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ABSTRACT For some Lepidopteran pests, such as the grape berry moth Paralobesia viteana (Cle-
mens), poor correlation between males captured in traps baited with sex pheromone and oviposition
activities of female moths has called into question the value of pheromone-based monitoring for these
species. As an alternative, we compared the capture of female and male grape berry moth in panel
traps baited with synthetic host volatiles with captures of males in pheromone-baited wing traps over
two growing seasons in two blocks of grapes in a commercial vineyard in central New York. Lures
formulated in hexane to release either 7-component or 13-component host volatile blends captured
signiÞcantly more male and female grape berry moth on panel traps compared with the numbers
captured on panel traps with hexane-only lures. For both sexes over both years, the same or more
moths were captured in panel traps along the forest edge compared with the vineyard edge early in
the season but this pattern was reversed by mid-season. Male moths captured in pheromone-baited
wing traps also displayed this temporal shift in location. There was a signiÞcant positive correlation
between captured males and females on panel traps although not between females captured on panel
traps and males captured in pheromone-baited traps for both years suggesting pheromone traps do
not accurately reßect either female or male activity. Male moths captured in pheromone traps
indicated a large peak early in each season corresponding to Þrst ßight followed by lower and variable
numbers that did not clearly indicate second and third ßights. Panel trap data, combining males and
females, indicated three distinct ßights, with some overlap between the second and third ßights. Peak
numbers of moths captured on panel traps matched well with predictions of a temperature-based
phenology model, especially in 2008. Although effective, panel traps baited with synthetic host lures
were time consuming to deploy and maintain and captured relatively few moths making them
impractical, in the current design, for commercial purposes.
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Over the past 40 yr there has been a wealth of research
on insect pheromones and their use in pest manage-
ment including monitoring ßight activity, attract and
kill devices, and mating disruption (Ridgway et al.
1990, Rodriguez-Saona and Stelinski 2009). The use of
pheromones for monitoring pest phenology is an im-
portant part of many integrated pest management
(IPM) programs, but their effectiveness varies de-
pending on the system and the type of information
that is sought (Wall 1990). Captures of male moths in
traps baited with synthetic sex pheromone can pro-
vide information on presence of a species in an area,
insect phenology, and in a few cases, also pest density

(Wall 1990). However, the reliability and usefulness of
pheromone-baited traps varies among different Lep-
idopteran species based on how well trap captures of
males correspond to female activity and damage (Wall
1990, Howse et al. 1998). At their most useful, moni-
toring traps can help predict risk of crop damage and
whether damage will exceed thresholds (Shelton and
Wyman 1979, Tingle and Mitchell 1981, Ramaswamy
et al. 1983, Van Steenwyk et al. 1983, Morewood et al.
2000). More commonly, pheromone traps can be use-
ful for providing a bioÞx on the Þrst ßight of a pest
moth in which developmental models can then be
used to predict timing of egg-laying and larval eclosion
for subsequent generations (Riedl et al. 1976, Vickers
and Rothschild 1991, Hoffman et al. 1992, Li and Fitz-
patrick 1997). However, considerable variation can
exist in the relationship between trap catch of males
and timing of egg-laying from site to site and from year
to year, especially for multivoltine species (Alford et
al. 1979, Glen and Brian 1982, Hoffman 1990).

Grape berry moth Paralobesia viteana (Clemens) is
widely distributed in North America east of the Rocky
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Mountains (Gleissner 1943, Taschenberg 1945). Over-
wintered pupae eclose in the spring (May to June),
mate, and initiate the Þrst summer generation (Lu-
ciani 1987, Nagarkatti et al. 2001). Eggs of the Þrst
generation are laid on ßower clusters or young berries
of both wild and cultivated grapes (Taschenberg 1945,
Hoffman 1990). In the northeastern United States
grape berry moth is reported to go through 2Ð3 gen-
erations during the season (Gleissner and Worthley
1941, Gleissner 1943, Hoffman 1990), although in re-
cent years a fourth generation has been observed.
Lower and upper developmental thresholds have re-
cently been determined in the laboratory and used for
modeling grape berry moth phenology (Tobin et al.
2001).

The sex pheromone of grape berry moth was iden-
tiÞed a number of years ago and pheromone-baited
traps have been used to monitor ßight activity of male
grape berry moth (Roelofs et al. 1971, Hoffman and
Dennehy 1989, Witzgall et al. 2000). Flight activity in
the spring appears to correlate relatively well with
female activity and the onset of Þrst generation larvae.
Beyond the Þrst ßight, however, the correlation be-
tween males captured in pheromone traps and egg-
laying activity and damage is often poor (Hoffman et
al. 1992, Botero-Garcés and Isaacs 2003, Teixeira et al.
2009). Hence, pheromone-baited traps have not been
particularly useful for predicting the onset of second
and later-season generations of grape berry moth.

Given the limitations of pheromone trap capture
data in grape berry moth pest management programs
there has been considerable interest in developing
efÞcient and reliable traps for female moths. Female
moths often use plant odors to locate food and ovi-
position sites (Visser 1986, Ramaswamy 1988), and
these cues may be used as attractants for monitoring
purposes (Metcalf and Metcalf 1992, Cossé et al. 1994,
Landolt 2000, Light et al. 2001, Trimble and El-Sayed
2005, Ioriatti et al. 2003, Natale et al. 2003; Hern and
Dorn 2004; Knight and Light 2005a,b; Bengtsson et al.
2006; Schmidt et al. 2007). Based on wind tunnel as-
says, we showed that GRAPE BERRY MOTH females
use volatiles produced from foliage and shoots to lo-
cate grape hosts for oviposition (Cha et al. 2008a). Of
the many volatile compounds produced by grape tis-
sue, 11 common plant volatiles [(Z)-3-hexen-1-yl ac-
etate, (Z)-linalool oxide, (E)- linalool oxide, nonanal,
linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, methyl
salicylate, decanal, �-caryophyllene, germacrene-D,
and �-farnesene] were initially identiÞed using GC-
EAD and GC-MS analytical tools. Further investiga-
tion revealed a full 13-component blend (Table 1) and
two different 7-component blends that resulted in
high levels of upwind orientation equivalent to live
shoots in wind tunnel bioassays (Cha et al. 2008b).

In an initial Þeld trial conducted in a commercial
vineyard late in the Þeld season, traps baited with
either the 13-component blend or one of the 7-com-
ponent blends captured more female grape berry
moth than control traps (Cha et al. 2008b). In the
current study, we evaluated trap captures of grape
berry moth for traps baited with host plant-based lures

or sex pheromone over two Þeld seasons in two blocks
of grapes in a commercial vineyard in New York. We
speciÞcally addressed four objectives:

1. Determine whether traps baited with host plant-
based lures capture more female and male grape
berry moth than control traps over two full Þeld
seasons.

2. Compare the pattern of capture of female and male
grape berry moth in host plant baited traps and
male captures in pheromone traps with respect to
location (forest edge or vineyard edge) and time of
season.

3. Measure the relationship between the capture of
female and male grape berry moth in traps baited
with host plant-based lures with males captured in
pheromone traps.

4. Compare how well captures of moths in host plant-
based traps and pheromone traps reßect generation
peaks of grape berry moth.

Methods

Study Sites.We monitored grape berry moth adults
at two nearby blocks of grapes at a commercial vine-
yard in the Finger Lakes region of central New York,
during the 2008 and 2009 Þeld seasons. One block of
juice grapes (cultivar ÔNiagaraÕ, Vitis labrusca L.) and
referred hereafter as the Niagara site (5.25 ha, total
area), was planted along the east side of a narrow,
wooded, riparian zone that runs North and South
(42.43554 N, 77.13178 W), whereas the second site,
planted with the V. vinifera interspeciÞc hybrid wine
grape Cayuga White, and referred to hereafter as the
Cayuga White site (2.5 ha, total area), was located
�0.25 km to the North, on the west side of the same
wooded zone (42.44039 N, 77.13226 W). grape berry
moth damage is often more severe along vineyard
edges near forests (Hoffman and Dennehy 1989,
Trimble et al. 1991, Botero-Garcés and Isaacs 2003)
and these sites had a previous history of moderate to
high grape berry moth populations. Conventional pro-

Table 1. Relative amounts of volatile compounds for lures used
in the field trapping experiments conducted in 2008 (13-compo-
nent and 7-component lures) and 2009 (7-component lure) in two
vineyard plantings in central New York

Compounds
% 13-component

lure
% 7-component

lure

(E) & (Z)-linalool oxides 4 7
nonanal 9 13
(E)-4,8-dimethyl-1,3,7-

nonatriene
22 33

decanal 18 27
germacrene D 12 17
�-caryophyllene 2 3
(-)-limonene oxide 4
n-undecylaldehyde 7
(E)-2-decenal 7
(-)-limonene 4
n-dodecyl aldehyde 7
linalyl aldehyde 4

See text for loading rates of lures and method of deployment.
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duction practices were followed for these blocks of
grapes with the exception that no insecticides were
applied during the time of this study.
Traps. We used a custom-made plastic panel trap

modiÞed after Knight (2000) for evaluating the host-
plant based lures. This is the same design as used by
Cha et al. (2008b). Brießy, the panel trap is con-
structed by overlaying multiple layers of plastic sheets
(30 cm by 30 cm; Kittrich Co., LA Mirada, CA) with
each sheet coated with STP Oil Treatment. Six holes
(2.5 by 2.5 cm) were made into each trap (three on top
and three on bottom), with a 10 mm-diameter white
rubber septum (Kimble Chase LLC, NJ) attached at
each hole with a metal pin inserted through the middle
plastic layer and woven back out again in manner that
placed the pin in the center of each hole. Each set of
plastic sheets was attached to a 4 cm � 32 cm piece of
wood using two binder clamps with wire attached to
holes in the binder clamps to make a hoop. Each week
one layer of plastic was removed from each side of the
panel trap thereby exposing clean sheets. New sets of
plastic sheets were installed as necessary during the
season. A Bio-lure Scenturion delta trap (Suterra LLC,
Bend, OR), with a sticky insert for the trap bottom,
was used to evaluate grape berry moth sex pheromone
lures. A 8-mm red rubber septa (Thomas ScientiÞc,
Swedesboro, NJ), loaded with 100 �g of the 2-com-
ponent sex pheromone blend of (Z)-9-dodecenyl ac-
etate and (Z)-11-tetradecenyl acetate (9:1 ratio) in
Geneva, NY, was attached by a pin inserted through
the top, in the middle of the trap. Sticky inserts were
replaced as needed. All the lures were allowed to dry
for 1 h to minimize the amount of solvent residue in
the rubber septa.
Field Experiment, 2008. Panel traps were deployed

at the Cayuga White and Niagara sites starting in May
2008. Traps were assigned to one of three treatments:
1) 13-component synthetic host plant blend mixed in
hexane, 2) 7-component synthetic blend mixed in
hexane and 3) hexane control (Table 1). For traps
with synthetic host plant-based lures, a relatively low
dose was used for the top three septa (13-C blend �
168.5 �g/septa, 7-C blend � 112.5 �g) and a relatively
highdose(13-Cblend�337.5 �g, 7-Cblend�225 �g)
was used for the bottom three. The two different doses
are within the range of doses that female grape berry
moth is attracted to in the ßight tunnel (Cha et al.
2011). The high concentration lure was expected to
stay attractive longer than the low concentration lure
in the Þeld. However, based on ßight tunnel obser-
vations, it was also possible that these lures would be
too strong initially under Þeld conditions and deter
moths. We reasoned the lower concentration lures
would not be as initially repellent. Putting the stronger
lures on the bottom of the trap was arbitrary. For
control traps, the rubber septa were loaded with 300
�l of hexane. Each treatment was replicated three
times per site along the forest edge adjacent to the
vineyard in three blocks and in the vineyard edge in
three blocks for a total of six replicates per site per
treatment (three in forest edge, three in vineyard),
with traps placed at least 10 m apart. Panel traps

installed in forest edge were hung from tree branches
at 1Ð2 m height while panel traps in vineyards were
hung from the top trellis wire at 1.5 m. Pheromone
traps were also deployed along the forest edge and
vineyard edge at each site, with three traps per loca-
tion for a total of six traps per site. Pheromone traps
were hung at similar heights as panel traps with at least
10 m separation between pheromone traps or panel
traps. Vegetation was cleared away from the immedi-
ate vicinity of trap surfaces during the season. Host
plant and pheromone lures were replaced approxi-
mately every month.

Traps were checked for moths three to Þve times
per week starting in May and ending in the middle of
September. At each visit captured moths were re-
moved from the exterior plastic sheets and placed in
marked vials and returned to the lab to conÞrm iden-
tiÞcation, and to determine sex, based on shape of
antennae, abdomen and genitalia, and mating status of
females using a dissecting scope. Mating status deter-
mination was based on the size and shape of the bursa
copulatrix. For pheromone traps, the number of male
grape berry moths was determined at each visit and
the moths removed from the sticky insert.
Field Experiment, 2009. A similar experimental

plan was used in 2009 as in 2008 with the following
changes. Rather than two different host plant-based
synthetic lures, we used only the 7-Component blend
in 2009 compared with control traps with hexane-
loaded septa (300 �l) (Table 1). For the 7-component
lure, the low release rate was 112.5 �g/septa and high
release rate was double this amount. Total replication
per treatment was the same between the two years.
The number of pheromone traps deployed was re-
duced from six traps per site (three in forest edge,
three in vineyard) to four traps per site (two in forest
edge, two in vineyard) in 2009.
Statistical Analyses. Mixed model analysis of vari-

ance (ANOVA) with repeated measures was used to
analyze the effect of host plant-based lure, location
(forest edge or vineyard edge), site, block and season
on captures of male and female moths on panel traps
with trap number as the repeated subject with au-
toregressive order one covariance structure (Proc
Mixed, SAS version 9.2, SAS Institute). Season was
deÞned according to three time periods, early (May to
the end of June), mid (July), and late (August to early
September), that approximately match the timing of
three generations of grape berry moth during the
season. Mixed model ANOVA with repeated measures
was also used to analyze the effect of location, site, and
season for male grape berry moth captured in pher-
omone traps. The effects of linear combinations of
independent variables were compared using contrast
statements in SAS Proc Mixed (Littell et al. 1996). For
each seasonal category, we summed the total number
of moths captured per trap over that time interval. The
relationship between males and females captured on
panel traps and the relationship between males cap-
tured in pheromone traps and females and males cap-
tured on panel traps was evaluated through regression,
using total number of captured moths per week,
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summed over all traps (JMP statistical package, ver-
sion 8, SAS Institute 2009). Analyses were carried out
for the 2008 and 2009 Þeld seasons separately.

Results

Male, mated female, and unmated female grape
berry moth were captured on panel traps during the
2008 and 2009 Þeld seasons. In total, 131 males, 81
mated females, and 25 unmated females were col-
lected from 36 panel traps in 2008 (all treatments
combined) and 104 males, 148 mated females and
nine unmated females were collected from 32 traps
in the 2009 Þeld season. Because the majority of
females captured were mated (81 out of 106 or 76%
in 2008, 148 out of 157 or 94% in 2009) we combined
unmated and mated females for subsequent analy-
ses. In 2008, there was a signiÞcant effect of type of
lure on total female grape berry moth captured on
panel traps (Table 2; Fig. 1). Averaged across season
and location, the 7-component lure trapped signif-
icantly more female grape berry moth (approxi-
mately triple) than control traps (contrast “control”
versus “7-component lure”; F1,24.2 � 7.23, P� 0.01).
While we captured an average of twice as many
females on traps baited with the 13-component lure
compared with control traps, this was not statisti-
cally different (F1,24.2 � 1.46, P � 0.24). No statis-
tical differences were found between the 7-compo-
nent lure and the 13-component lure (F1, 24.2. � 2.19,
P � 0.15). There were no signiÞcant interactions
between the lure treatment and other independent
variables. Site, by itself, did not explain a signiÞcant
amount of variation in number of females on panel
traps in 2008, although a two-way (site and season)
and a three-way interaction (site by season by lo-
cation) were signiÞcant (Table 2). There was a
signiÞcant overall main effect of location and season
as well their interaction and the three-way interac-
tion noted above (Table 2). For the Cayuga White

block, approximately the same number of females
were captured at the forest edge and vineyard edge
early (F1,24 � 0.53, P� 0.73) and the mid-part of the
season (F1,24 � 1.77, P � 0.20), but more females
were captured in the vineyard edge relative to the
forest edge by the end of the season (F1,24 � 28.41,
P � 0.001, Fig. 1). For the Niagara block, no differ-
ences were seen between the forest and vineyard
edges at the early, middle or late part of the season,
although the trend was for more moths captured in
the vineyard as the season progressed.

Similar results were obtained for female grape berry
moth in 2009 with twice as many captured on traps
with the plant lure relative to control (Table 2; Fig. 2).
Differences between the synthetic host lure and con-
trol were most apparent toward the end of the season
in the vineyard traps, hence the signiÞcant interaction
between lure and season and lure, season and location
(Table 2).

Approximately the same number of females were
captured in the forest edge and vineyard edge early in
the season (averaged across site) and more were cap-
tured in the vineyard late in the season (F1,38.8 �
104.24, P � 0.001, Table 2; Fig. 2).

The number of male grape berry moth captured
on panel traps was signiÞcantly greater for traps
baited with host plant lures compared with the con-
trol traps in the 2008 Þeld season (Table 3; Fig. 3).
Approximately three times as many males were cap-
tured on traps baited with the 13-component lure
(F1,32.1 � 11.56, P � 0.002) or 7-component lure
(F1,32.1 � 7.51, P � 0.01) than control traps. There
was no difference between numbers captured on
7-component and 13-component traps (F1,32.1 �
0.44, P � 0.51). Differences in males captured on
panel traps between synthetic host lures and control
traps were greatest early in the season, but became
statistically insigniÞcant by late in the season, hence
the signiÞcant interaction between lure and season
(Table 3; Fig. 3). More males were captured in the

Table 2. Mixed model repeated measures ANOVA results for total no. of females (mated and unmated) collected on panel traps at
two vineyard plantings in central New York for 2008 and 2009 as affected by Site, Location (forest edge, vineyard edge), Lure (control,
7-C blend, 13 -C blend in 2008, control and 7-C blend in 2009), Season (early, middle or late) and interactions

Effect
2008 2009

Num DF Den DF F P Num DF Den DF F P

Site 1 7.69 2.02 0.195 1 10.7 4.30 0.063
Location 1 7.69 7.20 0.029 1 10.7 29.32 �0.001
Lure 2 23.8 3.57 0.044 1 17.0 28.53 �0.001
Lure*location 2 23.8 1.58 0.227 1 17.0 9.98 0.006
Site*location 1 7.69 1.40 0.272 1 10.7 3.89 0.075
Site*lure 2 23.8 0.68 0.518 1 17.0 0.56 0.465
Lure*site*location 2 23.8 0.25 0.781 1 17.0 0.74 0.401
Season 2 51.9 5.46 0.007 2 51.5 48.12 �0.001
Season*site 2 51.9 4.73 0.013 2 51.5 1.15 0.325
Season*location 2 51.9 9.68 �0.001 2 51.5 43.73 �0.001
Season*lure 4 53.4 0.62 0.648 2 51.5 12.88 �0.001
Season*site*location 2 51.9 4.88 0.011 2 51.5 2.39 0.102
Season*lure*location 4 53.4 1.86 0.131 2 51.5 13.51 �0.001
Season*lure*site 4 53.4 0.12 0.974 2 51.5 0.49 0.613
Season*lure*site*location 4 53.4 0.40 0.811 2 51.5 0.29 0.750

Results for 2008 and 2009 analyzed separately. Num DF and Den DF abbreviations indicate numerator and denominator degrees of freedom,
respectively.
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forest edge early in the season (F1,71.5 � 17.39, P �
0.001), but this pattern was reversed late in the
season (F1,71.5 � 10.18, P � 0.002, Fig. 3). Similar
results for males captured on panel traps were ob-
tained in 2009 with the exception that we observed
a signiÞcant main effect of trap location and season,
which was not the case for 2008 (Table 3; Fig. 4). We
did not detect any statistically signiÞcant differ-
ences because of site for males on panel traps for
either 2008 or 2009.

The ratio between male and female grape berry
moth captured on panel traps varied over the season,
ranging from a male bias in the early season (�3.5
males per female captured on panel traps baited with
synthetic host lure in 2008 and 1.3 males per female in
2009) to a more even ratio toward the middle (2008:
1.1 males per female, 2009: 1.0 males per female) and
a bias to females during the later part of the season
(2008: 0.7 males per female, 2009: 0.4 males per fe-
male).

In 2008 a total of 1,931 moths were collected from
12pheromone traps,whereas in2009wecounted1,929
from eight traps. There was a signiÞcant effect of
season in both years, with more males being captured
in the early part of the season compared with the mid
and late parts. Overall, more males were collected at
the Niagara site than at the Cayuga White site in 2009
but not 2008 (Table 4). There also was a signiÞcant

interaction between site and season for 2009 with
more males being captured in the Niagara site early
compared with the Cayuga White site (mean total of
222 per trap verses 74) and the reverse late (46 per trap
verses 96). As expected, more males were collected
from pheromone traps located in the forest edge com-
pared with the vineyard early in the season (2008:
mean total per forest edge trap � 267, mean total per
vineyard trap � 116; 2009: forest trap � 197, vineyard
trap � 99), with the opposite pattern developing by
mid season (2008: mean total per forest trap � 9, mean
total per vineyard trap � 25; 2009: forest trap � 12,
vineyard trap � 33) as indicated by the signiÞcant
interaction between location and season for both Þeld
seasons (Table 4).

Using total numbers from all traps by week, males
captured in pheromone traps was not a good predictor
of females in panel traps in either Þeld season (2008:
F1,34 � 1.45, P� 0.24, r � �0.20; 2009: F1,34 � 0.12, P�
0.73, r � �0.06). In contrast, there was a signiÞcant
positive relationship between males captured in panel
traps and females in panel traps (2008: F1,34 � 6.30,P�
0.017, r� 0.40; 2009: F1,34 � 25.9, P� 0.001, r� 0.66).
The relationship between males captured in phero-
mone traps and on panel traps was signiÞcantly pos-
itive in 2008 but unrelated in 2009 (2008: F1,34 � 4.08,
P� 0.05, r� 0.32, 2009: F1,34 � 1.37,P� 0.25, r� 0.19).

Fig. 1. Mean total grape berry moth females � SEM captured per panel trap baited with either host plant-based lures
(13-component [black bar] or 7-component [gray bar] blends, see Table 1) or hexane control [white bar] in Niagara and
Cayuga White vineyard blocks for traps located on the forest edge and vineyard edge during the early, middle and late parts
of the 2008 Þeld season. The effect of a speciÞc lure at a speciÞc site, location and season combination was compared with
control by using contrast statements in SAS Proc Mixed. Statistical differences between lure treatments and control at the
P � 0.05 level indicated by ** and at the P � 0.1 level indicated by *.
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Combining male and female grape berry moth cap-
tured on panel traps (all treatments) and plotting
numbers against week during the Þeld season shows
three periods of activity: the spring ßight adults from
overwintered pupae, the second, mid-season ßight
and a late-season ßight. This was most evident for 2008
Þeld season, in which the mid-season ßight encom-

passes two peaks occurring fairly close in time (Fig.
5A); less so for 2009, especially the second and third
ßights (Fig. 5C). This is in contrast to the lack of
evidence of the second ßight with males captured in
pheromone traps (Figs. 5B and 5D). Peak number of
captured male and female moths in panel traps in 2008
occurred during the week of 9 June, then 14 July

Fig. 2. Mean total grape berry moth females � SEM captured per panel trap baited with either host plant-based lure
(7-component blend [gray bar], see Table 1) or hexane control [white bar] in Niagara and Cayuga White vineyard blocks
for traps located on the forest edge and vineyard edge during the early, middle and late parts of the 2009 Þeld season. The
effect of a speciÞc lure at a speciÞc site, location and season combination was compared with control by using contrast
statements in SAS Proc Mixed. Statistical differences between lure treatments and control at the P � 0.05 level indicted by
** and at the P � 0.1 level indicated by *.

Table 3. Mixed model repeated measures ANOVA results for total no. of males collected on panel traps at two vineyard plantings in
central New York for 2008 and 2009 as affected by Site, Location (forest edge, vineyard edge), Lure (control, 7-C blend, 13 -C blend
in 2008 and control and 7-C blend in 2009), Season (early, middle or late) and interactions

Effect
2008 2009

Num DF Den DF F P Num DF Den DF F P

Site 1 32.1 0.11 0.737 1 29.3 2.73 0.109
Location 1 32.1 0.55 0.462 1 29.3 5.08 0.032
Lure 2 32.1 6.49 0.004 1 29.3 9.04 0.005
Lure*location 2 32.1 2.75 0.079 1 29.3 0.56 0.458
Site*location 1 32.1 2.42 0.129 1 29.3 3.25 0.081
Site*lure 2 32.1 0.17 0.845 1 29.3 0.56 0.458
Lure*site*location 2 32.1 0.44 0.645 1 29.3 1.45 0.239
Season 2 50.3 0.63 0.539 2 49.0 6.17 0.004
Season*location 2 50.3 14.57 �0.001 2 49.0 19.94 �0.001
Season*site 2 50.3 0.90 0.412 2 49.0 1.05 0.357
Season*lure 4 51.5 4.21 0.005 2 51.5 12.88 �0.001
Season*site*location 2 50.3 0.18 0.834 2 49.0 0.90 0.412
Season*lure*location 4 51.5 1.48 0.221 2 49.0 1.17 0.319
Season*lure*site 4 51.5 0.24 0.913 2 49.0 0.80 0.455
Season*lure*site*location 4 51.5 0.12 0.976 2 49.0 0.42 0.660

Results for 2008 and 2009 analyzed separately. Num DF and Den DF abbreviations indicate numerator and denominator degrees of freedom,
respectively.
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(assuming the two middle peaks in Fig. 5A are part of
the same ßight), and a third peak on 25 August. The
peak number of captured males in pheromone traps
occurred during the week of 26 May for Þrst ßight, no
clear peak for the middle of the season but possibly 28
July, and 25 August for the third peak. In 2009, the Þrst
peak in captured adults in panel traps occurred be-
tween 29 May and 14 June, with no clear second peak
until 27 July, followed by a Þnal peak on 1 September.
For males in 2009 there was a clear Þrst peak near 1
June, and then no clear second peak until perhaps 6
August, followed by a third peak on 19 August and a
possible fourth peak on 8 September.

The number of male and female grape berry moth
moths captured on panel traps baited with host-based
lures tended to be low compared with males captured
in pheromone-baited wing traps, especially early in
the season. For example, in the spring of 2008 the
average number of males caught in pheromone traps
was, at its peak, 56 (SE � 18.1) males/trap/wk com-
pared with an average of 0.8 (SE � 0.6) males �
females/panel trap/wk for the 13-component blend
and 1.3 (SE � 0.6) males � females/panel trap/wk for
the 7-component blend. At the mid-season peak in
2008 males captured in pheromone traps were much
lower relative to the spring peak (mean � 3.9 males/
trap/wk, SE � 0.7), but were still several times greater
than total males and females captured on panel traps

at the mid-season peak (mean for 13-component
lure � 0.9 per trap/wk, SE � 0.3; mean for 7-compo-
nent lure � 1.2 per trap/wk, SE � 0.3). At the late-
season peak in 2008 the mean number of males cap-
tured in pheromone traps was 8.6 (SE � 2.7) males/
trap/wk compared with 0.9 males � females/panel
trap/wk (SE � 0.3) for the 13-component lure and 0.8
males � females/panel trap/wk (SE � 0.3) for the
7-component lure.

Discussion

Previous research on P. viteana identiÞed a number
of relatively common volatile compounds produced
by grapes that were active in attracting female grape
berry moth. This work was mostly based on electro-
physiological and behavioral studies conducted in the
laboratory (Cha et al. 2008a,b). In the current study
we demonstrated in a commercial vineyard over two
Þeld seasons that traps baited with lures loaded with
blends of these key volatile compounds captured sig-
niÞcantly more female grape berry moth than control
traps. Although it has been well established that fe-
male moths use host volatiles for host location (Visser
1986), there are relatively few cases where the essen-
tial compounds have been identiÞed and successfully
used under Þeld conditions to monitor female phe-
nology and spatial and temporal distribution. Codling

Fig. 3. Mean total grape berry moth males � SEM captured per panel trap baited with either host plant-based lures
(13-component [black bar] or 7-component [gray bar] blends, see Table 1) or hexane control [white bar] in Niagara and
Cayuga White vineyard blocks for traps located on the forest edge and vineyard edge during the early, middle and late parts
of the 2008 Þeld season. The effect of a speciÞc lure at a speciÞc site, location and season combination was compared with
control by using contrast statements in SAS Proc Mixed. Statistical differences between lure treatment and control at the P�
0.05 level indicted by ** and at the P � 0.1 level indicated by *.
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moth, another tortriciid and major pest of fruit crops,
is perhaps the best example where a host derived
kairomone [(E,Z)-2,4-decadieonoate] from pear has
been used in North America, Europe, and Australia to
monitor moths in the Þeld, mostly in research mode
(Light et al. 2001, Ioriatti et al. 2003, IlÕchev 2004,
Knight and Light 2005a,b). Schmidt et al. (2007) dem-
onstrated Þeld level activity of the pear ester not only
for codling moth but also several other Tortricid spe-
cies. In another well-studied system, the essential
volatiles used by the European berry moth Lobesia
botrana, also a blend of common plant volatiles, have

been identiÞed through a process quite similar to one
used for P. viteana (Tasin et al. 2005; Tasin et al.
2006a,b; Tasin et al. 2007). To date Þeld trials for L.
botrana have been limited to large enclosure experi-
ments where traps baited with the synthetic host lure
captured signiÞcantly more female moths than control
traps (Anfora et al. 2009).

We found signiÞcantly more male grape berry moth
also were captured on panel traps baited with syn-
thetic host plant lures compared with control traps in
this study suggesting that males use at least some of the
same host volatiles as females. Male codling moth also

Fig. 4. Mean total grape berry moth males � SEM captured per panel trap baited with either host plant-based lure
(7-component blend [gray bar], see Table 1) or hexane control [white bar] in Niagara and Cayuga White vineyard blocks
for traps located on the forest edge and vineyard edge during the early, middle and late parts of the 2009 Þeld season. The
effect of a speciÞc lure at a speciÞc site, location and season combination was compared with control by using contrast
statements in SAS Proc Mixed. Statistical differences between lure treatment and control at the P � 0.05 level indicted by
** and at the P � 0.1 level indicated by *.

Table 4. Mixed model repeated measures ANOVA results for total no. of males collected on pheromone traps at two vineyard plantings
in central New York for 2008 and 2009 as affected by Site, Location (forest edge, vineyard edge), Season (early, middle or late) and
interactions

Effect
2008 2009

Num DF Den DF F P Num DF Den DF F P

Site 1 3.62 0.46 0.541 1 4.66 6.68 0.053
Location 1 3.62 2.84 0.174 1 4.66 0.42 0.549
Site*location 1 3.62 0.01 0.947 1 4.66 0.83 0.407
Season 2 6.98 46.90 �0.001 2 8.32 71.57 �0.001
Season*site 2 6.98 0.84 0.470 2 8.32 72.96 �0.001
Season*location 2 6.98 15.44 0.003 2 8.32 40.71 �0.001
Season*site*location 2 6.98 0.18 0.834 2 8.32 0.67 0.539

Results for 2008 and 2009 analyzed separately. Num DF and Den DF abbreviations indicate numerator and denominator degrees of freedom,
respectively.
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is captured in traps baited with the pear ester kairo-
mone under Þeld conditions (Light et al. 2001, Ioriatti
et al. 2003, Yang et al. 2004). In contrast, in ßight-
tunnel trials male European berry moth did not orient
to grapes or other grape tissue whereas females did
(Masante-Roca et al. 2007). However, there is a grow-
ing body of evidence that male moths of a signiÞcant
number of species are able to perceive and respond to
host plant volatiles and in some cases, the addition of
plant volatile cues with sex pheromone can result in
increased capture of males (Light et al. 1993, Landolt
and Phillips 1997, Yang et al. 2004, Schmidt-Büsser et
al. 2009 but see Trimble and El-Sayed 2005). Indeed,
a more recent study showed that male L. botrana
oriented to their host plant volatiles (Von Arx et al.
2011). The potential of improving the usefulness of
pheromone-baited traps for grape berry moth by the
addition of host plant volatiles is worth further inves-
tigation.

The pattern of capturing more grape berry moth
males in pheromone-baited traps compared with adult
moths in host odor baited traps has been observed for
codling moth and some other tortricid moths, al-
though during some time periods and/or management
practices the pattern is reversed (Light et al. 2001,
Ioriatti et al. 2003,Knight andLight2005a,Trimbleand
El-Sayed 2005, Schmidt et al. 2007).

The ratio between male and female codling moth
captured in traps baited with pear ester is variable as
was the case for grape berry moth. Some studies have
found a more or less even ratio (Light et al. 2001,
Knight and Light 2005a) whereas others have found a
modest to strong male bias, at least for some ßights
(Ioriatti et al. 2003, Trimble and El-Sayed 2005,
Schmidt et al. 2007). Reasons for seasonal variation in

sex ratio in kairomone-baited traps are not clear but
likely involve multiple factors, such at release rate of
attractants, trap design, and trap placement (Ioriatti et
al. 2003, Knight and Light 2005b).

The use of pheromone traps to determine grape
berry moth ßight phenology, based on the capture of
males, canbeproblematic, especially later in thegrow-
ing season (Hoffman et al. 1992, Botero-Garcés and
Isaacs 2003, Teixeira et al. 2009). This is highlighted by
our results in which males captured in pheromone
traps were not well correlated to females or males
captured in panel traps. Interestingly, though, males
and females captured on panel traps were signiÞ-
cantly, positively correlated in both Þeld seasons, sim-
ilar to the captures of male and female codling moth
in pear ester-baited traps (Light et al. 2001, Trimble
and El-Sayed 2005, Knight and Light 2005a). On a
practical level, if host plant based lures were to be used
commercially it may not be necessary to distinguish
between males and females.

A large peak in males captured in pheromone traps
for the spring ßight followed by much lower levels
later in the season, often without any clear peaks,
commonly has been observed for grape berry moth
(Teixeira et al. 2009 and references therein). It had
been assumed that grape berry moth males are pro-
tandrous and emerge from overwintering diapause
before females. Data on developmental rates do indi-
cate slightly faster development in males than females
(Tobin et al. 2001), although it is a relatively small
difference. Moreover, we did not observe earlier cap-
ture of males than females on panel traps. Overall, we
did not observe a close correlation between males
captured in pheromone traps and males or females
captured on panel traps. This is in contrast to codling

Fig. 5. Mean total number (log transformed) of grape berry moth captured during the Þeld season for 2008 and 2009.
A. Males and females captured on panel traps (combining data from traps with host plant based lures and hexane control
traps) in 2008. B. Males captured in pheromone-baited traps in 2008. C. Males and females captured on panel traps (combining
traps with host plant based lure and hexane control traps) in 2009. D. Males captured in pheromone-baited traps in 2009.
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moth where the pattern (seasonal peaks) is compa-
rable between captured males in pheromone traps and
males and females in traps baited with pear ester
(Light et al. 2001, Knight and Light 2005a).

One possible explanation for poor correlation be-
tween male grape berry moth captured in pheromone
traps and traps baited with synthetic host plant cues is
that the 2-component sex pheromone lure used com-
mercially for grape berry moth [(Z-9-dodecenyl ac-
etate and (Z)-11 tetradecenyl acetate in a 9:1 ratio] is
not a sufÞciently close mimic to the actual female-
produced pheromone. As such, early in the season,
when females are not yet calling, the pheromone-
baited traps are highly attractive to any males in the
vicinity. However, when females begin calling they
are more attractive to males than the synthetic pher-
omone. Hence, beyond the Þrst ßight, pheromone
traps are relatively poor at tracking generational
ßights of grape berry moth. A study of the chemical
constituents of the pheromone gland of grape berry
moth revealed a number of small chain acetates and
alcohols in addition to the two main components cur-
rently used in commercial lures (Witzgall et al. 2000).
However, lures including some of these additional
compounds did not increase the number of males
captured in traps in Þeld tests relative to the commer-
cially used blend. It would be interesting to compare
the efÞcacy of the commercial synthetic blend with
tethered virgin females to further test how well the
commercial blend competes over the season.

The pattern of captured males and females on panel
traps provided a clearer picture of generation peaks
than males in pheromone traps, especially for the
middle and later part of the season. This was most
evident in the 2008 where three peaks are clearly
discernable on 3 June, 14 July and 25 August. The
different generation ßights of grape berry moth should
be predictable based on temperature and degree-day
accumulations. Based on growth chamber experi-
ments Tobin et al. (2001) estimated a lower develop-
mental threshold of 8.9�C and �410 DD to go from egg
to adult female. grape berry moth females typically do
not begin laying eggs for 3Ð4 d after eclosion in the lab
at a constant 23�C. Hence we estimated DD require-
ments to go from egg to egg-laying female at �450. The
interval between peaks in 2008 is very close to this
amount (413 between 3 June and 16 July and 485
between 16 July and 25 August). For males in 2008 the
interval between the Þrst and second peak was 739 DD
and 313 DD between second and third. For the 2009
Þeld season generational peaks in males and females
captured on panel traps were less distinct than in 2008,
especially for the onset of the third ßight. The DD
accumulation between the Þrst and second peak was
�547 DD and 424 DD between the second and third
peaks. Although panel trap data appears to better
reßect intervals between peaks than pheromone trap
data, there is still considerable variability. In part, this
variability may be because of prolonged emergence of
adults from winter diapause (Tobin et al. 2002).

Panel traps baited with the synthetic host plant lure
captured signiÞcantlymoremaleand femalegrapeberry

moth than control traps. Moreover, these traps provided
a more accurate picture of seasonal ßight patterns com-
pared with traps baited with synthetic grape berry moth
pheromone. Therefore, host plant based lures could be
useful to improve the timing of pest management activ-
ities for grape berry moth such as determining optimal
times to apply insecticides or to monitor for damage.
However, two constraints limit their utility for commer-
cial vineyard operations. First, the capture rates on a per
trap basis were quite low in these Þeld trials. Hence, it
was necessary to deploy 15 or more traps per vineyard to
capture a meaningful number of moths. The traps re-
quired nearly daily checking to ensure that specimen
were in good shape for species and gender identiÞcation
and oil-coated sheets needed replacement roughly once
per week. Overall, the lure and panel trap design are
currently neither efÞcient enough nor sufÞciently easy
tousetobecommerciallyviable.Reasonsfor lowcapture
efÞciency could include design of the trap, loading and
release rate of the lure, and probably most importantly,
competition fromthe surroundinggrapevines.Lowcap-
ture rates also are observed for codling moth when the
pear ester is used in pear orchards or later-season apple
orchards (Light et al. 2001). These represent major chal-
lenges to fully exploiting host plant volatiles for moni-
toring and pest management of grape berry moth and
other moth pests.
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