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The heart and the gut seem to be two organs that do not have much in common. However, there is an obvious and clinically relevant impact of
gut functions on the absorption of drugs and oral therapies on the one hand. On the other hand, the gut determines the quantityof nutrient uptake
and plays a central role in metabolic diseases. Patients with inflammatory bowel diseases appear to have a higher risk for coronary heart disease
despite a lower prevalence of ‘classical’ risk factors, indicating additional links between the gut and the heart. However, they certainly have a ‘leaky’
intestinal barrier associated with increased permeability for bacterial wall products. An impaired intestinal barrier function will be followed by
bacterial translocation and presence of bacterial products in the circulation, which can contribute to atherosclerosis and chronic heart failure
(CHF) as recent data indicate. Impaired cardiac function in CHF vice versa impacts intestinal microcirculation leading to a barrier defect of
the intestinal mucosa and increased bacterial translocation. These pathways and the most recent insights into the impact of the gut on acute
and chronic heart disease will be discussed in this review.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Intestinal microbiome † Intestinal barrier † Bacterial translocation † Atherosclerosis † Chronic heart failure

The gut and its impact on heart
diseases
The gut certainly is not the first organ we would think about when we
consider the pathophysiology of heart diseases. However, its basic
functions, digestion, and absorption are obviously clinically relevant
for almost all oral drug treatments of diseases.

The absorption of drugs from the small intestine is altered in its
kinetics in patients with Crohn’s disease or celiac disease.1 Patients
with undetected celiac disease or with inconsequent diet have a
decreased expression of some cytochrome P450 (CYP) isoenzymes
such as CYP3A.2 CYP3A is constitutively expressed in small intestinal
villi and contributes to an important pre-hepatic metabolism of a
number of drugs. Already in the intestine, CYP3A mediates the
oxidative biotransformation of various clinically important drugs.3

Macrolide antibiotics (which will be discussed in another role
further below) are important inhibitors of CYP3A.3 Statins have
been reported to increase CYP3A isoenzymes expression4 and, on
the other hand, are metabolized by them.4 CYP3A4 and CYP3A5
metabolize statins and thus have been demonstrated to influence
the pharmacokinetics, efficacy, and safety of statins,4 indicating that

small intestinal disease such as Crohn’s disease and celiac disease
may well have a profound impact on the medical therapy of heart
diseases.

It is not surprising that diarrhoea, associated with the mentioned
diseases but also with other gut pathologies such as infectious
enteritis, ulcerative colitis, radiation colitis, alters the absorption of
drugs,5,6 which has to be kept in mind when treating patients with
heart diseases.

Gut and heart disease: is there
a link?
Several intestinal diseases have been reported to be associated with
an increased risk for coronary heart disease (CHD). In a recent study
from Finland, it was found that CHD occurred significantly more
frequently in inflammatory bowel disease (IBD) patients compared
with an age- and sex-matched control group (P ¼ 0.004).7 Patients
with IBD, however, usually do not have the ‘classical’ risk factors.
In a respective analysis, only hypertension was confirmed as risk
factor.8 In addition, Crohn’s disease patients seem to have lower
levels of high-density lipoprotein (HDL).9 This could be due to the
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chronic inflammation, as it was mainly associated with flares of the
disease.9 As most patients with IBD are in remission, the question
arises whether there could be additional clinically relevant connec-
tions between the gut and the heart. A lower absorption of drugs
during active flares of the disease as indicated above might certainly
be relevant; however, the increased risk for CHD was also observed
in IBD patients without cardiological medication.

The gut, the intestinal bacteria,
and general health/metabolic
syndrome
Recent years have brought interesting insights into the interaction of
the gut microbes (the so-called microbiome) with the intestinal
mucosa. Those interactions may impact the function of other
organs such as the lung, the heart, or the lymphatic system. It is
obvious that learning moreabout these interactions will become clin-
ically relevant in the near future. Signals sent out from the intestinal
microbiome, factors released by microbes and then absorbed, com-
ponents of microbes (such as endotoxin or DNA) or factors induced
in and secreted by intestinal epithelial cells or intestinal dendritic cells
appear to have important physiological and pathophysiological
functions.

It is estimated that there are 1000–1500 bacterial species that
colonize the human gut, and that the gene content of microbes in
the human gut may exceed that of the host by a factor of 100 or
more.10,11 Recent analyses of the human microbiome have revealed
that evenhealthy individuals differ remarkably in their gut microbes.12

It is clear that diet, bacterial composition of the environment, and
host genetics play an important role for the individual composition
of the microbiome.12

Many acute and chronic disorders affecting the heart, such as
obesity13–18 or metabolic syndrome,19 have been linked to inadequate
or disturbed post-natal microbiome acquisition or environmental
micro-organism exposure during early childhood.20 Obese patients
seem to harbour different bacterial species compared with the lean
population, especially Firmicutes.13–18 Further, chronic inflammatory
diseases such as atopic dermatitis,21 asthma,22 allergy,23 and IBD24–27

also have been linked with disturbances of the intestinal microbiome.
The commensals are important components of the digestive

system and provide a number of micronutrients and small molecules
further shaping the metabolome of the gut28 and the overall
metabolism of the organism. The commensal flora takes part in
orchestrating immune responses in physiological and pathophysio-
logical situations.29

As mentioned, obesity and metabolic syndrome, well-known risk
factors for hypertension or heart disease, have been linked to the
presence of specific bacteria or families of bacteria in the intestinal
microbiome.13– 18,30,31 Especially, the landmark studies by Turn-
baugh and Gordon have raised important insights into the role of
gut bacteria for the metabolic syndrome.14,17,18,32,33 Lean mice trans-
planted with the microbiome of obese mice showed a significant
weight gain despite no change in food intake. Similar microbiome
patterns as in obese mice were observed in obese patients or indivi-
duals with a metabolic syndrome. Unfortunately, the transplantation
of the microbiome of lean mice into obese mice did not induce a

weight loss in the latter. Therefore, these findings have no impact
on clinical practice so far. However, the findings indicate that there
are indeed patients who may have more weight gain and higher
blood glucose levels with the same amount of daily caloric intake
depending on the type of bacteria they host in their gut. This may
at least change our attitude to patients with metabolic syndrome to
some extent.

The gut and atherosclerosis
A recent study by Wang et al.34 using a metabolomics approach
identified a novel pathway linking dietary lipid intake, gut microflora,
and atherosclerosis. The investigators identified the metabolism of
phosphatidylcholine by the gut flora to be important for the develop-
ment of cardiovascular disease.34 Three metabolites of phosphatidyl-
choline (choline, trimethylamine N-oxide and betaine) were shown
to predict risk for cardiovascular disease in a large clinical cohort.
This was not observed in germ-free animals, confirming a crucial
role for the gut flora in phosphatidylcholine metabolism. Additional
prospective studies will be needed to evaluate whether these
parameters are useful in clinical practice.

The above results have raised a number of speculations that pro-
biotic interventions may be beneficial and prevent the development
of atherosclerosis and heart disease. Such conclusions should be
handled with care. Health claims for food products are now more
restricted and supervised by the European Food Safety Authority.

Several studies have shown an association between both viral and
bacterial infections and degree of atherosclerosis. The mechanisms
throughwhichviral infections may favour the development of athero-
sclerosis are not obvious, although there is plausibility for the
influence of intestinal bacterial infections and atherosclerosis.35

Bacterial lipopolysaccharides (LPS) may interact with low-density
lipoprotein (LDL) and influence lipoprotein metabolism, thereby
contributing to the development of atherosclerosis.36– 40 Further-
more, LPS induces endothelial cell damage41– 43 and stimulates
the production and release of superoxide anions (O2

−)44,45 and
the oxidation of LDL.46 Oxidized LDL in turn favours the develop-
ment of atherosclerosis and the release of cytokines, such as
interleukin-1 and tumour necrosis factor alpha (TNFa), from macro-
phages, stimulating their transformation into foam cells (Figure 1).47,48

Whether the progression of atherosclerosis is supported or accel-
erated by bacterial infection or by LPS is still a matter of speculation.
Although the results of antibiotic intervention studies have been
somewhat discouraging, mechanistic evidence suggests a shift of
focus from bacteria to endotoxins. Patients with highest serum LPS
levels have an increased incidence of carotid atherosclerosis.49 This
might be clinically relevant in patients with an impairment of the
intestinal barrier function, such as IBD patients or patients with
liver cirrhosis. Those patients frequently have largely increased
serum LPS levels. Since the ability of endotoxin to promote athero-
sclerosis may depend on its ability to initiate an inflammatory
response, additional regulatory factors have been investigated.
Polymorphisms of the Toll receptor 4, which is the receptor for
endotoxin of Gram-negative bacteria, have been implicated in the
development of coronary artery disease.50 The Toll receptor 4 is
expressed among other tissues on cardiomyocytes and foam
cells.47,51– 54 Kiechl et al.50 have shown that the presence of a
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common polymorphism of TLR4 predicted low levels of circulating
inflammatory molecules and conferred a reduced risk of atheroscler-
osis. Thus, some evidence supports a link between gut-originated
endotoxins and progression of atherosclerosis; however, further
studies are needed to confirm this link, to understand better the
mechanisms and develop clinical consequences.

The gut and coronaryartery disease
The link between enteric bacterial translocation and coronary artery
disease is more elusive. Lam et al.55 treated rats orally with the broad-
spectrum antibiotic vancomycin to reduce total microbiota numbers
and change the composition of the gut microbiome in an ischaemia/
reperfusion model of myocardial infarction. Orally administrated
vancomycin is absorbed only to a very low amount, thus excluding
a direct effect on the myocardium. The addition of the antibiotic to
the drinking water was associated with a reduction of infarction
size, and cardioprotection already was achieved after 2 days of
antibiotic treatment.55 The protection, however, was lost again
after vancomycin supplementation was stopped for .3 days. It
remainsunclearwhether the associationbetweenCHD andbacterial
pathogens, such as Helicobacter pylori and Chlamydia pneumonia, may
play a role here.56– 62 It is generally believed that a chronic infection
with these bacteria and the subsequent immune responses are

a pre-requisite for a slow development of atherosclerosis.63– 65

Subsequently, those mechanisms are not likely to play a role in an
ischaemia/reperfusion model of myocardial infarction. Nevertheless,
a direct anti-inflammatory effect of the drug in this artificial setting
cannot be excluded.

As a clinical attempt to improve the outcome of acute myocardial
ischaemia in patients, the administration of various antibiotics was
studied in well-designed randomized trials. In the STAMINA trial,
325 patients with acute myocardial infarction or unstable angina
(acute coronary syndromes) were randomized to receive either a
1-week course of placebo or two different classical Helicobacter
eradication antibiotic therapies [either amoxicillin (500 mg twice
daily), metronidazole (400 mg twice daily), and omeprazole (20 mg
twice daily) or azithromycin (500 mg once daily), metronidazole
(400 mg twice daily), and omeprazole (20 mg twice daily)].66 Patients
were followed for 1 year; the endpoint was cardiac death or
re-admission with acute coronary syndrome. The authors report
17 cardiac deaths and 71 re-admissions with acute coronary syn-
drome in their study group. No difference was observed between
the two antibiotic treatments; however, at 12 weeks and during the
1-year follow-up, there was a 36% reduction in all endpoints in
patients receiving antibiotics compared with placebo (P ¼ 0.02).66

In the ROXIS study, the effect of roxithromycin on the outcome of
202 patients with unstable angina or non-Q-wave myocardial

Figure 1 Potential pathways of gut involvement in the pathogenesis of atherosclerosis and coronary heart disease. The intestinal microbiota has a
profound influence on mucosa barrier functions and on the nutritional/metabolic status of its ‘host’. Certain bacterial families such as Firmicutes con-
tribute to a higher uptake, for example, of short-chain fatty acids. In addition, a leaky barrier or impaired intestinal epithelial barrier function allows
bacterial products such as lipopolysaccharide, bacterial DNA (CpG motifs), or peptidoglycans to enter the circulation. Furthermore, the microbiota
can directly influence the cytokine production of epithelial cells and innate immune cells. Those mediators also enter the circulation. Lipopolysac-
charide itself but also the metabolic situation can induce the production of oxidized low-density lipoprotein. These mediators are recognized by
specific receptors (such as Toll-like receptors for bacterial wall products, cytokines receptors, or scavenger receptors) on (or in) endothelial
cells, macrophages, or smooth muscle cells (SMCs) of the arterial wall. They are able to induce endothelial damage, foam cell formation, and
SMC proliferations, which are features of atherosclerosis and coronary heart disease.
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infarction was assessed in a double-blind, randomized, prospective,
multicentre, parallel-group, placebo-controlled study.67 Patients
either received the macrolide roxithromycin 150 mg orally twice a
day or placebo orally twice a day for 30 days.67 The primary clinical
endpoints (cardiac ischaemic death, myocardial infarction, and
severe recurrent ischaemia) were assessed at day 31 in 202 patients
on an intention-to-treat basis, and a statistically significant reduction
in the primary composite triple endpoint rates was observed in the
roxithromycin group.67 As reported in the publication, the rates of
severe recurrent ischaemia, myocardial infarction, and ischaemic
death were 5.4, 2.2, and 2.2% in the placebo group and 1.1, 0, and
0%, in the roxithromycin group.67

In contrast to the two described studies in the WIZARD trial, no
positive effect was reported—7747 adults with previous myocardial
infarction that had occurred at least 6 weeks previously were rando-
mized to placebo treatment or azithromycin (600 mg/day for 3 days
during week 1, then 600 mg/week during weeks 2–12; n ¼ 3879).68

After a median of 14 months of follow-up, no significant risk reduc-
tion in the likelihood of occurrence of death, nonfatal re-infarction,
coronary revascularization, or hospitalization for angina was found
comparing azithromycin with placebo [RRR: 7% (95% confidence
interval: 25 to 17%), P ¼ 0.23].68

For the interpretationof the results, it appears tobe important that
in the large WIZARD study, patients were included with an AMI at
least 6 months previously (median 2.6 years), thus lacking those
cases with early cardiac events after AMI. This is in contrast with
STAMINA and ROXIS studies, which evaluated patients with ACS
treated with antibiotics shortly after the initial event.

It has been discussed that the positive effects of the clinical
interventions may be attributed to the anti-Chlamydia activity of the
antibiotics. However, as the impact of Chlamydia on atherosclerosis
has been suggested to be mediated by a chronic inflammatory
response, the positive effect to the antibiotic treatment in acutemyo-
cardial infarction especially with respect to short-term (and not long-
term) outcome is surprising. A direct anti-inflammatory effect of the
antibiotics also might be relevant. Further studies are needed to
finally answer these questions as an RRR between 37 and 80%
would be clinically very important.

The gut and heart failure
An involvement of the gut in the progression and clinical evolution of
heart failure has been discussed for years. Although the pathogenetic
role of the gut microbiome and function have only recently started
to be investigated in more detail in patients with chronic heart
failure (CHF), data are accumulating to suggest that the gut plays an
important pathophysiological role in both chronic inflammation
and malnutrition in CHF.

In patients with CHF, disturbed intestinal microcirculation and
barrier function may trigger cytokine production that in turn contri-
butes to impaired cardiac function.69 On the other hand, the circula-
tory adaptations that occur in patients with CHF as consequence of
myocardial dysfunction may favour microcirculatory injuries leading
to a disruption in the intestinal barrier, thereby amplifying inflamma-
tion.69– 71

Patients with CHF have morphological and functional alterations
of the gut.69– 71 In these patients, all parts of the large bowel display

a thickened wall compared with control subjects of similar age.70

This is associated with a functionally altered gut mucosa with
increased permeability for lactulose/mannitol and sucralose in both
the small and large intestine as well as with a reduced passive carrier-
mediated transport for D-xylose. Furthermore, in patients with CHF,
the concentrationofbacteria in the sigmoidal mucosal biofilmand the
extent of their adherence are higher than those in control subjects.72

The translocation of bacteria across the intestinal barrier and the
systemic presence of endotoxin such as LPS or other bacterial wall
compounds such as peptidoglycans (e.g. muramyl dipeptide) may
also play a pathophysiological role in CHF.73 The hypothesis is sup-
ported by increased levels of soluble CD14 in patients with CHF.74

CD14 is a part of the LPS receptor, and soluble CD14 (a form of
CD14 that is shed from the cell membrane) is believed to have im-
portant regulatory functions in the sensing of LPS. As mentioned
above, another component of the LPS receptor, the Toll-like recep-
tor 4 (TLR-4), is expressed on cardiomyocytes.75 Binding of endo-
toxin to TLR-4 on cardiomyocytes is associated with impaired
function,76 decreased contractility,52–54 induction of an inflamma-
tory response,52,54 and structural tissue damage.

It is well known that CHF is a state of chronic inflammation with
elevated circulating levels of pro-inflammatory cytokines, such as
TNFa. In patients with CHF, increased circulating levels of
pro-inflammatory cytokines have been shown to be closely related
to predict poor short- and long-term survival.77,78 Circulating cyto-
kines have cardiosuppressor effects via different pathways that
include alterations in myocardial intracellular calcium homeostasis,
reduction in mitochondrial activity, alterations in matrix metallopro-
teinase expression, cardiomyocyte hypertrophy, and apoptosis.79–83

Although the origin of inflammation in patients with CHF with ele-
vated concentrations of pro-inflammatory cytokines is still a matter
of debate, it has been shown that very small, but pathophysiologically
relevant amounts of LPS may induce TNFa release.84,85 Further-
more, growing evidence suggests that increased amounts of LPS
enter the systemic circulation because of an altered intestinal micro-
circulation in CHF, with LPS levels being 35% higher in the hepatic
venous blood than in the left ventricle.86 An important point in gut-
derived inflammation in patients with CHF is the altered gut circula-
tion as a consequence of reduced cardiac output and venous conges-
tion (Figure 2).

In patients with CHF, increased sympathetic tone and peripheral
vasoconstriction contribute to a redistribution of blood flow away
from the splanchnic circulation. The reduced intestinal perfusion
may lead to an increase in intramucosal carbon dioxide pressure.
Intramucosal acidosis may occur in nearly 50% of patients with circu-
latory failure, suggesting the presence of inadequate oxygen supply
and intestinal ischaemia.87,88 The alteredmucosal perfusion increases
intestinal mucosal permeability with the disruption of the epithelial
barrier function that favours the bacterial colonization and the pene-
tration of LPS. Besides its effect on the release of cytokines that
further aggravates CHF, LPS is able to trigger catecholamine
release by granulocytes and phagocytes.89 This increased release of
catecholamines exerts additional unfavourable effects on gut perfu-
sion and further increases the already hyperactive sympathetic tone.

Another mechanism through which CHF may favour bacterial
translocation is related to intestinal mucosa congestion as a conse-
quence of raised right atrial pressure. As CHF is associated with
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mucosal oedema in the intestine, which will impair the intestinal
barrier function, this again may be followed by increased bacterial
translocation (across the impaired barrier), increased amounts of
endotoxin in the circulation,90 and aggravated heart disease—a
typical vicious circle. Niebauer et al.90 found that intensified diuretic

treatment normalized circulating endotoxin concentrations in
patients with acute exacerbation of chronic heart disease.

A number of alterations in gastrointestinal function have been
described inpatientswith CHF(Table1). It remains amatterofdiscus-
sion whether these alterations are primary to the heart disease or
caused by it.

In summary, recent data on potential interaction between the gut
and the heart are intriguing. However, the evidence we have so far is
preliminary. In large cohort studies, it needs to be evaluated whether,
indeed, increased levels of bacterial products can be found in patients
with atherosclerosis or CHF. The interesting and innovative field of
heart–gut interaction still waits for more cardiologists and gastroen-
terologists to collaborate on these important topics.
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Figure 2 The heart and the gut in the pathophysiology of chronic heart failure. Chronic heart failure will cause a reduction in cardiac output which
in turn will cause central and peripheral hypoxia. Among the organs that are affected by peripheral hypoxia is the small and large intestine. Hypoxia
will cause an increase in inflammatory cytokine production, sympathetic activity, and production of other mediators (such as leucotrienes, prosta-
glandins, and others that are not depicted in this graph). These mediators and the sympathetic activity may cause a malfunction of the gut. A further
contributor will be a venous stasis increasing mucosal hypoxia. The mentioned factors have been shown to impair epithelial barrier function leading
to a penetration of bacterial products across the intestinal barrier. Preliminary data indicate that the presence of those products in the circulation
further aggravate chronic heart failure. Further studies with modern technologies such as mass spectroscopy and pyro sequencing of bacterial DNA
will be necessary to confirm this. On the other hand, a dysfunction of the intestinal barrier will also cause impaired absorption negatively influencing
the nutritional status of patients with end-stage heart disease.

Table 1 Alterations of gastrointestinal function in
patients with chronic heart failure (according to
Sandek et al.70)

Increased small intestinal and large intestinal paracellular permeability in
stable compensated chronic heart failure patients

Diminished carrier-mediated transport for D-xylose

Excessive enteric protein loss in infants with severe congenital heart
disease

Decreased absorption of fat and protein

Thickened bowel wall of the terminal ileum and the colon

Elevated collagen content in small intestinal biopsies

Increaseddistance between the capillarywall and thebasalmembraneof
the enterocyte

Increased bacterial biofilm on sigmoid biopsies
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