∥∥∥∥ =

Op

(
[log(n)]C9

n3/2

)
when T ν/n = O(1), ν > 1. Then, by similar arguments as above, the

equivalence (4.8) follows.
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EFFICIENCY IN LARGE PANELS WITH COMMON FACTORS 1013

A.2.3. Proof of Proposition 3. The proof is in three steps. We first derive the
asymptotic expansion of the standardized CSA ML estimator in terms of the standardized
score. Then, we prove the asymptotic normality of the standardized score. Finally, this
asymptotic normality and the asymptotic equivalences (Proposition 2) are used to deduce
the asymptotic normality of the different estimators.

(i) Asymptotic expansion of the CSA ML estimator
The first-order conditions for

(
β̂nT , θ̂nT

)= (β̃C S A
nT , θ̃C S A

nT

)
are:

0 = ∂LC S A
nT
∂β

(
β̂nT , θ̂nT

)
= ∂L∗

nT
∂β

(
β̂nT

)
+ 1

n

∂L1,nT

∂β

(
β̂nT , θ̂nT

)
,

0 = ∂LC S A
nT
∂θ

(
β̂nT , θ̂nT

)
⇔ 0 = ∂L1,nT

∂θ

(
β̂nT , θ̂nT

)
,

where the factor 1/n in the second equation cancels. Let us multiply the first equation by√
nT , the second equation by

√
T , and use the mean value Theorem to get:

0 = √
nT

∂L∗
nT (β0)

∂β
+ ∂2L∗

nT (β̄nT )

∂β∂β
′

√
nT
(
β̂nT −β0

)
+
√

T

n

∂L1,nT (β0,θ0)

∂β

+ 1

n

∂2L1,nT (β̄nT , θ̄nT )

∂β∂β
′

√
nT
(
β̂nT −β0

)
+ 1√

n

∂2L1,nT (β̄nT , θ̄nT )

∂β∂θ ′
√

T
(
θ̂nT − θ0

)
,

and:

0 = √
T

∂L1,nT (β0,θ0)

∂θ
+ 1√

n

∂2L1,nT
(
β̄nT , θ̄nT

)
∂θ∂β

′
√

nT
(
β̂nT −β0

)

+ ∂2L1,nT
(
β̄nT , θ̄nT

)
∂θ∂θ

′
√

T
(
θ̂nT − θ0

)
,

where β̄nT and θ̄nT are mean values. In matrix form we have:

−
⎡
⎢⎣

∂2L∗
nT

(
β̄nT
)

∂β∂β
′ + 1

n
∂2L1,nT

(
β̄nT ,θ̄nT

)
∂β∂β

′ 1√
n

∂2L1,nT
(
β̄nT ,θ̄nT

)
∂β∂θ

′

1√
n

∂2L1,nT
(
β̄nT ,θ̄nT

)
∂θ∂β

′
∂2L1,nT (β̄nT ,θ̄nT )

∂θ∂θ
′

⎤
⎥⎦
⎡
⎣

√
nT
(
β̂nT −β0

)
√

T
(
θ̂nT − θ0

)
⎤
⎦

=
⎡
⎣

√
nT

∂L∗
nT (β0)
∂β

√
T ∂L1,nT (β0,θ0)

∂θ

⎤
⎦+
[√

T
n

∂L1,nT (β0,θ0)
∂β

0

]
+op(1). (A.39)

The second term in the RHS of (A.39) contributes to the asymptotic bias. From Lemma
6(2i) in the supplementary material, and since T/n → 0, this term is op(1). From Lemma
6(1), (2iii) and (iv) , we get:⎡
⎣

√
nT
(
β̂nT −β0

)
√

T
(
θ̂nT − θ0

)
⎤
⎦=

[(
(I∗

0 )−1 0
0 I−1

1,θθ

)
+op(1)

][ √
nT

∂L∗
nT (β0)
∂β√

T ∂L1,nT (β0,θ0)
∂θ

]
+op(1).

(A.40)
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1014 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

(ii) Asymptotic normality of the standardized score vector

PROPOSITION A.5. Let Assumptions A.1–A.5 and H.1–H.14 be satisfied. If
n,T → ∞ such that T ν/n = O(1), ν > 1, the standardized approximate score vector
of the partial derivatives of functions L∗

nT (β) and L1,nT (β,θ) w.r.t. β and θ , respectively,
is such that:

⎡
⎢⎣

√
nT

∂L∗
nT (β0)

∂β√
T

∂L1,nT (β0,θ0)

∂θ

⎤
⎥⎦ d−→ N

((
0
0

)
,

(
I∗
0 0
0 I1,θθ

))
,

where I ∗
0 = E0

[
Iββ(t)− Iβ f (t)I f f (t)

−1 I fβ(t)
]

and

I1,θθ = E0

[
−∂2 log g

(
ft | ft−1; θ0

)
∂θ∂θ

′

]
.

Proof of Proposition A.5. Let us first consider the approximate score w.r.t. β.

By the envelope Theorem (e.g., Dixit, 1990) we have
√

nT
∂L∗

nT (β0)

∂β
=

1√
nT

T

∑
t=1

n

∑
i=1

∂ logh

∂β

(
yi,t |yi,t−1, f̂n,t (β0) ; β0

)
. By the mean value Theorem we get:

√
nT

∂L∗
nT (β0)

∂β
= 1√

nT

T

∑
t=1

n

∑
i=1

∂ logh

∂β

(
yi,t |yi,t−1, ft ; β0

)

+ 1√
nT

T

∑
t=1

n

∑
i=1

∂2 logh

∂β∂ f
′
t

(
yi,t |yi,t−1, f̃t ; β0

)(
f̂n,t (β0)− ft

)
,

where f̃t are mean values. By Assumption H.10, Limit Theorem 1 in the sup-
plementary material and condition T ν/n = O(1), ν > 1, we can show that
1

n

n

∑
i=1

∂2 logh

∂β∂ f ′
t

(
yi,t |yi,t−1, f̃t ; β0

)
= −Iβ f (t)+ Op

(
(logn)C10√

n

)
, uniformly in 1≤ t ≤T ,

for some constant C10 > 0, where Iβ f (t) is the (β, f ) block of the matrix I (t) defined in
equation (4.6). Then, by Limit Theorem 1 and the condition T ν/n = O(1), ν > 1, we have:

√
nT

∂L∗
nT (β0)

∂β
= 1√

nT

T

∑
t=1

n

∑
i=1

∂ logh

∂β

(
yi,t |yi,t−1, ft ; β0

)

− 1√
T

T

∑
t=1

Iβ f (t)
√

n
(

f̂n,t (β0)− ft
)

+op(1). (A.41)

Let us now derive an asymptotic expansion for
√

n
(

f̂n,t (β0)− ft
)

. Since ft is

in the interior of set Fn w.p.a. 1 from Assumptions H.5 and H.6(i) and (ii), and
f̂n,t (β0) converges in probability to ft by Limit Theorem 1, the first-order condition
1√
n

n

∑
i=1

∂ logh
(

yi,t |yi,t−1, f̂n,t (β0); β0
)

∂ ft
= 0 holds w.p.a. 1. Then, by the mean value
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Theorem, we have:

0 = 1√
n

n

∑
i=1

∂ logh

∂ ft
(yi,t |yi,t−1, ft ; β0)+

(
1

n

n

∑
i=1

∂2 logh

∂ ft∂ f ′
t

(yi,t |yi,t−1, f̄t ; β0)

)

×√
n
(

f̂n,t (β0)− ft
)

,

where f̄t is a mean value. Similarly to above, by Assumption H.10, Limit Theorem 1, and

condition T ν/n = O(1), ν > 1, we have
1

n

n

∑
i=1

∂2 logh

∂ ft∂ f ′
t

(
yi,t |yi,t−1, f̄t ; β0

) = −I f f (t)+

Op

(
(logn)C11√

n

)
, uniformly in 1 ≤ t ≤ T , for some constant C11 > 0, where I f f (t) is the

( f, f ) block of the matrix I (t) defined in equation (4.6). Then, by Limit Theorem 1 and
Assumption H.4 we get:

√
n
(

f̂n,t (β0)− ft
)

= I f f (t)
−1 1√

n

n

∑
i=1

∂ logh

∂ ft

(
yi,t |yi,t−1, ft ; β0

)

+ Op

(
(logn)C12√

n

)
, (A.42)

uniformly in 1 ≤ t ≤ T , for some constant C12 > 0. By replacing expansion (A.42) into
expansion (A.41), and by using the condition T ν/n = O(1), ν > 1, and Assumption H.4,
we get:

√
nT

∂L∗
nT (β0)

∂β
= 1√

T

T

∑
t=1

[
ψn,β (t)− Iβ f (t)I f f (t)

−1ψn, f (t)
]
+op(1), (A.43)

where

ψn,β (t) = 1√
n

n

∑
i=1

∂ logh

∂β

(
yi,t |yi,t−1, ft ; β0

)
,

ψn, f (t) = 1√
n

n

∑
i=1

∂ logh

∂ ft

(
yi,t |yi,t−1, ft ; β0

)
. (A.44)

Let us now consider the approximated score w.r.t. θ . By the mean value Theorem, we
have:

√
T

∂L1,nT (β0,θ0)

∂θ
= 1√

T

T

∑
t=1

∂ log g

∂θ

(
f̂n,t (β0) | f̂n,t−1 (β0) ; θ0

)

= 1√
T

T

∑
t=1

∂ log g

∂θ

(
ft | ft−1; θ0

)

+
√

T

n

(
1

T

T

∑
t=1

∂2 log g

∂θ∂ f
′
t

(
f̃t | f̃t−1; θ0

)√
n
(

f̂n,t (β0)− ft
)

+ 1

T

T

∑
t=1

∂2 log g

∂θ∂ f
′
t−1

(
f̃t | f̃t−1; θ0

)√
n
(

f̂n,t−1 (β0)− ft−1

))
.
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1016 PATRICK GAGLIARDINI AND CHRISTIAN GOURIEROUX

By using T ν/n = O(1), ν > 1, Assumption H.13, and Limit Theorem 1, it follows that:

√
T

∂L1,nT (β0,θ0)

∂θ
= 1√

T

T

∑
t=1

∂ log g

∂θ

(
ft | ft−1; θ0

)+op(1). (A.45)

Thus, from equations (A.43) and (A.45) we deduce:

⎡
⎣

√
nT

∂L∗
nT (β0)
∂β

√
T ∂L1,nT (β0,θ0)

∂θ

⎤
⎦= 1√

T

T

∑
t=1

ζn,t +op(1),

ζn,t ≡
⎡
⎢⎣ψn,β (t)− Iβ f (t)I f f (t)

−1ψn, f (t)

∂ log g

∂θ

(
ft | ft−1; θ0

)
⎤
⎥⎦ , (A.46)

where ψn,β (t) and ψn, f (t) are defined in (A.44). Proposition A.5 follows if we prove that

1√
T

T

∑
t=1

ζn,t
d→ N (0,�) as n,T → ∞, where � =

(
I∗
0 0
0 I1,θθ

)
. Since {ζn,t ,Gn,t ,

1≤ t ≤T ; n ∈ N} is a martingale difference array w.r.t. the filtration Gn,t =(
yi,t , 1 ≤ i ≤ n, ft

)
, t varying, namely ζn,t is measurable w.r.t. Gn,t and

E0[ζn,t |Gn,t−1] = 0 for any t ≤ T and n ∈ N, we can apply a multivariate version
of Theorem 3.2 in Hall and Heyde (1980). Thus, Proposition A.5 follows if we prove the
next three conditions:

(a)
1√
T

max
1≤t≤T

‖ζn,t‖ p→ 0; (b)
1

T

T

∑
t=1

ζn,t ζ
′
n,t

p→ E0
[
ζn,t ζ

′
n,t
]= �;

(c)
1

T
E0

(
max

1≤t≤T
‖ζn,t‖2

)
= O(1).

These conditions are checked in Lemma 7 in the supplementary material when n,T →
∞ such that T ν/n = O(1) with ν > 0. In particular, the variance-covariance matrix
� of the random vector ζn,t in (A.46) is block-diagonal, since the microcomponent
ψn,β (t)− Iβ f (t)I f f (t)

−1ψn, f (t) is zero-mean conditional on the factor path, while the
macrocomponent ∂ log g

(
ft | ft−1; θ0

)
/∂θ depends on the factor path only. n

(iii) Asymptotic normality of the estimators (proof of Proposition 3)
The joint asymptotic normality of the CSA ML estimator

(
β̂nT , θ̂nT

)
follows from the

asymptotic expansion (A.40) and Proposition A.5. The asymptotic normality of the GA
and true ML estimators is implied by the asymptotic normality of the CSA ML estimator
and the asymptotic equivalences (4.7)-(4.8) in Proposition 2 when T ν/n = O(1), ν > 1.

A.2.4. Proof of Proposition 5
(i) Proof of Proposition 5(i)

By the mean value Theorem we have:

√
n
(

f̂nT,t − ft
)

= √
n
(

f̂n,t (β0)− ft
)

+ ∂ f̂n,t
(
β̇nT
)

∂β
′

√
n
(
β̂nT −β0

)
, (A.47)
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EFFICIENCY IN LARGE PANELS WITH COMMON FACTORS 1017

where β̇nT is a mean value. Let us consider the first term in the RHS. By the proof of Limit
Theorem 1 in the supplementary material, we get that f̂n,t (β0) converges in probability to
ft , conditional on ft , for P-almost every (a.e.) ft . Thus, f̂n,t (β0) coincides with the maxi-

mizer of the cross-sectional log-likelihood function
n

∑
i=1

logh(yi,t |yi,t−1, f ; β0) w.r.t. f in

set { f ∈ Rm : ‖ f − ft‖ ≤ r}, w.p.a. 1, conditional on ft , for any r > 0. From Assump-

tions A.1, A.2, and H.2, we get
√

n
(

f̂n,t (β0)− ft
)

d→ N
(
0, I f f (t)

−1), conditionally on

ft , by applying Theorem 4.2.4 of Amemiya (1985) on the asymptotic normality of ML
estimators. In checking the conditions of Theorem 4.2.4 of Amemiya (1985), we use that
observations (yi,t , yi,t−1), for i = 1, . . . ,n, are i.i.d. conditional on the factor path ft from
Assumptions A.1 and A.2, and that Assumption H.2 implies the global and local identifi-

cation conditions of ft . Moreover, the score
1√
n

n

∑
i=1

∂ logh(yi,t |yi,t−1, ft ; β0)

∂ ft
is asymp-

totically N (0, I f f (t)) distributed, conditional on ft , by applying a standard CLT and using
Assumption H.2.

Let us now consider the second term in the RHS of equation (A.47). We use Lemma
8 in the supplementary material, which provides a probability bound for ∂ f̂n,t (β)/∂β ′,
uniformly in β ∈ B, conditionally on ft . Then, from Lemma 8 and Proposition 3, the
second term in the RHS of equation (A.47) is op(1), conditionally on ft . The asymptotic
normality in Proposition 5(i) follows.

(ii) Proof of Proposition 5(ii)
We have ‖ f̂nT,t − ft‖ ≤ ‖ f̂n,t

(
β̂nT
)− ft

(
β̂nT
)‖+‖ ft

(
β̂nT
)− ft (β0)‖ and thus:

sup
1≤t≤T

∥∥∥ f̂nT,t − ft
∥∥∥≤ sup

1≤t≤T
sup
β∈B

∥∥∥ f̂n,t (β)− ft (β)
∥∥∥

+ sup
1≤t≤T

sup
β∈B

∥∥∥∥∂ ft (β)

∂β ′
∥∥∥∥∥∥∥β̂nT −β0

∥∥∥ . (A.48)

From Limit Theorem 1, the first term in the RHS of inequality (A.48) is

Op

(
n−1/2[log(n)]δ2

)
. Let us consider the second term. By differentiating the first-

order condition E0

[
∂ logh(yi,t |yi,t−1, ft (β); β)

∂ ft
| ft

]
= 0 w.r.t. β, we deduce

∂ ft (β)

∂β ′ =
−It, f f (β)−1 It, fβ(β), where It, f f (β) and It, fβ(β) are the blocks of the Hessian matrix
It (β) defined by:

It (β) = E0

[
−∂2 logh(yi,t |yi,t−1, ft (β); β)

∂(β ′, f ′
t )

′∂(β ′, f ′
t )

| ft

]
. (A.49)

From Assumption H.4, we get sup
1≤t≤T

sup
β∈B

∥∥∥∥∂ ft (β)

∂β ′
∥∥∥∥ = Op

(
[log(n)]C13

)
, for some

C13 > 0. Then, from Proposition 3, the second term in RHS of inequality (A.48) is
Op
(
(nT )−1/2[log(n)]C13

)
. The uniform convergence rate in Proposition 5(ii) follows
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A.2.5. Proof of Proposition 6
(i) Consistency

Let us first show that the estimator
(
β̂∗

nT , θ̂∗
nT

)
is consistent. The consistency of β̂∗

nT
follows by similar arguments as in Section A.2.2(i), by setting functions L1,nT (β,θ)

and 
nT (β,θ) equal to zero. To prove the consistency of θ̂∗
nT , we use that θ̂∗

nT is the

maximizer of criterion QT (θ) = 1

T

T

∑
t=1

log g
[

f̂n,t
(
β̂∗

nT
)| f̂n,t−1

(
β̂∗

nT
); θ] over the set �.

We have QT (θ) = L1,nT
(
β̂∗

nT ,θ
)
, up to a constant independent of θ . By a slight

modification of Lemma 1(ii) and the consistency of β̂∗
nT , criterion QT (θ) converges in

probability to Q∞(θ) = E0
[
log g( ft | ft−1; θ)

]
uniformly in θ ∈ �. Since function QT

is continuous, set � is compact, and θ0 is the unique maximizer of function Q∞ by the
global identification Assumption A.8, we can apply the standard consistency theorem
for extremum estimators [e.g., Amemiya (1985), Theorem 4.1.1]; it follows that θ̂∗

nT
converges to θ0 in probability.

(ii) Stochastic difference between estimators [proof of Proposition 6(i)]
The first-order conditions of estimators

(
β̃C S A

nT , θ̃C S A
nT

)
and
(
β̂∗

nT , θ̂∗
nT

)
are given by:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂L∗
nT

(
β̃C S A

nT

)
∂β

+ 1

n

∂L1,nT

(
β̃C S A

nT , θ̃C S A
nT

)
∂β

= 0,

L1,nT

(
β̃C S A

nT , θ̃C S A
nT

)
∂θ

= 0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂L∗
nT

(
β̂∗

nT

)
∂β

= 0,

∂L1,nT

(
β̂∗

nT , θ̂∗
nT

)
∂θ

= 0,

respectively. Let us expand the first-order conditions of
(
β̃C S A

nT , θ̃C S A
nT

)
around

(
β̂∗

nT , θ̂∗
nT

)
.

By the mean value Theorem, and the first-order conditions of
(
β̂∗

nT , θ̂∗
nT

)
, we get:

0 = ∂2L∗
nT (β̄nT )

∂β∂β ′
(
β̃C S A

nT − β̂∗
nT

)
+ 1

n

∂L1,nT

(
β̃C S A

nT , θ̃C S A
nT

)
∂β

, (A.50)

and:

0 = ∂2L1,nT (β̄nT , θ̄nT )

∂θ∂β ′
(
β̃C S A

nT − β̂∗
nT

)
+ ∂2L1,nT (β̄nT , θ̄nT )

∂θ∂θ ′
(
θ̃C S A

nT − θ̂∗
nT

)
, (A.51)

where (β̄nT , θ̄nT ) are mean values. Since the CSA and two-step estimators are con-
sistent by Proposition 3 and section (i) above, the mean values

(
β̄nT , θ̄nT

)
are

consistent as well. From Lemmas 6(1), (2i), and (2iii) we get
∂2L∗

nT (β̄nT )

∂β∂β ′ =

−I∗
0 + op(1),

∂L1,nT
(
β̃C S A

nT , θ̃C S A
nT

)
∂β

= Op(1),
∂2L1,nT

(
β̄nT , θ̄nT

)
∂θ∂β ′ = Op(1), and

∂2L1,nT (β̄nT , θ̄nT )

∂θ∂θ ′ = −I1,θθ + op(1). Then, equation (A.50) implies β̃C S A
nT − β̂∗

nT =
Op(1/n), and equation (A.51) implies θ̃C S A

nT − θ̂∗
nT = Op

(
β̃C S A

nT − β̂∗
nT

)
= Op(1/n).

Then, from equivalence (4.7) in Proposition 2, we get β̂∗
nT − β̃nT = Op(1/n) and

θ̂∗
nT − θ̃nT = Op

(
[log(n)]δ1√

n

)
.
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(iii) Asymptotic normality [proof of Proposition 6(ii)]
From the condition T ν/n = O(1), ν > 1, and Proposition 6(i), we get(√
nT (β̂∗

nT −β0)′,
√

T (θ̂∗
nT − θ0)′

)′ =
(√

nT (β̃nT −β0)′,
√

T (θ̃nT − θ0)′
)′ + op(1).

Then, Proposition 6(ii) follows from Proposition 3.

A.3. Identification in the stochastic migration model

The stochastic migration model is a set of ordered qualitative models, with an unobservable
stochastic factor and a common vector of threshold parameters ck , k = 1, .., K − 1. This
explains why the identification conditions have to be derived carefully.

(i) Let us first consider the two-state case, K = 2. The transition matrix πt = [πlk,t ] is:

πt =
⎡
⎣G
(

c1−γ1 ft −α1
σ1

)
1− G

(
c1−γ1 ft −α1

σ1

)
G
(

c1−γ2 ft −α2
σ2

)
1− G

(
c1−γ2 ft −α2

σ2

)
⎤
⎦ .

By reparametrizing coefficients α1 and α2, we can assume c1 = 0. The transition matrix
becomes:

πt =
⎡
⎣G
(
− γ1 ft +α1

σ1

)
1− G

(
− γ1 ft +α1

σ1

)
G
(
− γ2 ft +α2

σ2

)
1− G

(
− γ2 ft +α2

σ2

)
⎤
⎦ .

We can also scale the parameters to get σ1 = σ2 = 1:

πt =
[

G (−γ1 ft −α1) 1− G (−γ1 ft −α1)
G (−γ2 ft −α2) 1− G (−γ2 ft −α2)

]
.

Finally, by standardizing the factor, we can set γ1 = 1 and α1 = 0:

πt =
[

G (− ft ) 1− G (− ft )
G (−γ2 ft −α2) 1− G (−γ2 ft −α2)

]
.

Then, the values of the factor ft are identified by the first row of the transition matrix,
t = 1, . . . ,T . The values of γ2,α2 are identified by the second row, when T ≥ 2.

(ii) Let us now consider the case K > 2. The l-th row of the transition matrix is:[
G

(
c1 −γl ft −αl

σl

)
,G

(
c2 −γl ft −αl

σl

)
− G

(
c1 −γl ft −αl

σl

)
, . . . ,

1− G

(
cK−1 −γl ft −αl

σl

)]
,

for l = 1, . . . , K . As above, we can first set c1 = 0:[
G

(
−γl ft +αl

σl

)
,G

(
c2 −γl ft −αl

σl

)
− G

(
−γl ft +αl

σl

)
, . . . ,

1− G

(
cK−1 −γl ft −αl

σl

)]
. (A.52)
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Second, by normalizing the factor values and the thresholds, we can set γ1 = σ1 = 1 and
α1 = 0 in the first row. Then, the transition matrix has a first row given by:[
G (− ft ) ,G (c2 − ft )− G (− ft ) , . . . ,1− G

(
cK−1 − ft

)]
,

and row l is given by equation (A.52) for l ≥ 2. From the first row, we identify the factor
value ft and the K − 2 thresholds c2, . . . ,cK . Then, the values of γl ,αl ,σl are identified
by the row l, for l = 2, . . . , K , when (K −1)T ≥ 3.
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