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ABSTRACT

Motivation: Clustering of chemical and biochemical data based on

observed features is a central cognitive step in the analysis of chem-

ical substances, in particular in combinatorial chemistry, or of complex

biochemical reaction networks. Often, for reasons unknown to the

researcher, this step produces disappointing results. Once the

sources of the problem are known, improved clustering methods

might revitalize the statistical approach of compound and reaction

search and analysis. Here, we present a generic mechanism that

may be at the origin of many clustering difficulties.

Results: The variety of dynamical behaviors that can be exhibited by

complex biochemical reactions on variation of the system parameters

are fundamental system fingerprints. In parameter space, shrimp-like

or swallow-tail structures separate parameter sets that lead to stable

periodic dynamical behavior from those leading to irregular behavior.

We work out the genericity of this phenomenon and demonstrate

novel examples for their occurrence in realistic models of biophysics.

Although we elucidate the phenomenon by considering the emer-

gence of periodicity in dependence on system parameters in a low-

dimensional parameter space, the conclusions from our simple setting

are shown to continue to be valid for features in a higher-dimensional

feature space, as long as the feature-generating mechanism is not too

extreme and the dimension of this space is not too high compared

with the amount of available data.

Availability and implementation: For online versions of super-para-
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1 INTRODUCTION

Biological organisms are able to fabricate intricate machineries

from the molecular scale up to the macroscopic scale, without the

obvious need to store and to explicitly handle the corresponding

information. Synthetic biology, molecular programming and nu-

cleic acid nanotechnology have thus become an experimental

playground for the search for systems that carry out human-

defined molecular programs, to input, output and manipulate

molecular structures (Ando et al., 2011; Silva and

McClenaghan, 2004). For chemistry to become the next infor-

mation technology substrate, improved tools for designing,
simulating and analyzing complex molecular circuits and systems

are necessary. On the DNA nanotechnology model system, cor-
responding knowledge is presently quickly growing and the area

of alternative computing paradigms starting to take shape. From

a physics point of view, biological and physical processes start to
converge, so that to describe biochemical computation, concepts

from physics can be borrowed and applied (see e.g. Brackley
et al., 2010; Ellner and Guckenheimer, 2006; Furusawa and

Kaneko, 2012).
As will be exhibited below (Figs 1 and 2), most real-world

systems exhibit a non-trivial behavior of some observables in
time. Many such processes exhibit periodicity (the circadian

rhythm, the cell cycle, reproduction), which therefore has often

been regarded as a key expression of the essential mechanisms of
life. Conversely, irregular behavior is often related to abnormal

stimuli or to a defect or disorder of the generating mechanism
(the cortex, however, provides an example that shows that this

does not necessarily have to be the case; see Stoop et al., 2000).

Modern methods of measurements and modeling have now pro-
vided techniques that permit the observation of dynamical as-

pects of processes, which in the past, because of a lack of such
technology, were described as steady state. Genetic expression

processes are an example thereof (Romano et al., 2009).

Recently, it has been possible to measure down to single-cell
expression, which revealed different kinds of rhythmic to irregu-

lar expression patterns (Raj and van Oudenaarden, 2008; Spiller
et al., 2010; Suter et al., 2011). In our study, we will put forward

a generic model that demonstrates that regular and ‘stochastic’

expression may result from the same non-linear system and that
the transition among these states may require small parameter

changes only. In Section 5, we will exhibit how more general gene
expression complexity may emerge from the generic model.

A particular well-known example of regular behavior is the
circadian clock. Decades ago, the circadian rhythm was believed

to be singularly implemented by means of a central clockwork or

pattern generator. It was, however, discovered that the mutation
of a single allele of a single locus (called the ‘per’ gene) triggers

Drosophila mutants with different circadian rhythms (Konopka
and Benzer, 1971). Many of the genes and proteins involved in

this process have been evidenced in mammals as well, where the

circadian clock arises from the temporally regulated activity of
protein–gene pairs (Tei et al., 1997; Ueda et al., 2005). A variety

of tissues and cells containing functional autonomous clocks are*To whom correspondence should be addressed.
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able to maintain their oscillation when placed in vitro, removed

from any external cues or signals originating from environmental

clocks. This naturally leads to the hypothesis that the circadian

rhythm, and more generally periodic dynamics, is dispersed in

any living system, with potentially every cell containing a func-

tional clock. From the genetic base, the circadian rhythm is im-

plemented by means of a gene expression network hosting a

delayed feedback loop that causes the transcripts to oscillate

with an approximate period of 24 h. A recently found period

doubling in the mouse (Erzberger et al., 2013) and oscillation

bifurcations in the rat (Granada et al., 2011) hint at the non-

linear nature of this effect. Non-linearity is also at the heart of

the phenomenon that we describe below. The aim of this article is

to demonstrate how the distribution of regular and irregular sys-

tems is governed by a system’s non-linearity in a generic manner

and that from this, consequences for the system biology analysis

of data may emerge. The two instances of system biological ana-

lysis that we discuss at the end of this contribution from this

point of view are clustering on a system level and parameter

inference. For biological systems, the identification of the areas

in parameter space responsible for periodic behavior is therefore

an important task.

2 HOW SYSTEMS ARE DISTRIBUTED IN
PARAMETER SPACE: A COMMON PITFALL

Areas in a parameter space that exhibit in some sense common

features are usually determined by a clustering process. In a one-

dimension parameter space, the natural picture of systems dis-

playing a certain periodicity would be given by parameters that

are distributed across an interval, possibly according to a

Gaussian (Murua et al., 2008; Yeung et al., 2001), where, for

non-linear systems, these intervals would generally be finite. In

higher-dimensional parameter spaces, following this reasoning, a

Cartesian product of such intervals (i.e. in dimension two, a

square or a circle, depending on the topology or distance func-

tion chosen) will be expected to guarantee the emergence of peri-

odicity. This conclusion, which is the basis of many

bioinformatics approaches (e.g. the popular k-means clustering),

is wrong. For real-world systems, the generic parameter space

domain for periodicity is a ‘swallow-tail’ or a ‘shrimp’-like

domain. Its convex–concave form was predicted by Shilnikov’s

theory (Shilnikov, 1965, 1967; Shilnikov et al., 1998, 2001), and it

was later discussed in more details by Gaspard, Kapral and

Nicolis (Gaspard et al., 1984). The emergence of shrimps has

been evidenced in a number of models of physical systems.

Most prominent examples are a model of the Inaba–Nishio

simple resistive electronic circuit (Bonatto and Gallas, 2008;

Nishio et al., 1990; Stoop et al., 2010) and a simple model of a

CO2 laser (Bonatto et al., 2005). Although shrimps are easily

detected in simulations, the experimental verification is more

demanding, as because of their complex boundaries, a high ex-

perimental resolution is needed to pin them down. One of the

first—at that time somewhat tentative example of an experimen-

tal shrimp—was provided for Chua’s circuit (Baptista, 1996;

Baptista et al., 2003). Efforts focusing on the experimental veri-

fication of shrimps have continued ever since (Cardoso et al.,

2009; Maranhao et al., 2008). To highlight that shrimps can be

observed in real systems, we focus on the Inaba–Nishio resistive

circuit. The Inaba–Nishio circuit contains a linear negative resist-

ance (‘–r’), a capacitance (C), two coils (L1, L2) and a non-linear

resistance introduced either by two diodes (D1, D2, ‘symmetric

circuit’) or by one diode only (D1, ‘asymmetric circuit’); see

Figure 2. Depending upon parameter � (coding for a combin-

ation of the properties of resistance r, capacitance C and coil L1)

and � (coding for the properties of both coils L1, L2), the behav-

ior of the system is characterized by a spiral of shrimps (Fig. 1;

Stoop et al., 2010).

Fig. 1. Shrimps of the Inaba–Nishio electronic circuit: color-coded par-

ameter space areas of fixed periodicities pi. Parameters: � and �. In

(Stoop et al., 2010), it was shown that the dynamical behaviors of the

hardware-built circuits (each pixel corresponds to a particular realizable

circuit) follow exactly the predicted structure

Fig. 2. Non-linear Inaba–Nishio circuit diagram cf. Stoop et al. (2010)
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3 EMERGENCE OF SHRIMPS IN PARAMETER
SPACE

How is this multitude of scaled versions of the same shrimp

template generated? In the case of smooth systems, shrimps are

the result of the interaction of two or more largely independent

parameters in creating points with a full set of zero partial de-

rivatives. From this observation, the shrimps phenomenon can

be explained in a simple way, for flows [the R €ossler system

(Gaspard et al., 1984)] and for maps [the dissipative H�enon

map (H�enon, 1976) in (Gallas, 1993, 1995)]. For simplicity of

argument, we will consider the discrete formulation and follow

the exposition given in Stoop et al., 2010, 2012. Note that the

dissipative H�enon map is the paradigmatic 2D discrete map ac-

counting for the universality properties of dissipative non-linear

systems. The H�enon map can be written in its standard form as

(Kuznetsov, 2004) fh : fx; yg ! fc� dy� x2;xg. After cycling

through the coordinates by means of two iterations, the 2D

system can be condensed into the approximative 1D map

f : x! b� ða� x2Þ2;

which incorporates the two parameters a, b for the offset and the

leading term non-linearity in one equation.
Stable k-periodic islands arise whenever

xk=fkðxkÞ; jmkj=jf
k0 ðxkÞj51 ð1Þ

holds, where fk denotes the k-fold iterated map f, and the prime 0

denotes the derivative with respect to x. A superstable locus re-

quires that mk=0. More explicitly, we have

fk
0

ðxkÞ=
Yk
i=1

4xi
Yk
i=1

ða� x2i Þ: ð2Þ

This implies that all k-superstable solutions need to pass either

through xk=0 or xk=�
ffiffiffi
a
p

. For the case xk=0, for k=1, we

obtain from b� ða� x2Þ2=x the relation a=�
ffiffiffi
b
p
: For the

case xk=�
ffiffiffi
a
p

, we obtain b=�
ffiffiffi
a
p
: By differentiability of f

in the parameters a, b, this defines two parabolas in parameter

space, which define the four legs of the main k=1-shrimp; see

Figure 3. The two parabolas intersect at points {0, 0} and {1, 1},

giving rise to the ‘head’ and the ‘navel’ of the shrimp, respect-

ively, manifested by two distinguished doubly superstable sys-

tems. Once more, by means of differentiability, an area around

these lines is identified, within which

jfk
0

ðxkÞj=j
Yk
i=1

4xi
Yk
i=1

ða� x2i Þj � 1 ð3Þ

is fulfilled, for the sequence of points xi visited. For k=1, we

obtain from the fixed-point and the derivative conditions the pair

of equations valid for the asymptotic behavior at the head of the

shrimp

ffk=1ðxÞ � x=0; fk=10 ðxÞ � 4a x+4x3=0g: ð4Þ

Using � : =fk=10 ðxÞ and elimination of the explicit phase-

space variable x, we obtain

�4 � 12�3+ð48� 32abÞ�2+64ðab� 1Þ�

� 256ða� b2Þða2 � bÞ=0:

From this equation, upon letting �=0, the above-identified

two parabolas

a=�
ffiffiffi
b
p
; b=�

ffiffiffi
a
p

ð5Þ

emerge. Restricting � to values j�j � 1, we can identify the area

of the period k=1 shrimp in the {a, b}-parameter space. This

area is bounded by period-doubling bifurcations (�=� 1) and

tangent bifurcations (�=1) on opposite sides from the loci of

superstability.
By representing Feigenbaum universality in higher-dimen-

sional parameter space, the emergence of shrimp-like structures

is thus a universal non-linear phenomenon, i.e. it must be ex-

pected to occur in any non-linear dynamical system. The place-

ment of the copies is, however, determined by the specific

system’s properties (Stoop et al., 2012).

4 BIOLOGICAL MANIFESTATIONS OF SHRIMPS

To what extent such structures emerge in biological systems has

mostly remained unexplored. This is a non-trivial question be-

cause vast areas in parameter space may not be occupied by

typical real-world biological systems and processes. Here we

focus on two domains where the dependence of the dynamics

on system parameters is of special interest: Biochemical reactions

and neural systems.
Biochemical systems: For the field of biochemical reactions, we

focus on an enzymic reaction, noting that periodic behavior is

not exclusive to enzymic processes. We consider the celebrated

Goldbeter reaction (Decroly and Goldbeter, 1982), for which

corresponding experimental evidence is available (De la

Fuente, 1999; Markus et al., 1985). Enzymic periodicities are

best described at the molecular level. On this level, the

Fig. 3. Basic shrimps structure: two intersecting parabolas of superstabil-

ity (red full lines), extending until the derivative of the solutions exceeds 1

in absolute value (non-generically located dashed lines), where tangent or

period-doubling bifurcations occur. In addition, where lines cross, we

deal with non-ergodicity (Stoop et al., 2012). Secondary, non-generic,

system properties can complicate this fundamental structure
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Goldbeter reaction can be represented as shown in Figure 4:
substrate S is injected at constant rate v and runs through a
sequence of enzymic reactions comprising two positive feedback

loops coupled in series. S is transformed by catalyzation by an
enzyme E1, which is activated by its product P1. A second
enzyme E2 uses P1 as substrate and is activated by its product

P2. ks is the first-order rate constant for the removal of P2. The
two steps are necessary to generate, along with periodicity,
chaotic behavior.

The metabolite concentrations can be described by the follow-
ing three ordinary differential equations:

d�

dt
=

v

Km1
� �1�;

d�

dt
=q1�1�� �2�;

d�

dt
=q2�2�� ks�;

with

�=�ð1+�Þð1+�Þ2=½L1+ð1+�Þ2ð1+�Þ2�;

�=�ð1+d�Þð1+�Þ2=½L2+ð1+d�Þ2ð1+�Þ2�:

�, � and � denote the concentrations of S, P1 and P2 divided,
respectively, by Km1; KP1

and KP2
. Km1 is the Michaelis constant

of E1 for the substrate S, Kp1 the dissociation constant of P1 for

E1 and KP2
is the dissociation constant of P2 for E2. v denotes the

constant input of substrate, and �1 and �2 are the maximum
activities of E1 and E2 divided by their Michaelis constants

Km1 andKm2 (Km2 is the Michaelis constant of E2 for its substrate
P1), respectively. L1 and L2 are the allosteric constants of E1

and E2, respectively. Finally, q1=Km1=KP1
; q2=KP1

=KP2
and

d=KP1
=Km2.

The two reaction steps are required to provide the system with
the ability to produce irregular chaotic solutions. Although

Decroly and Goldbeter (1982) considered changes of ks and v,
and reported no shrimps, we investigate here the behavior ob-
tained by changing �1 and �2, for which we observe an abundant

emergence of shrimps (Fig. 5). Clearly, we find shrimp-like struc-
tures with stable periodic oscillations, starting from period 4
(dark gray) to 8 (green) to 16 (yellow) to 32 (ocher). Domains

of chaotic behavior are in white.
Neural systems: Neuron models share many structural proper-

ties of enzymatic reactions; the occurrence of shrimps in neuron
models is therefore only surprising in light of the fact that so far,

their existence has not been reported [discounting structures that
vaguely resemble half-cuts of shrimps (Gallas, 2010)]. In a

number of cases, a too low dimensionality of the model prevents

chaotic behavior from occurring, whereas for other models, the

huge number of coupled equations and parameters involved may

be prohibitive for such a research (e.g. for Hodgkin-Huxley-like

equations). The phenomenological neuron model elaborated by

Rulkov (Rulkov, 2002; Shilnikov and Rulkov, 2003) does not

suffer from these limitations and has been repeatedly shown to

accurately describe the dynamics of biological neurons

(Martignoli et al., 2013; Nowotny et al., 2005; Rulkov et al.,

2004; Tainaka et al., 2006;) because of a versatility based on

minimal modeling. The equations of this model are based on

two parameters � and �,

xn+1= fðxn; ynÞ; ð6Þ

yn+1=yn � �ðxn+1Þ+��; ð7Þ

Fig. 5. Shrimp-like structure in the biochemical system described in

Decroly and Goldbeter (1982). The parameter space is �1=9:25� 9:7
and �2=9:82� 9:96. Constants: v=0.45, ks=2.01, q1=50, q2=0.02,

Km1=1.0, L1=5� 108, L2=100, d=0. Background: characterization

of the parameter space properties in terms of the largest non-zero

Lyapunov exponent color coded as shown in Figure 6. In the central

part, we superimpose the observed periodicity of solutions. Chaotic

motion generates infinite periodicity (white dots). Non-white dots corres-

pond to finite stable periodicities. In the center of the figure, a period-

doubling route to chaos is exhibited (gray! green! yellow! ocher).

In the original work of Decroly and Goldbeter (1982), �1= �2=10 were

held constantFig. 4. Goldbeter’s two-step biochemical feedback loop reaction process
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where � is set to �=0.001, and f(x,y) is given by

fðx; yÞ=

�=ð1� xÞ+y; x � 0

�+y; 05x5�+y

�1; x � �+y;

8>><
>>:

ð8Þ

where the first variable codes, in loose terms, for the inner

(spiking) state of the neuron, and the second variable codes for

a slower background state on which this dwells. The parameters

� and � that we will focus on encode (again in loose terms) the

non-linearity and the driving current of the neuron, respectively.

It is easily verified that regular, periodically firing behavior

occurs on shrimp-like domains of the parameter plane (Fig. 6).

5 DIFFICULTIES FOR CLUSTERING AND
SOLUTION

From these examples, it is evident is that in non-linear biological

systems, steady-state behavior will often be the exception rather

than the rule. Moreover, the proposition emerges that many of

the processes that are currently declared stochastic may be cha-

otic. Biological systems may exploit both behaviors, preferen-

tially even in symbiosis: A large number of small chaotic or

stochastic inputs to a neuron, e.g. will generate an optimally

stable input current that will force the neuron to fire regularly,

generally on a limit cycle. The closer the generated response is to

stochasticity, the better an ensemble of such systems provides a

reliable constant driving current to the neuron, leading to a

stable firing pattern of periodicity one. From the interaction

among such oscillators, more complicated periodic patterns

emerge, the periodicities of which are organized along Arnol’d

tongues (Martignoli and Stoop, 2008; Stoop et al., 2000). In the

context of the circadian rhythm, the observation of locking on an

Arnol’d tongue has recently been reported, along with period

doubling (Erzberger et al., 2013). Both are manifestations of

non-linearity, within or among individual entities. The former

effect occurs when the coupling is relatively small; the latter

effect occurs and dominates when the coupling is ‘larger’. The

manifestation in both cases is the emergence of non-trivial repeti-

tive patterns. In the case of neurons, such periodic signals are

easily read out and identified by other neurons and can, thereby,

be used as code words. Self-similarity of the shrimp areas may

simplify the tuning to stay on one code word for slowly changing

parameters or to engineer, in a simple way, jumps from one code

word to another, enabling in this way simple state-coding. Such a

coding is closely related to the coding in terms of Arnol’d ton-

gues for weakly coupled periodic systems (Stoop et al., 2000).

There, the coding is easily seen to be invariant with respect to a

uniform scaling of the firing frequencies (e.g. by changed driving

input applied similarly to all involved neurons), and tongue size

and stability is seen to scale with periodicity, which leads to a

self-refining Huffman-like efficient code (Huffman, 1952).

The particular arrangement of the shrimps in parameter space

(Fig. 7) might favor the biological implementation of such a

coding scheme.

Fig. 6. Largest Lyapunov exponent (Peinke et al., 1992) of Rulkov’s

neuron model (Rulkov, 2002), three zoom levels (full white boxes).

Black color indicates stable periodic systems, ocher unstable systems (gen-

erally chaotic). Shrimps-like domains (black) pertain on all levels, where

crossing tails reflect non-ergodicity (hysteresis). Spike trains generated at

the white dots (left to right corresponding to top to bottom) exhibit the

generality of the model

Fig. 7. Periodicity coding for the dashed window of Figure 4. The peri-

odicities follow a period-increasing pathway as known from the Arnol’d

tongues, scaling in size with periodicity. Blue and green colors indicate the

number of in-burst spikes (six and seven, respectively), red numbers the

overall periodicity of the spike train
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To relate these observations to bioinformatics, it is important
to note that shrimps are of course not restricted to 2D parameter

space, they also exist in higher dimensions (Baptista et al., 2003).

Moreover, in many applications, objects may not be directly

characterized by their fundamental parameters (these are often

unknown) but by easily observable features. From parameter

coordinates, we arrive at the feature space by means of a feature

mapping, which most of the time is implicit. In a not too high-

dimensional feature space, feature maps of sufficient smoothness

will closely reflect the situation that we have in parameter
space [although a formalization of this expectation may require

an advanced mathematical framework (Hamilton, 1982)]. A pic-

torial example is provided by the transformation ða; bÞ ! ða;
Logð1+jbjÞ; abÞ from 2D into 3D space (Fig. 8).
In what follows, we will exhibit how a severe clustering prob-

lem emerges from the shrimps-like parameter domain formed by

systems displaying a regular response that most researchers will

be unaware of if the data are not compromised by, e.g. wild

projection methods. Figure 1 in (Bryan, 2004) may represent

such an experimentally observed case. Suppose that we now

sample the parameter or feature space with the aim of identifying

parameters that lead to a periodic system response. Whatever

may be the sampling procedure and the test for periodicity,
what will likely result is a situation like Figure 9a: candidate

systems will be from primary shrimps or from lesser populated

areas hosting smaller shrimps or systems for which the data ap-

pear periodic but are actually chaotic (unstable periodic orbits

are generically embedded into chaos, and the systems’ trajec-

tories can follow such orbits for some time). Taking this situation

as a toy example, we now proceed toward the clustering of the

data into sets of similar behavior. To this end, we suppose that

similar parameters generate more similar behaviors than dissimi-
lar ones. The principle that clustering is thus based on is that the

smaller the distance in space (parameter, feature), the more they

are coupled and likely to be in the same cluster.

The most commonly used clustering algorithms approach this
problem based on this distance or similarity measure alone. As a

consequence, they will end up with the ‘noisy’ data included into

the clustering. Clearly, this should be avoided. Let us assume that

by a magic ‘noise-cleaning’ algorithm, we got rid of the noisy

part of the data. The interesting observation then is that even in

this case, the most prominent clustering algorithms fail in the

clustering of convex–concave-bounded sets such as our shrimp-

like domains, as they are implicitly based on a linear separability

criterion. Although this is evident for the popular k-means algo-

rithm, this also holds for hierarchical agglomerative Wards clus-

tering—irrespective of what distance measure is used. That is,

because non-local distances are introduced as soon as one

deals with distances between a point and a set, or with distances

between sets and sets. In view of the genericity of our situation,

such a behavior is detrimental. The naive use of out-of-the-box

(a)

(b)

(c)

Fig. 9. (a) Clustering data: pairs of coordinates {a, b}. (b) Even after

discarding the ‘noisy’ part, clustering via Ward’s approach is unsuccessful

(virtually independent from the distance measure used). (c) Starting from

the noisy data of (a), Hebbian learning clustering (see text) reveals the

hidden data and provides a proper clustering. Dashed: separation borders

between the main clusters (Stoop et al., 2012)

Fig. 8. Artificial feature map example: a 2D shrimp (a) is mapped into a

3D feature space shrimp by means of the transformation

f : ða; bÞ ! ða;Logð1+jbjÞ; abÞ. Shrimp essentials are preserved under

map f; transformations of similar mathematical properties yield compar-

able results. (Left side: black area: parameters with the same periodicity;

blue area: parameters with period-doubled periodicity. Right side: corres-

ponding features.)
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algorithms leads to clustering failure in an important family of

objects and obstructs the proper coding interpretation of param-

eter states.
As we have pointed out above, this geometric situation largely

persists in associated feature spaces. For any definition of the

distance measure normally used, Wards clustering leads to a fail-

ure (see Fig. 9b). AlthoughWard’s clustering appears to be based

on local distances, the method becomes intrinsically non-local as

soon as the distance from a point to a set has to be evaluated.

For an adequate clustering, a clustering algorithm must be used

that is entirely based on local neighborhoods and avoids macro-

scopic notions such as the distance to a set.
There is a solution to both of the problems (i.e. noise and

convex–concave boundaries), using, e.g. the following neural net-

works-inspired algorithm (Landis et al., 2010) that is based on

purely local notions of distance. The approach can be separated

into four steps. In the first step, from a dataset S with N data

items (as shown in Fig. 9a), the pairwise similarities or distances

dij between items or pixels i and j are calculated, using an appro-

priate distance function d. In our toy case, we use the Euclidean

distance, but could also embrace other qualities, for visual data

clustering, e.g. pixel color or pixel size. For each item, we then

determine for performance reasons the set of k nearest neighbors.

By representing each item by a node and connecting each node

with its k nearest neighbors, we obtain a basic graph. On this

graph, each node’s activity is represented as an integrate-and-fire

(I&F) neuron, and each edge is a symmetric synaptic connection

wij of initial strength wij=wji=exp ððdij=d0Þ
2
Þ, where d0 is a con-

stant related to the average network activity. In the second step,

I&F neuron site dynamics are implemented. The I&F neuron is

modeled as a resistor-capacitor (RC) circuit that is driven by a

current I=Iext+Iinner. The external input Iext is assumed to be

constant and equal for all neurons (‘noisy driving’); input Iinner
describes the input relied over the (‘stronger’) connections that

define the essential topology of the network [c.f. (Stoop et al.,

2000)]. At each node, the obtained potential u(t) then follows the

equation @uðtÞ
@t =� uðtÞ

RC+
Iext+

P
k wkðtÞ	ðt�t

kÞ

C . tk are the times of the

firing events of the connected neurons. After the firing threshold

has been reached, the state of the firing neuron is set to zero, and

connected neurons are updated as uðt0Þ+=wjR. Until the next

neuron of the population fires, neurons are updated as

uðt0Þ=IextRð1� expð�Tk

RC Þ+uðtÞexpð�Tk

RC Þ, where t0=t+Tk with

Tk the time since the last spike. In a third step, a Hebbian-moti-

vated dynamics of the topology of the network is implemented

by doubling weights wij connecting neurons that fire together in a

sufficiently small time window (with a cutoff of the process at

w=1). This increase of weights is balanced by a weight decay

wðtÞ=wð0Þ2
ð� 2
t



ext2
Þ
, with 
ext as the firing period of the uncon-

nected neurons. This simple rule finally gives rise to a self-organ-

ization and self-amplification mechanism acting on the network,

where clusters emerge as sets of strongly connected and syn-

chronous neurons (weights wij=1). Items that do not have

any connections belong to no cluster and are discarded as

noise. The method is autonomous—no clustering level or

number of clusters to be separated needs to be provided. For

more details and for further illustrations, see (Landis et al.,

2010). The physics picture underlying this process was recently

examined in (Guti�errez et al., 2011). For the result of such

a clustering process, see Figure 9c. In contrast to the

application of the classical hierarchical Wards or the k-means

clustering leading to result shown in Figure 9b, no noise cleaning

preprocessingwas necessitated. Spin-motivated clustering systems

(e.g. Potts-spin clustering; Blatt et al., 1996; Murua et al., 2008;

Ott et al., 2004) work similarly. They start with a ferromagnetic

monobloc system that is then heated, upon which the original

monobloc splits up into pieces that may then remain unaffected

over a considerable temperature interval (and hence are identified

as clusters). Upon further heating, they then split up into even

smaller clusters and finally into singletons. It is easy to see that the

process of heating requires extended computational effort, com-

pared with the neuro-inspired approach.
The question, to what extent the presence of these generic

highly interwoven structures of dissimilar behaviors play a role

in the parameter inference problem considered in systems biology

and elsewhere, is an important and non-trivial one. In a Bayesian

context, posterior distributions on parameter space are likely to

differ vastly from normality. Therefore, standard inference meth-

ods such as the standard Metropolis algorithm could be expected

to fail to converge within reasonable time, and that one might

have to resort to more sophisticated methods such as genetic

population algorithms. In particular, approximate Bayesian

computation (ABC) methods (Toni and Stumpf, 2010) that are

normally used for Bayesian parameter inference where the sto-

chasticity of the model makes the calculation of the likelihood

density prohibitively expensive, might be expected to fail, as the

shrimp phenomena are caused by the non-linearities of the sys-

tems, and not by stochasticity. Lotka–Volterra systems are often

used to demonstrate the efficacy of ABC. These systems are,

however, particular in the sense that they come equipped with

a distribution of center solutions, a case that is more character-

istic for linear than for non-linear systems, where both the par-

ameter and the solution space are more complicated. A natural

conclusion that one might draw is that the methods used for

combinatorial problem optimization with many local minima

(genetic algorithms, particle filters, Monte Carlo methods) have

more potential than the ABC methods, and they will also be

preferable to Kalman filters or to simple gradient descent esti-

mators (Liu and Niranjan, 2012).
To check these expectations, we performed a survey of appli-

cations of ABC methods on our parameter space, where (Toni

et al., 2009; Toni and Stumpf, 2010) served as the references of

models and methods. Our numerical experiments demonstrate

that even in the context of the strongly fractionalized parameter

spaces of non-linear systems, the ABC approaches perform well

(see the for convenience displayed characteristic results in our

Supplemental Material section). This is mainly due to the fact

that they are ensemble based. Linear approximation schemes

[e.g. singular values decomposition or the independent compo-

nent analysis (ICA) methods used in source separation of sounds

(Kern and Stoop, 2011)] usually performed for dimensional re-

duction or directly for a gradient descent step, tend to ignore or

smear the local structures and are therefore far less suited. Seen

in this light, generic data that we presented provide a justification

for the superiority of ensemble-based parameter inference

methods.
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It is mostly in the realm of clustering where the shrimps prop-
erty of non-linear systems is detrimental in the application of the
most prominent and most widely used algorithms.
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