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Abstract
A statistical analysis which provides a risk assessment of nuclear safety based on historical
data is conducted. Classical probabilistic models from risk theory are used to analyze data on
nuclear power accidents from 1952 to 2011. Findings are that the severities of nuclear power
accidents should be modeled with an infinite mean model and, thus, cannot be insured by an
unlimited cover.
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1 Introduction

Safety is the central issue in nuclear energy production. Nuclear power accidents
can be disastrous as the examples of Kyshtym (Soviet Union, 1957), Three Mile
Island (United States, 1979), Chernobyl (Ukraine, 1986), or Fukushima (Japan,
2011) show. Therefore, nuclear safety is of highest priority and there needs to be
a continuous improvement in safety design and culture; see, for instance, the work
and purpose of the International Atomic Energy Agency (IAEA, www.iaea.org).
Currently, nuclear power plants of so-called Generation III and Generation III+ are
built, some of them are already in operation. Nevertheless, nuclear power plants are
highly complex systems that are exposed to several risk factors such as mechanical
breakdowns, material failure, human errors, earthquakes, tsunamis, floods, terror-
ism, etc., and there is always a (hopefully small) probability of a nuclear disaster.
Owing to scarce data, it is difficult to assess this probability and the fact that we
cannot test reactor designs in practice does not make the situation any easier.

The probability of a nuclear disaster is often calculated with the so-called Prob-
abilistic Safety Assessment (PSA) technique. This approach can be understood as
a bottom-up scenario analysis. The starting points are initiating events that occur
with a given (small) probability. These initiating events generate sequences of ac-
cidents whose severities are quantified. As a result, one then obtains estimates for
nuclear disasters. Such an analysis quantifies, for example, the probability of an
annual core damage between 3 x 1078 and 1 x 107 for different boiling water re-
actors (BWRs), see Hinds and Maslak (2006). A German PSA analysis quantifies
the annual probability of a severe accident for the German plant Biblis to be of
order 3 x 107> (see Wikipedia, 2011b). A study by Hirschberg et al. (1998) gives
a whole frequency curve of loss exceedances for the Swiss plant Miihleberg: a
loss exceeding 1 billion USD has an annual probability of approximately 1 x 1076
and a loss exceeding 10 billion USD has an annual probability of approximately
1 x 107, Of course, such an analysis about financial damages heavily depends on
the probabilities assigned to the events, on safety standards and on plant location,
for example, whether it is situated in a densely populated area. A comprehensive
historical review of nuclear power plant safety is given by Sehgal (2006) which
describes the report WASH-1400 (U.S. Nuclear Regulatory Commission, 1975).
The latter gives the first assessment of public risks of nuclear power accidents. Ta-
bles 1 and 2 in Sehgal (2006) (taken from WASH-1400) give insight into short-
and long-term consequences of nuclear power accidents. With a rather high annual
probability of 1 x 1075, one should anticipate long-term health damages (such as
cancer), whereas high financial damages exceeding 8 billion USD only occur with
a rather low annual probability of 1 x 1078,

How reliable are these estimates? The aim of this study is to statistically back-
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test them based on a database on nuclear power accidents provided by Sovacool
(2008, 2011). Similar to Sornette et al. (2011), we analyze nuclear safety from a
purely statistical point of view using these past observations. Although one may
question the extent to which historical data allows us to assess current (and future)
nuclear safety, it provides useful insight into the calibration of PSA safety analysis
as well as insurability and costs of nuclear power accidents.

2 Statistical Modeling Approach

For the modeling of the overall loss process of nuclear power accidents we choose
a compound Poisson process. The loss-count process is modeled with a non-
homogeneous Poisson process (N;);>0, and the loss-severities ¥;, i € N, are as-
sumed to be independent and identically distributed (i.i.d.) and independent of the
loss-count process. The total annual losses (S; )<y are then independent and in year
t € N given by a compound Poisson distributed random variable

N
S= Y Y 2.1)
i=N,_1+1

where

(a) the total number of accidents M; = N; — N,_1 in year ¢t € N is Poisson dis-
tributed with mean Aw; [i.e., M; ~ Poi(Aw;), independently for different 7]
where A > 0 denotes the intensity and w; denotes the number of reactors in
operation in year f;

(b) the loss-severities Y;, i € N, are i.i.d. copies of a non-negative random variable
Y ~ F and independent of the loss-count process (N;);>0.

Note that compound Poisson processes have several desirable aggregation and de-
composition properties; see Mikosch (2006) Proposition 3.3.4 and Theorem 3.3.6.
Our aim is to calibrate the compound Poisson process (2.1) to the distribution of the
observed nuclear power losses. Thus, we need to estimate the intensity A > 0 and
calibrate the loss-severity distribution F of Y.

3 Data

The database of Sovacool (2008, 2011) contains 102 accidents from 1957 (Kyshtym,
Soviet Union) to 2011 (Fukushima, Japan), it reports date and location of the ac-
cident, fatalities, and costs in USD (as of 2010). Figure 1 provides the costs per
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Figure 1: Nuclear power accidents from 1957 to 2011: costs (severities) in USD
(as of 2010) per accident on logarithmic scale, data source Sovacool (2008, 2011).
The 102 reported accidents are ordered chronologically.

accident in chronological order. The last reported loss in Figure 1 is Fukushima
(Japan, 2011) which was set, as a first estimate, to 28 billion USD. We will discuss
the (in-)completeness of this database later.

As a measure of exposure for our analysis we use the information provided by
the International Atomic Energy Agency (IAEA) (2010, 2011). Figure 2 shows
the number of reactors in operation from 1954 to 2011. They are divided into
four regions: America (including Africa), Eastern Europe, Western Europe, and
Asia. From 1988 onward the number of reactors in the regions America and Eastern
Europe is stable, in Western Europe it is decreasing, and in Asia it is increasing.
Figure 3 provides the total (net) capacity in megawatts (MW) for these four regions.
We see rather stable graphs after 1988 except for Asia where we observe a growth
in energy production as well as in the number of reactors. Comparing Figures 2 and
3, we also see that the average capacity per reactor is increasing in Western Europe.

4 Statistical Analysis
After a more detailed analysis of the description and information about the loss

data, we decided to model the losses Y; which exceed a threshold of 20 million
USD (i.e., we fix the threshold u = 2 x 107). Below this threshold  the reporting
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Figure 2: Number w; of reactors in operation from ¢ = 1954 to 2011, data source:
International Atomic Energy Agency (2010, 2011).

400,000

350,000

300,000

250,000

200,000

150,000

100,000

50,000
0 TT rrrr1r1rrirord
< P~ o m O O o~ n o0 — < ~N © o O O o LN o0
n n O©W O W O N N N 00 0 0 O O o oo O o o «
a o o o o o o o o o o o o o o o o o o o
— — — - i i i i i — i i i — — i (o] (] o o

B America M Eastern Europe = Western Europe H®Asia

Figure 3: Total (net) capacity in MW from ¢ = 1954 to 2011, data source: Interna-
tional Atomic Energy Agency (2010, 2011).
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of a loss seems rather arbitrary. More than half of the reported losses below u are
from the United States (US) (which indicates that there might have been a differ-
ent reporting philosophy in the US). Typical cases of such small losses are that a
maintenance worker fell through an unmarked manhole, shutdowns due to concerns
of earthquake, safety problems, or extensive recirculation system damage, etc. In
these situations, the safety systems have worked and the reported costs are mainly
paid for the repair of the system. We observe 61 losses exceeding the threshold of
20 million USD.

4.1 Annual Loss-count Distribution

We first model the distribution of the total number of annual nuclear power acci-
dents M,. Figure 4 provides the number of nuclear power accidents exceeding the
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Figure 4: Number of nuclear power accidents exceeding a threshold of 20 million
USD.

threshold u = 2 x 107. If we compare Figures 2 and 4, we see that the years before
1970 correspond to an early development phase of nuclear power plants in America
and Europe. The total net capacity in this early period is negligible compared to
today, see Figure 3, but 8 out of the 61 events fall into this early period.
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4.1.1 Constant Intensity A
In a first step, we assume a constant intensity A and model M, via

M, " Poi(Aw,), 1€ {1954,...,2011},

i.e., we choose independent Poisson distributions with mean Aw,. We estimate
A using the maximum likelihood estimator, which is simply the sample mean of
M; /w; for the corresponding time points 7. Forz € {1954,...,2011}, we denote the
maximum likelihood estimator (MLE) based on the set of observations {Mgs4, ...,

M;} by 11(;)5 4~ The same estimator is applied for the set of observations {Mi970, ...,
M}, t € {1970,...,2011}, which provides the time series 11(;)70 The result is pre-

sented in Figure 5. In the first period, we see a clear decrease in (ll(g)s 4)te{ 1954,....2011}

3.0% N
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Figure 5: Observed annual loss-frequency (per reactor in operation) together with

the MLEs 119)5 4 and 11(970 For the time series /11(9)5 4 1 €{1954,...,2011}, we also
plot the £1 std. error bounds.

(and the corresponding error bounds), which questions the assumption that A is con-

stant over the entire observation period. By contrast, the time series (11(;)70) 1€{1970,...,
2011} 1s more stable. We could now try to model the decay in the annual frequency
parameter which stabilizes for later years, but we go for the easier option and model
A non-time dependent for later years neglecting the first years of observations for
the estimation of this frequency parameter. The MLEs (with standard errors in
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parentheses, i.e., the sample standard deviation divided by the square root of the
sample size) for the initial years 1970 and 1988 are given by

Al —0.363% (0.050%),

Aal) —0.278% (0.052%).

The corresponding estimates for the expected number of nuclear accidents for 2011
are thus

1970 wWo011 = 1.6081 (0.2215),
Aot Do = 1.2315 (0.2304).
Figure 6 displays the observed intensity of losses (M:/wt),c{1970,... 2011} including

the MLEs Il(g%l) and 18&; D We obtain frequency parameter estimates of 0.363%

7.(2011)

1.5%
1.0% N
0.5% - 4+ ts
0.0%
1970 1975 1980 1985 1990 1995 2000 2005 2010
—@— observed frequency MLE lambda_1970 = = = MLE lambda_1988 e  MLE exp lambda

Figure 6: Observed annual loss-frequency (per reactor in operation) together with
the MLEs QLI%%]) and Afggg 2 Moreover, we plot the estimated exponential decay

AP, see Eq. (4.1), of the annual loss-frequency.

and 0.278%, respectively. If we consider the exposure in Figure 2 we observe a
strong growth in the period from 1970 to 1988, which can also be considered as a
development phase. Moreover, in 1979 there was the accident at Three Mile Island
(US). After this event we see a rather high annual reporting frequency of events
in the US which may be some sort of overreaction (reporting bias) to this severe
nuclear power accident in 1979; see Figure 6. Pearson’s x2-test provides p-values
of 17.3% (for the initial year 1970) and of 30.2% (for the initial year 1988) which
both do not reject the fitted Poisson model on a 5% level.
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4.1.2 Fitting an Exponential Decay

So far we have assumed that A is a positive constant. This contradicts the outline in
Section 1: nuclear power plant operators and regulators claim that there is a contin-
uous improvement in safety design and culture. This should reflect in a decreasing
loss-frequency parameter function A; over the time period r € {1970,...,2011}. We
therefore set in a next modeling approach

AP = yexp{—(r—1969)B}, (4.1)
and estimate y and 8 with their MLEs

= 0.515% (0.144%),
= 1.443% (1.096%).

™) <)

Thus, we obtain a slight decrease of the annual loss-frequency; see Figure 6. For

2011, we obtain the estimator izegf , = 0.281%. However, the uncertainty in the
estimate of the decrease parameter 3 is high and if we perform the estimation only
on the data after 1988 we do not observe any decrease of the annual loss-frequency.
Therefore, we will focus on a constant annual loss-frequency parameter A for the
years after 1988; see Eq. (4.2) below.

4.1.3 Modeling Regions Separately

Next we differentiate between the different regions. For each region we choose the
observations 7 € {1988,...,2011}, which provide MLEs for the (local) intensities
of the annual number of nuclear accidents
Afmerica — 0 410%  (0.114%),
ARuEast — 0.188% (0.108%),
AfNest — 0.116% (0.056%)
Alsis = 0.409% (0.136%).

Y

Whereas one may question these estimates on the basis of data scarcity we do no-
tice substantially lower annual loss-frequency estimates in Europe (EurEast and
EurWest) compared to America and Asia. This may reflect different safety stan-
dards but also a different reporting culture. Particularly in Asia, we observe that
all reported accidents have occurred either in India or Japan and it seems surprising
that there are no (reported) events in other Asian countries.

If we consider the loss-count data of the entire world, we see a slight over disper-
sion (i.e., a larger variance compared to the mean) which argues against a Poisson

8
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distribution (and is more in favor of a negative binomial distribution, for example).
However, if we consider the local loss-count processes we see that this over disper-
sion can be explained by the data from America. For this reason, we stay with the
choice of the Poisson loss-count process.

4.1.4 Final Model for the Loss-count Distribution

The above considerations lead to the following choice of the estimated intensity of
the annual number of nuclear accidents:

-~

A =0.290%. 4.2)

Finally, Figure 7 shows the observed number of annual events M, and the estimated

expected number of annual events m = /iw, fort € {1954,...,2011} using Eq.
(4.2).

< N~ o oM o} [e)] ~N LN 0 — < ~ o [s2] Yo D N LN o i
n LN O O O O ~ ~ ~ (o] 0 o0 D (o)) D (o)) o o o —
[e)] (o)} (o)} (o] [e)} (o)} (o)} [e)] [o)] [o)] (o)} ()] (o)) (o)) (o)) [o)] o o o o
— — — i i — — i i — — — — — i — N oV} (a\] (a\]

I number of events expected number of events

Figure 7: Observed number of annual events M; and estimated expected number

of annual events ]E/[AZ] = Aw, fort € {1954,...,2011} using the choice as given in
Eq. (4.2).
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4.2 Loss-severity Distribution
4.2.1 Maximum Likelihood and Linear Regression Estimators

We model the loss-severity distribution using all losses (yi)ic(i,... 61} (viewed as
realizations of the Y;) that exceed the threshold of 20 million USD (as before all
considered amounts are in USD as of 2010). Figure 8 shows the empirical survival
function 1 — Fg (+) on a log-log scale, i.e., (logy;,log(1 — Fy, (i)))ieq1,...61y; for a
more detailed description of these plots we refer to McNeil et al. (2005), Section
7.2.2. We observe that these observations form a fairly straight line with negative

Q) T T T 1
5.6-01-EF +
5.E-02
<o
5.E-03
¢ observations — = = Pareto (linear regression fit)
Pareto (MLEfit) e structural break

Figure 8: Survival functions on a log-log scale, i.e., empirical survival
function (logy;,log(1 —fgl(y,-))),-e{lmm} versus fitted Pareto survival function
(logy,log(1 —F(y)))y>u. fitted with linear regression and ML estimation. The ver-
tical line displays the structural break mentioned in the text below.

slope which suggests the Pareto distribution as a natural candidate for modeling the
loss-severity distribution: for oc > 0 we set

Y~F(y)=PY <y|=1-(y/u)"%, fory>u=2x10".

We fit the slope parameter —o with maximum likelihood (ML) estimation and with
linear regression; see Figure 8. The corresponding estimates of o are (std. errors in
parentheses)

aME = 0.5641 (7.34%),
g = 0.6365 (0.83%).
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Remark 4.1 Both estimation methods suggest an infinite mean model, i.e., E[Y]
= oo, Basically, this means that an unlimited cover against nuclear power accidents
cannot be financed by a finite insurance premium and nuclear energy should be
very expensive if it also accounts for an insurance cover against nuclear disasters.
In the literature, such infinite mean models are also called “extremely heavy-tailed”
models. These models do not have favorable properties for risk sharing in society;
see Ibragimov et al. (2011) for more on this topic. Our results are in line with the
findings of Sornette et al. (2011). These authors found an infinite mean model with
slope parameter estimate of 0.7 (they use ML estimation for all accidents exceeding
a loss of 30 million USD).

4.2.2 Hill and POT Estimators

Other estimators for o can be obtained from the Hill plot and the peaks-over-
threshold (POT) method. We start with the Hill plot, see Formula (7.23) in McNeil
et al. (2005). The Hill plot for & based on the observations (y;) ic{1,...61} 1s provided
in Figure 9. It also suggests an infinite mean model with a € (0.6,0.7). Beyond

1'0 e0e®e o e o
. .I : ce A
° ®ee A
0.9 .; A A
08 e . . e, ...'OAAAA " A
0.7 ettes a, 8,
DALTIPTS Ap ABAL DA, AnaBp
06 '_“_“TA"‘A TRAARAE B VY- Ax
. A AAAAA........ 0o, 0% :...‘ o
0 o ®eccee’ °° Seest Ces . Ny ... ° ~ 0%
0'5 .o °q - Y ...... .o......l .o ...:... ..
0.4 .
0.3 .
0-2 T T T T T 2 1
0 10 20 30 40 50 60
a  Hill estimators  eeeecee -1std.error eeecee + 1 std.error alpha=0.64

Figure 9: Hill plot for « based on the observations (y;);c {1....61) together with +1
std. error bounds.

that, we observe that there is a structural break in the data at position 42, and in-
deed this can also be observed in Figure 8 (vertical line). Therefore, we separate
the ordered data into two parts (y(;))ie{1,...42) and (¥(;))ic{43,...61}- We model the
first part with a smoothed empirical distribution function; see Eq. (4.3) below. The

Published by The Asia-Pacific Risk and Insurance Association, 2013 11
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Figure 10: Survival functions on a log-log scale, i.e., (logy,log(1 —F(y))), for the
observations (y(,-)) ic{43,...61) and for the estimated Pareto distributions fitted with
linear regression and ML estimation.

slope parameter —¢ in the second part (y(i))ie {43,...61} 1s again estimated with ML
estimation, linear regression, and with the Hill estimator; see Figures 10 and 11.
This suggests the estimates

aME = 07885 (19.12%),
arce = 07248  (1.91%),
afl' = 0.7800.

Thus, if we only consider the 19 largest losses we obtain a slightly less heavy-tailed
distribution, but it still has an infinite mean.

Finally, we apply the POT method to the estimation of the slope parameter o;
see Section 7.4.2 in McNeil et al. (2005). Although this method considers a slightly
different loss-severity distribution (generalized Pareto distribution), it gives addi-
tional insight into the estimation of & because it also considers a slope parameter.
Using the POT method from all data we obtain

atT = 0.7271,

which supports the estimates obtained from the other methods.
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Figure 11: Hill plot for o based on the observations (y(i)) ic{43,....61) together with
=£1 std. error bounds.

4.2.3 Final Model for the Loss-severity Distribution

We separate the loss-severity distribution into two parts. For a loss y in the interval
[u1,us] = [2 x 107, 1.5 x 10%] we choose

~_log(y/uy)
= Mlog(uz/ur)’

with 7 = 66% (which equals the empirical probability of losses below u;). This
choice provides a straight line on the log-log scale and a continuous continuation to
the following distribution for the tail. For y > u; we choose

Fy)=P[Y <yl=n+(1-m)(1 - (y/ur) %), (4.4)

with Pareto parameter & = 0.7800. Figure 12 shows the resulting estimated loss-
severity distribution together with the empirical loss-severity distribution.

F(y) =Py <] (4.3)

Remark 4.2 Before we continue, let us briefly address the model assumptions. To
investigate the serial correlation between the losses above the threshold, we plot
the autocorrelation function; see Figure 13 (left). For investigating the correlation
between the total loss per year and the number of losses per year (two time se-
ries of length 31), we utilize the cross-correlation function; see Figure 13 (right).
Both plots indicate no contradiction to the model assumptions. Also note that the
correlation between the latter two time series is —0.0770.

Published by The Asia-Pacific Risk and Insurance Association, 2013 13
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Figure 12: Empirical and fitted loss-severity distribution F (y) = P[Y <}y].
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Figure 13: Autocorrelation function of all losses above the threshold u = 2 x 107
(left) and cross-correlation function of the total loss per year versus the number of
losses per year (right).
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4.3 Annual Loss Distribution of Nuclear Power Accidents

Next we merge the annual loss-count distribution and the loss-severity distribution.
We consider an average single nuclear power plant. We assume that this power

plant has an annual loss St(m) in year t = 2012 which is independent of the other

nuclear power plant losses and has a compound Bernoulli distribution with
d
Slgm) P Y]I{B(m)zl}, (4.5)

where the loss Y is distributed according to Egs. (4.3)—(4.4) and B is Bernoulli

distributed with default probability p = 1 —exp(—A), where A > 0 is estimated by

Eq. (4.2). The resulting excess probabilities (i.e., IP’[S,(m) > x] for losses x greater

than 20 million USD) are presented in Figure 14. It turns out that based on histor-

1.0E-04
9.0E-05
8.0E-05
7.0E-05
6.0E-05
5.0E-05
4.0E-05
3.0E-05
2.0E-05
1.0E-05
0.0E+00

excess probability

0 5,000 10,000 15,000 20,000 25,000 30,000
loss in million USD (as of 2010)

excess probability of an average single nuclear power plant

Figure 14: Annual nuclear power loss distribution for an average single nuclear
power plant: estimated excess probability curve.

ical data, we judge nuclear losses much less optimistic. For example, the annual
probability of a loss exceeding 10 billion USD for this average nuclear power plant
is estimated by approximately 3 x 1077,

Remark 4.3 We (can) only give annual nuclear loss distributions for an average nu-
clear power plant. Our analysis of historical nuclear power accidents did not respect
local safety standards, plant location, or other factors that determine the loss distri-
bution of a particular power plant. Therefore, our analysis only holds for an average
nuclear power plant and the loss distribution of a particular power plant may very
well differ according to relevant factors. However, if we aggregate over all nuclear

Published by The Asia-Pacific Risk and Insurance Association, 2013 15



Asia-Pacific Journal of Risk and Insurance, Val. 7, Iss. 1 [2013], Art. 1

power plants that are in operation we obtain the correct overall annual nuclear loss
distribution from this approach, if the composition of the portfolio remains stable;
see Proposition 3.3.4 in Mikosch (2006). This stability may be questioned because
types of power plants, etc., may change over time. Nevertheless, it gives reasonable
ranges based on statistical analysis.

If we aggregate over all woo12 = 443 nuclear power plants that are in operation
in 2012, we can predict the aggregated annual nuclear loss in 2012 by

5%
4%
3%

2%

excess probability

1%

0%
0 10,000 20,000 30,000 40,000 50,000
total world-wide loss in million USD (as of 2010)

Figure 15: Total annual nuclear loss distribution aggregated over all nuclear power
plants in operation in 2012: losses in million USD (as of 2010) and corresponding
estimated excess probabilities.

J Nao12 Mpo12
SZOIZ - Z Yl - Z Yi+N20117 (46)
i=Npp11+1 i=1

ie., by a compound Poisson distribution with annual loss-frequency parameter es-
timate A = 0.290%, see Eq. (4.2), and loss-severity distribution of ¥ given by Eqs.
(4.3)—(4.4). The resulting annual excess probabilities of the total nuclear losses ag-
gregated over all nuclear power plants world-wide are presented in Figure 15. The
graph suggests that for 2012 there is an estimated annual probability of 1% that we
observe nuclear power accident losses exceeding 20 billion USD.

5 Conclusions

The data-based analysis carried out suggests an infinite mean model for the model-
ing of loss severities from nuclear power accidents. From a risk management and
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insurance point of view, this implies that an unlimited insurance cover against nu-
clear power plant accidents cannot be financed. As stated in Wikipedia (2011a),
nuclear safety should either reduce the frequency of nuclear power accidents or
limit their consequences. Although this is obvious, and indeed highlighted in the
conducted analysis, nuclear safety should focus on limiting the consequences of
nuclear power accidents (due to the infinite mean model for loss-severities).

Note that the excess probabilities for nuclear disasters that were found in the
present statistical analysis are (by far) less conservative than the figures mentioned
in the introduction. Annual probabilities of nuclear disasters for an average single
nuclear power plant are of order 107>. This implies that, world-wide, the annual
probability of a nuclear disaster is estimated to be between 1% and 2%. These are
rather lower bounds due to missing data from several areas and due to expected
growth of the number of nuclear power plants in developing countries.
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