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Physiological and affective computing propose methods to improve human–machine interactions by
adapting machines to the users’ states. Recently, social signal processing (SSP) has proposed to apply
similar methods to human–human interactions with the hope of better understanding and modeling
social interactions. Most of the social signals employed are facial expressions, body movements and
speech, but studies using physiological signals remain scarce. In this paper, we motivate the use of
physiological signals in the context of social interactions. Specifically, we review studies which have
investigated the relationship between various physiological indices and social interactions. We then
propose two main directions to apply physiological SSP: using physiological signals of individual
users as new social cues displayed in the group and using inter-user physiology to measure properties
of the interactions such as conflict and social presence. We conclude that physiological measures have

the potential to enhance social interactions and to connect people.

RESEARCH HIGHLIGHTS

• The work on physiological computing, affective computing and social signal processing is briefly
reviewed.

• Physiological indices of social interactions are reviewed in the context of social psychology and
neuroscience and examples of applications are given.

• Two research directions are proposed to use physiological signals for social signal processing:

◦ the display of new physiological and social cues;
◦ the use of multi-person physiological activity as a measure of social interactions.
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1. INTRODUCTION

Human–computer interaction (HCI) aims at the design of
human–computer interfaces that are functional, usable and
that induce positive user experiences. Reaching those goals,
particularly user experience enhancement, can be achieved
by analyzing and properly reacting to users’ emotional states
as was proposed by Picard (1997) who initiated the field
of affective computing. Affective computing aims at the

development of machines that are able to recognize and
display emotions in order to bring HCI closer to human
communication. Emotion recognition can be achieved by
several means, for instance through the inference of facial
expressions and vocal prosody (Gunes et al., 2008; Zeng
et al., 2009). Physiological computing (Fairclough, 2009) is a
powerful method to infer information about computer users’
states through the collection of their physiological signals
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and has often been used to perform emotion recognition
(Chanel et al., 2009; Fairclough, 2009; Lisetti and Nasoz,
2004; Mühl et al., 2014a). Results are now clearly converging,
demonstrating the interest and efficiency of this type of signals
for affective computing, especially when combined with other
modalities (Koelstra and Patras, 2013; Koelstra et al., 2012;
Soleymani et al., 2012).

Emotion assessment technology allows for the development
of interfaces able to better adjust to human communication.
However, emotions are not the only non-verbal signals that
humans communicate. There is a wide range of social signals
and behaviors (Mehu and Scherer, 2012; Vinciarelli et al.,
2012) that should be taken into account by computers to
improve HCI. Examples are head nodding, gestures with
communicative intention (e.g. signs and emblems) and speaker
interruptions. The analysis of those signals and their inclusion
in human–machine interfaces has been named social signal
processing (SSP) (Pentland, 2007; Vinciarelli et al., 2012).
Interestingly, the application of SSP is not limited to the
improvement of machines as it can be used to better understand
the social interactions taking place in a group of individuals
(Pentland, 2006). Analyzing social interactions is particularly
relevant with the increasing development of on-line social
platforms, collaborative computer supported work and any
other form of computer-mediated communication. In these
contexts, the computer mediation allows one to enrich the
interaction, when compared with face to face interactions, with
new social cues (e.g. smileys, age detectors) and to adapt the
interaction with the hope to improve it (e.g. providing advice
to resolve a conflict).

Research in social psychology and neuroscience has shown
that physiological activity is related to several social processes
such as empathy (Levenson and Ruef, 1992) and many other
social behaviors (Adolphs, 2003; Levenson and Gottman,
1983). In spite of these results, physiological signals have
rarely been employed to analyze any social cues other

than affective expressions. Given the lack of studies in
physiological computing which tries to account for social
interactions, the objective of this article is to propose paths to
strengthen this innovative research direction. First, a general
background on affective computing, physiological emotion
assessment and SSP is given in Section 2. Then, Section 3
discusses findings in social neuroscience and physiology
which motivate the use of physiological signals for SSP. In
Section 4, two directions are proposed to include physiological
computing in the field of SSP: the use of physiological signals
as new social cues and the use of physiological coupling to
measure the nature of social interactions. Potential applications
to illustrate those two research directions are given and
Section 4 concludes on the current challenges of the domain.

2. BACKGROUND

2.1. Physiological affective computing

The goal of affective computing is to build machines able to
detect non-verbal cues given by users and react accordingly.
By including emotions in the human–computer loop (Fig. 1), it
is expected that computers will better understand and respond
to the needs of their users. A first step toward the design
of these intelligent interfaces is emotion assessment. The
detected emotional state is then used to synthesize appropriate
responses using emotionally expressive agents and to adapt the
machine behavior. Affective computing has gained increasing
popularity in the last 20 years and is now approaching maturity
as reflected by the number of emerging applications. For
instance, video games that adjust their difficulty to the player’s
emotions (Chanel et al., 2012a; Liu et al., 2009) or that
can be controlled by self-induced affect (Mühl et al., 2010)
have been developed. The maturity of affective computing is
also demonstrated by the performance of emotion recognition
algorithms which are, in specific situations, able to detect

Figure 1. Affective computing aims at including emotions in the human–computer loop.

Interacting with Computers, Vol. 27 No. 5, 2015



536 Guillaume Chanel and Christian Mühl

emotions (Janssen et al., 2013b) and deception (Bartlett et al.,
2014) better than humans.

During human–human interactions, emotions are commu-
nicated either verbally or through non-verbal signals such as
facial expressions and tone of voice. The video capture of
facial expressions together with voice capture are certainly the
most studied modalities for the purpose of emotion assess-
ment (Calvo and D’Mello, 2010; Cowie et al., 2001; Gunes
et al., 2008; Pantic and Rothkrantz, 2003; Zeng et al., 2009).
Bodily emotional expressions are also exploited for this pur-
pose and include the study of body postures (Kleinsmith et al.,
2011) as well as movements and gestures (Castellano et al.,
2007, 2010; Gunes et al., 2013). Finally, given the importance
of physiology and cognition in emotions (Ortony et al., 2007;
Sander et al., 2005), physiological signals, reflecting the activ-
ity of the central and peripheral nervous system, have also been
employed for emotion assessment (Calvo and D’Mello, 2010;
Chanel et al., 2009; Fairclough, 2009; Mühl et al., 2014a).

When compared with other sources of emotional informa-
tion, such as speech, gestures and facial expressions, physi-
ological signals present several advantages for emotion and
experience assessment (Kivikangas et al., 2011; Mandryk
et al., 2006; Mühl et al., 2014a): they are mostly involuntary
and as such are quite insensitive to deception, they can be used
to measure the affective states continuously, and physiological
reactions can be observed as soon as 200 ms after emotional
stimuli in the case of neurophysiological signals. In addition,
physiological signals are not part of the modalities used by
humans to recognize others’ emotions which imply that they
could be used to augment human–human affective communi-
cation. Finally, in the case of impaired users that cannot move
facial muscles or express themselves, several physiological
signals, for example neurophysiological activity, are still avail-
able for emotion assessment. All these arguments motivate the
use of physiological signals in conjunction with other affective
signals.

2.2. Social signal processing

Among emotion theories, the social constructivist view
(Cornelius, 1996) has emphasized the role of the social context
in shaping emotions as well as the importance of emotions
for social interactions. On the one hand, the role of the
social context is illustrated by the results of Jakobs et al.
(1997), showing that co-experience and co-expression of an
emotion increases the intensity of the felt emotion. Social
phenomena such as emotion contagion, empathy (Hatfield
et al., 2009) and conflicts also demonstrate how the emotional
climate in a group can influence one’s emotions. On the other
hand, emotions have important functions in social situations.
According to Van Kleef (2009) emotional expressions provide
information about the producer which are then used by the
observers to adjust their social behavior. For instance, it has

been shown (Van Kleef, 2006) that displayed emotions can
strongly influence the result of a negotiation, particularly in the
case where a difference of power exists between negotiators.
It is thus clear that social contexts (e.g. relationship or social
situations such as negotiation) and emotions influences each
other’s, although the exact processes taking place are still under
discussion.

Considering the importance of social skills in human
interactions, a new field of research has recently emerged;
named SSP (Pentland, 2007; Vinciarelli et al., 2012). It ‘aims
at providing computers with the ability to sense and understand
human social signals’ (Vinciarelli et al., 2009). SSP is thus
very close to affective computing in the sense that it tries
to create machines able to better understand and respond to
humans. However, SSP goes beyond affective computing in
several aspects. First, it generally considers signals that are
exchanged in a group and thus is based on the analysis of
several entities, whether human or machines, while affective
computing often concentrates on a unique human–machine
interaction. The group setup allows for the study of behaviors,
affective expressions and psychological constructs both at
the level of the individual and at the collective level. For
instance, intelligence can be regarded as an individual property.
However, when several people combine their knowledge the
result is often more than the sum of individual knowledge,
giving rise to collective intelligence (Pentland, 2006).
Similarly, the collection of individual affective exchanges
between the members of a group can be used to define inter-
subject concepts such as group mood (Lehmann-Willenbrock
et al., 2011). Secondly, the range of signals, cues and
behaviors considered are wider than in affective computing.
While affective computing studies emotional states, SSP also
encompasses phenomena such as disagreement, ambivalence,
and attention. Where affective computing analyses expressions
such as facial expressions and prosody, SSP also studies signals
such as emblems and manipulators (Vinciarelli et al., 2009).

The unit of analysis of SSP is the social signal, it is thus
worth defining what a social signal is. Generally speaking, a
signal communicates information from a sender to a receiver.
In behavioral sciences, social signals can be seen as structures
or acts that have evolved to influence the state and behavior of
the receiver to the advantage of the sender (Mehu and Scherer,
2012 ). For instance, a facial expression (e.g. displaying
sadness) could be considered as a social signal since its
perception by others changes their behaviors, generally to
profit the sender (e.g. compassionate behaviors). In Mehu and
Scherer (2012), the authors mention the difference between
cues and signals. A cue gives information on a quality of the
sender although it was not primary selected for that purpose.
The difference between a cue and a signal is subtle and it
is often difficult to distinguish them. However, the difference
remains important as cues are expected to be more reliable
than signals since they are less prone to deception. In this
framework, the perceivable physiological activity could be
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defined as a cue, since (i) it is primarily function is to support
biological maintenance and not to affect others perception,
(ii) it can provide information about an individual’s inner state.
For example, blushing might be considered as a cue since it
communicates information about the internal sate of the sender
although it is caused by an increase of blood pressure which
main function is to support action.

Considering physiological signals as cues implies their
measurement could be used as a reliable modality for SSP.
So far several sensor modalities and signals have been used
to infer social information from interaction, including video
and speech analysis. In addition, SSP has also used RFIDs
and cell-phones to measure the amount of direct and mediated
interactions (Pentland, 2006). A review of the different
technics employed in SSP is not the objective of this paper and
interested readers can refer to Vinciarelli et al. (2009, 2012).
However, we give below a few examples of SSP applications
in order to give a better understanding of the field.

Many applications in fields as diverse as marketing,
multimedia indexing and retrieval, robotics and HCI can be
improved or made possible by SSP (Vinciarelli et al., 2012).
A first example of an application of SSP is the detection
of the roles taken by group members. In Sanchez-Cortes
et al. (2012), the automatic detection of emergent leaders in
small groups is achieved based on the analysis of multimodal
group features such as turn taking and mutual gazes. This
technology could, for instance, be employed to support
leaders’ recruitment strategies by allowing the detection
of natural leaders. Another field of particular interest is
computer-mediated communication. When interacting through
computers several social signals are lacking due to missing
channels (e.g. no web-cam to communicate face movements)
or distorted by the communication channels (e.g. low webcam
quality). This could have some impact on social interaction
processes and on the sense of social presence, the feeling
of being in contact physically and psychologically with the
other (Biocca and Harms, 2003b; Sallnäs, 2005). In this area,
SSP can be useful in several ways. First, it could help to
better understand the impact of missing signals on social
processes and collaborative outcomes. Understanding the role
of these social signals would then be the basis to develop
methods for the display of new emotional cues determined
from non-visible expression of affect such as physiological
signals. Secondly, it could be employed to measure social
presence based on users’ social signals as proposed in Ekman
et al. (2012). Finally, SSP could be used to automatically
perform social inferences. In this last scenario, Pesarin et al.
(2012) proposed a semi-automatic system to detect moments
of conflicts during interactions, while Chanel et al. (2013)
proposed to assess several key collaborative processes from the
analysis of group physiological signals and eye-movements.
In both cases, the inferences could be employed to adapt the
mediated interface, for instance by providing help to resolve
conflicts.

Using physiological cues for SSP was proposed in
Vinciarelli et al. (2009). Despite this encouragement there are
to date only a few systems that use physiological signals to
perform social inferences (not considering the systems from
affective computing dedicated to emotion assessment). As
will be detailed in Section 3, human physiology provides the
resources necessary to express social signals and cognition
which are essential for complex social responses (Uddin et al.,
2007). Consequently, we advocate for the use of peripheral and
central physiological signals for social inferences.

3. SOCIAL SIGNALS IN PHYSIOLOGY AND
NEUROPHYSIOLOGY

Physiological measurements have been taken since almost
90 years to study social interactions (see Cacioppo et al.,
1989). First, social psychophysiology and later also social
neuroscience tried to identify the physiological basis of social
constructs, processes and behavior. Today, in the context
of SSP, there is a renewed interest in overt and covert
physiological signals as valuable social cues. In the face of
their potential value, the question is what kind of signals can be
used, that is which type of peripheral or central physiological
activity carries direct or indirect information about the state
of the users and about the quality of the interactions between
them? Mehu and Scherer (2012) mention affect, interpersonal
attitudes and personality characteristics as concepts relevant
to social interaction. Besides directly influencing the social
relationship, such states also carry information about the
context of the interaction, the internal environment of signaler
or perceiver. They could, therefore, be important cues for
SSP systems. Moreover, the quality of inferences depends
on the quantity and quality of available data: additional
signal sources (e.g. neurophysiological measures) would add to
both by delivering complementary and redundant information
about user state. For example, the communicative intention
of a certain social signal might be ambiguous and therefore
needs contextual information about social behaviors, affective,
cognitive states (Vinciarelli et al., 2009).

Therefore, we can identify several lines of research in
psychophysiology and the neurosciences that are relevant to
SSP, namely those underlying the affective, cognitive and
social sciences. Below, we will briefly describe the insights and
potential contributions of these different research domains that
are relevant for SSP.

3.1. From individual affective and cognitive signals
to social signals

For decades, psychophysiologists and neuroscientists have
studied the physiological and neurophysiological correlates of
affect and cognition. As mentioned before, affective states
can be relevant social cues and their observation can lead to
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the adaptation of behavior in social interactions. Knowing,
for example, the emotional response of a person to an event
or to an interaction with another agent (i.e. a person or a
machine) can be informative to predict the reactions of this
person in future interactions and consequently how to behave
in order to avoid undesired reactions (e.g. anger, anxiety, etc.).
Similarly, the cognitive states of interlocutors can be used to
determine the most interesting conversational topics for the
group.

3.1.1. Affective signals
Different signals assessing the peripheral and central nervous
system activity have been associated with emotional responses
(Kreibig, 2010) and found relevant for the detection of
emotions (Mühl et al., 2014a; Novak et al., 2012).

For the peripheral nervous system, two of the most
informative signal varieties are electrodermal activity (EDA)
and cardiovascular activity. EDA is related to the changes of
electrical potentials and resistance of the skin (Féré, 1888)
which varies with perspiration. EDA can be used as a direct
measure of physiological arousal and has been shown to
be correlated with self-reported arousal (Lang et al., 1993).
Significant differences in EDA have also been observed
between pleasant and unpleasant stimuli (Delplanque et al.,
2008). Cardiovascular activity, such as heart rate or its
variability, can be measured in the form of electrical potentials
from the heart (electrocardiograms—ECG), heart sounds and
the changes of relative blood pressure over time, known as
blood volume pulse. Increase or decrease of HR properties
can be associated with different emotions (Ekman et al., 1983;
Rainville et al., 2006). Many other physiological signals have
been used to detect emotions, including facial EMG signals to
detect expressions of affect, respiration and skin temperature
(Broek et al., 2006; Chanel et al., 2011; Hazlett and Benedek,
2007; Hussain et al., 2011; Katsis et al., 2008; Wilhelm et al.,
2006).

For the central nervous system, several neuroanatomical
structures are known to be involved in the processing of
affective information, such as amygdala and the limbic system,
orbitofrontal and medial-prefrontal cortices (see Barrett et al.,
2007). Despite the long-standing debate about their specific
involvement (with constructivists (Lindquist and Barrett,
2012) versus localist (Vytal and Hamann, 2010) positions
as extreme poles), there is a long line of research showing
the accessibility of affective states from neurophysiological
measurements. Especially for electroencephalography (EEG),
measuring the electrical potentials from the brain, several
characteristics of brain activity have been found sensitive
to emotional stimulation and states. For example, the so-
called frontal alpha asymmetry (Coan and Allen, 2004;
Schmidt and Trainor, 2001), measuring a lateralization of
the brain activity toward either the left or the right frontal
cortices, has been found indicative of the valence dimension,

pointing to a positive versus negative feeling, respectively.1

Another indicator of affect is the overall amount of alpha
activity, which decreases with increasing arousal and increases
with relaxation (Barry et al., 2007, 2009; Niedermeyer,
2005), though especially posterior and fronto-central alpha
oscillations might rather indicate the activity of relevant
sensory cortices in response to arousing stimulation than
general emotional arousal (Mühl et al., 2011). An extensive
overview of sensitive EEG signal characteristics and affect
classification approaches can be found elsewhere (see Mühl
et al., 2014a).

In a social context, specific emotions can arise which
necessitate the evaluation of the other’s belief, feelings or
actions (Hareli and Parkinson, 2008). These are generally
called social or moral emotions and include emotions such
as shame, embarrassment, gratitude and admiration (Hareli
and Parkinson, 2008; Tangney et al., 2007). Most of the
research carried out in the domain of affective computing
has focused on basic emotions and dimensional models
of emotions. The design of new methods to infer social
emotions is thus necessary to develop machines able to react
to complex situations such as those encountered in social-
mediated interactions.

3.1.2. Cognitive signals
Besides affective states, there are also certain cognitive states
that can be used for the analysis of group interactions and
that can be accessed by physiological and neurophysiological
signals (Novak et al., 2012). In the peripheral nervous
system, cardiovascular activity, for example (respiratory sinus
arrhythmia), has been shown to correlate with attention
(Ravaja, 2004). Blood pressure also indicates the motivation
and efforts put in a task (Gendolla and Richter, 2005). EDA
has been associated with cognitive arousal and thereby with
cognitive effort (Boucsein, 1992; Verwey and Veltman, 1984).

Cognitive neuroscience studies a wide spectrum of neu-
rophysiological concepts and processes, such as perception,
attention and decision-making, which are also relevant for
social interactions and can give insight into social relation-
ships. One example is the determination of the level of atten-
tion to others, which might indicate if a person is really paying
attention to another person or only looking at the person.
Posterior alpha activity, for example, is known to decrease
with increasing visual attention (Pfurtscheller et al., 1996) and
can be used to infer the attentional focus in a scene (Treder
et al., 2011). Such information could help to identify domi-
nant people, those that draw attention, within a group. Also
different levels of cognitive load can be distinguished via neu-
rophysiological signals: prefrontal activity in the form of theta
oscillations and alpha oscillations (Jensen and Tesche, 2002;

1 Alternatively, researchers have identified a dimension of motivational
direction, spanning from approach to withdrawal intention (Davidson, 1995;
Harmon-Jones, 2003).
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Klimesch, 1996; Laursen et al., 2002; Mühl et al., 2014b), as
well as pre-frontal blood flow (Herff et al., 2013; Sassaroli
et al., 2008) vary with mental effort and can be used as indica-
tors of mental engagement in group settings.

Summarizing, an individual’s affective and cognitive states
have robust correlates in peripheral and central nervous
system activity. These might be used as indicators of the
valence/motivational direction or arousal associated with an
encountered (social) event or of the level of (social) attention
and engagement in an interactive setting or encounter. In
the next section, we will look at more direct indicators
of social cues, as studied by social psychophysiology and
neuroscience.

3.2. Multi-person physiological activity as measure
of social interactions

The majority of research in psychophysiology and the neu-
rosciences is done on the single individual. The subfields of
these research disciplines that work on social interaction and
cognition have, despite their focus on the interactions between
individuals, focused on ‘passive observers’ instead of ‘active
agents’ (Schilbach et al., 2013). However, the processes that
can be observed during active interaction—much more charac-
teristic of social processes than a passive participation—might
be fundamentally different. Psychophysiological researchers
already experimented decades ago with simultaneous measure-
ments of interacting participants.

Social psychophysiologists proposed a method for the
analysis of the inter-dependency of behaviors in social
interactions already in the early 1980s (Gottman and Ringland,
1981; Allison and Liker, 1982). This measure can be used
to quantify the amount of inter-dependency between the
behaviors of two people and to identify if the behavior of
one person predicts the behavior of the other. Levenson
and Gottman (1983) used such a method to measure the
physiological coupling of spouses during marital conflicting
situations. The coupling index, named physiological linkage,
was computed from peripheral physiological signals (heart
rate, EDA and general somatic activity), and was found
to capture mainly negative social interactions. Interestingly,
physiological linkage was also found to be associated with
empathy (Levenson and Ruef, 1992); people who accurately
evaluated the negative emotions of others also displayed a
high degree of shared physiology. This might be due to
emotional convergence, an important component of empathy
(Janssen, 2012), which is responsible for the alignment of
peoples’ emotional states through mimicry and imitation.
Taken together these studies show that the coupling between
peripheral physiological signals of interacting people can be
related to several characteristics of the interaction, including
empathy, emotional convergence, conflicts and behavioral
entrainment.

Social neuroscience—the study of the neural basis and
mechanisms of social interaction and cognition2 (Sänger et al.,
2011)—until more recently, has relied exclusively on sin-
gle and passive participant studies. Two systems have been
identified that seem at the basis of social interaction and cog-
nition: the mirror neuron system (MNS) and the mentalizing
system (MS). Mirror neurons—found in the structures of
the motor system, such as the premotor cortex, the supple-
mentary motor area, the primary somatosensory cortex and
in the inferior parietal cortex—are active during own and
observed actions (Molenberghs et al., 2009; Rizzolatti and
Fabbri-Destro, 2008). Moreover, they were associated with
the goal-orientation, independently of the effector (e.g. hand),
which makes them part of a potential mechanism to represent
not only others actions, but also their goals. The MNS is there-
fore important for internal representation of others’ actions,
their goals and even their emotions (Rizzolatti and Craighero,
2004). However, the MNS cannot explain causes of actions
and emotions (Frith and Frith, 2006) or predict the goals and
intentions of new or unexpected actions (Kilner and Frith,
2008). The second network, the ‘mentalizing’ network—
including structures as the posterior superior temporal sulcus,
temporal parietal junction, the temporal poles and the medial
prefrontal cortex—is thought important for inferring the inten-
tions of others in situation where the observed action is novel
or difficult to understand (Frith and Frith, 2006). Both net-
works are supposed to interact to be able to infer and represent
others’ goals and mental states, though the precise nature of
this cooperation is yet unclear (Barrett and Satpute, 2013).

Recently, a developing ‘second-person neuroscience’ started
exploring novel methods for the study of neurophysiological
correlates of real-time, active interaction, turning away from
traditional single to more realistic multiple-subject studies of
social interaction (Schilbach et al., 2013). A number of novel
experimental approaches use the ‘hyperscanning’ paradigm
to evaluate the neurophysiology of actual social interaction.
Hyperscanning techniques aim at the creation of ‘spatio-
temporal maps of cerebral regions involved in the generation
of the social task investigated’ in a study (see Babiloni
and Astolfi, 2012). They are based on the recording of the
neurophysiological activity of two or more interacting people
via functional magnetic resonance imaging, positron emission
tomography, functional near-infrared spectroscopy (fNIRS)
or EEG, and on the use of advanced correlation methods
to infer the flow of information ‘between the brains’. Similar to
physiological linkage measures, these methods might be able to
reveal information about collaborating or competing subjects
that independent neurophysiological measurements might be

2 Social interaction is the capability of active, autonomous agents to engage
with other agents in dynamic turn-taking behavior according to social rules
on the basis of their perceptions of the others’ intentions. Social cognition is
the capability to understand others, and includes the capability to represent
the mental states and intentions of others, known as mentalizing or ‘theory of
mind’.
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blind to. According to Babiloni’s and Astolfi’s (2012) review
of the hyperscanning literature, one can discriminate several
experimental approaches that investigate the synchronization
of neurophysiological signals from simple dynamical social
interaction and communication to social decision-making, and
that might be a first step toward reliable social neuromarkers.

Already single-subject EEG studies found evidence for the
involvement of the MNS in coordinated social interactions.
Tognoli et al. (2007) found that right central–parietal brain
activity in the mu band of the EEG3 varied with the presence of
spontaneous social interaction. A phi(1) oscillatory component
was observed during independent movement, while short
bursts of a phi(2) oscillatory component marked coordinated
behavior. Though these neuromarkers of social coordination
were not present in all subjects, they might be an indicator
of suppressed and enhanced activity of MNS, respectively.
Studying instructed social interactions, Naeem et al. (2012)
found a stronger decrease of power in the right central–parietal
mu-rhythm for anti-phasic, compared with phasic, compared
with free finger movements, reflecting the integration of mutual
information that enables the dynamics of social interaction to
unfold over time.

This involvement of putative MNS structures for simple
social interaction has been reproduced in multi-subject hyper-
scanning studies: for intentional as well as for unintentional
hand movement coordination (Dumas, 2011; Dumas et al.,
2010; Ménoret et al., 2014) and the synchronous playing
of musical instruments (Babiloni et al., 2012; Lindenberger
et al., 2009; Müller et al., 2013), as well as for more complex
interactive scenarios, for example face-to-face communication
(Jiang et al., 2012) or aircraft take-off and landing (Astolfi
et al., 2011a,b). Besides a symmetrical coupling component,
potentially signifying a shared action representation relative
to the goal of the action (Ménoret et al., 2014), some stud-
ies have found asymmetric components that were related to
the role assignment, leader versus follower, during the inter-
action (Dumas et al., 2010; Konvalinka et al., 2014; Ménoret
et al., 2014). Taken together, the studies on temporally coor-
dinated joint action show that hyperscanning paradigms can
reveal additional information about the quality of interaction
and even leader–follower relationship—potentially based on
neurophysiological correlates of the MNS.

The study of social processes beyond simple temporal coor-
dination, for example decisions for or against cooperation—
involving predictions of others’ mental states or intentions—
requires more complex experimental approaches. Using inter-
action paradigms derived from game theory, such as the pris-
oner’s dilemma, as well as traditional games, several studies
found an increased connectivity between players’ prefrontal
cortices, regions supporting mentalizing and decision-making.

3The mu-rhythm is a frequency band (8–13 Hz) in the EEG over the
sensorimotor cortices, which is closely associated with the perception and
coordination of muscle and joint motion.

Babiloni et al. (2007a) found a higher activity of the ante-
rior cingulate cortex in the defect condition of the pris-
oner’s dilemma. Furthermore, dorsolateral prefrontal and
orbitofrontal activity was higher for defect compared with
cooperation condition (Astolfi et al., 2011a,b; De Vico Fallani
et al., 2010). Players’ central–frontal regions were also found
to be more active and connected before decisions in the ulti-
matum’s game (Yun et al., 2008). Using a simple card game,
Babiloni et al. (2007b) found higher synchronization of col-
laborating player’s brains compared with competing players,
especially for regions involved in decision-making (Astolfi
et al., 2010). Finally, Cui et al. (2012) found increased inter-
personal coherence in frontal fNIRS signals during cooperation
compared with competitive condition of a simple two-player
response task.

Summarizing, physiological and neurophysiological mea-
sures of inter-subject synchrony have been found informative
regarding the social relations and interactions between sub-
jects: as indicators of the strength of social interaction, as indi-
cators of the quality of the interaction (e.g. dominance), and
as indicator of intention to collaborate. They potentially can
be used to infer such information and thereby provide means
to analyze and even aid human–human interaction. However,
as for individual indicators of affective and cognitive state,
conceptual and methodological limitations have to be identi-
fied to ensure reliable assessment of social interactions (see
Section 4.4).

4. APPLYING PHYSIOLOGICAL SSP

As detailed in the last section, social neuroscience and
psychophysiology have put significant effort on the analysis of
brain structures and processes which support social interaction
and cognition. The results of the research demonstrate that
signals from both the central and the peripheral nervous
systems carry relevant information on social processes and
on personal relationships. Therefore, we advocate the use
of physiological signals in SSP and propose two possible
solutions to investigate this research direction, one at the
individual level and the other at the group level. At the
individual level, the measured physiological activity can be
used to provide new cues that are not available in current
social interactions (Fig. 2). At the group level, modeling the
relationships existing between physiological activities of the
individuals of a group can be employed to infer properties of
the interaction (Fig. 3). The current research achieved in these
domains will be reviewed below together with a discussion on
potential applications and challenges.

4.1. Individual physiological social cues

Physiology plays an important role in the representation and
feeling of our own internal state as it constantly gives us
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Figure 2. Physiological activity as new cues for social-mediated interactions.

feedback of what is happening in our body (Damasio, 2001;
Sander et al., 2005). In addition, some physiological changes
can also be perceived by others and thus inform them about
our feelings. For instance, a high blood pressure and vasocon-
striction can lead to blushing while high physiological arousal
can induce shakes, changes of voice acoustic parameters and
piloerection. As controlling these physiological cues is very
difficult, they are considered as highly reliable by observers
and therefore important in social interactions. However, sev-
eral physiological changes are not perceivable from the mere
observation of someone, either because they are too subtle
(e.g. heart beat sound) or because they are not displayed to
the outside. It follows, that neuro- and physiological signals
cannot be directly considered as social signals. However, with
the current technology, measuring physiological activity and
overtly displaying it becomes feasible. This would thus be a
way to provide new social cues and to better inform people
about other’s internal state (Fig. 2).

The effect of displaying physiological cues remains on
open question that only a few studies have investigated,
either by using synthetized physiological activity (Janssen
et al., 2010, 2013a) or by creating systems able to record
and share physiological activity of peers in real time (Chanel
et al., 2010; Slovák et al., 2012). Synthetized physiological
signals allows creating controlled experiments to study how
physiological cues can influence social processes and to better
understand which features of physiological cues are more
relevant. For instance, the hearing of synthetized heart beats
was found to be associated to higher self-reported intimacy
and higher interpersonal distance (Janssen et al., 2010). Given
that interpersonal distance is known to increase when non-
verbal cues are available these results tend to demonstrate
that heart beats can be understood as any other non-verbal
cues and can help to create intimacy among people. Social
heartbeat feedback has been studied in more depth in Janssen
et al. (2013a). The authors demonstrated that an increase in
other’s heart rate is interpreted as an increase in the intensity
of their feelings. Interestingly these effects were comparable

with those obtained by showing facial expressions and the
effect of heart rate remained when facial expressions were also
available.

Studying the effect of physiological cues in social situations
using the actual physiological activity of the participants, as
opposed to synthesized activity, is essential to validate the
applicability of physiological cues. In Chanel et al. (2010),
the effect of displaying participants’ heart rate during the
socially mediated watching of movie clips was analyzed. In
this experiment, four remote participants were watching a
movie together in four conditions: without any feedback, with
the possibility to share their experience through chat, with
their heart rate continuously fed back to all participants, and
with a combination of both chat and physiological feedback.
It was demonstrated that displaying the heart rates of partic-
ipants increased co-presence but only when the chat was not
available. This shows that physiological feedback is not only
related to emotional aspects but also to the awareness of the
other’s presence. However, contrarily to the effect on emo-
tional intensity (Janssen et al., 2013a), the effects observed on
co-presences seem only significant when other communication
channels are not available. The effects of emotion perception
and feeling of co-presence were validated by a qualitative
study (Slovák et al., 2012) analyzing the users’ reactions
to a technology which shares heart rate information among
peers. This technology was employed in the laboratory (movie
watching and negotiation task) and during everyday life. Users
reported that they used the technology to infer the emotional
state of their partners and that it helped them to feel more con-
nected with their partner when they were physically separated.

The effects of the display of physiological cues are certainly
influenced by how the physiology is represented to the users.
First, it is of course possible to employ any type of traditional
output modality. For instance, the physiological activity can
be visualized, with heart beats represented by heart shapes
that pounds at the same rhythms that the user’s heart beats
(Chanel et al., 2010). Another strategy is to transform the
physiological signals into sounds (Janssen et al., 2010, 2013a;
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Figure 3. Physiological activity as a measure of social interaction at the group level.

Kosunen et al., 2010). Although not yet investigated, haptic
feedback of physiological cues could also be of interest. For
any of these modalities the physiological activity needs to be
converted into symbols that are understandable by, or at least
provide relevant information to the user (e.g. the displayed
beating hearts). To our knowledge there are no studies which
have investigated the benefits and limitations of the different
modalities and symbolic representations for biofeedback. This
area thus remains to be explored.

Secondly, instead of displaying physiological activity
directly through symbols and representations, it is also possible
to provide users with inferences made from the analysis of
the recorded signals (Fig. 2). This is what is already achieved
in affective computing with the development of methods
for users’ emotions inference. Section 3 already emphasized
affective and cognitive signals which are of interest for SSP.

4.2. Measuring the interaction from multi-person signals

The last section argued that social interactions can be
studied by analyzing the cues and signals produced by
each person independently, or by studying the physiological
interdependence/synchrony of interacting individuals. For
instance, it is possible to study voice pitch of each partner of
a group, but analyzing how the group dialogue develops over
time, how speakers interrupt each other’s, which speaker is
more likely to follow another one, informs about the structure
of the group interaction (Delaherche et al., 2012). Similarly,
it is possible to analyze physiological signals at the group
level, which can be achieved mainly by using physiological
coupling, hyper scanning and neural synchrony as detailed
in Section 3. Several methods exist to measure the coupling
of physiological signals ranging from the computation of the
correlation index and coherence analysis to the more complex
granger causality criterion and measures of nonlinear dynamic
systems synchrony. An extensive review of the existing
methods is out of the scope if this paper but the interested
readers can refer to the following articles: Delaherche et al.

(2012), Ekman et al. (2012), Jalili et al. (2014), Le Van Quyen
et al. (2001).

Although physiological coupling is induced by interactions
and has been observed in different social situations, it has
rarely been applied to index and predict the quality of these
interactions (Fig. 3). An example of such studies is given by
Henning et al. (2001) who demonstrated that many of the
physiological coupling measures computed from heart rate,
EDA and respiration are correlated with task completion time
with higher coupling indicating a better performance. The task
under consideration was a game where the participants had
to synchronize their movements to move a cursor in a maze.
However, this positive relationship was not confirmed in a
second study (Henning et al., 2009), where self-reported group
performance was negatively correlated with physiological
coupling.

In Chanel et al. (2012b), the authors suggest that physiolog-
ical coupling might better index properties of the interaction
than the performance on a collaborative task. In this work, the
coupling between two players during competitive and collab-
orative video gaming was studied for several physiological
signals (EMG, EDA EMG, heart rate, respiration). The results
showed that coupling was higher during competitive play when
compared with collaborative play suggesting that it might be a
reliable indicator of conflicting interactions. In addition, higher
physiological coupling was positively correlated with the sense
of social presence (Biocca and Harms, 2003b) which motivates
the idea that physiological coupling increases which rich, but
not necessarily negative interactions. Social presence, the sense
of being together during a mediated interaction, can be decom-
posed in three components (Biocca and Harms, 2003a,b): co-
presence which is defined as the sense of being located in the
same place, psychological engagement which refers to inter-
personal understanding and attention, and behavioral involve-
ment which represent the inter-dependency of behaviors. Since
physiological coupling can emerge from both emotional and
behavioral synchrony it is able to provide information about at
least two of the components of social presence: psychological
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engagement and behavioral involvement. Physiological cou-
pling can thus be regarded as a relevant measure of social
interactions which should be more studied for SSP.

Although the two previous examples demonstrate that
physiological coupling could be applied to interactive
situations such as games, they did not demonstrate the
feasibility of prediction employing pattern recognition technics
and validation. Peripheral physiological coupling together
with eye-movement coupling were employed in Chanel
et al. (2013) to predict collaborative processes. In this
experiment dyads were collaborating on a task with a
common objective and where asked to fill up questionnaires
on the interaction. Several continuous scales describing
their interaction were obtained from the analysis of the
questionnaires and several measures of physiological coupling
(ECG, respiration, EDA, temperature) were used to train
regression models to assess the scales’ values. The cross-
validated results demonstrated that physiological coupling
could predict how much participant reported to manage their
emotions (R2 = 0.2). Emotion management is regarded as
an important feature of collaborations, as it is necessary to
regulate the flow of emotions in the group and to avoid
potential conflicts.

As shown in Section 3, the notion of coupling/synchrony is
not limited to peripheral signals. Brain synchrony has also been
related to social processes. Based on this evidence, De Vico
et al. (2010) proposed to employ brain connectivity networks,
representing both inter-brain and intra-brain synchrony, to
predict the decision to defect in an ‘iterated prisoner dilemma’
game. This game is a two player game where each player
can either defect or collaborate with the other player at each
round. Connectivity brain networks were constructed from
EEG data collected during the decision-making phase of the
protocol. These networks were constructed by measuring the
partial directed coherence between brain areas of the self-
brain and of the opponent’s brain. Finally, a two class multi-
layer perceptron was trained to predict if both participants
would choose to defect in the next round against any other
possible strategy. Defection was recognized with an accuracy
ranging from 73 to 90%. However, this impressive accuracy is
mitigated by the fact that it is obtained based on connectivity
networks averaged over several trials. Hence more research is
needed to investigate the expected single trial performance.

Physiological coupling is not limited to the analysis of social
interactions as it can be also used to evaluate any type of
stimulus submitted to several people (Hasson et al., 2012). This
can find applications in the field of multimedia tagging, where
the common reactions of participants to a movie can indicate
highlights or a high interest toward the media. For instance,
in Chenes et al. (2013) physiological coupling was used to
detect film clip highlights, as reported by participants, with an
F1 score of 0.56, and this despite of the fact that they were
not watching the movie together. With a similar approach, the
EDA of participants in a real movie audience was employed to

create an affective profile of each audience member (Fleureau
et al., 2013). These individual affective profiles were then
combined to obtain an average affective profile which was
found to indicate relevant scenes mentioned by the participants.
Concerning central physiological signals, an approach to
measure engagement in movie watching from EEG signal
correlations was proposed in Dmochowski et al. (2012).

In summary, the few studies employing physiological
coupling for prediction have obtained interesting results
showing its usefulness for performance assessment and
collaborative processes such as emotion management and
defection. Furthermore, physiological coupling can also be
employed to determine movie highlights and engagement
toward media. An aspect of physiological coupling, which was
not discussed, is directionality. Directionality defines which of
two synchronous systems drives the other. Such information
could be used to identify group leaders or dominant persons in
a social interaction. Finally, we would also like to stress that
physiological coupling might not be the only way to combine
physiological signals of several people and research toward
finding new approaches is strongly encouraged.

4.3. Toward applications

Both individual and group physiological measurements
could be employed in several contexts, including mediated
collaboration, social entertainment and intimate relationships.
The goal of this section is not to review all the potential
applications of the proposed measurements but rather to
illustrate how physiological signals can be applied to social
situations.

Collaboration is an activity which involves the resolution of
a common goal by several actors. In this context, providing
feedback to individuals about their physiological activity and
their emotional state is likely to favor meta-cognition and
improve participant’s social skills (Jones and Issroff, 2005).
This feedback could be achieved in a closed loop where
each participant receives only information about its own state
and physiology, or disseminated to all the group members
following clear ethical rules. Another possibility could be to
use individual and group inferences to adapt the interaction.
For instance, given that physiological coupling is known to
be related to conflicting situations, this measure could be
employed to automatically assess the level of conflict in the
group. An adaptive computer supported collaborative work
environment could then propose solution to help solving
conflicts by more focusing the participants’ attention to their
common objectives and interests.

Entertainment is probably one of the most social activities,
people enjoy playing together and they often watch movies
in groups. Poker is a nice example of a social game where
physiological feedback can play an interesting role, enhancing
the player experience (Slovák et al., 2012; Yamabe et al.,
2010). On the one hand, it is expected that, by having
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feedback on their own state, the poker players would be
able to better control their emotional reactions. On the other
hand, giving feedback to the whole group of players informs
on who is currently stressed so that they can adapt their
playing strategy. These two opposite forms of feedback are
expected to create an engaging game experience (Yamabe
et al., 2010). Other form of entertainment can also benefit from
social physiological measures including cinema. The common
physiological responses of spectators can be used to determine
the most relevant scene of a movie, for instance for the purpose
of movie summarization, to evaluate if the movie elicited the
expected emotions, or to create physiological profiles of users
for implicit movie tagging and recommendation (Soleymani
et al., 2012).

With physiological coupling and feedback being related
to empathic accuracy, emotional convergence, perceived
connectedness and conflicts, applications can also be found for
the management of interpersonal relationships. For instance,
empathy detection can be employed to train empathic skills to
improve marital stability and decrease marital abuse (Janssen,
2012). These technologies can also be used to maintain
connectedness among physically separated members of a
family (Slovák et al., 2012). Similarly, physiological coupling
could be employed, in the context of a social media website,
to recommend connections between people who have similar
emotional reactions to movies and potentially similar tastes.

4.4. Challenges and research directions

There are more and more devices that can measure
physiological signals with very low intrusiveness (Liao et al.,
2012) allowing to move toward the applications mentioned
in the previous section. Physiological indexes can also be
measured by means of cameras either by recording faces (Poh
et al., 2010) or by placing your finger on a cell-phone camera
(Scully et al., 2012). All these achievements demonstrate the
current feasibility of non-intrusive monitoring of physiological
signals. However, a challenge specific to multi-person
physiological monitoring concerns the synchronization of the
different signal sources (i.e. the samples should be time
stamped with a common time base). Synchronization is a
necessary step to compute physiological coupling and is
especially important for high frequency band signals such as
EEG. In the laboratory, synchronization can be achieved by
sending triggers in parallel to several devices. These triggers
generally correspond to specific events of the recording
protocol. However, this is not applicable out of the laboratory
and, consequently, there is a need to build devices able to
synchronize heterogeneous modalities (e.g. different sampling
frequencies) automatically.

Physiological signals can be influenced by a multitude
of psychological constructs such as emotions, attention and
motivation (Ravaja, 2004) but also by any type of physical
activity. There is consequently a high risk in the interpretation

of physiological responses which are measured in non-
controlled situation (i.e. out of the laboratory). We believe that
having information about context is the only solution to solve
this problem of confounding variables. For instance, it has
been proposed that the observation of differential physiological
patterns for the same emotion could be due to differences
in context (Stemmler et al., 2001). Similarly, when heart
rate information is shared among people they tend to request
knowledge about the context to interpret this information
(Slovák et al., 2012). Hence, when displaying physiological
cues, the context is very important and should not be neglected.
For instance, in a remote situation physiological cues should
be displayed only with contextual information and when those
cues are interpreted (e.g. automatic recognition of affect)
context should be integrated in the interpretation.

Similarly to individual physiological measures, physiolog-
ical coupling measures can be influenced by several sources.
At least three such sources have been proposed (Chanel et al.,
2012b; Ekman et al., 2012). First physiological coupling can
occur due to the perception of common events. For instance,
the perception of a strong sound is likely to trigger an attention
orientation response in all perceivers (Ravaja, 2004), con-
sequently increasing their physiological coupling. In addi-
tion, concordant appraisal of this event among perceivers will
increase physiological synchrony further. Secondly, physio-
logical profiles can synchronize because the behaviors and
efforts of people are congruent. For instance, it is likely that
two people carrying a table together will have to synchro-
nize their actions and efforts, which will lead to an increase
in physiological coupling. Thirdly, physiological compliance
can emerge from emotional processes such as alignment, con-
vergence, mimicry and emotional contagion (Hatfield et al.,
2009; Janssen, 2012). In this case, the physiological profiles
of people synchronize because emotions are communicated
among the members of the group. There is so far no study
which investigated how to differentiate those different sources
of physiological synchrony. Hence the aspect of the experi-
mental manipulation, here specifically the coupling source, that
is reflected in the changes has to be identified to guarantee
valid psychophysiological inferences (Fairclough, 2009) and
to avoid spurious coupling measures due to protocol structure
(Burgess, 2013).

A first step when employing physiological computing
technologies is often to choose which physiological signals
will be employed. Most of the studies which investigated
physiological feedback have focused on heart beats. This
is probably because it is a signal easy to represent (e.g.
heart beats sounds or pounding visual hearts) and interpret.
There is thus a strong need to study how other signals can
be presented to people and to evaluate which features of
these signals can enhance social interactions. For instance, as
mentioned in Section 4.2, several methods are available to
compute physiological coupling (Granger causality, spectrum
coherence, phase locking value, etc.). Research is needed to
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investigate the potential relationship existing between them
and the types of coupling (i.e. stimuli, behavior or emotional
coupling). Another aspect which has not been studied so far
is how the dynamic of physiological signals can be interpreted
by humans. Studies have focused on the presentation of static
physiological cues (e.g. a heartbeat at a given frequency).
However, it is known that the dynamic of facial expressions
unveils subtle cues about emotions (Bartlett et al., 2014) and
hence, it is probable that the dynamic of physiological signals
are as well important for their interpretation.

Finally, evaluating the potential accuracy and performance
of socio-affective inferences is critical to the development of
applications. However, a strongly related research question
is how critical the accuracy of such systems actually is. In
other words, it is possible that emotion recognition with a
low accuracy could be sufficient to satisfy and improve user
experience. Although almost every study in physiological
computing measures accuracy, only a few have studied its
relationship with user experience. In any case, the develop-
ment of universal datasets is needed to measure the expected
accuracy of physiological signals for social-affective assess-
ments. Several datasets have been recorded in the field of
SSP (Ěerekoviæ, 2012). However, among the 37 datasets pre-
sented in this study only two contain physiological recordings
(Koelstra et al., 2012; Soleymani et al., 2012). Furthermore,
these two databases are dedicated to emotion recognition in
the context of multimedia stimulation and have only little to
do with the social situations we are discussing in this paper.
To our knowledge, only two studies report on the collection
of synchronous physiological dataset (Chanel et al., 2013;
Ringeval et al., 2013). Both of them were collected in the
context of mediated interactions together with other modalities
such as speech, face videos and eye tracking. There is thus a
need for new datasets recorded in different contexts, targeting
various types of applications, social settings and interaction
scenarios. This will allow researchers to compare their results
and to investigate the research questions proposed above.

5. CONCLUSION

This article describes the research which aims at applying
physiological computing to support social interaction. Over the
last 20 years, emotion recognition from physiological signals
has been more and more studied, even reaching a state where it
is close to reach the market. However, researchers in the field
generally focused on HCIs, not considering that computers are
more and more employed for human–human-mediated com-
munication. In the past decades, research in psychophysiology
has studied how social interactions between individuals could
be reflected in physiological activity, especially in the amount
of its synchronicity. In parallel, the field of social neuroscience
has developed to gain insight in the neural structures involved

during social interactions. Hyperscanning approaches, consist-
ing of the recording of the joint neurophysiological reactions of
two interacting people, have shown that the flow of information
communicated between people is reflected in the amount of
brain synchrony. Based on the results obtained in neuroscience
and social sciences, this article calls for the use of physiological
signals to perform social inferences of mediated interactions.
First, physiological signals could be displayed, after or before
inference, to provide new social cues for mediated interac-
tions. Several social signals, such as facial expressions, already
provide information about people’s internal states but physi-
ological signals can give cues unavailable with other signals.
We believe that such physiological cues could help people to
better understand each other, which would enrich current social
interactions. Secondly, this article argues for the use of physio-
logical coupling (i.e. a measure of how much the physiological
activity of a group of persons is coupled) as a measure of the
quality of social interaction and proposes to use this index
for direct feedback or for machines adaptation. For instance,
being able to assess how strongly people are coupled could
be used to drive collaborations toward better performance.
Similarly, detecting the directionality of coupling and inter-
dependencies might help to detect leaders in a group. Finally,
showing coupling information to a social group might help
them to establish social links and to connect with each other.
All these potential applications would lead to enhanced social
interactions and better connectedness among social groups.
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