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ABSTRACT
We measure the clustering of a sample of photometrically selected luminous red galaxies
(LRGs) around a low-redshift (0.2 < z < 0.6) sample of quasars selected from the Sloan
Digital Sky Survey Data Release 5. We make use of a new statistical estimator to obtain
precise measurements of the LRG autocorrelations and constrain halo occupation distributions
for them. These are used to generate mock catalogues which aid in interpreting our quasar-
LRG cross-correlation measurements. The cross-correlation is well described by a power law
with slope 1.8 ± 0.1 and r0 = 6 ± 0.5 h−1 Mpc, consistent with observed galaxy correlation
functions. We find no evidence for ‘excess’ clustering on 0.1 Mpc scales and demonstrate
that this is consistent with the results of Serber et al. and Strand, Brunner and Myers, when
one accounts for several subtleties in the interpretation of their measurements. Combining
the quasar-LRG cross-correlation with the LRG autocorrelations, we determine a large-scale
quasar bias bQSO = 1.09 ± 0.15 at a median redshift of 0.43, with no observed redshift or
luminosity evolution. This corresponds to a mean halo mass 〈M〉 ∼ 1012 h−1 M�, Eddington
ratios from 0.01 to 1 and lifetimes less than 107 yr. Using simple models of halo occupation,
these correspond to a number density of quasar hosts greater than 10−3 h3 Mpc−3 and stellar
masses less than 1011 h−1 M�. The small-scale clustering signal can be interpreted with
the aid of our mock LRG catalogues, and depends on the manner in which quasars inhabit
haloes. We find that our small-scale measurements are inconsistent with quasar positions being
randomly subsampled from halo centres above a mass threshold, requiring a satellite fraction
>25 per cent.

Key words: galaxies: elliptical and lenticular, cD – quasars: general – large-scale structure
of Universe.

1 IN T RO D U C T I O N

Quasars are among the most luminous astrophysical objects, and
are believed to be powered by accretion on to supermassive black
holes (e.g. Salpeter 1964; Lynden-Bell 1969). They have become a
key element in our current paradigm of galaxy evolution – essen-
tially, all spheroidal systems at present harbour massive black holes
(Kormendy & Richstone 1995), the masses of which are correlated
with many properties of their host systems. However, the physical
mechanisms that trigger and fuel quasars are still unknown; further-
more, it is possible that very different mechanisms dominate at low
and high redshifts and at high and low luminosities.

Deep imaging with the Hubble Space Telescope (HST) (e.g.
Bahcall et al. 1997; McLure et al. 1999; Dunlop et al. 2003;
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Floyd et al. 2004; Letawe et al. 2008) suggests that low-z quasi-
stellar objects (QSOs) are exclusively hosted by bright galaxies with
L > L∗. Radio-loud QSOs reside in early-type galaxies, while their
radio-quiet counterparts have both early- and late-type hosts, with
the fraction of early-type hosts increasing with the quasar optical
luminosity. In most cases, there is strong observational evidence for
the presence of a young (subdominant) stellar population (Sánchez
et al. 2004) and large amounts of gas, irrespective of the morphologi-
cal type of the host (Letawe et al. 2007). Furthermore, 30–50 per cent
of quasars appear to be associated with interactions, although the
number of such imaged systems is small, and signatures of mergers
are notoriously difficult to observe. The emerging picture is that the
QSO activity and star formation are inextricably linked (e.g. Nandra
et al. 2007; Silverman et al. 2008) in galaxies that contain a massive
bulge (and thus a massive black hole) and a gas reservoir.

The clustering of quasars as a function of redshift and luminosity
provides a different perspective on the above picture. The amplitude
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of clustering on large scales is related to the masses of the dark
matter haloes which host the quasars (their environment), which
together with the observed number density allows us to constrain
the quasar lifetimes or duty cycles. The small-scale clustering of
quasars can shed light on the triggering mechanism for quasars, and
the nature of quasar progenitors.

However, it is only recently that samples of quasars have grown
big enough (in terms of the number of objects) to study their clus-
tering with some precision (Porciani, Magliocchetti & Norberg
2004; Croom et al. 2005; Hennawi et al. 2006; Porciani & Nor-
berg 2006; Myers et al. 2007a,b; Shen et al. 2007; da Angela et al.
2008). One of the major problems with measuring the clustering of
quasars is that they are extremely rare (n̄ ∼ 10−6 h3 Mpc−3 at z ∼
0.5). Shot-noise from Poisson fluctuations in the counts of objects
thus obscures their clustering signal. At low redshifts, this prob-
lem is exacerbated, requiring measurements in very broad redshift
intervals.

To avoid this, we cross-correlate approximately 2500 low-z
quasars (Schneider et al. 2007) with a sample of 450 000 lumi-
nous red galaxies (LRGs) (Padmanabhan et al. 2007), both selected
from the Sloan Digital Sky Survey (SDSS, York et al. 2000) and
with overlapping redshift distributions. The LRGs have very reliable
photometric redshifts (Padmanabhan et al. 2005), trace the matter
distribution in a way that is well understood and have a much higher
volume density (n̄ ∼ 10−4 h3 Mpc−3) than the quasar sample. The
cross-correlation can thus be well measured and inverted, using the
known redshift distribution, to the underlying 3D clustering.

In this paper, we make use of several novel techniques for
measuring the clustering of galaxies and quasars, and compute
full covariance matrices for our estimators from the data them-
selves. While the idea of enhancing the clustering signal by using
cross-correlations is not new (Coil et al. 2007; Croom et al. 2004;
Adelberger & Steidel 2005a,b; Serber et al. 2006; Strand et al. 2008;
Mountrichas et al. 2009), the sample size and ability to perform such
detailed statistical analyses are new to this paper. In addition, the
precise measurements of LRG clustering allow us for the first time
to discuss the manner in which both LRGs and quasars inhabit dark
matter haloes at z ∼ 0.5.

The outline of the paper is as follows. In Section 2, we describe
the LRG and quasar samples, drawn from the SDSS, that we use.
The clustering measurements are described in Section 3, where we
pay special attention to the techniques used and the error estimates.
The implications of our results for quasars are explored in Section 4,
including comparisons with earlier work. In particular, we investi-
gate the manner in which quasars inhabit dark matter haloes at z ∼
0.5. We conclude in Section 5. Appendix A contains the technical
details of the halo model fits used in this paper, while Appendix B
recasts the measurements of Serber et al. (2006) and Strand et al.
(2008) into the framework of this paper, highlighting unappreciated
subtleties in their interpretation. Where necessary we will assume
a � cold dark matter (�CDM) cosmological model with �mat =
0.25, �� = 0.75 and σ 8 = 0.8. Also, unless the h dependence is
explicitly specified, we assume h = 0.7.

2 DATA

2.1 Quasars

We use quasars selected from the fourth edition of the SDSS
quasar catalogue (Schneider et al. 2007). This catalogue consists of
spectroscopically identified quasars in the fifth SDSS data release
(Adelman-McCarthy et al. 2007), with an absolute point spread

function (PSF) magnitude in the i band, Mi < −22.0 and at least
one emission line with full width at half-maximum larger than
1000 km s−1. It does not contain Type 2 QSOs, Seyferts or BL Lac
objects. In order to construct a homogeneous sample, we follow
Richards et al. (2006) and select objects

(i) that were targeted for science (SCIENCEPRIMARY = 1);
(ii) classified by the SDSS photometric pipeline as primary (PRI-

MARY = 1);
(iii) morphologically consistent with being point sources (MOR-

PHOLOGY = 0).
(iv) with dust and emission-line K-corrected i-band magnitudes,

i < 19.1.

In order to cross-correlate with the LRG sample described below,
we restrict ourselves to quasars that lie within the LRG angular
mask, and with redshifts between 0.25 < z < 0.6. The resulting
sample (denoted ALL below) has 2476 quasars. One subtlety with
the SDSS quasar samples is the changes to the quasar target selec-
tion algorithm (Richards et al. 2002) over the lifetime of the survey.
However, these changes were made to optimize target selection at
high redshifts, and have little effect on our sample. As we discuss
below, restricting to quasars selected with the final version of the
QSO target selection (v3 1 0) does not affect any of our results.
We therefore do not make a cut based on the target selection algo-
rithm. The redshift distribution is shown in Fig. 1, while the angular
distribution is in Fig. 2.

Fig. 3 plots the conditional magnitude distribution of our sample.
We assume a redshift evolution of M∗,i (k-corrected to z = 0) given
by

M∗,i(z) = M∗,i,0 − 2.5
(
k1z + k2z

2
)

, (1)

with M∗,i,0 = −21.678, k1 = 1.39 and k2 = −0.29 (Richards et al.
2005), where we have converted from the SDSS g to i band with
Mg − Mi = 0.068 (Richards et al. 2006). This defines a sample
of quasars (denoted LSTAR) with Mi < M∗,i , yielding a sample
with an approximately constant spatial number density over the

Figure 1. The redshift distribution of the quasars (top panel) and LRGs
(bottom panel) used in this analysis. The LRG redshift distributions are
derived from the observed photometric redshift distribution, after decon-
volving the redshift errors. The dotted lines show the redshift distribution
for the six individual d zphoto = 0.05 LRG samples. The vertical lines mark
the boundaries of the three quasar redshift slices we consider – 0.25 < z <

0.35 (dotted line), 0.33 < z < 50 (short-dashed line) and 0.45 < z < 0.6
(long-dashed line).
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Figure 2. The angular distribution of our quasar sample, plotted in an RA–
cos(δ) equal-area rectilinear projection. The angular mask for the quasars
is determined both by the spectroscopic coverage and the overlap with the
photometric LRG sample.

Figure 3. The conditional distribution of absolute magnitude with redshift
for our sample of QSOs. The lines plot the 16, 50 and 84 per cent contours.
The lower panel plots the absolute magnitude relative to M�, estimated from
the 2dF and 2SLAQ survey. The flattening/upturn at low redshift is due to
the Mi = −22.0 cut on the sample, to minimize contamination from the host
galaxy. The vertical lines (as in Fig. 1) show the redshift boundaries of our
samples.

redshift range we consider. We can estimate the number density of
these samples by integrating the broken power-law fit to the QSO
luminosity function from Richards et al. (2005):

�(L, z) = �∗

100.4(α+1)(Mi−M∗,i ) + 100.4(β+1)(Mi−M∗,i )
. (2)

Table 1. A summary of the quasar we consider. The
columns list the sample name, redshift range and the
number of quasars.

Sample Redshift nQSO

ALL0 0.25 < z < 0.35 435
ALL1 0.33 < z < 0.50 1277
ALL2 0.45 < z < 0.60 1269

LSTAR0 0.25 < z < 0.35 212
LSTAR1 0.33 < z < 0.50 751
LSTAR2 0.45 < z < 0.60 1094

If we assume the parameters estimated from the 2QZ and 2SLAQ
surveys, i.e. M∗,i as defined above, α = −3.31, β = −1.45 and
�∗ = 5.33 × 10−6 h3 Mpc−3 mag−1 (Richards et al. 2005), and no
scatter between g and i magnitudes, we estimate a number density
of 1.7 × 10−7 h3 Mpc−3. If one adopts the parameters from Boyle
et al. (2000), we find a number density of ∼1.3 × 10−7 h3 Mpc−3,
approximately 20 per cent lower. Note that we keep the sample
definition the same for both these cases, so one is integrating over
magnitudes less than M∗ defined by equation (1).

We estimate the bolometric luminosity using the relation from
Croom et al. (2005):

Mi = −2.66 log10(Lbol) + 79.36 , (3)

where Lbol is in Watts (W), and we convert from the bJ to i band
using the empirical relations in Richards et al. (2006). For the
LSTAR sample at the median redshift of 0.43, with M∗,i(z = 0.43) =
−23.04, this implies a bolometric luminosity Lbol > 1038.5 W. As-
suming that the quasars are radiating at the Eddington rate [LEdd =
1039.1(Mbh/108 M�) W], this implies black hole masses Mbh > 3 ×
107 M�.

Table 1 summarizes the various subsamples we consider in this
paper (discussed further in Section 3.2).

2.2 Luminous red galaxies

We cross-correlate the above quasars with a sample of LRGs se-
lected from the SDSS imaging data. The sample selection, angular
mask and redshift distributions have been described in detail in
Padmanabhan et al. (2007), and we refer the reader to the details
there. These galaxies have well-characterized photometric redshifts
and errors (δz ∼ 0.03), allowing us to deconvolve the photometric
redshift distribution to obtain the underlying dN/dz (Padmanabhan
et al. 2005). We consider LRGs with 0.25 < zphoto < 0.55, trimmed
to an angular mask that covers 3528.04 deg2 in the northern Galac-
tic hemisphere; this results in a sample of 454 882 LRGs. We then
divide the sample into six redshift ranges, summarized in Table 2,
of photometric redshift width 
z = 0.05, where the redshift bound-
aries are chosen to select approximately homogeneous samples as
the 4000 Å break shifts from the g to r band. We found that the
LRG properties varied significantly over the redshift range making
fine zphoto bins essential for proper modelling, the choice of 
z =
0.05 being determined by the photometric redshift errors. The LRG
samples are summarized in Table 2, while the deconvolved redshift
distributions are in plotted in Fig. 1.
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Table 2. Properties of the LRG samples, showing the number, photo-z range, mean and modal redshift, width, growth factor (normalized to unity
today) at the modal redshift, number density (in 10−4 h3 Mpc−3) and large-scale bias. We estimate the large-scale bias by fitting to ω(θ s) assuming
scale-independent bias or fitting to a halo model (see the text). The quoted errors are purely statistical. The biases estimated from the different methods
have systematic errors at the 5 per cent level. We adopt bhalo as our fiducial value.

Sample nLRG zphoto-range 〈z〉 zmode δz D n̄ bconstant bhalo

LRG1 29,660 0.25 < z < 0.30 0.276 0.287 0.029 0.87 4.7 1.75 ± 0.05 1.71 ± 0.05
LRG2 32,527 0.30 < z < 0.35 0.326 0.312 0.033 0.86 4.1 1.77 ± 0.06 1.77 ± 0.05
LRG3 41,051 0.35 < z < 0.40 0.376 0.375 0.049 0.84 3.4 2.36 ± 0.05 2.15 ± 0.07
LRG4 60,294 0.40 < z < 0.45 0.445 0.452 0.058 0.81 3.7 2.28 ± 0.05 2.09 ± 0.05
LRG5 104,131 0.45 < z < 0.50 0.506 0.488 0.048 0.79 4.7 2.02 ± 0.04 1.90 ± 0.04
LRG6 95,605 0.50 < z < 0.55 0.552 0.541 0.051 0.78 4.2 1.90 ± 0.05 1.76 ± 0.05

3 C LUSTERING

3.1 LRG clustering

3.1.1 Methods

We measure the clustering of the LRG sample in each of the six
photometric redshift slices using the angular clustering estimator
described in Padmanabhan, White & Eisenstein (2007). We define

ω(θs) ≡ 2π

∫ θs

0
θ dθG(θ, θs)w(θ ) , (4)

where

θ 3
s G (θ, θs) = (x2)2(1 − x2)2

(
1

2
− x2

)
x < 1,

= 0 x ≥ 1 ,

(5)

with x = θ/θ s. As was shown in Padmanabhan et al. (2007), this esti-
mator partially deprojects the angular correlation function, yielding
a robust estimate of the 3D real-space correlation function on scales
of ∼ 1

2 χ̄θs, where χ̄ is the mean comoving distance to the redshift
slice under consideration.

We implement the above estimator using DD/RR − 1 as our
estimate of the angular correlation function. Although the Landy &
Szalay (1993) estimate is a more traditional choice, the contiguous
wide-area coverage of the SDSS imaging makes it unnecessary in
our case, and we choose the simpler estimator. Substituting this into
equation (4), we obtain

ω(θs) = 2π

∫
θ dθG(θ, θs)

DD

RR
, (6)

where we use the fact that the area-weighted integral of G(x) van-
ishes by construction. In order to proceed, we note that the RR term
is a purely a geometric term determined by the survey mask. Al-
though this is traditionally estimated by measuring random–random
pairs in the same binning as the DD pairs, Padmanabhan et al. (2007)
point out that on scales much smaller than the size of the survey,
RR is described by

RR ∝ 2πθ
θ �(θ ), (7)

where �(θ ) is a smooth function; we obtain a good fit to � using
a fifth-order polynomial. Having fit �, we can make our θ bins
arbitrarily small without incurring any Poisson noise penalty. This
allows us to rewrite equation (6) as a weighted sum over pairs:

ω(θs) =
∑
i∈DD

G(θi, θs)

�(θi)
�(θs − θ ), (8)

where � is the Heaviside step function.

We estimate the covariance matrix of our measurements by boot-
strap resampling (e.g. Efron & Gong 1983). An important advantage
of ω(θ s) is its insensitivity to clustering on scales �2θ s. This allows
us to subdivide the survey into 41 approximately filled spherical
rectangles, 7.◦5 in the RA direction and 0.15 in the sin (δ) direction.
Computing ω(θ s) for each of these subsamples yields 41 indepen-
dent, identically distributed realizations of ω(θ s). The independence
of the subsamples is a direct consequence of the estimator; this is
not true for the more traditional w(θ ). We then estimate both the
average and covariance matrix by bootstrap resampling these 41
realizations. In order to improve the numerical stability of this pro-
cedure, we scale ω by θ 2

s , thereby removing the artificially large
condition number of the covariance matrix that arises due to the
large dynamic range of ω. The resulting covariance matrix is very
well behaved, with no anomalously small modes that need to be
removed. Note that this is not the case for w(θ ) which is sensitive
to large-scale fluctuations, which, in turn, lead to unphysical modes
in the covariance matrix that must be further conditioned. The in-
sensitivity of ω(θ s) to long wavelengths is an important advantage
when attempting to estimate the covariance matrix from the data
itself.

3.1.2 Results

The angular clustering of the LRGs in the six redshift slices is shown
in Fig. 4, using the estimator described above; also plotted is the
approximate physical scale probed by ω at a given θ s. Note that the
errors between different points are correlated, and we use the full
covariance matrix in all fits.

Given the observed angular clustering, one can infer the under-
lying 3D clustering of the sample; we do this using two methods.
The first assumes that the LRG clustering traces the dark matter
with a scale-independent bias on large scales. We compute ω(θ s)
assuming the Smith et al. (2003) prescription for the shape of the
non-linear dark matter power spectrum, and estimate the large-scale
bias by fitting the data on scales larger than 0.◦2, corresponding to
physical scales �2 h−1 Mpc. The best-fitting models are plotted in
Fig. 4, with the corresponding bias values in Table 2. The Smith
et al. (2003) prescriptions deviate from the observed clustering on
small scales; as one might expect: LRGs do not trace the dark matter
on these scales.

The second method attempts to model the observed clustering by
fitting a halo occupation distribution (HOD), i.e. the average number
of LRGs per halo as a function of halo mass; we refer the reader
to Appendix A for details. The best-fitting ω are in Fig. 4, and the
predicted large-scale bias values are in Table 2. Taking into account
the likelihood of scale-dependent bias and the 5 per cent systematic
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Figure 4. The observed ω for the six LRG redshift slices, as a function of the filter scale θ s. Recall that ω probes the angular correlation function on scales
∼θ s/2; the corresponding physical scales are also shown. We also plot the best-fitting models, both from the Smith et al. (2003) fitting formula (dashed/red line)
for the non-linear dark matter clustering, as well as from our halo model fits (solid/blue line). The dotted vertical line marks the angular scale beyond which we
fit the HaloFit models. These fits deviate from the observed clustering on small scales; LRGs are not distributed like the dark matter on these scales. The halo
model correlation functions are estimated from the same realizations in the 500 h−1 Mpc simulation that we use to interpret the quasar-LRG cross-correlations.
Note that the data are well fit by the halo model on both small and large scales.

uncertainty in the halo modelling (see Appendix A), these are in
reasonable agreement with the simple fits described above. The halo
models (Fig. 5) reproduce the observed correlations well, including
the prominent break in the correlation function (the best-fitting χ 2

values are in Table A1). Our LRG samples populate a broad range
of halo masses, with an approximate power-law dependence of the
mean number of LRGs per halo with the halo mass. Furthermore,
we find that the haloes with masses ∼1013 M� have one LRG in
them. An important byproduct of this process is that we obtain mock
realizations of the LRG sample; we use these below to interpret the
clustering measurements of the quasars.

The LRG clustering amplitude is consistent with being non-
evolving with redshift, implying a bias that evolves as b(z) ∼ 1/D(z).
An exception is LRG3 and LRG4, which have a significantly higher
bias. These slices straddle the transition between two different se-
lection criteria, and the LRGs selected here have a higher luminosity
than average, explaining the higher bias; this was discussed in detail
by Padmanabhan et al. (2007). Comparing the bias values and HOD
fits, we see that the LRGs can be conveniently grouped into three
slices of width dzphoto = 0.1, each of which samples a homogeneous
population of galaxies.

Finally, we note our results are consistent with those of
Padmanabhan et al. (2007) correcting for differences in the fiducial
cosmologies. That paper also performed a number of systematic
tests on the LRG sample, and we simply refer the reader to that
work instead of repeating them here.

3.2 QSO clustering

3.2.1 Methods

The quasars in our sample have spectroscopic redshifts and thus
we know (up to small uncertainties due to peculiar velocities) a

physical distance to each object. This allows us to work in terms of
transverse separation rather than angular separation, i.e. to measure

wp(R) ≡
∫

d
χξ (
√

R2 + 
χ 2) (9)

rather than w(θ ) or its generalizations. As with the LRGs, this is a
real-space measurement, avoiding the need to model redshift space
distortions.

We start by considering quasars in a narrow redshift range (a
comoving distance χ 0 away), and correlate them with LRGs with a
normalized radial distribution, f (χ ). In the flat sky approximation,
the angular correlation function is given by

w(θ ) =
∫

dχf (χ ) ξ

[√
χ 2

0 θ 2 + (χ − χ0)2

]
, (10)

where the usual second integral over the quasar redshift distribution
has been eliminated because the quasars have spectroscopic red-
shifts. We can now make the usual Limber (1953) approximation
for χ 0θ much smaller than the scales over which f (χ ) varies. This
allows us to hold f (χ ) fixed at f (χ 0) in the integral, yielding

w(θ )  f (χ0)
∫

dχξ

[√
χ 2

0 θ 2 + (χ − χ0)2

]
(11)

= f (χ0)wp(R). (12)

Note the second use of the assumption of a peaked integral to re-
extend the limits of the integral to ±∞. The second equality just
recognizes the integral as the projected correlation function wp at
transverse separation R = χ 0θ .

To generalize to a broad redshift slice, we start with the stan-
dard assumption that wp(R) does not evolve over the slice. One
then has two choices – the first is to estimate w(θ ) over narrow
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Figure 5. Best-fitting HODs for the six LRG slices we consider in this paper. The shaded region denotes the errors, as estimated by Monte Carlo.

redshift slices, estimate wp(R) for each of these slices using equa-
tion (12) and then average. This has the disadvantage that each
individual wp(R) measurement is extremely noisy, and potentially
sensitive to noise in f (χ ). The other approach (which we adopt)
makes use of the fact that θ in equation (12) is simply a label,
and can just as easily be replaced by R. This has a simple in-
terpretation – one computes the angular correlation function over
the broad redshift range but replaces the angular separation by
the transverse separation R computed assuming that the LRGs are
the same redshift as the quasar being correlated with. We use the
estimator:

wθ (R) = QG(R)

QR(R)
− 1, (13)

where QG and QR are the quasar–galaxy and quasar–random pairs,
and our notation makes explicit that we are binning in physical
transverse separation. Since we assume that wp(R) is constant over
the redshift range, equation (12) yields

wθ (R) = 〈f (χ )〉wp(R), (14)

where the average is done over the quasar redshift distribution. Note
that this formulation both avoids the intermediate step of computing
noisy estimates of w(θ ) in narrow redshift slices and is less sensitive
to noise in f (χ ). Finally, we point out that, in equation (13), one
only requires the angular selection function of the LRGs to estimate
QR.

Note that one could use the estimator described by equation (4)
to measure the cross-correlations. However, the lower signal-to-
noise ratio of the quasar-LRG cross-correlations eliminates the ad-
vantages of the estimator, and therefore, we choose the simpler
estimator.

Estimating the covariance matrix for our sample is simplified by
the low number density of the quasars, making them effectively
independent for the scales of interest. We therefore estimate the
covariance matrix by simply bootstrapping the individual quasars.
As with the LRGs, we remove the artificially large condition number
by scaling wp(R) by R before estimating the covariance matrix.
Finally, as a check, we note that we obtain consistent results if we
replace the bootstrap covariance matrix with a jackknife estimate.

3.2.2 Results

In order to determine what subsamples to cross-correlate with, we
start with the observation (see Section 3.1) that the LRGs can be
grouped into three homogeneous slices of width 0.1 in photomet-
ric redshift, i.e. grouping slices (1, 2), (3, 4) and (5, 6) of Table 2
together. We use the mean redshift of each LRG redshift slice and
its width to determine the redshift range of the quasars to cross-
correlate with; this defines the redshift ranges of the quasar subsam-
ples in Table 1. Note that since we use the true redshift distribution
of the LRGs (as opposed to the photometric redshift distribution)
to determine the mean and width of the slices, we automatically
correct for any biases and asymmetries in the photometric redshift
errors. For each of these three quasar redshift slices (denoted as
ALL below), we further consider the following subsamples – the
LSTAR sample defined in Section 2, restricting to quasars targeted
with the latest version of the SDSS target selection algorithm, and
a bright and faint subsample split at the median luminosity for each
redshift slice.

As anticipated earlier, we find that restricting to the latest ver-
sion of the SDSS target selection algorithm gives the same cross-
clustering power against the LRGs as the ALL sample; we therefore
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Figure 6. The observed wp(R) measuring the cross-correlation between quasars and the LRG samples. The solid (red) line shows the HaloFit prescription for
the non-linear dark matter correlation function, normalized by a scale-independent bias to best fit the observed correlations. The dashed (blue) line shows the
best-fitting power-law model.

Table 3. The large-scale quasar bias and power-law fits for the ALL and LSTAR samples. We fit scales R > 2 h−1 Mpc (5 points) for the bias and all scales (12
points) for the power-law model. The second column lists the LRG slice assumed for the bias (see the text and Table 2 for details), while the third and fourth
columns list the amplitude of the quasar-LRG cross-correlation and the implied (scale-independent) bias, assuming a dark matter ξ (r) given by the Smith et al.
(2003) model. Note that we ignore the contribution of the error in the LRG bias in the derived QSO bias. The best-fitting r0 and γ values are listed under r0

and γ , while likelihood-averaged values are under 〈r0〉 and 〈γ 〉. Note that the errors in r0 and γ are correlated; the cross-correlation coefficient is under r.

Sample LRG Sample bQSObLRG bQSO χ2 r0 (Mpc/h) γ 〈r0〉 (Mpc/h) 〈γ 〉 r χ2

ALL0 1 2.73 ± 0.45 1.60 ± 0.26 1.78 6.70 1.71 6.48 ± 0.63 1.70 ± 0.10 0.18 8.01
ALL1 3 2.56 ± 0.47 1.17 ± 0.22 4.03 6.44 1.82 6.29 ± 0.54 1.81 ± 0.09 −0.30 6.70
ALL2 5 2.30 ± 0.38 1.20 ± 0.19 2.86 5.56 1.82 5.46 ± 0.42 1.82 ± 0.08 −0.28 5.94

LSTAR0 1 2.50 ± 0.62 1.46 ± 0.37 3.88 6.60 1.83 6.23 ± 0.90 1.82 ± 0.15 −0.13 7.42
LSTAR1 3 2.12 ± 0.64 0.96 ± 0.29 4.54 6.00 1.93 5.75 ± 0.79 1.92 ± 0.14 −0.49 10.22
LSTAR2 5 2.08 ± 0.41 1.08 ± 0.20 5.15 5.42 1.91 5.29 ± 0.48 1.91 ± 0.09 −0.44 8.68

do not trim the sample based on the version of the target selection
algorithm. Furthermore, as is evident from Fig. 3, the luminosity
baseline is rather small, and no clear trend with luminosity emerges,
given our errors; this prevents us from subdividing into subsamples
based on luminosity. The higher redshift slices do not extend signifi-
cantly below L∗, so to simplify the interpretation we use the LSTAR
sample as our fiducial sample. Fig. 6 plots the cross-correlations for
the LSTAR sample.

We present both power-law and large-scale bias fits to both these
subsamples. In order to estimate the mean and error for any param-
eter p(possibly a vector), we use

〈 p〉 =
∫

d pL( p) p∫
d pL( p)

(15)

and

σ 2
pi

= 〈
p2

i

〉 − 〈pi〉2, (16)

where the likelihood is defined by L ≡ exp(−χ 2/2), with χ 2 com-
puted using the full covariance matrix. For the power-law fits, we
adopt a two parameter model:

wp(R)

R
=

√
π � [(γ − 1)/2]

�(γ /2)

( r0

R

)γ

, (17)

which corresponds to a 3D cross-correlation of the form ξ (r) =
(r/r0)−γ . We fit this model to the measured correlations on all scales.
In order to determine the large-scale bias, we compute wp(R) for the
dark matter at z = 0.3, 0.42 and 0.53 using the prescription in Smith
et al. (2003). This is then scaled by an R-independent multiplier to
obtain the best fit to the data in the range R > 2 h−1 Mpc. In the limit
of scale independent, deterministic bias the multiplier is bQbLRG (see
Table 3 for the values). We transform these into bQ by using bLRG for
slices 1, 3 and 5, scaled to the corresponding redshift by the growth

factor. Note that the LRG clustering amplitude is close to constant
with redshift, so we would obtain consistent numbers if we had used
the other slices. The lower limit in the fit, 2 h−1 Mpc, was determined
by the scale at which wp(R) from QSO–LRG cross-correlations in
our mock catalogues (see Section 4.2) showed significant scale-
dependent bias.

The results for the large-scale bias and power-law fits are in
Table 3, while Fig. 7 plots the evolution of the clustering amplitude
of the LSTAR sample as a function of redshift. Our results are
consistent with a constant clustering amplitude from z = 0.25 to
0.6, corresponding to a bias of 1.09 ± 0.15 at z = 0.43.

Table 4 summarizes our results compared with previously pub-
lished work.1 Our results strongly favour the general consensus
that the bias of low-redshift quasars is ∼1; this is also consistent
with the models of Hopkins et al. (2007) as well as the previous
extrapolations by Croom et al. (2005). There are two significant
exceptions – Myers et al. (2007a) find 1.93 ± 0.14 based on a
photometrically selected sample of quasars. It is possible that con-
tamination by a high-redshift population could boost the measured
bias values. The more intriguing discrepancy is with Mountrichas
et al. (2009) who analyse a similar sample to ours, also in cross-
correlation with LRGs, and find biases between 1.90 ± 0.16 and
1.45 ± 0.11 depending on the particular LRG and quasar sample
they cross-correlate against. These results are also discrepant with
da Angela et al. (2008) – with whom we are consistent – who anal-
yse the same sample in autocorrelations. Furthermore, the scatter
in the different subsamples analysed by Mountrichas et al. (2009)

1 We do caution the reader that the errors for a number of these measurements
are simply Poisson errors, and ignore correlations between different scales
and are therefore likely underestimated.
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Figure 7. The bias of the three LSTAR quasar subsamples (squares) as
a function of redshift, as well as the mean bias (circle). We consider the
bias scaled by the growth factor to focus on the evolution of the clustering
amplitude. Also plotted (dashed lines) is the bias of haloes with masses
(from bottom to top panel) ranging from log10(M/ M�) of 10.5 to 13.5
in steps of d log10(M/ M�) = 0.5. Note that the mean large-scale bias
of 1.09 ± 0.15 at z = 0.43 suggests that quasars live in haloes of mass
∼1012 h−1 M�.

Table 4. A summary of previous low-redshift quasar clustering results,
compared with results in this work, scaled to the cosmology assumed here.
(1) This work, (2) Croom et al. (2005), (3) Myers et al. (2007a), (4) Coil
et al. (2007), (5) da Angela et al. (2008), (6 and 7) Mountrichas et al. (2009)
and (8) Croom et al. (2004). For the results from Coil et al. (2007), we
scale the relative bias presented there by the large-scale bias b = 1.22 of all
DEEP2 galaxies (Zheng, Coil & Zehavi 2007).

z Lmin bQSO References

0.25 < z < 0.6 L∗ 1.09 ± 0.15 (1)
0.3 < z < 0.68 0.4L∗ 1.27 ± 0.20 (2)
0.4 < z < 1.0 0.1L∗ 1.93 ± 0.14 (3)
0.7 < z < 1.4 0.1L∗ 1.09 ± 0.29 (4)

z ∼ 0.6 0.4L∗ 1.10 ± 0.20 (5)
z ∼ 0.6 0.4L∗ 1.90 ± 0.16 (6)
z ∼ 0.6 2.5L∗ 1.45 ± 0.11 (7)
z < 0.3 0.4L∗ 0.97 ± 0.05 (8)

significantly exceeds their quoted errors, suggesting either a sys-
tematic in their analysis or an underestimate of their errors. Using
the observed scatter between the different subsamples as an esti-
mate of the error yields a value consistent with our measurement.
Finally, two results not presented in Table 4 are Serber et al. (2006)
and Strand et al. (2008). There are a number of subtleties while
interpreting these results (resulting in misunderstandings in the lit-
erature); we therefore defer a detailed discussion of these results to
Appendix B.

4 INTERPRETATIONS

4.1 The large-scale bias

The large-scale bias of any population of objects provides informa-
tion on the mean dark matter haloes mass hosting that population.
Specifically, if N(Mh) is the mean number of possible QSO host-
ing galaxies (i.e. galaxies with black holes massive enough to fuel

QSOs) hosted by a halo of mass Mh then

n̄ =
∫

dMh
dnh

dMh
N (Mh), (18)

〈b〉 = n̄−1

∫
dMh

dnh

dMh
bh(Mh)N (Mh), (19)

where dnh/dMh is the (comoving) number density of haloes per
mass interval (e.g. Sheth & Tormen 1999) and bh(Mh) is the bias
associated with haloes of that mass (e.g. Cole & Kaiser 1989; Sheth
& Tormen 1999; Sheth, Mo & Tormen 2001). Note that 〈b〉 is
independent of the normalization of N(Mh). Also, since observable
quasar activity is a transient property, the observed quasar number
density n̄QSO depends upon the average duty cycle, fon,

n̄QSO = fonn̄. (20)

To set the scale, Fig. 7 compares the observed large-scale bias
with that of haloes of fixed mass in our assumed cosmology. Our data
are consistent with host haloes having a mass 1011.5–1012.5 h−1 M�,
in agreement with earlier work (Porciani et al. 2004; Croom et al.
2005; Lidz et al. 2006; Porciani & Norberg 2006).2 Note that
our constraints are significantly stronger for higher as opposed to
lower halo masses, since bh(M) is a rapidly rising function above
∼1013 h−1 M� but slowly asymptotes to a constant (b ∼ 0.5) for
lower masses. As we see no evidence for evolution in the QSO bias,
we use the mean value from all three slices below.

However, we do not expect QSOs to inhabit haloes of a single
mass. To place constraints on the range of haloes in which quasars
may be active, we consider two illustrative models. First, we imag-
ine that QSOs brighter than L∗ live in haloes more massive than
Mmin, with each halo above Mmin hosting exactly one QSO with
probability fon. This gives N(Mh) = �(Mh–Mmin), where the Heav-
iside � function is unity for positive arguments and zero otherwise.
Fig. 8 and Table 5summarize the constraints on this model. As an-
ticipated by our simple scaling argument above, our measurements
suggest Mmin ∼ 1011 h−1 M� corresponding to an average halo mass
〈M〉 ∼ 1012 h−1 M�. We further strongly disfavour models with
Mmin � 1012 h−1 M�. Our lower mass limits are significantly
weaker for the reasons discussed above, requiring Mmin >

109.5 h−1 M�, with even lower masses still providing marginally
acceptable fits. However, such masses are disfavoured by the locally
observed Mbh–σ relation (Ferrarese & Merritt 2000; Tremaine et al.
2002). Assuming an Eddington-limited accretion rate, the LSTAR
sample should be powered by the black holes with masses Mbh >

107 h−1 M�, which live in bulges with σ ∼ 100 km s−1 or Mbulge

a few times 109 h−1 M�. Given mass-to-light ratios of a few, this
disfavours Mmin < 1010 h−1 M�.

The second model we consider starts from the assumption that
QSOs cluster like a random sampling of a luminosity or colour
subsample of galaxies. This motivates a form,

N (Mh) = �(M − Mmin)

[
1 +

(
M

20Mmin

)α]
, (21)

found to be a good description of galaxies at both low and high
redshifts (e.g. Zehavi et al. 2005; Conroy, Wechsler & Kravtsov
2006; White et al. 2007). This has a central galaxy in all haloes
above Mmin and on average (M/20Mmin)α satellites in each halo,

2 A little appreciated uncertainty in this conversion comes from differences
in fitting functions to bh(M) resulting in an additional error of 50 per cent
(0.2 dex) in mass.
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Figure 8. Mmin for the threshold (solid, black line) and galaxy-like α =
0.5 (dotted, red line) and α = 0.9 (dashed, blue line) HODs, as constrained
by the average large-scale bias of the LSTAR sample. The dotted hatched
region marks the region disfavoured by quasar lifetimes and the Mbh–σ

relation. The dashed hatched region is excluded at 95 per cent confidence.
See the text for more details.

Table 5. Halo masses derived from the average large-
scale bias of our QSO sample. The masses are quoted
in units of 1012 h−1 M�. The different HOD models
are described in detail in the text. The superscript 95
refers to the 95 per cent cl upper limits.

HOD Mmin 〈M〉 M95
min

Threshold 0.3 1.9 2.0
α = 0.5 0.3 3.1 1.6
α = 0.9 0.1 6.1 1.3

where the factor of 20 is inspired by fits to SDSS galaxies and
N-body simulations. We consider cases with α = 0.5 and 0.9; the
former to model blue galaxies (which are under-represented in high-
mass haloes) and the latter to describe a luminosity selected sample.
(The models are supposed to be illustrative.) As before, a fraction fon

of the QSOs are ‘on’ at the time of the observation. Fig. 8 and Table 5
again summarize the constraints from the large-scale bias, which
are very similar to those obtained for the threshold models. Within
the context of this model, we can translate this into a constraint on
the space density of quasar hosts and hence on their luminosity.
The preferred value of Mmin suggests n̄  5 × 10−2 h3 Mpc−3 or
a luminosity L < 0.1L∗ using the blue-galaxy LF of Faber et al.
(2007). The 95 per cent confidence level upper limit on b gives
n̄  4 × 10−3 h3 Mpc−3 or a luminosity L ∼ L∗. The number
density at fixed bias is lowered if we allow scatter in the L–M
relation (i.e. a smooth turn on in equation 21), as is likely. With
lognormal scatter in M at fixed L of σ lnM = 1, the space density is
reduced by a factor of ∼4 at fixed bias and the upper limit on the
threshold luminosity becomes 1.1L∗ (cf. White, Martini & Cohn
2008). Using the stellar mass functions in Bundy et al. (2007),
we find that these number densities correspond to stellar masses
M� < 2 × 1011 h−1 M�. Of course, QSO hosts may not inhabit
haloes in the manner assumed by equation (21). If QSO hosts are

under-represented in intermediate-mass haloes then it is possible to
have a lower number density and b  1. This is what is seen in, for
example, a sample of galaxies with MB < −21 and a star formation
rate >1 M� yr−1 in the Millennium simulation (Springel et al. 2005;
Croton et al. 2006; De Lucia & Blaizot 2007). The HOD of these
galaxies is approximately described by a lognormal distribution
peaking at M ∼ 1012 h−1 M�, with a power-law distribution at high
masses. There is, however, a deficit of galaxies at ∼1013 h−1 M�;
this allows one to have a low number density, without a high bias.
Note that while our data are unable to constrain such flexible models,
a large fraction of this uncertainty derives from the fact that the QSO
number density does not add any constraints to the HOD.

Given the above models and caveats, and the observed space
density of quasars, we constrain the duty cycle (equation 20) to be
<O(10−3), consistent with the estimates by Dunlop et al. (2003)
from the luminosity function. Converting the duty cycle, fon, into a
lifetime is somewhat ill defined. If we assume tQ = f on th, with th

the Hubble time, we find tQ < 107 yr. These lifetimes are broadly
consistent with those derived at z ∼ 2. On the other hand, the Hubble
time is significantly longer and the duty cycles are significantly
lower.

The exact time-scale to use in the above conversion is not well
defined; our choice of the Hubble time for the halo lifetime is an
approximation (see e.g. Martini & Weinberg 2001, for a different
approximation). The differences between the various choices are of
the same order of magnitude as the systematics in modelling the
quasar host number density, and we therefore opt for simplicity.
We, however, caution the reader that these numbers should only be
treated as order-of-magnitude estimates.

If QSOs are radiating at the Eddington limit Ledd, then the min-
imum Mbh in our LSTAR sample is 3 × 107 M�. This value is
consistent with the estimates from the Mbh–Mhalo relation (Ferrarese
2002), Mbh ∼ 2 × 107–3 × 109 M�, with the differences coming
from different assumptions about the halo profiles. This suggests
L/Ledd ∼ 0.01– 1, consistent with the results of Croom et al. (2005)
and da Angela et al. (2008), although we find no evidence of super-
Eddington accretion.

4.2 Small-scale clustering

Due to the larger number density of LRGs with which we have cross-
correlated our QSOs, we are able to measure the clustering down to
smaller scales than would otherwise have been possible. Interpreting
the small-scale clustering is, however, complicated by the uncertain
relation between the galaxies which host active QSOs, the galaxies
which are selected as LRGs and their parent host haloes. A full
interpretation would require knowledge of the joint distribution
P(NQSO, NLRG|Mh), which cannot be meaningfully constrained with
the limited data we have available. It is, however, straightforward,
with the aid of the mock catalogues described previously, to predict
the cross-clustering for any well-specified QSO scenario. In this
section, we examine the illustrative models introduced in the last
section, focussing on the z  0.5 data for definiteness.

We begin with the model in which QSOs are hosted exclusively
by the central galaxies of haloes above some threshold Mmin. As
with all of the models, we will ignore the number density constraint
by postulating that a random fraction, fon, of the possible hosts are
seen as QSOs at any given time. If the probability of a host being on
is independent of the host properties, the clustering is unchanged
and we can use the host population – with its better statistics –
to compute wp. We find that this model cannot simultaneously
account for the measured large-scale bias and the large amplitude
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Figure 9. Comparison of the cross-correlation of simulated LSTAR2 and
LRG5 samples with the observations. The solid (χ2 = 12.7) and dashed
(χ2 = 8.1) lines assume a galaxy type N(Mh) with α = 0.3 and 0.9, respec-
tively, while the dotted lines (bottom to top panel) assume a threshold N(Mh)
with a mass-independent satellite fraction of 0, 0.5 and 1 (χ2 = 19.8, 15.0
and 11.7, respectively). We fix Mmin to the best-fitting values in Table 5;
note that the large-scale clustering for all the models are identical. The χ2

values are computed using all 12 points and the full covariance matrix.

of the small-scale correlation function (see the lowest dotted line
in Fig. 9). To fit the former, the mean QSO-weighted halo mass
must be low, but such low-mass haloes contain only central LRGs,
not satellites, so there are no QSO–LRG pairs with separations
O(100 h−1 kpc). We can keep the halo occupancy the same but
distribute the QSOs within the haloes as both centrals and satellites.
We assume satellites follow an NFW profile (Navarro, Frenk &
White 1996) with a concentration of 10 – the precise details do
not matter for our purposes, other choices produce qualitatively
similar results and trends. By making 50 per cent of the QSOs
satellites, we boost the power on small scales (Fig. 9), as it is
now possible to have QSO–LRG pairs in the smaller, lower mass
haloes.

We can also take the form of equation (21), imagining that a
random sample of galaxies will host QSOs at the time of observa-
tion. We place a central galaxy in all haloes above Mmin and place a
Poisson number of satellites, with mean (M/20Mmin)α , distributed
like a c = 10 NFW profile. The large-scale bias is again set by the
mean halo mass, which is larger for larger α at fixed Mmin. As α is
increased, the spread in small-scale clustering amplitude with Mmin

decreases, with models lying very close to the data. A model with
α  0.9 (solid line in Fig. 9) gives very good fits, with χ 2/d.o.f.
< 1, when Mmin ∼ 1011 h−1 M� but lower values of α (dashed line
in Fig. 9) are not excluded. Due to the strong covariance between
the wp(R) points, the constraint on Mmin from the full model is not
stronger than that from just the large-scale points.

5 C O N C L U S I O N S

We measure the small-scale clustering of a sample of ∼400 000
photometric LRGs and their clustering around a volume-limited
sample of ∼2000 z < 0.6 low-redshift QSOs. By using a new sta-
tistical estimator, we are able to obtain precise measurements of the
LRG angular correlation function, which coupled with their precise

and well-characterized photometric redshifts, allowed us to con-
strain how LRGs populate dark matter haloes. We find that LRGs
have a clustering amplitude that is consistent with not evolving
with redshift, and corresponding to a large-scale bias b ∼ 2 at z =
0.5. The best-fitting halo occupation models suggest that they oc-
cupy haloes >1012 h−1 M�, with approximately one LRG in every
1013 h−1 M� halo. We use these HODs to construct mock catalogues
of LRGs. Attempting to match the observed cross-correlation of
LRGs with QSOs by populating these same mock catalogues with
QSOs allowed us, for the first time, to start to probe how quasars
inhabit dark matter haloes.

Correlations with LRGs. The cross-correlation of QSOs and
LRGs is well described on all measured scales by a power law
of slope ∼1.8 ± 0.1 and a scalelength of ∼6 ± 0.5 h−1 Mpc, consis-
tent with observed slopes and amplitudes for local galaxies. It is also
well described by the non-linear matter correlation function, scaled
by a constant bias, although there is some evidence for deviations
from this form at the smallest scales. Such deviations from the mat-
ter correlation function are, however, not unexpected, and are seen
for most galaxy samples, which are better described by power laws
down to small scales. Since this is in apparent contradiction with
the results of Serber et al. (2006) and Strand et al. (2008), we re-
visit their measurement within the framework of cross-correlations
developed in this paper (Appendix B). We explicitly show that their
data are fit by a power law of slope 1.9, with no deviations on small
scales, and that the claims of an excess come from subtleties in
interpreting their measurements.

QSO bias. The large-scale bias b = 1.09 ± 0.15 is consistent with
most previous measurements and theoretical models, the exceptions
being Myers et al. (2007a) and Mountrichas et al. (2009); possible
reasons for this discrepancy are discussed in Section 3.2.2. We see
no evidence for variations of the bias with redshift or luminosity.
The observed large-scale bias constrains quasars to reside in haloes
with a mean mass of 1012 h−1 M�, with uncertainties of a factor of
a few from the details of how the haloes are actually populated. Our
constraints on the halo mass are significantly stronger from above
than below, since these haloes are below the non-linear mass scale
and occupy the slowly varying region of the halo bias curve. This
should be contrasted with measurements at higher redshifts; even
though the characteristic halo mass is the same at these redshifts (da
Angela et al. 2008), it is now higher than the non-linear mass and
probes the steeply rising part of the halo bias curve. This problem is
exacerbated when one considers realistic models of halo occupation.

Halo masses, lifetimes, Eddington ratios. The mean halo mass
can, in turn, be used to constrain the lifetimes of these QSOs (Cole
& Kaiser 1989; Haiman & Hui 2001; Martini & Weinberg 2001)
to be <107 yr. This is consistent with the measurements at high
redshift; on the other hand, the Hubble time is significantly longer
in the local Universe, and therefore the duty cycles are significantly
shorter. We also discuss some of the theoretical uncertainties in es-
timating the number density of quasar hosts (and therefore the duty
cycles and lifetimes), which arise from the difficulties in constrain-
ing how quasars populate dark matter haloes. We find the number
densities of quasar hosts are only certain at the order of magni-
tude level, obviating any need for the detailed modelling (popular
in the literature) of the conversion of number densities into quasar
lifetimes.

Assuming local Mbh–Mhalo relations (Ferrarese 2002), we es-
timate Eddington ratios between 0.01 to 1. We do not find any
need for super-Eddington accretion, in contrast with da Angela
et al. (2008) who require super-Eddington ratios under certain as-
sumptions for the halo profile. However, the errors on both the
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measurements are large, and are therefore consistent with each
other. These Eddington ratios are also consistent with the measure-
ments at z ∼ 2, suggesting no evolution in the Eddington ratio with
redshift.

Satellite Fractions. Given our detailed modelling of the LRG
clustering and the associated mock catalogues, we attempt to use
the small-scale cross-correlation to constrain how quasars must pop-
ulate dark matter haloes. The size of our errors precludes being able
to place interesting constraints on general quasar models. However,
the forward modelling problem – taking a particular quasar model,
and comparing it with our data – is straightforward. We find that
our small-scale measurements are inconsistent with quasars being a
random subsample of all halo centres above a certain mass thresh-
old, but become consistent if we assume >25 per cent of the quasars
are satellites. We also find that our data are extremely well fit, if
we assume that quasars are a random subsampling of luminosity-
threshold sample of galaxies, for luminosity thresholds between
0.1L∗ and L∗. The above results suggest that the host galaxies have
a number density <10−3 h3 Mpc−3, corresponding to stellar masses
M� < 1011 h−1 M�; the exact values are, however, sensitive to the
particular choice of model.

Implications for future modelling. A second purpose of this pa-
per was to demonstrate the modelling of how quasars populate dark
matter haloes. An interesting question therefore is how to optimize
future measurements to gain the most leverage on this. Modelling
QSO–galaxy cross-correlations differs from the traditional galaxy–
galaxy autocorrelations in two important ways. The first is the lack
of a constraint on the number density of the underlying population
that quasars are assumed to sample, which usually puts a strong
constraint on the minimum halo mass. For quasars, such a con-
straint must come from the bias and as discussed above this is only
strongly constraining when one is on the steeply rising part of the
halo bias curve. The second difference is that the one-halo term is
only probed where the QSOs and galaxies occupy the same haloes.
For the quasar and LRG sample presented here, the mean halo mass
for the quasars probes only the tail of the LRG HOD, making the
constraints weaker than one might naively expect. On the other
hand, we emphasize that the accurate and well-characterized pho-
tometric redshifts of the LRGs were an essential prerequisite for
doing the modelling in the first place – this could not have been
done with the full SDSS photometric sample. This suggests that
a better photometric sample to correlate with would be a fainter
sample of red galaxies. These would retain the accurate photomet-
ric redshifts of our sample, but would probe the lower halo masses
associated with quasars. Another possibility would be a sample of
emission-line galaxies. These galaxies have the advantage of being
likely physically associated with quasars, but the disadvantage that
they would require a spectroscopic survey (since photometric red-
shifts would not be accurate enough), making it harder to survey
large volumes. Furthermore, the modelling would be significantly
easier at higher redshifts, where the quasar bias is higher. Various
combinations of these will be available with the next generation of
imaging surveys, making it possible to significantly improve on the
constraints presented here.
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APPENDIX A : H ALO MODEL

In order to understand the manner in which LRGs and quasars
inhabit dark matter haloes, we make use of the halo model (for a
review see e.g. Cooray & Sheth 2002). Within this formalism, an
accurate prediction of galaxy clustering requires a knowledge of

the occupation distribution of objects in haloes (the HOD) and their
spatial distribution. In combination with ingredients from N-body
simulations, a specified HOD makes strong predictions about a wide
array of galaxy clustering statistics.

Our modelling of galaxy clustering is based on mock catalogues
constructed within the HOD framework by populating haloes in a
cosmological N-body simulation. We use a high-resolution simula-
tion of a �CDM cosmology (�M = 0.25 = 1 − ��, �B = 0.043,
h = 0.72, ns = 0.97 and σ 8 = 0.8). The linear theory power spectrum
was computed by evolution of the coupled Einstein, fluid and Boltz-
mann equations using the code described in White & Scott (1995).
This code agrees well with CMBFAST (Seljak & Zaldarriaga 1996), see
e.g. Seljak et al. (2003). The simulation employed 10243 particles of
mass 8 × 109 h−1 M� in a periodic cube of side 500 h−1 Mpc using
a TREEPM code (White 2002; for a comparison with other N-body
codes see Heitmann et al. 2008). The Plummer equivalent softening
was 18 h−1kpc (comoving). To check for finite volume and force
resolution effects, we also looked at simulations of the same cos-
mology, with the same number of particles, in boxes 250 h−1 Mpc
and 1 h−1 Gpc. The 250 h−1 Mpc box turned out to be too small to
model LRG clustering.

For each output, we generate a catalogue of haloes using the
Friends-of-Friends (FOF) algorithm (Davis et al. 1985) with a link-
ing length of 0.168 times the mean interparticle spacing. This pro-
cedure partitions the particles into equivalence classes by linking
together all particles separated by less than a distance b, with a
density of roughly ρ > 3/(2π b3)  100 times the background den-
sity. A comparison of the mass functions in the 500 h−1 Mpc and
1 h−1 Gpc boxes suggests that at low particle numbers FoF tends to
overcount the number of haloes. To make the mass functions match
in the overlap region, we adjusted the mass of the haloes downward
by a factor of 1 − n−0.8

part (for a similar correction see Lukic et al.
2007).

To make mock catalogues, we use a halo model which distin-
guishes between central and satellite galaxies. We choose a mean
occupancy of haloes: N(M) ≡ 〈Ngal(Mhalo)〉. Each halo either hosts
a central galaxy or does not, while the number of satellites is Pois-
son distributed about a mean Nsat. For each sample, we parametrize
N(M) = Ncen + Nsat with five parameters:

Ncen(M) = 1

2
erfc

[
ln(Mcut/M)√

2σ

]
(A1)

and

Nsat(M) =
(

M − κMcut

M1

)α

(A2)

for M > κMcut and zero otherwise. Different functional forms have
been proposed in the literature, but the current form is flexible
enough for our purposes.

Table A1. The HOD parameters from our best-fitting model and used to
make the mock LRG catalogues. The meaning of the parameters is given in
the text. The χ2 are for 25 data points.

Slice Mcut M1 σ κ α χ2

1 13.15 13.71 1.16 1.59 0.81 37.62
2 13.20 14.00 1.10 0.37 1.07 26.75
3 13.06 14.03 0.13 1.19 1.38 32.80
4 12.95 14.05 0.17 0.64 1.13 33.25
5 12.98 13.86 0.85 1.53 0.96 41.45
6 13.21 13.90 1.26 1.18 1.33 62.41
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Central galaxies always live at the minimum of the halo potential
while satellite galaxies are randomly placed assuming an NFW
profile (Navarro et al. 1996). If we instead use randomly chosen
dark matter particles within haloes, which preserves the anisotropy
of the haloes and any substructure, ξ (r) is altered at the 10 per cent
level on Mpc scales. The differences on large scales are very small.
The concentration of the halo is taken from the N-body simulation,
but multiplied by a free (mass-independent) factor to allow galaxies
to be more or less concentrated than the dark matter. This detail
only affects the predictions on small scales.

Given the 3D galaxy positions, the correlation function is com-
puted out to 10 h−1 Mpc by direct pair counts, and then extrapolated
assuming constant bias and a (dimensionless) mass power spectrum
given by the Q model:


2
m(k) = 
2

lin(k)
1 + Qk2

1 + Ak
(A3)

with Q = 10 [2/(1 + z)]0.75 and A = 1.7 h−1 Mpc. This form provides
a reasonable fit to the DM power spectrum in the simulation over the
redshift range of interest. The correlation function is then integrated,
making the Limber approximation, to find ω(θ s).

Comparison of different parametrizations for Ncen and Nsat, dif-
ferent methods for making mock catalogues, different techniques
for computing ω(θ s), different ranges and subsets of the data and
the different simulations of the same cosmology, indicates that our
results for the large-scale bias have systematic uncertainties at the
several percent level. In the 500 h−1 Mpc box, different realizations
of the same HOD cause 2 per cent changes in the inferred large-
scale bias, because of fluctuations in the galaxy-weighted mean
halo mass from Poisson fluctuations in Nsat. There is a negligible
difference in the 1 h−1 Gpc box. By running a sequence of boxes
of increasing resolution, but with the same large-scale phases, we
find that the cumulative mass function changes by 5–10 per cent
in the mass range of interest due to structural changes in the sim-
ulated haloes with increasing force resolution. We might expect
a similar change if we included baryonic cooling and star forma-
tion in our simulations. This affects the inferred number density
for a given set of HOD parameters. However, the positions, and
hence clustering properties, of the haloes are largely unaffected by
increasing force resolution. In contrast, the bias of a given halo
population is sensitive to finite box size effects on scales a few per-
cent of the box size, and the sensitivity is larger the more biased
the halo population under consideration. We choose to measure
ξ (r) in the 500 h−1 Mpc box only out to 10 h−1 Mpc, because we
find systematic differences in halo clustering between the large and
small boxes for the rarer haloes. This can be traced to the particular
modes chosen in the initial conditions. If we restrict to 10 h−1 Mpc,
the large-scale bias agrees between the two simulations to
2 per cent, less than the random error from the fits. The average halo
parameters also agree to within the chain-inferred dispersion. Unfor-
tunately, the halo bias is still slightly scale dependent at 10 h−1 Mpc,
as determined from our 1 h−1 Gpc simulation, so our results ex-
trapolated assuming constant bias tend to overestimate b by 5–
10 per cent. We correct for this overestimate for the values quoted in
Table 2.

An investigation of all of these effects leads us to assign a
5 per cent systematic error bar to the large-scale LRG bias esti-
mates we derive. This uncertainty, while comparable to or larger
than the statistical error for the LRG sample, is irrelevant for our
main conclusions. However, future work on modelling LRGs for
galaxy formation and evolution will be limited by theoretical uncer-
tainties, and not observational errors. For making mock catalogues,

including QSOs, we use the 500 h−1 Mpc box. This allows us to
probe further down the mass function. The theoretical inaccuracies,
of concern for the LRGs, are much smaller than the observational
errors on the QSO–LRG cross-correlations. As shown in Fig. 4, the
mock catalogues produced in the 500 h−1 Mpc box provide a very
reasonable description of the LRG clustering on large and small
scales.

A P P E N D I X B: C O U N T S O F N E I G H B O U R S

Previous authors (Serber et al. 2006; Strand et al. 2008) estimated
the clustering of quasars by measuring the overdensities of photo-
metric galaxies around quasars in cylindrical apertures. While these
measurements can be related to the correlation functions presented
in this paper, there are a number of subtleties in their interpretation
that have resulted in confusion in the literature. This appendix at-
tempts to clarify these measurements, as well as compare them with
our results.

Following Serber et al. (2006), we define Nq,g,r (R) as the aver-
age number of photometric galaxies within cylindrical apertures
of transverse physical (as opposed to angular) radii R, centred on
quasars (q), spectroscopic galaxies (g) and random points (r). If
we assume that the photometric sample has a normalized redshift
distribution f (χ ), we use the formalism of Section 3, to write

Nr (R) = nr n̄p

∫ R

0
2πR′dR′ (B1)

and

Nq,g(R) = nq,gn̄p

∫ R

0
2πR′dR′ (B2)

× [
1 + 〈f (χ )〉q,gwqp,gp(R′)

]
, (B3)

where nr,q,g is the number of random points, quasars and spectro-
scopic galaxies, n̄p is the areal density of the photometric sample
and w is the projected cross-correlation between the different sam-
ples. As in Section 3, 〈f (χ )〉 implies the redshift distribution of
the photometric sample averaged over the redshift distribution of
the spectroscopic sample. Normalizing the random galaxies to the
number of spectroscopic targets, we then obtain

Nq

Nr

= 1 + 〈f (χ )〉q

πR2

∫ R

0
2πR′dR′wqp(R′) (B4)

for the quasars with a similar expression for galaxies. We therefore
see that the overdensities measured in Serber et al. (2006) and
Strand et al. (2008) can be related to the area-averaged projected
correlation function weighted by the redshift distribution of the
photometric galaxies at the redshifts of the spectroscopic targets.
This implies that the overdensities of the quasars and galaxies cannot
be directly compared since they are scaled by different weights.
Furthermore, the overall amplitude of the overdensities cannot be
interpreted without the knowledge of the redshift distribution of the
photometric galaxies (which is non-trivial for high-redshift quasars
since one is starting to probe the high-redshift tail of the photometric
galaxies).

Equation (B4) has the property that it asymptotes to 1 on large
scales irrespective of galaxy type. We estimate the scale at which
Nq,g/Nr ∼ 1 as follows – the redshift distribution of the photo-
metric galaxies spans approximately 1 h−1 Gpc and the integral of f
must equal unity, suggesting 〈f (χ )〉 ∼ 10−3 h Mpc−1. Assuming that
the cross-correlation between quasars (spectroscopic galaxies) and
photometric galaxies is similar to the quasar-LRG cross-correlation,

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 397, 1862–1875



Clustering of LRGs around z < 0.6 QSOs in SDSS 1875

this implies that the second term of equation (B4) isO(1) on scales R
∼ 0.1 h−1 Mpc. Note that this implies that the overdensities areO(1)
on all scales, especially on scales larger than a Mpc. We emphasize
that this is simply due to the division by the mean density and in
no way implies that the quasars and spectroscopic galaxies have the
same large-scale bias or inhabit haloes of similar masses. Note that
this is a significant difference between spectroscopic and photomet-
ric samples – for spectroscopic samples, the width of the redshift
distribution is typically a few tens of Mpc (to integrate out redshift
space distortions), and the second term in equation (B4) is much
larger than the first. In this case, the overdensities can be directly
interpreted as the angle-averaged correlation function. For photo-
metric samples, the complications can be simply circumvented by
subtracting 1 from the overdensities, if the redshift distribution of
the photometric sample is known (see the discussion above). How-
ever, neither Serber et al. (2006) nor Strand et al. (2008) do this
when comparing with the galaxy samples, and their results must
not be interpreted as quasars having the same clustering. An impor-
tant corollary to this is that the upturn seen in overdensities cannot
be interpreted (as has often been in the literature) as an excess in
small-scale clustering, but is simply the signature of a clustered
sample of objects. Indeed, as we show below, the cross-correlation
for the quasars is consistent with being a power law down to small
scales.

Figure B1. The redshift distributions of spectroscopic L∗ galaxies (dotted,
red line), photometric galaxies 19 ≤ r < 21 (solid, black line) (Mandelbaum
et al. 2008) and spectroscopic quasars with z ≤ 0.4 (dashed, blue line). Note
that the normalizations of the redshift distributions are arbitrary. The figure
emphasizes the fact that L∗ galaxies and quasars probe very different re-
gions of the photometric redshift distribution, complicating the comparison
between their clustering.

Figure B2. The integrated, projected cross-correlation function, w̄qp(<R),
of photometric galaxies and quasars in SDSS from Strand et al. (2008)
assuming f (χq ) ≈ 10−3 h Mpc−1 (see the text). The quoted errors are the
size of the plotted symbols. The line is derived from a power-law correlation
function with slope 1.9 and r0 = 5 h−1 Mpc.

The final complication in interpreting these results arises due to
the width of redshift distribution of the photometric sample. Since
the photometric sample covers a large redshift range, it cannot be
treated as a homogeneous sample and we cannot model its autocor-
relation as we did with the LRGs. In order to interpret the cross-
correlation of the quasars with the photometric sample, we must
therefore compare it with the cross-correlation between a particular
population of galaxies and the photometric sample. Unfortunately,
for the SDSS, quasars and galaxies occupy different redshift ranges
(see Fig. B1) and therefore probe different subpopulations of the
photometric sample. Any comparison between quasars and galaxies
must also take into account these population differences, compli-
cating any analysis.

A detailed modelling of all these effects goes well beyond the
scope of this appendix. However, as an illustration, we take the
results of Strand et al. (2008), subtract 1 and divide by 〈f (χ )〉 ∼
10−3 h Mpc−1; the results are in Fig. B2. The clustering is consistent
with a 3D power law of slope 1.9 and r0 ∼ 5 h−1 Mpc. We remind
the reader that the value of r0 is completely degenerate with our
assumption for 〈f (χ )〉.
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