
Mon. Not. R. Astron. Soc. 412, 2617–2630 (2011) doi:10.1111/j.1365-2966.2010.18081.x

The modified Newtonian dynamics Fundamental Plane

V. F. Cardone,1,2,3� G. Angus,2 A. Diaferio,2 C. Tortora3,4 and R. Molinaro5,6

1Dipartimento di Scienze e Tecnologie dell’ Ambiente e del Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
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ABSTRACT
Modified Newtonian dynamics (MOND) has been shown to be able to fit spiral galaxy rotation
curves as well as giving a theoretical foundation for empirically determined scaling relations,
such as the Tully–Fisher law, without the need for a dark matter halo. As a complementary
analysis, one should investigate whether MOND can also reproduce the dynamics of early-
type galaxies (ETGs) without dark matter. As a first step, we here show that MOND can
indeed fit the observed central velocity dispersion σ 0 of a large sample of ETGs assuming a
simple MOND interpolating functions and constant anisotropy. We also show that, under some
assumptions on the luminosity dependence of the Sérsic n parameter and the stellar mass-to-
light ratio (M/L), MOND predicts a Fundamental Plane for ETGs: a loglinear relation among
the effective radius Reff , σ 0 and the mean effective intensity 〈Ie〉. However, we predict a tilt
between the observed and the MOND Fundamental Planes.

Key words: gravitation – galaxies: elliptical and lenticular, cD – galaxies: kinematics and
dynamics – dark matter.

1 IN T RO D U C T I O N

The regularity of their photometric properties and the existence of
remarkable scaling relations among their observable quantities may
naively suggest that early-type galaxies (ETGs) are well-understood
systems. On the contrary, understanding their mass content and
density profile is still a hotly debated issue mainly because of both
theoretical shortcomings and observational difficulties. Indeed, on
the one hand, the lack of a reliable mass tracer makes it difficult to
constrain the gravitational potential in the outer [supposedly dark
matter (DM) dominated] regions although planetary nebulae sur-
veys (Napolitano et al. 2001; Napolitano, Arnaboldi & Capaccioli
2002; Romanowsky et al. 2003) are trying to address this problem.
On the other hand, the availability of a higher number of possible
tracers in the inner regions has not improved so much the situation
with the same data being reproducible in terms of different (and
somewhat contrasting) scenarios because of the uncertainties on
the stellar initial mass function (IMF).

In the classical Newtonian framework, DM dominates the outer
galaxy regions (see e.g. van den Bosch et al. 2003, 2007), but
weighting its contribution in the inner regions where stellar mat-
ter plays a non-negligible role is quite difficult. As pointed out by
Mamon & Lokas (2005a,b), the observational data claim for a dom-
inant stellar component at a radius �Reff , but such a conclusion
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heavily relies on the IMF choice, with the Salpeter (1955) and
Chabrier (2001) as leading but not unique candidates. On large
scales, the DM content has been found to be a strong function of
both luminosity and mass (Benson et al. 2000; Marinoni & Hudson
2002; van den Bosch et al. 2007) with a different behaviour be-
tween faint and bright systems. Looking for a similar result for the
DM content at ∼Reff is quite controversial. On the one hand, some
authors (Gerhard et al. 2001; Borriello, Salucci & Danese 2003) ar-
gue for no dependence. On the other hand, other works (Napolitano
et al. 2005; Cappellari et al. 2006; Tortora et al. 2009) do find that
brighter galaxies have a larger DM content, while a flattening and a
possible inversion of this trend for lower mass systems, similar to
the one observed for late-type galaxies (Persic, Salucci & Ashman
1993), is still under analysis (Napolitano et al. 2005; Tortora et al.
2009) with no conclusive result yet obtained. It is worth stressing
that all these results rely on dynamical analysis, i.e. they are ob-
tained by fitting a given model to the observed velocity dispersion
data. As such, they are plagued by the mass–anisotropy degener-
acy introducing an unknown systematic bias which is difficult to
quantify. As an alternative, one can rely on gravitational lensing
which directly probes the full mass content projected along the
line of sight. In the strong lensing regime, the formation of Einstein
rings allows to constrain the total mass projected within the Einstein
ring independently of the model. If coupled to a measurement of the
central velocity dispersion, this method gives interesting constraints
on the mass profile in the inner regions. On the one hand, DM mass
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fractions and their scaling with stellar mass and luminosity can
be constrained assuming a model for the halo (Koopmans & Treu
2003; Auger et al. 2009, 2010; Grillo, Gobat & Lombardi 2009;
Cardone & Tortora 2010; Treu et al. 2010) or the total mass profile
(Cardone et al. 2009; Grillo 2010; Tortora et al. 2010). On the other
hand, one can also try to constrain the stellar IMF by making some
assumptions on the DM content (Grillo & Gobat 2010). In the op-
posite regime, galaxy–galaxy lensing allows to investigate the outer
regions by estimating the total mass-to-light ratio (M/L; Guzik &
Seljak 2002; Hoekstra et al. 2005; Gavazzi et al. 2007) although
large samples are needed to get reliable results.

In spite of the quite large range spanned by their morphological
and photometric properties, ETGs show several interesting correla-
tions among their colours, luminosities, velocity dispersions, effec-
tive radii and surface brightness, the most famous example being the
Fundamental Plane (FP), a loglinear relation between the effective
radius Reff , the intensity Ie = I(Reff ) and the central velocity disper-
sion σ 0 (Djorgovski & Davis 1987; Dressler et al. 1987; Bender,
Burstein & Faber 1992; Burstein et al. 1997). This FP is usually
parametrized as Reff ∝ σ a

0Ib
e with (a, b) predicted to be (2, −1) if

ETGs are homologous systems in virial equilibrium and with a con-
stant M/L. The observed plane is, however, tilted with respect to the
virial one since the different determinations of (a, b), depending on
the photometric band and the sample used, are always different from
the virial values. Jørgensen, Franx & Kjærgaard (1996) first derived
a = 1.24 ± 0.07 and b = −0.82 ± 0.02 from a set of 225 ETGs in
nearby clusters observed in the r band. While this result is consistent
with the original observations of Djorgovski & Davis (1987) and
Dressler et al. (1987), it is nevertheless in striking contrast with the
most recent determination relying on ∼9000 ETGs observed within
the framework of the Sloan Digital Sky Survey (SDSS). Using this
large sample, Bernardi et al. (2003) have found a = 1.49 ± 0.05
and b = −0.75 ± 0.01, which are more similar to the K-band FP
of Pahre, de Carvalho & Djorgovski (1998). While the precise val-
ues of the FP coefficients are still debated, it is nevertheless clear
that the observed FP is tilted with respect to the predicted plane.
Such a tilt could be caused by a variation in the dynamical M/L for
ETGs as a result of a varying DM fraction (e.g. Padmanabhan et al.
2004; Boylan-Kolchin, Ma & Quataert 2005; Cappellari et al. 2006;
Tortora et al. 2009) or stellar population variations (e.g. Ger-
hard et al. 2001). Moreover, non-homology in the surface bright-
ness profiles of elliptical galaxies (e.g. Graham & Colless 1997;
Trujillo, Burkert & Bell 2004) may be another explanation of the
FP tilt.1

All the above results have been obtained assuming that the clas-
sical Newtonian theory of gravity may be used also on galactic
scales. However, the outer regions of galaxies typically are in a low
acceleration regime, and in this regime Newtonian dynamics has
never been experimentally tested. Motivated by this consideration,
Milgrom (1983) proposed to modify Newton’s second law of dy-
namics as F = mg, where the acceleration g is now related to the
Newtonian one gN as gμ(g/a0) = gN. Here, a0 is a new universal
constant and μ(x) may be an arbitrary function with the properties
μ(x � 1) = 1 and μ(x � 1) = x. The theory thus obtained, referred
to as modified Newtonian dynamics (MOND), provides flat rotation
curves for spiral galaxies and, as a by-product, gives a theoretical
interpretation of the empirically determined Tully–Fisher law. Since
its beginnings, MOND has been widely tested as an alternative to

1Hereafter, with an abuse of terminology, we will refer to the plane with
coefficients (a, b) = (2, −1) as the virial FP even if, as explained, deviations
from this plane do not imply that ETGs are unvirialized systems.

DM with remarkable success on galaxy scales (see e.g. Sanders &
McGaugh 2002; Milgrom 2008 and references therein) receiving
a renewed interest after the proposal of a possible fully covariant
relativistic formulation referred to as tensor–vector–scalar gravity
(TeVeS) (Bekenstein 2004).

Motivated by these successful results, we model ETGs as a single-
component system derived from the observed luminosity profile and
check whether the resulting MOND dynamics is consistent with
the data. To this end, assuming a constant anisotropy model for
the velocity dispersion profile, we compute the aperture velocity
dispersion σ ap and compare it with the observed value for a large
sample of local ETGs. Fitting the σ ap data provides us a consistency
check of MOND. Indeed, should the MOND-predicted values be
smaller than the observed one or ask for unrealistic anisotropy pro-
file, one can argue that DM is still needed. Should, on the contrary,
MOND overestimates σ ap, one should reconsider the choice of the
interpolating function μ(x) or the acceleration constant a0. As a by-
product, this test also allows us to estimate the anisotropy profile
which can then be used to infer how the theoretical FP looks like in
the MOND framework. It is worth noting, however, that σ ap mainly
probe the inner regions of the galaxy where DM is not expected to
play a dominant role. As a consequence, although our analysis is
definitely in the context of the MOND versus DM controversy, we
do not expect to give a conclusive answer on this debate, but we
nevertheless make a further step towards a possible solution.

The plan of the paper is as follows. In Section 2, we present
the mass density profile adopted for describing the ETG luminous
component, while the derivation of the aperture velocity dispersion
in the MOND framework is given in Section 3. We then show, in
Section 4, how MOND predicts a FP-like relation for ETGs which
we refer to as the MOND FP (MFP). Section 5 is then devoted
to both motivating the MFP and testing the viability of MOND in
reproducing the observed dynamics of ETGs, while the predicted
MFP coefficients are given in Section 6 and compared to those
of the observed FP. We finally summarize our results and discuss
possible implications in Section 7, while in Appendices A and
B we briefly investigate the wavelength dependence of the MFP
coefficients and discuss the impact of deviations from the main
assumptions considered in the paper.

2 TH E PS MO D EL

In spite of their wide mass, size and luminosity range, and the differ-
ent chemical and stellar population characteristics, ETGs present a
remarkable similarity in their photometric properties. As many stud-
ies show (Caon, Capaccioli & D’Onofrio 1993; Graham & Colless
1997; Prugniel & Simien 1997), their surface brightness is well
described by the Sérsic(1968) profile:

I (R) = Ie exp

{
−bn

[(
R

Reff

)1/n

− 1

]}
, (1)

with R the cylindrical radius2 on the plane of the sky and Ie the
luminosity intensity at the effective radius Reff . The constant bn is

2Note that we have implicitly assumed that the intensity I does not depend
on the angular coordinates. Actually, the isophotes are not concentric circles,
but rather ellipses with variable ellipticities and position angles so that I =
I(R, ϕ). However, in order to be consistent with our assumption of spherical
symmetry of the three-dimensional mass profile, we will neglect such an
effect and, following a common practice, circularize the intensity profile
considering circular isophothes with radii equal to the geometric mean of
the major and minor axes.
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determined by the condition that the luminosity within Reff is half
the total luminosity. A very good analytical approximation is given
by (Ciotti & Bertin 1999):

bn = 2n − 1

3
+ 0.009 876

n
.

The deprojection of the intensity profile in equation (1) is straight-
forward under the hypothesis of spherical symmetry, but, unfortu-
nately, the result turns out to be somewhat involved combinations of
the unusual Meijer functions (Mazure & Capelato 2002). In order
not to deal with this cumbersome expression, we prefer to use the
model proposed by Prugniel & Simien (1997, hereafter PS) whose
three-dimensional luminosity density reads

j (r) = j0

(
r

Reff

)−pn

exp

[
−bn

(
r

Reff

)1/n
]
, (2)

with

j0 = I0b
n(1−pn)
n

2Reff

�(2n)

�[n(3 − pn)]
. (3)

Here, �(a) is the � function, I0 = I (R = 0) = Ieebn , while the
constant pn is chosen so that the projection of equation (2) matches
a Sérsic profile with the same values of (n, Reff , Ie). A useful fitting
formula is given as (Lima Neto, Márquez & Gerbal 1999; Márquez
et al. 2001)

pn = 1.0 − 0.6097

n
+ 0.005 63

n2
.

In the following, we will be interested in the mass rather than
luminosity density. Under the light-traces-mass assumption, the two
quantities are immediately related as ρ(r) = ϒ�j(r), with ϒ� the
stellar M/L. For later applications, it is convenient to define the
following dimensionless quantity:

ρ̃(η) = ρ(η)

ρeff
= η−pn exp

[−bn(η1/n − 1)
]

, (4)

with η = r/Reff and

ρeff = ρ(η = 1) = ϒ�j0e−bn = M�

4πR3
eff

bn(3−pn)
n e−bn

n�[n(3 − pn)]
. (5)

Here M� = ϒ�LT is the total stellar mass, with LT =
2πnb−2n

n ebn�(2n)IeR
2
eff the total luminosity of the projected Sérsic

profile. Because of the assumed spherical symmetry, it is only a
matter of algebra to show that the cumulative mass profile for the
PS model reads

M(r) = M�

γ
[
n(3 − pn), bnη

1/n
]

�[n(3 − pn)]
, (6)

where γ (a, x) is the incomplete γ function. It is useful to introduce
the following scaled mass profile:

M̃(η) = M(η)

Meff
= γ

[
n(3 − pn), bnη

1/n
]

γ [n(3 − pn), bn]
, (7)

with

Meff = M(η = 1) = M�

γ [n(3 − pn), bn]

�[n(3 − pn)]
. (8)

As a final remark, let us stress that both M� and Meff may be
determined from the measurement of the photometric parameters
(n, Reff , Ie) provided that an estimate of the stellar M/L, ϒ�, is
available (for instance, from the relation between ϒ� and the colours
or from fitting the galaxy spectrum to stellar population synthesis
models).

3 A PERTURE VELOCI TY DI SPERSI ON

A widely used probe to constrain the model parameters is repre-
sented by the line-of-sight velocity dispersion luminosity weighted
within a circular aperture of radius Rap. This can be easily evaluated
as

σ 2
ap =

∫ Rap

0 I (R)σ 2
los(R)R dR∫ Rap

0 I (R)R dR
, (9)

with σ los(R) the velocity dispersion projected along the line of sight.
In order to compute this latter quantity, we first need to solve
the Jeans equation for the radial velocity dispersion σ r. Follow-
ing Sanders (2000) and assuming spherical symmetry, we write it
as

d
[
ρ(r)σ 2

r (r)
]

dr
+ 2β(r)

r

[
ρ(r)σ 2

r (r)
] = −ρ(r)g(r), (10)

with β (r) = 1 − σ 2
θ /σ

2
r the anisotropy profile and g(r) the acceler-

ation law. In the classical Newtonian dynamics, g(r) = GMtot(r)/r2,
with Mtot(r) the total (stellar + DM) mass. In the MOND frame-
work, no DM is added so that Mtot(r) = M(r), with M(r) the stellar
mass from equation (6). Secondly (and most importantly), the ac-
celeration g(r) is obtained by solving

g(r)μ

[
g(r)

a0

]
= gN(r), (11)

with μ(x) the MOND interpolating function and a0 = 1.2 ×
10−10 m s−2 the MOND acceleration scale. Without loss of gen-
erality, we conveniently define

g(r) = γMOND(r)gN(r), (12)

where the functional expression of γ MOND(r) will depend on the
mass model and the μ(x) function. Although μ(x) = x/

√
1 + x2

has been the first proposal to be tested with success (Sanders &
McGaugh 2002), recent analyses (Famaey & Binney 2005; Zhao
& Famaey 2006; Famaey, Bruneton & Zhao 2007; Sanders &
Noordermeer 2007; Angus et al. 2008b) seem to favour the sim-
ple form (Famaey & Binney 2005)

μ(x) = x

1 + x
, (13)

which we will adopt in the following. Using equation (6) for the
mass profile, inserting equation (13) into equation (11) and solving
for g(r), we finally find

2γMOND(η) = 1 +
√

1 + 4a0

aeff

η2γ [n(3 − pn), bn]

γ [n(3 − pn), bnη1/n]
, (14)

with

aeff = GMeff

R2
eff

= GM�

R2
eff

γ [n(3 − pn), bn]

�[n(3 − pn)]
. (15)

The computation of σ los may now be performed along the same
steps as for the Newtonian case (see e.g. Mamon & Lokas, 2005a,b)
provided the following replacement rule

GM(r)/r2 → GM(r)γMOND(r)/r2

is applied. The final result turns out to be

I (R)σ 2
los(R) = 2 GMeffρeff/ϒ�

×
∫ ∞

ξ

K

(
η

ξ
,
ηa

ξ

)
ρ̃(η)M̃(η)γMOND(η)

η
dη, (16)

with ξ = R/Reff , ηa = ra/Reff a scaled anisotropy radius and
K(η/ξ , ηa/ξ ) a kernel function depending on the choice of the
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anisotropy profile.3 There are not many constraints on what the cor-
rect anisotropy profile can be. Moreover, the results in the literature
have all be obtained under the assumption of Newtonian gravity and
DM so that extrapolating them to the MOND framework is not mo-
tivated. As a first approximation, we will therefore consider models
with constant anisotropy, i.e. β(r) = β, where we remember that β

may range from −∞ (for a system with fully tangential orbits) to
1 (for radial orbits only). For the anisotropic PS model in a MOND
framework, we finally get

σ 2
ap = 4πGρeffMeffR

2
eff

ϒ�L2γ [n(3 − pn), bn]

∫ ξap

0
I los(ξ, p)ξ dξ (17)

with

Ilos(ξ, p) =
∫ ∞

ξ

γMOND(η)

η1+pn exp [bn(η1/n − 1)]
K

(
η

ξ
, β

)

× γ
[
n(3 − pn), bnη

1/n
]

�[n(3 − pn)]
dη , (18)

L2 = 2πnebnb−2n
n IeR

2
effγ (2n, bnξ

1/n
ap ) , (19)

and p denotes the set of parameters on which the integral depends. In
the FP studies, the aperture velocity dispersion is usually referred to
as circular aperture of radius Rap = Reff/8, i.e. ξ ap = 1/8. Following
common practice, we will set σ 0 = σ ap(ξ ap = 1/8) and note that,
because of equations (17)–(19), it is

σ 2
0 = s(n, Ie, Reff, ϒ�, β),

having noted that both ρeff and Meff may be expressed as function
of the photometric parameters (n, Reff , Ie) and the stellar M/L, ϒ�.
Investigating the shape of the function s( p) will be the aim of the
next section.

4 TH E T H E O R E T I C A L M O N D F P

It is just a matter of algebra to show that

σ 2
0 = GM�

Reff

bne−bn�(2n)

n�[n(3 − pn)]

s̃( ps)

γ [2n, bn(1/8)1/n]
, (20)

with

s̃( ps) =
∫ 1/8

0
Ilos(ξ, ps)ξ dξ, (21)

and we have introduced the subset of parameters:

ps = (n, aeff, β),

with aeff being a function of (n, Ie, Reff , ϒ�) through (Meff , Reff ).
It is computationally convenient to use aeff/a0 as parameter when
estimating s̃( ps) since this is the only way the full set of parameters
enters the definition of the γ MOND(η) function in the integral.

We can now make use of the definition of average effective in-
tensity to write

M� = ϒ�LT = 2πϒ�〈Ie〉R2
eff,

where 〈Ie〉 and Ie are related by (Graham & Driver 2005)

〈Ie〉 = nb−2n
n ebn�(2n)Ie. (22)

Note that, using 〈Ie〉, the parameter aeff now reads

aeff = 2πG〈
e〉γ [n(3 − pn), bn]

�[n(3 − pn)]
, (23)

3For some β(r) profiles, the kernel is analytic and can be retrieved from
appendix B of Mamon & Lokas (2005b).

where we have defined the average mass surface density as

〈
e〉 = ϒ�〈Ie〉. (24)

Because of equation (24), equation (20) can be seen as a relation
among (n, Reff , 〈
e〉) which can be easily solved by introducing
logarithmic units as

log Reff = 2 log σ0 − log 〈
e〉 − log s̃(n, 〈
e〉)
− log f (n) − log (2πG), (25)

with

f (n) = bne−bn�(2n)

n�[n(3 − pn)]
. (26)

Let us now assume that, over the parameter space actually cov-
ered by galaxies, the two terms s̃(n, 〈
e〉) and f (n) may be well
described as power law functions of their arguments. In such a case,
equation (25) may be approximated as

log Reff = a log σ0 + b log 〈
e〉 + c log n + d, (27)

with (a, b, c, d) parameters to be determined as described later. A
guess for their values can be obtained by means of the following
expected scaling relations:

s̃(n, 〈
e〉) ∝ nas 〈
e〉bs , f (n) ∝ nan ,

so that one should find

a = 2.0, b = −(bs + 1), c = −an.

Actually, deviations of s̃(n, 〈
e〉) and f (n) from exact power laws
may be, in principle, compensated by introducing a dependence
on σ 0 thus making a deviate from 2. We have therefore left this
parameter free in order to accommodate possible deviations from the
canonical value induced by the change from the exact equation (25)
to the approximated (27).

As a final step, we now have to remember that both the stellar
M/L, ϒ� (Prugniel & Simien 1996; Cappellari et al. 2006; Tortora
et al. 2009), and the Sérsic index n (Caon et al. 1993; Graham &
Guzman 2003; Mamon & Lokas 2005a) may actually be correlated
with the galaxy total luminosity L (hereafter, we drop the label T
for convenience). In a first good approximation, we can write

log ϒ� = α� log L + β� , (28)

log n = αν log L + βν. (29)

Using then equations (22) and (24) and putting together equations
(27), (28) and (29), we finally get

log Reff = αMFP log σ0 + βMFP log 〈Ie〉 + γMFP, (30)

with⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αMFP = a

1 − 2(bα� + cαν)

βMFP = (1 + α�)b + cαν

1 − 2(bα� + cαν)

γMFP = (bα� + cαν) log (2π) + bβ� + cβν + d

1 − 2(bα� + cαν)

(31)

which defines what we call the MFP.
According to the above derivation, the MFP4 should be a per-

fect plane with no scatter. Actually, there are three main sources

4It is worth noting that the problem of the FP in MOND has been first
discussed in Sanders (2000). However, in that paper, Sanders did work out a
galaxy model looking for a solution of the Jeans equations for a polytropic
system, while, here, we start from what we observe. See, also, Sanders &
Land (2008) and Sanders (2010) for a similar approach.
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of scatter. First, equation (27) is an approximation for the exact
equation (25). Thus, we expect that this works more or less well
depending on each galaxy. In other words, the difference �Reff be-
tween the solutions of equations (25) and (27) will be a function of
(n, Reff , 〈
e〉) and hence will change from one galaxy to another,
introducing a scatter around the MFP. As a second issue, one should
take into account that the n-L and ϒ�-L correlations are affected by
an intrinsic scatter that propagates to the MFP. Finally, although not
explicitly denoted above, it is nevertheless clear from equation (18)
that s̃(n, 〈
e〉) also depends on the anisotropy parameter β. Since
this quantity changes from one galaxy to another, this will induce
deviations from a fiducial MFP defined by setting β to a reference
value. The combination of all these effects make the galaxies scatter
around the MFP, thus giving it a non-zero thickness.

5 TESTIN G THE MOND SCENARIO

The previous sections have demonstrated how to derive a FP in the
MOND framework. However, the above derivation heavily relies
on two main assumptions. First, we have assumed that the exact
relation (25) may be replaced by the approximated expression (27).
Secondly, we are implicitly assuming that one is able to reproduce
the dynamics of ETGs in the MOND framework without introducing
any further DM component. In order to test this latter hypothesis
against observational data, one can try to fit the observed aperture
velocity dispersion in a large sample of local ETGs with well-
measured photometric properties. In such a case, we can assume
the three photometric quantities (n, Reff , 〈Ie〉) to be known so that
imposing equal observed and theoretically predicted σ 2

ap gives a
constraint in the parameter space (ϒ�, β). We can moreover resort
to stellar population synthesis codes to infer the stellar M/L, ϒ�,
from the galaxy colours thus finally ending up with an estimate of
the anisotropy parameter β. Note that such a sample is also useful
to test the first assumption and suggests what is the region of the
parameter space (n, Reff , 〈
e〉) we have to explore to see whether
our approximation holds for realistic ETGs systems.

5.1 The data

As a first step to carry on the approach detailed above, one has to
assemble a sample of ETGs as large as possible. To this aim, we have
started from the NYU Value-Added Galaxy Catalog (VAGC) which
is a cross-matched collection of galaxy catalogues maintained for
the study of galaxy formation and evolution (Blanton et al. 2005)
and mainly based on the SDSS Data Release (DR) 6 (Adelman-
McCarthy et al. 2008). Among the vast amount of available data,
we use the low-redshift (lowZ) catalogue of galaxies with estimated
comoving distances in the range 10 < D < 150 h−1 Mpc. We refer
the reader to Blanton et al. (2005) and the VACG website5 for details
on the compilation of the catalogue. Note that the lowZ catalogue is
actually updated only to the SDSS DR4 (Adelman-McCarthy et al.
2006) rather than the SDSS DR6, thus covering an effective survey
area of 6670 deg2.

From the lowZ catalogue, we remove all the galaxies with un-
measured σ 0. This first cut leaves us with 43 312 out of 49 968
objects with magnitudes in the five SDSS filters u′g′r′i′z′. Based on
the available data, we assemble an ETG sample by imposing the
following selection criteria.

5http://cosmo.nyu.edu/blanton/vagc/

(i) 2.5 < n < 5.5, with n the Sérsic index in the i′ band and the
upper end dictated by the code limit n = 6.0.

(ii) R90/R50 > 2.6 (Shimasaku et al. 2001) with Rf the Petrosian
radii containing f per cent of the total luminosity.

(iii) σ 0 > 70 km s−1 since the measurement of the velocity dis-
persion for such small mass system could be unreliable as explained
in Bernardi et al. (2005).

(iv) (g′ − r′)− ≤ g′ − r′ ≤ (g′ − r′)+, with (g′ − r′)± = pMr +
q ± δ, Mr the absolute magnitude in the r′ filter and the parameters
(p, q, δ) have been tailored from fig. 2 in Bernardi et al. (2005)
where a different ETG sample has been extracted from the SDSS
DR2 (Abazajian et al. 2004).

The final sample thus obtained contains 9046 galaxies out of an
initial catalogue containing 49 968 objects. It is worth noting that
most of the rejected objects have been excluded by the first three
cuts (retaining only 9105 entries), while the fourth cut only removes
59 further galaxies. This is reassuring since the last cut is somewhat
qualitative and based on a different set of selection criteria (Bernardi
et al. 2005). We then use the data reported in the lowZ catalogue for
the galaxies in the above sample to collect the quantities of interest.
In particular, the average effective intensity 〈Ie〉 is given by

〈Ie〉 = 10−6×dex[(Mt − M�)/2.5]

2πR2
e

, (32)

with dex(x) ≡ 10x, Mt the galaxy absolute magnitude corrected
for extinction, evolution and cosmological dimming, M� the Sun
absolute magnitude in the given filter,6 while Reff is here expressed
in kpc rather than arcsec. To this aim, we simply use

Reff (kpc) = Reff (arcsec)×DA(z)/206 265,

with DA(z) the angular diameter distance in Mpc.
The velocity dispersion reported in the lowZ catalogue is mea-

sured within a fixed aperture RSDSS = 1.5 arcsec, while σ 0 entering
the MFP refers to an aperture of radius Rap = Reff/8. To correct
for this offset, we follow Jørgensen, Franx & Kjærgaard (1995) and
Jørgensen et al. (1996) and set

σ obs
0 = σ lowZ

0 ×
(

RSDSS

Reff/8

)0.04

, (33)

with σ lowZ
0 the value in the catalogue and Reff in arcsec here.

5.2 Estimate of the stellar M/L

The lowZ catalogue galaxies have been observed in five photometric
bands so that we can use the colour information in order to infer their
stellar M/L (Tortora et al. 2009). To this aim, we start assembling
a library of synthetic stellar population models obtained through
the GALAXEV code (Bruzual & Charlot 2003) varying the age of
the population, its metallicity and time lag of the exponential star
formation rate and assuming a Chabrier (2001) IMF. Then, we use
the tabulated (u′, g′, r′, i′, z′) apparent magnitudes (corrected for
extinction) of each ETG to fit the above library of spectra (suitably
redshifted to ETG redshift) to the colours, thus getting the estimates
of ϒ� for each galaxy in the catalogue. Note that these values may
be easily scaled to a Salpeter (1955) or Kroupa (2001) IMF by
multiplying by 1.8 or 1.125, respectively, so that we can explore

6We use M� = (5.82, 5.44, 4.52, 4.11, 3.89) for the u′g′r′i′z′ fil-
ters, respectively, as evaluated from a detailed Sun model reported in
www.ucolick.org/∼cnaw/sun.html
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other IMF choices.7 We finally get an estimate of the total stellar
mass M� simply as ϒ�LT with the total luminosity LT taken from
the catalogue itself after correcting for the loss of flux due to the
SDSS use of Petrosian magnitudes. Because of the errors on the
colours, our ϒ� estimates are affected by uncertainties difficult to
evaluate. As a possible way out, one can use a Monte Carlo like
procedure generating a set of colours from a Gaussian distribution
centred on each mean colour and standard deviation equal to the
colour uncertainty. Fitting the colours thus obtained to the synthetic
spectra for each realization, one could generate a distribution of
fitted parameters and take the median and median scatter of such
a distribution as an estimate of ϒ� and its uncertainty (see Tortora
et al. 2009 for further details). We have tested that such a procedure
gives errors on ϒ� of the order of 10 per cent, but applying this
method to the full sample is too time demanding so that we prefer
to neglect this source of uncertainty. Should we have used our data
to constrain the parameters of each single galaxy, this choice could
have led to an underestimation of the errors. However, here we are
mainly interested in the statistical properties of the ensemble rather
than fitting each individual galaxy. The uncertainty on each galaxy
model parameters simply shifts the position of the galaxy in the
parameters space but does not alter the full distribution. Therefore,
we are confident that neglecting the error on ϒ� has no impact on
our results.

5.3 Motivating the MFP

Having estimated the stellar M/L, ϒ�, we are now able to derive
for each galaxy in the catalogue the parameters (n, Reff , 〈
e〉) we
need to compute the central velocity dispersion σ 0. We first evaluate
the function s̃( ps) over a finely spaced grid in (log n, log (aeff/a0),
β). Considering typical values for the galaxies in the sample, we
set the grid limits as 2.0 ≤ n ≤ 6.0 and −2.5 ≤ log (aeff/a0) ≤ 2.5.
Since we have no a priori information on what values the anisotropy
parameter can take in a MOND scenario, we conservatively allow
β to run in the range (0, 1), thus considering the full range for radial
anisotropy.

Having thus computed s̃( ps), we can then resort to equation (20)
to estimate σ 0 over a finely spaced grid in (n, log Reff , log 〈
e〉)
for different values of β. For each model in the grid, we then solve
equation (25) and finally fit these values using equation (27) to
estimate the coefficients (a, b, c, d) as function of the anisotropy
parameter. In order to quantify the quality of the approximation, we
also estimate �rms, with � = log Reff (ex) − log Reff (fit) and Reff (ex),
Reff (fit) the exact and approximated solutions.

It turns out that equation (27) indeed works quite well with 0.06 ≤
�rms ≤ 0.09 and � values that are actually quite smaller than the rms
one over most of the parameter space explored.8 Moreover, there is
no trend with any of the parameters so that we can conclude that
replacing the exact solution equation (25) with the approximated one
equation (27) does not introduce any bias, thus giving a theoretical
support to our derivation of the MFP.

Such a test also makes it possible to infer the values of the (a, b,
c, d) coefficients and how they depend on the anisotropy parameter.

7While this is correct for a Salpeter IMF, since it differs from a Chabrier IMF
only for the low mass slope and predict very similar colours, for a Kroupa
IMF this is not strictly true, but we could assume the scalefactor above as a
good approximation.
8As an alternative way of quantifying the goodness of the approximation,
one can note that the quantity �̃ = 1 − log Reff (fit)/ log Reff (ex) is of the
order of 0.01 per cent over most of the parameter space explored.

We first note that the use of the approximated formula has made
the coefficients (a, b) to deviate from the values (2, −1) one should
have inferred from equation (25) in the Newtonian case. While this
is only a marginal difference for a, the effect is quite important for
b. Moreover, it is clear that, although trends of all the coefficients
with the anisotropy parameter are clearly detected, the variation
may be essentially neglected for a. On the other hand, both b and
c significantly depend on β so that we expect a scatter in the MFP
coefficients (αMFP, βMFP) due to the variation of the anisotropy
parameter from one galaxy to another. We finally stress that the
dependence of d on β does not have any impact on the slope of
the MFP, but introduces a scatter in the zero-point γ MFP, which
translates into a scatter of galaxies around the best-fitting plane.

One could wonder whether these results depend on the adopted
MOND interpolating function. To this aim, we have repeated the
above analysis considering the standard form for μ(x), hence setting

2γ 2
MOND(η) = 1 +

√
1 +

(
2a0

aeff

η2γ [n(3 − pn), bn]

γ [n(3 − pn), bnη1/n]

)2

(34)

in equation (18). We find that the values of (a, b, c) are essentially
the same, thus suggesting a very weak dependence of the theoretical
MFP coefficients on the particular μ(x) function considered. This
can be qualitatively explained noting that σ 0 is evaluated inside a
very small aperture. Although formally the integral entering Ilos(ξ )
is defined along the full line of sight, integrating it over the very
inner region of the galaxy, where γ MOND(η) ∼ 1, makes the details
of this function unimportant and explains why the choice of μ(x)
has such a small impact on MFP coefficients.

5.4 Matching the data

While the above discussion shows that the derivation of the MFP
is theoretically well founded, we still have to verify that MOND is
indeed able to match the dynamics of ETGs without resorting to
DM. For each galaxy in the catalogue, we have both the photomet-
ric quantities (n, Reff , 〈Ie〉) and the stellar M/L, ϒ�, so that, using
equation (20), we can compute the aperture velocity dispersion as
a function of the anisotropy parameter only. Matching the observed
σ ap to the theoretically predicted one makes it possible to constrain
the constant anisotropy parameter β. Note that, to this end, we di-
rectly use the observed σ ap, while σ 0 is used when considering
the MFP. Two considerations motivated this choice. First, we have
estimated σ 0 converting σ ap through equation (33). Actually, this
relation has been derived assuming the validity of Newtonian grav-
ity,9 while our analysis is in the MOND framework. Although it
is likely that equation (33) still applies in the MOND case being
σ 0 evaluated within the a/a0 � 1 region, it is a more conservative
choice not to use any correction and then checking a posteriori the
validity of equation (33). As a second motivation, we note that σ 0

is evaluated within Reff/8, where baryons are likely the dominant
contribution and the Newtonian regime for acceleration holds. On
the contrary, Rap/Reff (with Rap = 1.5 arcsec) spans the 95 per cent
confidence range (0.16, 1.58) with Rap/Reff = 0.54 as median value.
Kinematical analysis in the Newtonian framework suggests that the
DM mass fraction within ∼1Reff is of the order of 30 per cent (for a

9Indeed, equation (33) can be derived by assuming a galaxy model and the
anisotropy profile and then computing the ratio σ obs/σ

lowZ
0 as function of

the mass and anisotropy parameters. This is indeed how Jørgensen et al.
(1995, 1996) derived their relation under the assumption that Newtonian
gravity is correct.
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Salpeter IMF). We therefore expect that σ ap is more suited than σ 0

to test the validity of MOND since it refers to a region where DM
may play a non-negligible role.

A further remark is in order here before the fitting analysis. First,
both the photometric quantities and the stellar M/L are known with
an error and the same holds for the observed σ ap. In order to take
this into account, one could randomly generate a large ensemble
of values for (n, Reff , 〈Ie〉, ϒ�, σ ap) according to a multinormal
distribution with central vector and covariance matrix set by the
observed values. Solving for β each time, we can finally estimate β

and its error from the distribution thus obtained. Because of the large
ETG sample we are dealing with, such a work is computationally
quite expensive. However, here we are mainly interested in checking
whether MOND is able to fit the data rather than deriving the exact
value of the anisotropy parameter for every single galaxy. Moreover,
we need the value of β or log ηa to estimate (αMFP, βMFP) and
the scatter in the MFP so that we are interested in its probability
distribution function (DF). For these reasons, we will neglect the
errors on the observed quantities and simply take their central values
for each galaxy in the sample.

It is worth stressing that the shape of probability distribution for β

depends on the adopted filter, because both ϒ� and the photometric
quantities (n, Reff , 〈Ie〉) are wavelength dependent. Moreover, the
sample of galaxies we will fit is not the same for all the filters. In
fact, for a given galaxy, the Sérsic index n changes from one filter
to another so that it is possible that a galaxy with n(i′) > 2.5 has
n(f ) < 2.0 in an another filter f , thus looking more similar to a discy
system rather than an ETG one. Moreover, because of code failures
or observational problems, some galaxies in the u′ and z′ filters may
have n > 5.5 or an unmeasured absolute magnitude so that they
have to be rejected from the sample. We stress, however, that more
than 90 per cent of the galaxies in the starting catalogue are present
in all the subsamples used to determine the β distribution in the
different filters. Here, we discuss only the results for the fit in the
i′ filter, thus using all the galaxies in the sample. The analysis in the
remaining bands is similar.

5.4.1 Results for constant anisotropy models

Since both the photometric parameters and the stellar M/L have
been fixed, we can straightforwardly solve the equation σ ap,obs =
σ ap(n, Reff , 〈
e〉, β) with respect to β for each individual galaxy
and then look at the distribution of the results. Such a procedure
successfully works for all the galaxies in the sample with β values
definitely pointing towards a strong radial anisotropy. This result
is not surprising because, as is well known in Newtonian gravity,
radial anisotropy helps to lower the need for DM in the inner region
of elliptical galaxies (Gerhard et al. 2001; De Lorenzi et al. 2008).
For instance, De Lorenzi et al. (2008), using the NMAGIC code to fit
the observed velocity dispersion profile of NGC 4697, have found
evidence of a mildly varying anisotropy profile with β � 0.3 in
the inner regions. In the MOND framework, only part of the DM
contribution is provided by the effect of the γ MOND function entering
σ ap, while radial anisotropy supplies the remaining term needed to
match the observed velocity dispersion.

While radially anisotropic models are able to match the data,
their physical consistency is not a priori guaranteed. In order to
be self-consistent, our density profile should be derived from a DF
of the form L−2β fE(E), with L the specific angular momentum and
fE(E) a function of the binding energy E. The function fE(E) has to
be positive definite in order the model to be physically meaningful.

Necessary conditions for the consistency of anisotropic models in
the Newtonian framework have been derived in the literature (Ciotti
& Pellegrini 1992; An & Evans 2006; Ciotti, Morganti & de Zeeuw
2009; Ciotti & Morganti 2010). Some of them may be extended
also to MOND models taking into account that, for this purpose,
MOND models behave like Newtonian ones in an external effective
potential �eff (Sollima & Nipoti 2010). This latter can be derived by
demanding that the MOND acceleration g(r) entering equation (10)
equals d�eff/dr, i.e. one must integrate (numerically) the equation
d�eff/dr = γ MOND(r)GM( < r)/r2 with the condition that �eff (r)
vanishes at infinity.

In the Newtonian framework, An & Evans (2006) have shown
that, if the potential and the density are self-consistently related,
a necessary condition for the positivity of the DF of constant
anisotropy models is γ ≥ 2β, where γ = −d ln ρ/d ln r|r=0 is
the logarithmic slope of the density profile at the centre. Ciotti &
Morganti (2010) have however shown that this result can be ex-
tended to models with an external potential which is a case MOND
can be compared to. We can therefore use the An & Evans result
for the consistency of MOND constant anisotropy models. For the
PS case, it is γ = p(n) so that β < p(n)/2 must be taken as an upper
limit on β to have physically consistent models.

In order to take the above limit into account, we adjust both β

and an effective M/L, κϒ�, where κ accounts for deviations from
the stellar M/L computed assuming a universal Chabrier IMF. To
this end, for each galaxy in the sample, we determine κ varying β

over the range (−0.5, βmax) with βmax = p(n)/2 and finally take as
our best estimate the one with the smallest value of |1 − κ|. Note
that, in this way, we get models that are both physically consistent
and with only minor deviations from the initial recipe for the stellar
M/L. Imposing 0.75 ≤ κ ≤ 2.25 for the selected solution (see
later for the motivation of such a selection criterium), we find that
92 per cent of the galaxies may be successfully fitted with this
procedure. Specifically, from the β and κ distributions, we find

〈β〉 = 0.07, βmed = 0.18,

68 per cent CL : (−0.40, 0.28), 95 per cent CL : (−0.45, 0.37),

〈κ〉 = 0.98, κmed = 1.00,

68 per cent CL : (0.96, 1.02), 95 per cent CL : (0.80, 1.03).

It is worth wondering whether the spread in κ can be fully ascribed
to variations in the stellar population properties. Indeed, the estimate
of ϒ� from the galaxy colours depends on the details of the stellar
population synthesis code we have used. There are many ingredients
entering this code so that it is not fully unrealistic to expect that
they can change from one galaxy to another, while here we have
assumed them to be universal. For instance, a simple recipe to
increase ϒ� is to change the IMF from the Chabrier one, that we
have used here, to the Salpeter one. It is worth noting that there
is indeed still an open debate on what the IMF actually is. On
the one hand, direct star counts and observations (mainly, in the
Milky Way) point towards a Chabrier (or Kroupa) IMF, but our
Galaxy is a spiral. On the other hand, gravitational lensing (see e.g.
Treu et al. 2010) and studies of the central DM fraction in local
ETGs (Napolitano et al. 2010) suggest that also a Salpeter IMF can
reconcile data and observations for ETGs provided a Navarro, Frenk
& White (1996, NFW) model is assumed for the DM halo. Motivated
by these contrasting results, one cannot exclude an IMF varying
with luminosity (Renzini & Ciotti 1993; Tortora et al. 2009) or a
correlation between the time-scale of exponential star formation rate
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and the luminosity. Moreover, the metallicity and the dust content
may also change on a case-by-case basis. Considering a conservative
∼25 per cent uncertainty on ϒ� for a given IMF and that ϒ� has
to be scaled by a factor of 1.8 when replacing the Chabrier IMF
with the Salpeter one, we finally get 0.75 ≤ κ ≤ 2.25 as a range for
this parameter. Should κ be outside this (conservative) range, one
should conclude that DM is needed to fill the gap between stellar
and dynamical mass. Needless to say, the results we get for κ are
fully consistent with the statistical uncertainty on the estimated ϒ�.
While this outcome is expected by construction, the fact that we are
able to find a physically acceptable value of β makes us argue in
favour of MOND being able to fit the velocity dispersion data with
no DM provided a reasonable amount of anisotropy is allowed.

It is worth noting that the confidence ranges for β are strongly
asymmetric. Actually, 75 per cent of the fitted models have β ≥ 0
with the remaining 25 per cent giving rise to a long flat tail towards
negative β. If we simply cut our sample only retaining isotropic and
radially anisotropic solutions, we find that the velocity dispersion
may be fitted for 70 per cent of the galaxies. Actually, this fraction
is still larger if we repeat the above analysis, but now imposing
β ≥ 0. The fit turns out to be successful for 87 per cent of the sample
giving the following values characterizing the β and κ distributions:

〈β〉 = 0.17, βmed = 0.20,

68 per cent CL : (0.10, 0.30), 95 per cent CL : (0.0, 0.37),

〈κ〉 = 0.98, κmed = 1.00,

68 per cent CL : (0.95, 1.01), 95 per cent CL : (0.78, 1.03).

The spread in β is now reduced with no statistical meaningful shift
of the median value, while the shift in the mean is a consequence of
the more symmetric distribution. The large fraction of successfully
fitted galaxies then leads us to conclude that a mild radial anisotropy
allows us to get physically consistent models that are able to fit the
data with no need for DM in a MOND framework.

It is interesting to note that β does not correlate either with the
photometric parameters (n, Reff , 〈Ie〉) or with the total luminosity L.
Such a result has an important outcome. Since the MFP coefficients
(αMFP, βMFP, γ MFP) given by equation (31) depend on β through
(a, b, c, d), a strong correlation of β with L could generate a cor-
relation between (αMFP, βMFP, γ MFP) and LT, and one should find
different MFPs for different luminosity bins. However, this effect is
likely to be weak because (a, b, c, d) are actually weak function of
β; moreover, we need to have an MFP independent of luminosity
because the observed FP is approximately unique for all the ETGs.

As discussed in Appendix B, a correlation of κ with L could
change the MFP coefficients. On the one hand, such a correlation is
expected noting that the dynamical M/L, ϒdyn = κϒ�, is found to
correlate with luminosity when fitting data in the Newtonian + DM
framework. Surprisingly, we do not find any scaling relations be-
tween κ and L. Indeed, this is a consequence of how we select the
best-fitting model for each galaxy. Let us suppose that a relation
like κ = κ s(L/Ls)δ exists for models with β fixed. Depending on
(κ s, Ls, δ) and the galaxy luminosity, one could then obtain a value
of κ > 2.25. But we have chosen as best-fitting model the one hav-
ing as small a value as possible of |1 − κ| so that, should κ become
too large, our algorithm would change β (and hence κ) to minimize
|1 − κ|. As a consequence, unless the correlation is quite strong, our
selection criterium washes out a possible scaling of κ with L. We
stress, however, that this is not a limitation of our analysis but rather
a consequence of consistently working in a MOND framework.

5.4.2 MOND versus Newtonian gravity

The above results convincingly show that MOND is able to fit the
aperture velocity dispersion in ETGs without the need for additional
DM. Actually, the data we are using mainly probe the region R <

Reff which is not in the deep MOND regime (a � a0). Indeed,
for the galaxies in the sample, the median value of log (aeff/a0) is
0.56, while the 68 per cent confidence range is given by 0.21 ≤
log (aeff/a0) ≤ 1.87, i.e. 1.6 ≤ aeff/a0 ≤ 7.4. We are therefore in an
intermediate regime where the total acceleration a is roughly of the
same order of magnitude as a0. We therefore expect that it is also
possible to fit the same data without DM in the Newtonian regime.
To this end, we have used the same equations as above setting
γ MOND(r) = 1 to recover the Newtonian formulae. Moreover, we
have still to take into account the upper limit on β so that we use the
same procedure as above, adjusting the anisotropy parameter and
the ratio κ between the dynamical and the stellar M/L.

Imposing the same cut on κ , we find that ∼80 per cent of the
galaxies can be successfully fitted, a fraction smaller than in the
MOND case, but still satisfactorily large. It is, however, interesting
to note that, for most of the galaxies, the value of β is quite close to
the upper limit, while typical κ values are larger than in the MOND
case. Indeed, we get

〈β〉 = 0.33, βmed = 0.40,

68 per cent CL : (0.02, 0.42), 95 per cent CL : (0.0, 0.44),

〈κ〉 = 1.35, κmed = 1.29,

68 per cent CL : (1.00, 1.79), 95 per cent CL : (0.81, 2.13).

As it is apparent from the κ confidence ranges, one must increase the
M/L up to very large values that, while still marginally consistent
with deviations from the stellar one because of a different IMF, may
also be easily interpreted in terms of a non-negligible DM content.
Needless to say, this is consistent with expectations since we know
that, unless an unreasonably high radial anisotropy is introduced,
Newtonian gravity cannot explain ETG dynamics without the boost
provided by a DM halo.

It is worth comparing the values of (β, κ) obtained in the MOND
and Newtonian cases for each galaxy. We find

〈(1 + βM)/(1 + βN)〉 = 0.85, βmed = 0.86,

68 per cent CL : (0.76, 0.95), 95 per cent CL : (0.71, 1.00),

〈κM/κN〉 = 0.64, κmed = 0.67,

68 per cent CL : (0.41, 0.85), 95 per cent CL : (0.24, 0.93).

These values clearly show that Newtonian models have a larger
radial anisotropy and κ value than MOND models in agreement with
the expectations. Indeed, for given model parameters, the boost to
the Newtonian velocity dispersion provided by the γ MOND(r) factor
reduces the need for both radial anisotropy and deviations from
the fiducial stellar M/L. Not surprisingly, we find that κM/κN is
correlated with log (aeff/a0) so that the smaller is this quantity, the
smaller is κM/κN. This is exactly what one can anticipate noting
that the smaller is log (aeff/a0), the larger is the region of the galaxy
where the MOND regime applies so that the smaller is the value
of κM needed to fit the data for the same value of the anisotropy
parameter.
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Table 1. Calibration parameters and intrinsic scatter for the luminosity scaling correlations in equations (28) and (29) between log L and log ϒ� and log n.
Columns are as follows: (1) filter ID; (2) maximum likelihood parameters (α�, β�, σ int) for the log L–log ϒ� relation; (3) and (4) median value and 68 and 95
per cent confidence ranges for (α�, σ int); (5) maximum likelihood parameters (αν , βν , σ int) for the log L–log n relation; (6) and (7) median value and 68 and
95 per cent confidence ranges for (αν , σ int).

ID (α�, β�, σ int)ml (α�)+1σ +2σ
−1σ −2σ (σ int)

+1σ +2σ
−1σ −2σ (αν , βν , σ int)ml (αν )+1σ +2σ

−1σ −2σ (σ int)
+1σ +2σ
−1σ −2σ

u′ (0.0, 0.680, 0.0) 0.0+0.202 +0.416
−0.201 −0.416 0.060+0.077 +0.211

−0.043 −0.057 (0.039, 0.146, 0.0) 0.039+0.130 +0.270
−0.131 −0.192 0.041+0.054 +0.145

−0.029 −0.039

g′ (0.037, −0.115, 0.0) 0.037+0.176 +0.276
−0.135 −0.235 0.043+0.054 +0.144

−0.030 −0.041 (0.050, 0.025, 0.0) 0.050+0.139 +0.237
−0.093 −0.136 0.031+0.040 +0.106

−0.022 −0.031

r′ (0.021, 0.115, 0.0) 0.022+0.129 +0.264
−0.128 −0.262 0.041+0.053 +0.140

−0.029 −0.039 (0.047, 0.075, 0.0) 0.047+0.088 +0.180
−0.088 −0.179 0.030+0.047 +0.099

−0.021 −0.047

i′ (0.004, 0.290, 0.0) 0.005+0.112 +0.228
−0.112 −0.228 0.039+0.048 +0.125

−0.028 −0.037 (0.052, 0.047, 0.0) 0.052+0.078 +0.159
−0.077 −0.157 0.029+0.055 +0.092

−0.021 −0.055

z′ ( − 0.012, 0.406, 0.0) −0.010+0.125 +0.265
−0.145 −0.285 0.043+0.054 +0.143

−0.031 −0.041 (0.044, 0.114, 0.0) 0.045+0.094 +0.192
−0.094 −0.191 0.031+0.039 +0.103

−0.022 −0.031

6 THE M F P C OEFFICIENTS

Equation (31) makes it possible to estimate the MFP parameters10

(αMFP, βMFP) provided the values of (α�, αν) are given and the
anisotropy profile parameter has been set so that (a, b, c) may be
computed. The analysis in the previous section has demonstrated
that MOND is able to fit the measured aperture velocity dispersion
of the assembled ETG sample and has enabled us to determine the
distribution of β for the galaxies in our sample. In order to compute
the MFP coefficients, we first need to determine (α�, αν) as we
discuss in the following section.

6.1 Luminosity scaling relations

Equations (28) and (29) are linear relations (although in a loga-
rithmic space) so that to determine their parameters we can resort
to a general Bayesian procedure described in detail in D’Agostini
(2005). Let us suppose that (R, Q) are two quantities related by
a power-law relation as R = BQA with a certain intrinsic scat-
ter σ int. In logarithmic units, this reads log R = αl log Q + β l

with αl = A and β l = log B. In order to determine the parameters
(α, β, σ int), we then maximize the following likelihood function
L = exp [−L(αl, βl, σint)] with

L(αl, βl, σint) = 1

2

∑
ln

(
σ 2

int + σ 2
yi

+ α2
l σ

2
xi

)
+1

2

∑ (yi − αlxi − βl)2

σ 2
int + σ 2

yi
+ α2

l σ
2
xi

,

(35)

where (xi, yi) = (log Qi, log Ri) and the sum is over the N objects
in the sample. Note that, actually, this maximization is performed
in the two-parameter space (αl, σ int) since β l may be estimated
analytically as

βl =
[∑ yi − αlxi

σ 2
int + σ 2

yi
+ α2

l σ
2
xi

] [∑ 1

σ 2
int + σ 2

yi
+ α2

l σ
2
xi

]−1

so that we will no longer consider it as a fit parameter. The median
values and confidence intervals for a given quantity can then be
determined by studying the shape of the corresponding marginalized
likelihood, i.e. the integral of L over the other parameter.

Let us then determine α� and αν using the method outlined above.
Note that these quantities depend on the wavelength adopted but

10Hereafter, we will parametrize the MFP through the two slope-related
quantities (αMFP, βMFP) without considering anymore the zero-point γ MFP.

not on the anisotropy profile or MOND interpolating function. As a
preliminary task, we bin the galaxies in roughly equally populated
luminosity bins and remove all the galaxies with n(f ) �∈ (2.0, 5.5)
and problems with the absolute magnitude estimate. For a given lu-
minosity bin and filter, we then analyse the distributions of ϒ� and n
and assign to that bin a value for ϒ� and n using the median as cen-
tral value and the 68 per cent confidence range as uncertainty. Note
that, since such distributions may also be asymmetric, the errors on
ϒ� and n may turn out to be asymmetric. However, equation (35)
assumes that the uncertainties are symmetric. We therefore follow
D’Agostini (2004) and correct the observed values as

ycorr = yobs + (�+ − �−), σy = (�+ + �−)/2,

with yobs the median value, (ymin, ymax) its 68 per cent confidence
range and �+ = ymax − yobs, �− = yobs − ymin. It is worth stressing
that such a correction is actually quite small so that we are confi-
dent that it is not biasing anyway the estimate of (α�, ακ ). The fit
results are summarized in Table 1, where we report the values of
the calibration parameters and the intrinsic scatter for the different
filters.

As a general result, we find that both α� and αν are quite small
and, within the large error bars, are compatible with zero. Even if we
consider only the best-fitting values, it is nevertheless clear that the
correlation is quite shallow. However, the wide confidence ranges
on (α�, αν) prevent us from drawing any definitive conclusion other
than the qualitative observation that ϒ� and n only weakly correlate
with the luminosity. While the result for the ϒ�–L correlation is in
agreement with previous results in the literature, the very shallow
slope of the n–L relation is somewhat at odds with previous findings.
For instance, using galaxies with well-determined photometric pa-
rameters in the Virgo sample, Nipoti, Treu & Bolton (2008) found
n ∝ L0.27±0.02

B which is definitively larger than our best-fitting αν

for the g′ filter (the closest to the B one) although well within the
wide 68 per cent confidence range. Such a discrepancy is actually
illusory and is due to the combination of the small luminosity range
probed and the large error bars. Indeed, our ETG sample actually
spans approximately just 1 order of magnitude in luminosity (the
first bin being at 9.1 and the last at 10.4). Adopting the Nipoti et al.
slope, this leads to a change in n of the order of 0.35 which is lower
than the width of the 68 per cent confidence range for n in a given
bin. Indeed, if we fix the slope of the n–L relation in the g′ filter
to the one given by Nipoti et al. and only adjust the zero-point and
the intrinsic scatter, we get a very satisfactory result. We therefore
argue that no discrepancy is actually present. As an alternative, we
could have fitted the n–L relation without dividing galaxies into
luminosity bins. However, binning allows to wash out the biases in
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Figure 1. Histogram of the αMFP values obtained in the i′ filter.
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Figure 2. Same as Fig. 1 but for the βMFP parameter.

the n determination which are inherited by the SDSS photometric
fitting code so that we have preferred to use this procedure even at
the price of having larger error bars.

6.2 Predicting the MFP coefficients

The (αMFP, βMFP) values may be estimated using equation (31)
provided one has set the filter (and hence the corresponding value
of α� and αν) and evaluated the (a, b, c) coefficients. However, we
do not have a single value for all the quantities of interest, but rather
a distribution that, as a first-order approximation, we can model as a
Gaussian one with central value and standard deviation obtained by
correcting the asymmetries in the inferred distributions. In order to
estimate (αMFP, βMFP), for a given combination of filter, anisotropy
profile and MOND interpolating function, we generate (β, α�, αν)
from a multinormal distribution and use equation (31) to compute
the MFP parameters. We repeat this procedure 10 000 times and
use the distribution thus obtained to estimate the mean and median
values and the 68 and 95 per cent confidence ranges. To this end, we
use the β distribution estimated as described in Section 5.4 since
that procedure allows us both to get physically consistent models
and minimize the deviations from the fiducial ϒ� value.

The resulting αMFP and βMFP distributions for the i′ filter are
shown in Figs 1 and 2 and can be quantitatively summarized by the
mean and median values with confidence ranges given below:

〈αMFP〉 = 1.62, (αMFP)med = 1.58,

68 per cent CL : (1.31, 1.94), 95 per cent CL : (1.13, 2.42),

〈βMFP〉 = −0.70, (βMFP)med = −0.69,

68 per cent CL: (−0.74, −0.66), 95 per cent CL: (−0.80, −0.63).

As it is apparent from Figs 1 and 2, while the αMFP distribution
is quite wide, the βMFP one is, on the contrary, quite narrow, thus
leading to small errors on this quantity. Such a result can be ex-
plained by noting that, since (α�, αν) are quite small, equation (31)
approximately reduces to αMFP � a and βMFP � b. Since a de-
pends more strongly on β than on b, the scatter of β around the
median value has a stronger impact on αMFP than on βMFP, thus ex-
plaining why the distribution of αMFP is wider than the distribution
of βMFP.

Both the mean values and the 68 per cent confidence ranges are
almost unchanged if one replaces the simple MOND interpolating
function with the standard one. This result is encouraging since it
tells us that the arbitrariness in the choice of the simple or standard
function does not bias the final MFP coefficients. Actually, such
a conclusion should be better tested by considering other μ(g/a0)
expressions leading to different γ MOND(r) to be inserted in equa-
tion (16). We can, however, argue that the effect will be quite weak
as can be easily explained by looking at the two γ MOND(η) func-
tions in equations (14) and (34). Both expressions may be roughly
approximated by γ MOND � 1 + (a0/aeff )f (η) with the details of
the function f (η) depending on the adopted expression of μ(g/a0).
For typical values of the ETG parameters, a0/aeff � 1 so that the
details of the f (η) function are important only for very large val-
ues of η. However, the contribution to σ 0 mainly comes from the
inner regions, thus explaining why the choice of the MOND inter-
polating function only negligibly affects the estimate of the MFP
coefficients.

In the Newtonian framework, an easy application of the virial
theorem (and the hypotheses of homology and constant M/L) leads
to what we have referred to as the virial plane, namely a FP-like
relation with coefficients (αvir, βvir) = (2, −1). The MFP coefficients
are definitely different from the virial ones. This is only partly due
to the use of the scaling relations (28) and (29). If we turn off their
effect by forcing α� = αν = 0, we should have obtained values
for (αMFP, βMFP) quite similar to those reported here. It is actually
the combined effect of the anisotropy and MOND that leads to
this departure from the Newtonian virial predictions. The effect
is however quite weak on αMFP which only mildly departs from
αvir = 2 remaining consistent with this value within the errors, while
it is stronger for βMFP with the virial value βvir = −1 definitely out of
the 95 per cent confidence range. We therefore argue that MOND is
indeed able to introduce departure from the Newtonian virial plane
even if the ETG inner regions are for the most part in the Newtonian
regime.

The disagreement between the virial FP coefficients and the ob-
served ones is usually referred to as the problem of the FP tilt.
The introduction of luminosity scaling relations for n and ϒ� is
unable to explain the tilt so that one postulates the presence of a
DM halo representing ∼30–50 per cent of the mass within Reff and
providing a total M/L scaling with luminosity as ϒtot ∝ Lαϒ with
αϒ � 0.15–0.25. It is worth wondering whether the FP tilt may in-
stead be explained by our MOND-based models. Should this be the
case, the MFP coefficients should turn out to be consistent with the
observed FP coefficients. Actually, there are different estimates of
the FP coefficients relying on different samples and different fitting
procedures so that a fair comparison is not easy (see e.g. Bernardi
et al. 2003 for a table with some estimates). We have therefore used
our Bayesian method (generalizing from two to three parameters
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the previous formulae) to find as best-fitting parameters

(αobs, βobs, σint) = (1.13, −0.75, 0.081)

in good agreement with (αobs, βobs, σ int) = (1.14 ± 0.04,
−0.76 ± 0.01, 0.085) in Bernardi et al. (2003) which use a direct-
fitting method and correct for evolution and selection effects. The
median value and the 68 and 95 per cent confidence ranges read11

αobs = 0.96+0.33 +0.69
−0.30 −0.52, βobs = −0.63+0.14 +0.25

−0.21 −0.34.

The comparison of the predicted MFP coefficients with the observed
ones shows that the tilt of the FP has been only partially reduced.
Indeed, if we consider the best-fitting values for (αobs, βobs), we find
that, while βobs is nicely close to the median βMFP, αobs is definitely
smaller than the median αMFP. However, in a Bayesian framework,
what is more important is the comparison with the marginalized
confidence ranges. In this case, βMFP and βobs are in remarkably
good agreement, while the 95 per cent confidence ranges of αMFP

and αobs have only a small overlap. We therefore conclude that
there is only a mild chance that a MOND-based approach aligns the
observed FP with a theoretically predicted one.

An important remark is in order here. We have shown, in Sec-
tion 5.4, that MOND is consistent with the observed ETG dynamics,
that is to say, given (n, Reff , 〈Ie〉) and the stellar M/L, ϒ�, we can
find a value for β such that theoretically σ ap equals the observed
one. We have checked that this condition is enough to guarantee
that the same matching still works for σ 0, with σ 0 estimated from
σ ap through equation (33). Since a galaxy is placed on the observed
FP according to its σ 0 value, predicting the correct σ 0 enables us
to correctly place the galaxy on the observed FP. Nevertheless, our
theoretical MFP is tilted with respect to the observed one. This
inconsistency originates from the following reason. When one con-
siders an individual galaxy, the value of β is set according to the
values of (n, Reff , 〈Ie〉, ϒ�) of that particular galaxy. On the contrary,
the theoretical MFP is derived from a model that is assumed to be
the same for all the galaxies. In particular, the value of β used to get
(αMFP, βMFP) is the same for all the galaxies with the error on the
MFP coefficients deriving from the width of the β distribution. Of
course, β is not the same for all the galaxies so that one cannot use
the theoretical MFP to predict the σ 0 value for a given galaxy. In
other words, one could always find (αMFP, βMFP) for each individ-
ual galaxy; however, the set of these values does not define a single
MFP but rather a set of N MFPs different from each other. The
fact that this collection of planes does not reduce to a single one is
another way of saying that the observed FP and the theoretical MFP
are tilted.

7 C O N C L U S I O N S

The MOND framework has nowadays a long history of successes
when applied to galaxy scale systems: it was shown to be able to
efficiently explain spiral galaxy flat rotation curves and empirical
scaling relations such as the Tully–Fisher law and the Baryonic
Tully–Fisher relation (see Sanders & McGaugh 2002 and references
therein). In the standard Newtonian scenario, DM is invoked not

11Note that, to save computer time, we have fitted not the full sample, but
a subsample made out by 1000 randomly selected ETGs. While this has no
effect on the best-fitting parameters (as we have explicitly checked), it is
likely that the 95 per cent confidence range is wider than what we would
have obtained using the full sample.

only in spiral galaxies, but also in ETGs to both reproduce the
observed dynamics and explain the FP tilt. Since MOND is, by
construction, a universal theory, one should be able to remove DM
in ETGs as in spiral galaxies. Motivated by this consideration, we
have investigated whether this is the case and derived an FP-like
relation which we have referred to as the MFP.

To this aim, we have extracted from the NYU VAGC lowZ cata-
logue a sample of �9000 ETGs with accurate five-band photometry
and measured aperture velocity dispersion. Assuming that no DM is
present, we can simply model an elliptical galaxy using the Prugniel
& Simien (1987) model, setting the (n, Reff , 〈Ie〉) parameters from
photometry and inferring the stellar M/L, ϒ�, from the observed
colours. We then consider a constant velocity anisotropy profile and
the simple form for the MOND interpolating function μ(g/a0) and
constrain the anisotropy parameter β by matching the predicted and
the observed aperture velocity dispersions. As a first important re-
sult, we find that physically consistent MOND models can be found
to fit the data provided a radial velocity anisotropy is assumed and
the dynamical M/L is adjusted within the uncertainties of the stellar
M/L. These results are independent of the choice of the (poorly con-
strained) MOND interpolating function μ(x) so that we may safely
argue that MOND can remove DM not only in spiral galaxies, but
also in ETGs.

Fitting the velocity dispersion data also allows us to infer the
distribution of the anisotropy parameter and hence estimate the
MFP slope coefficients (αMFP, βMFP). We find that these quantities
are different from those expected when applying the virial theorem
(with homology and constant M/L assumptions) in the Newtonian
framework, i.e. MOND is able to tilt the virial plane without the
need of assuming a varying DM content. Such a tilt is, however,
still too small to align the MFP with the observed FP. Indeed, we
find that, while βMFP is in remarkable good agreement with βobs,
αMFP is significantly larger than αobs so that we need a mechanism
to further tilt the MFP.

In particular, one could explore deviations from the pure MOND
scenario we have used throughout the paper. Two possibilities are
briefly hinted at here and discussed in some detail in Appendix
B. As a first scenario, a varying M/L can reconcile the predicted
MFP with the observed FP provided that κeff = ϒ eff/ϒ� ∝ L0.26. A
similar scaling might be expected in the MOND model by Angus
(2009) with 11 eV sterile neutrinos. Angus, Famaey & Diaferio
(2010) show that, in this model, more massive galaxy clusters, that
generally harbour the most massive and luminous central galaxies,
have larger central densities of sterile neutrinos and, presumably, a
larger total M/L.

As a totally different approach, one can rely on the external field
effect (EFE). Different from the varying M/L scenario, the EFE is
naturally motivated because it is a consequence of the non-local
feature of the MOND theory. The inclusion of EFE is able to tilt the
MFP without the need of additional matter and without resorting to
some fine-tuned mechanism. The scaling of gext/a0 with L needed
to reconcile the theoretical MFP with the observed FP is reasonable
but has to be verified by a careful analysis. To this end, an ideal
approach could be fitting the full velocity dispersion profile σ los(R)
rather than the aperture value σ ap. This test has to be carried on for
a statistically meaningful sample of ETGs with σ los(R) measured
both in the inner regions (where the EFE has a small impact) and
in the outskirts (where the anisotropy profile reduces to its asymp-
totic value) so that the β–gext degeneracy is broken. Moreover, this
sample should cover a wide range in luminosity and probe different
environments.
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As a final comment, we would like to stress that, although the
two scenarios proposed above are, at the moment, only specula-
tive, reconciling the theoretical MFP with the observed FP and
reproducing other ETG scaling relations in the MOND framework
can open a new and fruitful way towards discriminating between
modified dynamics (or, more generally, modified gravity theories)
and DM.
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Table A1. The MFP coefficients for the fiducial case in
different filters. Columns are as in Table 1, while the rows
are for filters u′, g′, r′, i′, z′.

〈αMFP〉 (αMFP)+1σ +2σ
−1σ −2σ 〈βMFP〉 (βMFP)+1σ +2σ

−1σ −2σ

1.67 1.58+0.60 +1.21
−0.37 −0.61 −0.70 −0.69+0.05 +0.08

−0.07 −0.15

1.44 1.36+0.45 +1.12
−0.27 −0.46 −0.68 −0.67+0.04 +0.06

−0.05 −0.13

1.67 1.60+0.45 +1.02
−0.30 −0.50 −0.71 −0.70+0.04 +0.07

−0.06 −0.13

1.62 1.58+0.36 +0.84
−0.27 −0.45 −0.70 −0.69+0.03 +0.06

−0.05 −0.11

1.67 1.60+0.47 +1.07
−0.31 −0.52 −0.71 −0.60+0.04 +0.07

−0.06 −0.14

APPEN D IX A : WAV ELENGTH D EPENDENCE

Equation (31) shows that the MFP coefficients depend on the slopes
(α�, αν) of the ϒ�–LT and n–LT relations which are different de-
pending on the filter considered, as reported in Table 1. Moreover, as
explained in Section 5.4, the distribution of the anisotropy parame-
ter also depends on the filter adopted because (n, Reff , 〈Ie〉, ϒ�) vary
with the filter. As a consequence of these effects, the MFP coeffi-
cients will depend on wavelength. To check how they change with
λ, we report in Table A1 the values of (αMFP, βMFP) for the fiducial
case of constant anisotropy with the simple MOND interpolating
function.

It is immediate to see that the MFP coefficients are essentially
the same (within the errors) whatever is the adopted filter. This
is an expected result since both (α�, αν) and the β distribution
are very weak function of wavelength. This is in net contradiction
with the observed FP coefficients that move towards the virial one
(2, −1) as the wavelength increases. As a consequence, the tilt of
the MFP changes with the filter, thus leading further constraints
on the underlying unknown phenomenon that has to be invoked to
reconcile theory with observations.

APPEN D IX B: D EVIATIONS FROM A PURE
M O N D S C E NA R I O

Up to now, we have adopted a fully MOND framework. Specifically,
we have assumed that the visible matter is the only source of gravity
generating the motion of the stars and that their acceleration may
be computed from the Newtonian one with equation (11). As we
have seen, this model is able to fit the ETG velocity dispersion
data but leads to an MFP which is still tilted with respect to the
observed one. We therefore qualitatively discuss here what could
be the impact of relaxing one of the two assumptions above to see
whether deviations from our idealized MOND scenario may help
to reconcile the theoretical MFP with the observed FP. We admit
that this section is quite speculative, but we include it here in order
to propose some scenarios that could be tested with future data or a
different tracer of the ETG gravitational potential.

B1 Varying M/L

According to the original idea motivating the introduction of
MOND, nothing but the visible matter should be considered when
modelling a galaxy and trying to fit the data. As a corollary to this
assumption, the total M/L, ϒ tot, must equal the stellar ϒ�. Even if
in order to avoid too much radial anisotropy we have allowed to
rescale the M/L by the parameter κ , we have finally chosen the so-
lution with κ as close as possible to 1 to be consistent with the idea
of no DM. Some general considerations, however, may be invoked

to depart from the ϒ tot � ϒ� ansatz. First, it is well known that
MOND needs a DM component in order to be in agreement with
data on the galaxy cluster scale (Aguirre, Schaye & Quataert 2001;
Sanders 2003; Pointconteau & Silk 2005; Angus et al. 2007; Angus,
Famaey & Buote 2008a). Should this further term be represented
by a 2 eV neutrinos (Sanders 2003, 2007) or 11 eV sterile neutri-
nos (Angus 2009; Angus et al. 2010) arranged in a hot dark halo,
the total M/L should be larger than the stellar one. On the other
hand, our estimated ϒ� depends on the ingredients used to obtain
the starting library of stellar population models. Changing one of
these ingredients would alter ϒ� possibly leading to an effective
ϒ tot larger than our assumed stellar M/L value. As a simple way to
account for this possibility, we redefine the effective surface mass
density as

〈
e〉 = ϒtot〈Ie〉 = κ
ϒ�〈Ie〉. (B1)

If we assume that κ
 correlates with luminosity and that the log κ
–
log L may be well approximated by

log κ
 = ακ log L + βκ . (B2)

We can easily rederive the MFP to show that equation (30) still
holds provided the coefficients are redefined as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αMFP = a

1 − 2αϒb − 2ανc

βMFP = (1 + αϒ )b + ανc

1 − 2αϒb − 2ανc

γMFP = (αϒb + ανc) log (2π) + βϒ + b + βνc + d

1 − 2αϒb − 2ανc

, (B3)

with{
αϒ = α� + ακ

βϒ = β� + βκ

. (B4)

Needless to say, introducing κ
 changes the distribution of the fitted
anisotropy parameter and the values of the (a, b, c, d) coefficients.
Assuming, as a first approximation, that the change in β is not too
large, we solve αMFP = αobs with respect to ακ . By using the median
values of (β, α�, αν) for the constant anisotropy model and αobs =
1.13, we find ακ � 0.35. It is worth noting that a similar scaling
is obtained when comparing stellar and dynamical masses in a
Newtonian stellar+dark halo framework (Padmanabhan et al. 2004;
Cardone et al. 2009; Tortora et al. 2009). Actually, reproducing such
a scaling of κ
 with luminosity can be problematic in a MOND
scenario. As quoted above, in order to have κ
 �= 1, one has to
postulate the presence of a halo made of (2 or 11 eV) neutrinos.
We now find that such a term should provide a contribution to
the velocity dispersion that increases with the total luminosity in
a similar way as the dark halo in Newtonian gravity. Explaining
how neutrinos in the halo interact with the baryons in the stellar
component in such a way to reproduce the needed scaling of κ


with L can be a difficult hurdle to overcome.
Should such a mechanism be found, the problem of the tilt of

the MFP is indeed solved. Introducing ακ = 0.35 in the expression
for βMFP and using the median values of (β, α�, αν) gives βMFP �
−0.64 which is essentially the same as for the κ
 = 1 case. This can
be explained by looking at the approximated expression reported
above showing that the same term αϒb enters both the numerator
and the denominator thus weakening the correction. As a result,
the predicted βMFP is still in agreement with the observed one thus
completely solving the tilt problem.
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B2 The external field effect

As a second possibility, we consider modifying the relation between
Newtonian and MOND acceleration. We note that equation (11) im-
plicitly assumes that the galaxy is an isolated system. Since MOND
is a non-local theory, the motion of the stars in the galaxy is actually
determined not only by the galaxy potential, but also by the distri-
bution of matter outside the galaxy itself. This is usually referred
to as the EFE and is taken into account by replacing equation (11)
with the following one:

μ

(
g + gext

a0

)
g = gN, (B5)

where gext is a constant (with typical values ∼0.1 − 10 a0). In order
to take the EFE into account, we must simply use the corresponding
γ MOND(η) function which now reads

γMOND(η) = 1

2

{(
1 − gext

gN(η)

)

+
√

1 + 4a0

gN(η)
+ 2gext

gN(η)
+

[
gext

gN(η)

]2
⎫⎬
⎭, (B6)

with gN(η) = GM(η)/η2. Comparing equation (B6) with (14) shows
that, for given stellar parameters, γ MOND(η) for EFE is smaller than
the one for the simple function so that the predicted velocity dis-
persion is smaller. Such a somewhat counterintuitive result can be
qualitatively explained by noting that the EFE term gext increases
the Newtonian acceleration and delays the transition from the New-
tonian to the MOND regime. As a consequence, the boost in accel-
eration (and hence in σ 0) due to the MOND effect starts later and
reduces σ 0 with respect to the no EFE case.

In order to study the impact of the EFE on the MFP coefficients,
we start from the model with constant anisotropy and no EFE and
rewrite equation (27) as

log Reff = a log

(
σ0

σ EFE
0

× σ EFE
0

)
+ b log 〈
e〉 + c log n + d,

with σ 0 and σ EFE
0 the velocity dispersion without and with the EFE

taken into account. Note that proceeding this way allows us to
estimate (a, b, c, d) using the values found for the no EFE simple
case. In a first reasonably good approximation, it is

log

(
σ0

σ EFE
0

)
� aext log

(
gext

a0

)
+ bext,

with (aext, bext) � (0.09, 0.21). If we further postulate that gext

correlates with luminosity as

log (gext/a0) = αext log L + βext

and repeat the same steps leading from equation (27) to equa-
tion (30), we find that the slope coefficients of the MFP now read⎧⎪⎪⎨
⎪⎪⎩

αMFP = a

1 − 2(α�b + ανc + aaextαext)

βMFP = (1 + α�)b + ανc + aaextαext

1 − 2(α�b + ανc + aaextαext)

, (B7)

which reduce to equation (31) for aext = 0, i.e. no EFE effect. In
order to get an estimate of αext, we can assume that the values of
(a, b, c) are the same as those computed using the median β value
obtained by fitting the constant anisotropy model with no EFE to
the data. Setting (α�, αν) to the median values in Table 1 for the
i′ filter and solving αMFP = αobs, we finally get αext � −1.5, i.e.
brighter galaxies should be affected by a lower EFE.

Investigating whether such a correlation is observationally moti-
vated is a rather difficult task. In order to estimate gext, one cannot
resort to a fit to galaxies binned in luminosity since the magnitude
of the EFE depends on the environment in which a given galaxy
is embedded. Although it is possible to study the environment of
the ETGs in our sample on a case-by-case basis, their large number
makes this task quite beyond the scope of this paper. As a general re-
mark, we however note that the EFE is typically invoked to improve
the fit to the rotation curves of dwarf spiral galaxies (see e.g. Angus
2008), while the value of gext is smaller for Milky Way like systems.
This observation goes in the right direction. Moreover, one has to
take care also of the symmetry of the problem. Brighter galaxies
are typically more massive and hence populate the inner regions
of clusters where they feel the combined action of many galaxies
around. One can naively expect that the random orientation of the
EFE from each companion leads to a sort of compensation, thus
lowering gext for brighter systems. However, a further quantitative
analysis is mandatory in order to lend support to this scenario.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2011 The Authors, MNRAS 412, 2617–2630
Monthly Notices of the Royal Astronomical Society C© 2011 RAS


