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Abstract

Antibodies are glycoproteins produced by the immune system as a dynamically adaptive line of defense against invading
pathogens. Very elegant and specific mutational mechanisms allow B lymphocytes to produce a large and diversified
repertoire of antibodies, which is modified and enhanced throughout all adulthood. One of these mechanisms is somatic
hypermutation, which stochastically mutates nucleotides in the antibody genes, forming new sequences with different
properties and, eventually, higher affinity and selectivity to the pathogenic target. As somatic hypermutation involves fast
mutation of antibody sequences, this process can be described using a Markov substitution model of molecular evolution.
Here, using large sets of antibody sequences from mice and humans, we infer an empirical amino acid substitution model
AB, which is specific to antibody sequences. Compared with existing general amino acid models, we show that the AB
model provides significantly better description for the somatic evolution of mice and human antibody sequences, as
demonstrated on large next generation sequencing (NGS) antibody data. General amino acid models are reflective of
conservation at the protein level due to functional constraints, with most frequent amino acids exchanges taking place
between residues with the same or similar physicochemical properties. In contrast, within the variable part of antibody
sequences we observed an elevated frequency of exchanges between amino acids with distinct physicochemical proper-
ties. This is indicative of a sui generis mutational mechanism, specific to antibody somatic hypermutation. We illustrate
this property of antibody sequences by a comparative analysis of the network modularity implied by the AB model and
general amino acid substitution models. We recommend using the new model for computational studies of antibody
sequence maturation, including inference of alignments and phylogenetic trees describing antibody somatic hypermuta-
tion in large NGS data sets. The AB model is implemented in the open-source software CodonPhyML (http://sourceforge.
net/projects/codonphyml) and can be downloaded and supplied by the user to ProGraphMSA (http://sourceforge.net/
projects/prographmsa) or other alignment and phylogeny reconstruction programs that allow for user-defined substi-
tution models.

Key words: Markov model, amino acid substitution, alignment, evolution, antibody, somatic hypermutation, antibody
genealogy.

Introduction
Antibodies are glycoproteins that constitute a fundamental
part of the humoral adaptive immune response and protect all
jawed vertebrates (elasmobranches, teleosts, amphibians, rep-
tiles, birds, and mammals) from invading pathogens, such as
bacteria, viruses, and parasitic eukaryotes (Das et al. 2012).

Studying and modeling antibody biology and functionality
has therefore important influences in several fields: In fact,
understanding the tightly regulated mechanisms that govern
B lymphopoiesis and antibody maturation is important
for understanding the pathogenesis of diseases where these
mechanisms are deregulated, such as certain types of

autoimmunity, immunodeficiency, and lymphomas.
Additionally, antibodies have been used for decades as block-
buster therapeutic drugs in the pharmaceutical industry,
mostly in oncotherapy and inflammatory diseases treatment.
Especially in this field, bioinformatics modeling of antibody
biology should complement laborious experimental tech-
niques, in order to select and develop lead and clinical can-
didates with desirable properties. Many of these analyses are
carried out on a multiplicity of antibody sequences, which are
aligned based on homologous residues. Phylogenetic trees can
then be derived from such alignments and used to infer the
mutational pathways and properties of individual sequences
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as well as of complete alignments (Barak et al. 2008; Wu et al.
2011; Zhu et al. 2013). Accurate inference of such phylogenies
requires a substitution model representing the mutational
process under study.

In the last years, antibody research has gained a new mo-
mentum thanks to the technological advances in next gen-
eration sequencing (NGS), which made it possible to obtain
large sequencing data sets at affordable costs and with rela-
tively limited resources (Fischer 2011; Mathonet and Ullman
2013). The availability of such huge data sets allows for, and at
the same time demands, the creation of bioinformatics tools
for the quantitative analysis of the underlying biological
mechanisms. In particular, the availability of large antibody
sequencing data can provide an insight into their unique
capability to evolve and adapt to new pathogenic targets
(antigens) within a few weeks from infection. The surprising
plasticity of the antibody repertoire derives from somatic
rearrangements and mutational processes taking place in
the genome of B lymphocytes, more specifically in the loci
encoding for the antibody protein chains (IgH, IgK, and IgL).
These elegant and sophisticated processes are extensively re-
viewed elsewhere (e.g., Gellert 2002; Chahwan et al. 2012; Xu
et al. 2012), and therefore here we only provide a brief over-
view of such diversification mechanisms. As outlined in figure
1, antibodies can recognize and bind antigens through inter-
actions involving their N-terminal domains, called V (variable)
regions, or more precisely, VH for the heavy chain and VL for
the light chain. Functional VH and VL regions are assembled
in B cell progenitors by piecing together different gene frag-
ments, called V (variability), D (diversity, exists only in the
heavy chain loci) and J (joining), chosen from a pool of V, D,
and J germlines. This process, known as V(D)J recombination,
accounts for most of the combinatorial diversity encountered
in antibody repertoires, as germlines belonging to a fragment
type show already significant mutual diversity. Furthermore,
deletions and insertions of nucleotides at the joining positions
between the V, (D), and J fragments considerably increase the
number of possible precursor antibodies. Therefore, jawed
vertebrates can count on a very flexible system for creating
antibody diversity, which in humans can potentially generate
up to 1011 different antibody precursors (Glanville et al. 2009).

Moreover, additional diversity is introduced later on
by a further maturation process, known as somatic hypermu-
tation, which comprises the mutation of nucleotides in the
newly created VH and VL region gene segments. This muta-
tional process, coupled with selection of B cells for antigen
binding, leads to the optimization of the antibody–antigen
interface, resulting in increased binding affinities. It is triggered
by the function of activation-induced deaminase, a cellular
enzyme that converts cytosines, especially those contained in
the specific WRC (W = A/T, R = A/G) sequence motif, to ura-
cils (Rogozin and Kolchanov 1992; Maul and Gearhart 2010).
As deoxyuridine (dU) mimics deoxythymidine during replica-
tion, the U:G pairing is correctly identified as a mismatch and
thus triggers DNA repair mechanisms. In B cells such repair
mechanisms are error-prone, so that dU is not always faith-
fully repaired, thus resulting in point mutations upon cell
division (Chahwan et al. 2012). In contrast, insertions and
deletions of nucleotides during somatic hypermutation are
particularly rare (Wilson et al. 1998; de Wildt et al. 1999). As
expected, most of hypermutations accumulate in the com-
plementarity determining regions (CDRs; see fig. 1), which are
directly involved in binding to the antigen. This is partially due
to the higher presence of mutational hot-spot sequences in
these regions (Wagner et al. 1995; Cowell et al. 1999), and
partially due to their plasticity. In fact, CDRs constitute struc-
turally flexible loops, and therefore can accept a wider range
of mutations compared with framework regions (FRs), which
have mainly a scaffolding role and must keep an ordered �-
barrel structure. Remarkably, different from other genes and
cell types, the hypermutation rate of antibody genes is about
105- to 106-fold higher compared with mutation rates in the
rest of the genome (Oprea 1999), and it results in 1–2 mu-
tations per cell generation in the most variable part of the VH
and VL regions.

The availability of large antibody sequence data sets re-
trieved from an organism, preferably at different time points
postinfection, allows to reconstruct the most likely somatic
hypermutation pathway and to map the mutations that have
led to an increase in antigen-binding affinities, without the
need of resource consuming experimental lab work.
Nevertheless, the uniqueness of this somatic evolution
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FIG. 1. Antibody structure: (A) General schematic representation highlighting the apical position of the variable heavy chain (VH) and variable light
chain (VL) domains. CDRs are represented as three red bars for each variable region. (B) Linearized representation of the variable regions, with their
respective original germline gene fragments.

807

Antibody-Specific Substitution Model . doi:10.1093/molbev/msu340 MBE

for example
:
since 
,
-
 (AID)
Since 
 (dT)
to
to
-


process requires the development of bioinformatics tools tai-
lored for antibody sequences.

Stochastic models that describe somatic hypermutation
process constitute the first building block required for the
development of accurate and efficient computational meth-
odology capable to predict antibody properties from se-
quence data. As somatic hypermutation involves fast
mutation of antibody sequences, this process can be de-
scribed using a Markov substitution model of molecular evo-
lution. There exist a number of amino acid substitution
models, such as the popular WAG (Whelan and Goldman
2001) and LG matrices (Le and Gascuel 2008), which are reg-
ularly used for modeling protein evolution. However, these
models were estimated from large databases which com-
prised a variety of different proteins and from species ranging
between prokaryotes and eukaryotes. These models therefore
represent a general description of protein evolution and
cannot accurately reflect the intricacies of antibody somatic
hypermutation. Thus, using these general models for bioin-
formatics analyses of antibody sequences can lead to mislead-
ing results causing the loss of accuracy and signal during
statistical inferences. For example, Gil et al. (2013) observed
that using different amino acid and codon models can lead to
very different inferred phylogenies. For antibody sequences,
we have also observed that using LG instead of our new
antibody-specific model AB often yields different tree
topologies.

Indeed, numerous data-specific amino acid models have
been derived, including models for mitochondrial and chlo-
roplast proteins, as well as HIV and flu-specific models
(Adachi and Hasegawa 1996; Yang et al. 1998; Adachi et al.
2000). These models have been successfully used for specific
types of proteins (Martin et al. 1998; Wyckoff et al. 2000;
Nishihara et al. 2006) demonstrating the need and the po-
tential of data-specific models for proteins evolving in a dis-
tinct manner.

Currently, there is no specific model describing somatic
hypermutation during the maturation of expressed anti-
body sequences. Moreover, only few bioinformatics studies
have appeared so far (Clark et al 2006; Barak et al 2008; Zhua
et al 2013); despite the importance of these seminal works,
none of them provides a quantitative data-driven substitu-
tion model which can be used in well-established
tree-reconstruction and sequence alignment methods. In
particular, Clark et al. (2006) simply count the observed
number of mutations between the germline and the rear-
ranged sequences. For the first time, Barak et al. in 2008
suggested reconstructing parsimony-like tree structures
not requiring any substitution model. More recently, Zhu
et al. (2013) analyzed antibody sequence data by building a
phylogeny under the assumption of molecular clock (con-
stant rate over time) and assuming the nucleotide-based
substitution model HKY (Hasegawa et al. 1985), with tran-
sition/transversion rate and base frequencies fixed by default
in the utilized software rather than driven by data or the
specifics of antibody evolution. Thus, due to the lack of
antibody specific models, most of the immunology research
groups are still using general amino acid substitution models

or have created their own “in house” tools, which are usually
poorly documented and lack common standards.

Here, we propose to utilize the wealth of the most recent
theoretic advances in the field of computational molecular
evolution (Anisimova et al. 2013) to infer an antibody-specific
model (the AB model) from a large collection of publically
available antibody sequence data, including recent sequence
data obtained through NGS (Liao et al. 2013; Doria-Rose et al.
2014; and NCBI Sequence-Read Archives accession number
ERR412888 (Menzel et al. 2014) available from http://www.
ncbi.nlm.nih.gov/sra). We describe antibody sequence hyper-
mutation by a Markov amino acid substitution process. For
illustration, we discuss below some examples of practical ap-
plications, which could benefit from the use of our newly
inferred antibody-specific model: 1) The detection of new
antibodies with specific functionality, for example, broadly
neutralizing antibodies against HIV (Wu et al. 2011); 2) in
silico rematching of heavy and light chain sequences derived
from bulk lysis of B cell populations and sequenced by high-
throughput NGS techniques (Zhu et al. 2013); and 3) the
development of tools for inferring evolutionary characteristics
of B cell populations based on distributions of phylogenetic
tree shape statistics (Barak et al. 2008). The AB model is
publically available and easily applicable for the inference of
multiple sequence alignments (MSAs) and phylogenetic trees.

New Approach
Here for the first time, we present an antibody-specific model,
denoted AB, describing the amino acid replacements in mat-
urating antibodies. We show that for antibody sequence data
the AB model largely outperforms existing general amino acid
models. For this task, a large amount of antibody sequence
data were assembled and classified into homogeneous (gap-
less) MSAs. Data for each MSA were selected using a meth-
odology customized specifically for antibody sequences. The
AB model was estimated jointly from these resulting align-
ments and consequently tested with large data sets. Here we
provide a brief overview of our methodology, with further
details available in the Data and Methods section.

In this article “antibody sequence” typically refers to the
VH and VL regions of rearranged antibody sequences, unless
specified otherwise. CDRs and FRs are annotated according to
the IMGT numeration system (Lefranc et al. 2003).

Creating Antibody Sequence Alignments

We used publically available antibody sequences from the
ImMunoGeneTics information system (Lefranc et al. 2009),
which result from different experimental settings and include
antibodies targeting a variety of proteins. Estimation of an
antibody-specific amino acid substitution model from this
large variety of antibody sequences allowed to minimize the
effect of biases caused by the use of specific experimental
settings.

Due to extreme length variability, all data were carefully
filtered and grouped into homogeneous sets. The great length
variability within antibody homologous structural regions
(particularly the highly variable CDR 3, ranging between 3
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and 20 residues in the used data set) allows antibodies to bind
to a large variety of antigens but at the same time makes the
alignment of antibody sequences difficult. Different annota-
tion schemes have been suggested for numbering the residues
in antibody sequences (e.g., Kabat et al. 1992; Honegger and
Pl€uckthun 2001); however, these numbering schemes are of
little use in indel-rich regions when it is necessary to identify
homologous residues. As a consequence, when constructing
alignments of such regions, a large number of gaps are usually
necessary in order to compensate for the length differences
between the sequences, which however does not resolve the
ambiguities about which residues are homologous. Relying on
alignments with gap-rich regions to estimate the antibody-
specific model can have adverse effects on the accuracy of the
parameter estimates.

To circumvent these difficulties, we have relied on the
specifics of the antibody evolution: The length variability
mostly occurs due to the insertion/deletion of nucleotides
at the joining parts between the V, (D), and J gene segments
in the initial rearrangement process, in addition to the use of
germline gene segments possessing different lengths. We
sorted antibody sequences into homogeneous sets, that is,
clustering sequences originating from similar V(D)J rearrange-
ments, with V, (D), and J gene segments of the same length
and the same number of indels at their joining parts. This
allowed us to create MSAs for each resulting homogeneous
set of antibody sequences with the same length in each of the
constituent FRs 1–4 and CDRs 1–3. As a result, the majority of
sequences in each MSA was derived from a small subset of V,
(D), and J germlines, so that the phylogenetic signal was dom-
inated by somatic hypermutation. The germline gene se-
quences themselves were not included into the alignments.
Checking these resulting gapless MSAs, we confirmed that by
virtue of our sorting algorithm the FRs were aligned unam-
biguously suggesting character homology within the CDRs
without the need to introduce any gaps (see Data and
Methods for details). Using this approach, we transformed
the total of 23,081 sequences and 1,759,389 residues into 224
gapless alignments of highly homologous antibody sequences
(antibody MSAs).

These MSAs were subsequently used to study mutational
patterns at homologous residues: 213 randomly selected
MSAs were used as a training set, Dtr, for estimating the
new AB model, whereas the remaining 11 MSAs were used
as a test set, Dtest, to test the model’s performance. In addi-
tion, large NGS data, DNGS, from immunized mice and from
HIV+ human donors taken at different time points postinfec-
tion were used to confirm the performance of the AB model
through statistical testing. The antibody sequence alignments
are provided for download in the Supplementary Material
online.

The AB Model for Antibody Maturation Process

In any given alignment of antibody sequences, the mutational
history of antibody maturation was modeled independently
for each homologous residue as a stochastic Markov process
of amino acid substitutions along a tree structure (or

genealogy) describing the history of sampled sequences as
they evolved from their respective germline sequences. The
MSAs of homogeneous antibody sets were used to estimate
an empirical antibody-specific amino acid substitution model,
defined by a 20� 20 generator matrix QAB = {qij} of instanta-
neous rates of replacement between amino acids. Following
common practice (to avoid overparameterization), time ho-
mogeneity and reversibility were assumed, so that each in-
stantaneous rate of change was decomposed as a product
qij = sij �j for any i 6¼ j, where sij is a symmetric amino acid
exchangeability rate and �j is a stationary frequency of tar-
get amino acid (Yang 2006). The transition probability matrix
PAB (t) = exp (t QAB) allows to compute probabilities of amino
acid changes over a given time interval. This can be used to
compute the likelihood function, which is the overall proba-
bility of observing a set of MSAs given a substitution model
QAB and a set of trees relating the antibody sequences for each
MSA. Parameters of the model are then estimated using the
maximum likelihood (ML) approach, that is, by optimizing
the joint log-likelihood function computed over all the MSAs
in Dtr.

The Estimation of Maturation History and Model
Parameters

To estimate the parameters of the antibody substitution
matrix, we use the expectation maximization (EM) algo-
rithm and an iterative multistep learning approach (cf.
Data and Methods). Briefly, for each MSA a genealogy was
inferred using the best available amino acid model with site-
rate variation and used for the computation of the joint
likelihood function over all MSAs in Dtr. Next, a new
amino acid model was estimated for Dtr. This procedure
was repeated, each time with different initial values, using
newly obtained estimates from the previous round (for both
exchangeability rates and optionally also amino acid fre-
quencies). We halted the procedure as soon as the joint
likelihood ceased to increase. As a result, 12 candidate
amino acid matrices were estimated at different stages of
the procedure and were subsequently evaluated in terms of
the differences between their optimized log-likelihoods
(table 1) and the exchangeability rate estimates (fig. 2).
This allowed us to monitor whether the matrices estimated
at different stages of the procedure were converging to the
same peak or a plurality of peaks on the likelihood surface.

Validation and Interpretation of the AB Model

To ensure the accuracy and sensitivity of our estimation pro-
cedure, we used two different data sets to evaluate and con-
firm the performance of the AB model. The first selection of
the three best models was performed on Dtest composed
from one or several MSAs for each of human antibody
heavy chain, �-light chain, �-light chain, mouse antibody
heavy chain, and �-light chain. These data were sufficient to
evaluate whether any one of the 12 models fitted Dtest data
significantly better than existing (general) amino acid substi-
tution models; however, this sample was insufficient to select
the best model with certainty.
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Thus, we have used the additional DNGS data consisting of
150 MSAs with 7.1� 106 residues. These alignments com-
prised sequences similar to those in Dtest (human heavy,
human �-/�-light chain, and mouse heavy chain sequences).
Wilcoxon signed-rank test was used to determine the best
model describing the somatic evolution for this set of anti-
body sequences.

For the biological interpretation of the best fitting model
AB, we used the modularity maximization approach that is
widely applied in network science (Newman 2004). To do so,
we considered the exchangeability values in the AB model as

weights (connection strengths) in a network with 20 amino
acids (nodes). We inferred an optimal number of amino acid
clusters so as to maximize the sum of the connection
strengths (exchangeability values) within each cluster and
to minimize the strengths of the connections transgressing
cluster borders (cf. Data and Methods for mathematical de-
tails). Based on the inferred modularity scores and physico-
chemical properties of amino acids (Taylor 1986; Betts and
Russell 2007) in inferred clusters, we were able to compare the
substitution properties of the AB model and the general LG
model.

FIG. 2. The learning progress in the estimation of the AB model is supported by the decrease in relative differences between the exchangeability values
at the more advanced learning steps (see table 1 for the summary of the iterative procedure). The three sections of the graph reflect the use of different
initialization parameters for XRate (Klosterman et al. 2006) and PhyML (Guindon et al. 2010): The first section shows the difference to LG parameters
after the first learning step (starting the learning algorithm with the LG model parameters), the second section shows the difference for the new models
(3)–(6) relative to models 1 and 2 obtained in the first step. Finally, the third section shows differences for models obtained in the third iteration step.
The numbers in brackets refer to the model numbers as defined in table 1. The error bars show the standard deviations of the relative differences
between different learning steps obtained by bootstrapping the set of antibody MSAs for each following learning step. They are centered about the
average values of the exchangeabilities obtained from the bootstrapped alignments.

Table 1. Iterative Estimation of Candidate Models for Antibody Sequences.

Existing/Inferred Model Model Used for Tree Inference Initial sij Initial pi Log-Likelihood per Site

WAG WAG — — �45.396

LG LG — — �45.976

1 LG LG pMSA �44.257

2 LG LG pLG �44.231

3 1 1 pMSA �44.239

4 1 1 p
_

1 �44.237

5 2 2 pMSA �44.246

6 2 2 p
_

2 �44.263

7 3 3 pMSA �44.273

8 3 3 p
_

3 �44.239

9 4 4 pMSA �44.257

10 4 4 p
_

4 �44.247

11 WAG WAG pMSA �44.237

12 WAG WAG pWAG �44.249
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Results and Discussion

Using large sequence data from different species and antibody
classes, we inferred 12 candidate models describing antibody
somatic evolution among which one best-fitting model was
selected for its better description of antibody sequence data.
We refer to this model as the AB model.

The estimates of the AB exchangeability rates and station-
ary amino acid frequencies are shown in figures 3 and 4,
respectively.

Below we demonstrate that the AB model outperforms
general amino acid substitution models such as LG and WAG,
as assessed by the gains in the optimized log-likelihood values
when applied to antibody sequence data. This suggests that
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FIG. 4. The amino acid frequency distributions for the LG model (Le and Gascuel 2008) compared with the antibody-specific distributions that are
inferred 1) from the human and mouse antibody MSAs in the training set, and 2) from the germline sequences downloaded from the IMGT database
(Lefranc et al. 2009). The error bars show the standard deviations in the amino acid frequencies between different homogeneous (gapless) MSAs
constructed from the IMGT data for mouse and human (heavy chain and light chain). The amino acid distribution inferred from the human and mouse
antibody MSAs in the test set is recommended for use with the AB model of the antibody maturation process.
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the AB model better reflects the biological processes involved
in the somatic hypermutation and selection steps that lead to
the in vivo maturation of antibody sequences in response to
an antigen. Thus, the AB model should be used for bioinfor-
matics analyses of antibody sequences. Below we discuss the
fit of the new model, the robustness of model estimates, its
comparison with existing models, and the biological interpre-
tation of the observed findings.

The AB Model Provides Better Fit to Antibody
Sequence Data

Invariably, we observed that the AB model provided a better
fit to antibody sequence data compared with the general
model LG on both testing data sets (table 1 and fig. 5). For
example, on Dtest the AB+G+I+F model (invariant sites “+I”
with four G-rate categories “+G” and amino acid frequencies
inferred from each MSA “+F”) showed a substantial log-like-
lihood gain: On average, 1.78 units per site compared with
LG+G+I+F and 1.13 units per site compared with the
WAG+G+I+F model. When using the antibody-specific sta-
tionary distribution “+FAB” — inferred as model parameters
from Dtr — the difference between AB+G+I+FAB and
LG+G+I+FAB was 1.74 log-likelihood units per site, whereas
between AB+G+I+FAB and WAG+G+I+FAB this difference
was 1.16. The observed differences in optimized log-likelihood
values were so large that even for this limited number of 11
MSAs in Dtest we could confirm that AB significantly outper-
forms LG and WAG (Wilcoxon signed-rank test, P
value< 0.01).

However, we do not expect the AB model to provide a
good fit for typical nonantibody proteins compared with the
existing general models. To verify this, we randomly selected
11 MSAs of regular proteins from the TreeBase (Sanderson
et al. 1994) used to infer the LG model. Indeed, for this set, the
AB model did not provide better fit. In fact, when the LG
model frequencies were used (+FLG), the per site
log-likelihood decreased by 0.72 for the AB+G+I+FLG model

relative to LG+G+I. This indicates that the AB model indeed
captures the specifics of the mutation-selection processes
involved in somatic hypermutation during the maturation
of antibody sequences. Moreover, the improved model fit is
not only due to differences in stationary amino acid frequen-
cies but also due to exchangeability rates.

It is interesting to note that among the general amino acid
models, WAG provided on average a better fit for antibody
alignments in Dtest, outperforming LG by 0.58 units per site.
This shows that the advantage of LG over WAG cannot be
generalized to all protein types, with antibody sequences
being one example.

Convergence and Reliability of the AB Model
Estimates

During the iterative estimation procedure, we have repeated
the learning algorithm with different initial values, gradually
improving the model until no further improvement in the
log-likelihood values for the test alignments could be ob-
tained. We monitored the convergence of the model esti-
mates by assessing the mean absolute value of the relative
differences between the estimates of exchangeability rates {sij}
and {sij*} from two consequent iterations, computed as
�ij = j (sij� sij*)/sij j for any pair of distinct amino acids i
and j, whereby {sij*} are the current estimates obtained by
using the previous estimates {sij} as starting values (see Data
and Methods for details of the iteration procedure). Indeed,
we observed a large 1.8-fold decrease of the �ij values in the
first learning step of the iteration procedure, followed by
0.29–0.34 fold increase in the second learning step and
0.24–0.25 in the third learning step. For one set of parameters,
learning of model (3) after the second learning step failed to
alter the exchangeability matrix (fig. 2). The overall trend
supports the convergence of the learning algorithm.

Next, we examined the statistical confidence of the esti-
mated AB exchangeability rates using bootstrap resampling of
the MSAs in Dtr. Figure 2 shows the bootstrapped values of
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FIG. 5. The fit to data of the AB model compared with the general model LG (Le and Gascuel 2008). Differences in log-likelihoods per site are shown for
11 homogeneous (gapless) antibody MSAs from the IMGT database and for 11 nonantibody MSAs from TreeBase (Sanderson et al. 1994). Log-
likelihood values are optimized under models AB+G+I+ FAB and LG+G+I+ FAB.
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�ij, where bars represent standard deviations of �ij in the
bootstrapped alignments. This analysis allowed to assess the
sensitivity of the model estimates to the presence of specific
sites within the original alignment, as bootstrapped distribu-
tions are similar to generating MSAs by increasing the weights
for certain functionally diverse sites compared with the orig-
inal Dtr. For all pairs of amino acids, the distribution of the
exchangeability rate estimates in the bootstrapped set was
roughly symmetric and had a single peak within 0.5 SD from
the estimated exchangeability value for the original set of
MSAs. The same was true for the relative differences �ij, in-
dicative of the robustness of the learning approach and the
reliability of the obtained estimates.

The different initialization values and stationary amino acid
distributions used in the learning process yielded a total
number of 12 candidate models (as detailed in table 1). All
the exchangeability matrices were highly correlated (r 4 0.97
between any of models (1)–(12)). In contrast, the correlation
of the exchangeabilities between candidate model (4) and LG
was only 0.70. For Dtest data, the largest log-likelihood differ-
ence per site between any of these models was 0.04, which is
very small compared with the difference between any of (1)–
(12) models and LG (cf. table 1). The high correlation between
estimates from the candidate AB models and their very similar
optimized log-likelihoods suggested that models (1)–(12) are
in close proximity on the likelihood surface.

The sample size of Dtest was not sufficient to evaluate if
best fitting model (2) yielded statistically significantly higher
likelihoods compared with other candidate models
(Wilcoxon signed-rank test was not significant). Thus, we
have used the additional NGS data to perform the
Wilcoxon signed-rank test for the top three models (2), (3)
and (4) from the 12 candidate models. Applied to the DNGS

data, model (4) provided significantly better fit compared
with any other substitution model (P value<< 0.01).

We have thus selected model (4) as the final antibody-
specific substitution model AB that provides the best descrip-
tion of mutational patterns during somatic hypermutation in
antibody sequences.

We have further compared the likelihood of different
models with different possible amino acid frequencies. The
empirical amino acid frequencies estimated from Dtr (rather
than from an MSA at hand) provided the best fit for most
antibody MSAs. This distribution is shown in figure 4.

Differences from Existing General Amino Acid
Substitution Models
Stationary Amino Acid Frequency Distribution
The antibody sequences in the training set exhibited higher
frequencies of Cys, Gly, Ser, Thr, Val, and Tyr, but lower fre-
quencies of His, Ile, Leu, and Lys (fig. 4) compared with the LG
model. All amino acid frequencies in germline V, D, and J gene
segments for human and mouse were within 1.1 SD from
their correspondent mean frequencies in Dtr.

Exchangeability Matrix
The AB exchangeability rate matrix is depicted in figure 3A
and B. For several amino acid pairs, the estimated exchange-
abilities were significantly different from the LG values. We
used the bootstrapped alignments and considered the ex-
changeability values outside the 2.5–97.5% quantiles to be
significantly different form the LG values (fig. 3B). Notably,
the high exchangeabilities between His and many other
amino acids are counterbalanced by His’s lowest stationary
frequency, which largely decreases the flow between His and
any other amino acid in the Markov model. This particularity
of His may be due to its high pH-sensitivity, which leads to a
change in its net-charge upon internalization (Igawa et al.
2010; Strauch et al. 2014).

Model’s Modularity
For a further insight into the exchangeability patterns implied
by the AB and LG substitution models we have used a mod-
ularity maximization approach, which allowed to assess
whether clusters of frequently exchanging amino acids existed
(see Data and Methods). The best partition of amino acids for
models LG and AB into an optimal number of clusters is
shown in figure 6A and B respectively. The maximized mod-
ularity values were 0.38 for the LG matrix and 0.24 for the AB
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Properties of amino acids: Hydrophobic, Aromatic, Aliphatic, Polar and Charged. Smaller letters sizes denote small 
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FIG. 6. The modularity maximization analysis showing the inferred optimal clusters of most frequently exchanged amino acids: (A) For LG with
modularity M = 0.38 and (B) for AB with modularity M = 0.24. The significantly higher modularity for LG shows the clearer structure of the LG model,
with a tendency to conserve amino acid properties. Colors and letter size reflect the physicochemical properties of amino acids as suggested by
Taylor (1986) and revised by Betts and Russell (2007).
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matrix. This difference is significant, as the distribution of
optimized modularity values for the estimates of the AB
models inferred from bootstrapped replicates had the stan-
dard deviation of only 0.01. Modularity values greater than 0.3
are considered representative of clear partitions of nodes
within a network into separate modules (Newman 2004).
The LG exchangeability matrix can thus be considered as
providing clear partitions of amino acids, whereas the AB
exchangeability model does not suggest such clustering.

Interestingly, at each new learning step of our estimation
procedure, we observed decreasing modularity property of
the estimated AB exchangeability matrices (whereas the
log-likelihood was still increasing at the first and second op-
timization steps). Figure 7 shows the differences in modularity
values at the different learning steps of the model. This sup-
ports our observation that the decreased modularity property
for the AB matrix must be reflecting the specifics of antibody
sequence evolution.

Biological Interpretation of the AB Model

Several ways have been proposed on how to classify amino
acids according to their physicochemical properties; for ex-
ample, Taylor (1986) suggested a classification based on prop-
erties such as hydrophobicity, size, charge, and other specific
side chain peculiarities (fig. 6A and B). Le and Gascuel (2008)
demonstrated that the majority of observed amino acid ex-
changes in the LG model occurred between pairs of amino
acids having similar physicochemical properties (high sij for
exchanges Ile$ Val, Phe$ Tyr, Lys$Arg, Asp$Glu, etc.).
The application of the modularity maximization algorithm to
the LG exchangeability matrix allows the inference of groups
within which amino acids are preferably exchanged. The

inferred modules are presented in figure 6A for the LG
model and match well the aforementioned amino acid
classification.

The application of the same modularity maximization al-
gorithm to the AB model yielded different results (fig. 6B): The
amino acid network exhibited no clear modularity structure
(modularity less than 0.3) and the suggested (weak) modules
do not reflect the amino acids physicochemical properties.
For example, small amino acids such as Gly and Cys are clus-
tered together with large aromatic amino acids. This suggests
that the processes involved in the somatic antibody evolution
are largely different from those shaping the evolution of other
proteins. The LG model is characteristic of conservation at the
protein level during evolution, which either prevents amino
acid changes or selects for amino acids having similar physi-
cochemical properties that are likely to have a lower impact
on the function of the protein.

Somatic mutations in antibody sequences, however, even-
tually lead to an increase of binding affinity to the antigen and
to the improved complementarity between the heavy and
light chain protein interface, which is unlikely to be achieved
under negative selection on the protein level. Instead, a di-
versifying mechanism is required here. Yaari et al. (2012) sug-
gest that the evolution of the antibody CDRs is dominated by
positive selection whereas the FRs’ somatic evolution is dom-
inated by negative selection. As the phylogenetic signal from
somatic antibody evolution is largely dominated by muta-
tions in the CDRs (FRs have less mutations), the evolution
of complete variable parts of antibodies should be dominated
by positive diversifying selection. This is in agreement to the
low modularity of the AB model and the observed dominance
of property-altering amino acid exchanges in the antibody
MSAs (fig. 3A and 6B).

Usage and Availability

The AB model for phylogenetic inferences and alignment of
antibody sequences is provided as a Supplementary Material
online. In addition, this model has been implemented in the
CodonPhyML program for inferring phylogenetic trees from
MSAs (Gil et al. 2013). The AB model can be used in order to
accurately align antibody sequences (i.e., with programs al-
lowing for user substitution matrices like the fast implemen-
tation of probabilistic phylogeny-aware graph-based program
ProGraphMSA [Szalkowski 2012; Szalkowski and Anisimova
2013]).

When using the AB matrix for bioinformatics analyses of
antibodies, we suggest using the stationary amino acid distri-
bution as estimated here for the AB model from our training
set (+FAB option), and not those empirically estimated from
each alignment as is common practice (+F option). As the +F
option involves 19 additional parameters and at the same
time AB+FAB outperforms the AB+F models according to
our calculations, estimating the frequency distribution from
individual antibody alignments is strongly discouraged. The
lower log-likelihoods observed when +F option was used are
probably due to stochastic effects caused by the limited-size
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FIG. 7. Modularity values of the amino acid networks implied by the LG
model and the candidate antibody-specific models at different learning
steps are shown (details cf. table 1). AB1 refers to the modularity dis-
tribution of the antibody exchangeability models inferred after the first
learning step, which results in estimated models (1) and (2) together
with their bootstrap distributions, and AB2 refers to models (3)–(6)
together with their bootstrap distributions. The final third step is rep-
resented by AB3 and includes models (7)–(10). This shows that the
modularity values decreased at each learning step.
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alignments of highly similar antibody sequences (e.g., due to
conserved FRs).

Conclusion and Future Prospects
General amino acid models do not capture the sophisticated
patterns of somatic hypermutation in antibodies. Therefore,
here we have estimated and tested the antibody-specific
model AB that describes somatic hypermutation during the
antibody maturation. The follow-up analyses by modularity
maximization suggest that the mutational processes in mat-
urating antibodies are consistent with a sui generis mecha-
nism driving the diversity of antibody sequences. The
advantage of the AB model over other (general) substitution
models was evident throughout the different alignments of
human and mouse heavy/light chain sequences. The AB
model can also be used for analyzing antibody sequences
from other jawed vertebrates besides human and mice,
given that they share the somatic evolution mechanism
through an ancestral relationship.

In the beginning of the study different approaches have
been considered, one of them was to infer separate matrices
for the FRs and CDRs. Alignments consisting of either FRs or
CDRs were created so as to infer separate substitution models
for these regions. However, as substitutions within the FRs are
rare, this approach could not provide sufficient phylogenetic
signal to infer reliable statistical models for the FRs.
Additionally, new evidence questions the validity of the func-
tional separation of the antibody sequences into regions re-
sponsible for structure and binding to the antigen, so that
some positions within the CDRs would never participate in
antigen binding, whereas some off-CDR parts contribute crit-
ically to the binding between the antigen and the antibody
(Sela-Culang et al. 2013).

In conclusion, the AB model is the first step toward the
modeling of hypermutation in antibody sequences, as it pro-
vides the fundamental block for the development of bioin-
formatics methods that rely on the analyses of phylogenetic
patterns in antibody sequences. Additional methodological
research and extensive in vivo investigations are needed to
find the optimal way to make use of alignments and phylo-
genetic trees inferred using the AB model. The rooting of
inferred antibody phylogenies will need particular attention.
A number of tools allow for identification of the V, (D), and J
germline gene fragments for each rearranged antibody se-
quence (Gaeta et al. 2007; Ye et al. 2013). These gene seg-
ments can then be concatenated and used to define the
rooting for antibody sequence phylogenies. Such rooted
trees can then be used to accurately infer evolutionary rela-
tionships between antibody sequences.

In particular, we see a use of the AB model within the
frame of the work of Wu et al. (2011) where it would provide
more accurate measures of biological distances between a
known broadly neutralizing antibody (such as VRC01) and
newly obtained antibody sequences. It further allows identi-
fying antibody sequences with the largest evolutionary dis-
tances from their respective germline sequences. The
combination of both properties can be used to identify
new broadly neutralizing antibody candidates.

In another application, independent trees for heavy and
light chain antibody sequences can be constructed so as to
identify pairs of matching chains which have been separated
while sequencing the B cells (Zhu et al. 2013). In this case,
more accurate phylogenetic trees inferred from large sets of
sequences would allow to detect more heavy and light chain
sequence pairs than if general amino acid models were used.

We also expect that accurate trees inferred from antibody
sequences should show specific characteristics of the somatic
antibody sequence evolution: The diversifying sui generis pro-
cess will leave a characteristic imprint on the trees, underlying
the dynamics of antibody hypermutation. Applying the AB
model to large-scale sequences, one can follow B cell popu-
lations of antibodies as opposed to single clones. Insights into
B cell evolution dynamics can be gleaned from statistical
analyses of the tree shape distributions inferred from sets of
sequences coming from different immune system organs, dif-
ferent species, or from organisms affected by different dis-
eases. Such work, therefore, may lead to the development
of additional tools for monitoring the progress of the
immune system’s reaction to diseases.

The applications listed here are but only a few examples of
how the AB model can advance immunology research. In
conclusion, this work has the potential not only to provide
insights into the evolution of antibody sequences for specific
targets but also to open up a wide field of phylogeny-based
immunology research allowing to monitor the current state
of the immune system and the evolution of the humoral
response to diseases.

Data and Methods

Assembling Biological Sequence Data for Training and
Test Sets

To minimize biases toward specific animals or experimental
settings (e.g., target, immunization scheme), we used anti-
body sequences from human and mice from the
ImMunoGeneTics database (www.imgt.org; version dated
January 2013). We selected species for which a sufficient
amount of antibody sequences were available (more than
5,000 sequences). All types of antibody sequences were
used and analyzed separately in different groups, subdivided
into human heavy chain, human �-light chain, human �-light
chain, mouse heavy chain, and mouse �-light chain. As mouse
light chain sequences are largely dominated by �-sequences,
we did not use the �-sequences due to the low number of
such sequences available. Sequences in each of these groups
were aligned using MAFFT (Katoh et al. 2002; Katoh and
Standley 2013) and the resulting MSAs were manually verified
in Jalview (Waterhouse et al. 2009) by applying the IMGT
annotation rules for antibody sequences (Lefranc et al.
2009). In detail, for each sequence, characteristic amino acid
patterns were identified and their alignment was enforced in
all groups. Differences in lengths were balanced by the intro-
duction of gaps into the alignments. At this step, sequences
with stop codons, ambiguities or obvious sequencing mis-
takes, or missing complete CDRs or FRs were discarded.
Subsequently, the MSAs were realigned in MAFFT followed
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by another manual verification and realignment step. Many
sequences lacked the beginning of the FR1 and/or the end of
the FR4 regions. Consequently, about half of the FR1 and of
the FR4 region had to be truncated in all sequences in order
to maintain the maximum of same-length sequences in the
alignment. At this stage, sequences missing more than half of
the FR1 or FR4 sequences were also discarded.

As a result of the described procedure we selected 8,919
mouse heavy chain sequences, 1,080 mouse �-light chain se-
quences, 8,062 human heavy chain sequences, 2,634 human
�-light chain sequences, and 2,386 human �-light chain
sequences.

To create gapless alignments we first annotated all se-
quences according to the lengths of their FRs and CDRs
and then created MSA of only those sequences, which had
the same number of residues in each fragment (FR1–FR4 and
CDR1–CDR3). We required a minimum of three sequences
for each single MSA.

Overall, our procedure resulted in 113 MSAs of human
heavy chain and 43 MSAs for human light chain MSAs,
among which 25 �-light chain and 18 �-light chain align-
ments. For the mouse data, the resulted number of MSAs
was 55 for the heavy chain and 13 for the light chain se-
quences. The MSA size ranged from 3 to 1,308 sequences
(with a mean of 83 sequences and an average length of 100
amino acids). Out of the total of 224 MSAs, we randomly
selected 213 MSAs for estimating the AB substitution model
(training set Dtr), the remaining 11 alignments were reserved
for validation purposes (test set Dtest) and were not used for
the estimation of the AB model.

Preparation of the Additional Test Sequence
Alignments

The downloaded mouse heavy chain sequences were taken
from a pool of nine mice immunized with 50�g alum-pre-
cipitated chicken gamma globulin and sacrificed 14 days
postimmunization. Further experimental details are provided
at http://www.ncbi.nlm.nih.gov/sra/?term=ERR412888 (last
accessed December 21, 2014).

Human heavy chain sequences and�-light chain sequences
were obtained 144 weeks post-HIV infection of a patient by
Liao et al. (2013); sequence data were obtained from the NCBI
Sequence Read archive; accession numbers for the heavy
and light chains sequences are SRX297269 and SRX297274,
respectively. Antibody sequences from another HIV+ patient
were obtained 16 weeks postinfection from Doria-Rose et al.
(2014) (accession numbers SRX398466 and SRX398467 to
heavy and �-light chain sequences, respectively).

In total, after a quality-control filter for ambiguous char-
acters and stop codons, 136� 104 mouse and 891� 103

unique human sequences were obtained. Next, antibody
MSAs were created for mouse (heavy chain) and human
(heavy chain, �-light and �-light chain) data. Due to the
vast amount of sequence data we could create antibody se-
quence alignments originating from similar (if not same)
V(D)J rearrangements, that is, sets of sequences originating
from the same set of V, (D), and J gene segments and having

the same number of indels in the joining regions V–D and D–
J or only between V–J gene segments for heavy and light chain
sequences, respectively. To do this, we calculated a scoring
matrix (Henikoff and Henikoff 1992) and used it to identify
the most likely set of V, (D), and J gene segments for each
antibody sequence from the NGS data by local pairwise align-
ment (Smith and Waterman 1981) between the respective
antibody sequence and any of the possible germline gene
segments. For each sequence, the most likely V, (D), and J
germline gene segments were selected based on the highest
alignment score, different germline gene sets were used based
on the species and the sequence type. Each of the V, (D), and J
gene segments was locally aligned only within a region of their
expected position within the antibody sequences so as to save
computational time and to avoid misleading alignments.
Sequences having the same closest V, (D), and J germline
gene segments, best aligning at the same position, and
having the same length in each of their FR1–4 and CDR1–3
were combined into individual MSAs. If the size of the MSA
exceeded 850 sequences, it was split into smaller alignments.
MSAs containing less than 175 sequences were discarded.
This procedure resulted in a large number of gapless MSAs
of antibody sequences out of which we have randomly se-
lected 55 MSAs from mouse antibody sequences and 95
MSAs from two different HIV+ patients. The final DNGS data
set contained 150 MSAs with a total of 7.1 million residues.

The Iteration Procedure for the Estimation of the AB
Model

The overall goal of the learning algorithm was to maximize
the likelihood of the training set Dtr by learning the set of the
substitution matrix parameters Q, and the set of all branch
lengths T for genealogies {Ti} corresponding to MSAs {Di} in
the training set Dtr:

log LðQ; T; DtrÞ ¼ log�iLðQ; T; Di; TiÞ

Q and T were estimated by maximizing the joint log-like-
lihood function through a multistep EM algorithm (Holmes
and Rubin 2002). The procedure comprised several learning
steps (iterations). At each step, genealogies Ti for individual
MSAs were inferred with PhyML v.3.0 (Guindon et al. 2010)
using the best-known general amino acid model at the time
of the iteration process (LG at step 1), always starting the
heuristic search with a maximum parsimony tree, four dis-
crete categories of G-distributed rates to account for site-rate
heterogeneity (Yang 1996), and invariant sites (+I). The �
shape parameter and the proportion of invariable sites
�invar were estimated from each alignment independently.
Using the G-rate model with constant sites allowed to ac-
count for the evolutionary rate differences in different regions
(FR and CDR) of antibody sequences.

As the amino acid frequency distribution in our training
set deviated from that of the LG model (see fig. 4), we always
used empirical frequencies �MSA estimated from data Dtr to
infer the phylogenetic trees. This was computed over all MSAs
in the training sets (rather than taking empirical frequencies
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from individual MSAs) as this strategy gave higher likelihood
gains per site and also was more robust to stochastic errors
when inferring the initial frequency distributions from small
MSAs.

At each iteration step, the EM procedure was performed
using XRate (Klosterman et al. 2006) over the set of MSAs and
the inferred genealogies. Just like when inferring genealogies,
all EM runs were performed assuming the best amino acid
model as known at the time of the iteration (summarized in
table 1). During the first iteration, both the genealogy infer-
ence and the EM routine were performed assuming the most
recent general amino acid model LG (Le and Gascuel 2008)
and different initial amino acid frequencies �MSA and �LG,
respectively. At the end of each EM run, the resulting esti-
mated model included a set of ML estimates of stationary
frequencies, denoted �

_
, and a substitution matrix, which was

transformed into an exchangeability matrix using Sij

¼
Qij=�jþQji=�i

2 under the assumption of the detailed balance
condition of the Markov process. The latter was done even
though the reversibility was enforced by XRate: Due to nu-
merical effects, the summands Qij=�j and Qji=�i were not
identical although very close. To create comparable ex-
changeability matrices, the substitution rate matrices were
normalized to �i;j;j¼isij�i�i ¼ 1 with �i and �j taken from
�MSA. Table 1 is showing in more detail the iteration proce-
dure: After the first iteration, we obtained models (1) and (2)
by initialing XRate with different initial amino acid stationary
distributions, either �MSA or �LG. In the next step, we used
inferred genealogies with model (1) or (2) assuming �MSA. As
outlined above, replacing �MSA by the stationary amino acid
distributions inferred from individual MSAs did not increase
the likelihoods of either Dtr or Dtest. Using these recalculated
genealogies, models (3)–(6) were estimated in the second
learning step. For the third learning step not all combinations
were computed, as they were a priori suboptimal: Models (5)
and (6) had lower log-likelihood compared with models (3)
and (4). Therefore for the third learning step, only models (3)
and (4) were used to initialize PhyML and XRate. This resulted
in four new models (7)–(10). No further improvement for
model (3) could be achieved, so model (8) was identical to
model (3).

For comparison purposes, we also recomputed the first
step of the iteration using the general amino acid model
WAG (Whelan and Goldman 2001), resulting in the estima-
tion of new candidate models (11) and (12). Further iterations
were not performed as model (2) obtained after one learning
step starting from the LG model yielded a higher likelihood for
Dtest. Additional likelihood estimations using the DNGS con-
firmed that the likelihood difference between models (2) and

(12) in favor of model (2) was significant using the Wilcoxon
signed-rank test (P value< 0.01).

To summarize, the estimation procedure has resulted in
12 candidate models for describing the antibody se-
quences, which served as the first phase of model selection
(table 1).

On Dtest, the three best-fitting (initialized by LG) models
were (2)–(4). We tested these three models on the large NGS
data DNGS to determine the best one (table 2). The observed
differences in log-likelihood per site (log-lh/site) between
heavy chain and light chain sequences are likely due to the
larger number of polymorphic sites and the larger alignment
sizes of the human light chain MSAs. Model (2) slightly out-
performed model (4) for mouse sequences by 0.01 log-likeli-
hood units. For any human antibody sequence alignment,
model (4) yielded the highest log-likelihood values. The com-
plete set of 150 alignments in DNGS has shown the highest log-
lh/site values for model (4). Additionally, we have performed
Wilcoxon signed-rank test, which has confirmed that model
(4) significantly outperforms models (2) and (3), P value <<
0.01. Model (4) was thus chosen as the AB model.

The statistical distribution of the exchangeability coeffi-
cients of the AB model was assessed using bootstrapping.
For each MSA in the training set, 100 bootstrap replicate
MSAs were created by drawing (with replacement) columns
from the MSA. For each of 100 sets of bootstrapped MSAs,
the model was re-estimated using the procedure as shown in
table 1, resulting in 100 bootstrapped exchangeability matri-
ces for the models (1)–(6). These data were used to calculate
the distribution of the modularity values at different learning
steps (fig. 7) and to evaluate whether the AB exchangeability
rates were significantly different from those of the LG model
(fig. 3B).

Network Modularity Applied to the AB
Exchangeability Matrix

Modularity measures can be used to access the structure of a
given network, such as the presence of clusters (Newman and
Girvan 2004). Here, we use the extension of the modularity
measure to weighted networks (Newman 2004). The ratio-
nale for the modularity measure is the following: A good
partition of a network into modules must comprise many
within-module links and as few as possible between-module
links (Guimera and Amaral 2005).

We apply the modularity maximization to the AB and the
LG exchangeability matrices to better understand their struc-
tures. Each exchangeability matrix defines a symmetric
weighted network consisting of 20 nodes representing the
amino acids, with connection strengths represented by the

Table 2. Optimized Log-Likelihoods per Site for Three Best Fitting Candidate Models on NGS Data.

Alignment in DNGS No. of MSAs Mean No. of Residues per MSA Log-lh per Site, Model 2 Log-lh per Site, Model 3 Log-lh per Site, Model 4

Mouse HC 54 44.8k �38.86 �39.18 �38.87

Human HC 46 33.9k �36.31 �36.26 �36.23

Human KC 24 62.6k �125.50 �125.41 �125.38

Human LC 25 62.8k �116.60 �116.52 �116.48

All types 150 47.3k �60.12 �60.21 �60.07
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exchangeability rates between the respective amino acids. No
further normalization of the exchangeability matrix is re-
quired, as multiplication of exchangeability rates with a con-
stant does not affect the modularity score or modularity
structure.

Formally, given a matrix with exchangeabilities for each
pair of amino acids its modularity can be defined as follows:

M ¼
Xr

s¼1

ls
L
�

ds

2L

� �2� �
;where r is the number of clusters, ls

is the sum of the connection strengths (exchangeabilities)
having both ends within cluster s, ds is the sum of all exchan-
geabilities with at least one end in cluster s, and L is the sum of
all exchangeabilities. To find the optimal amino acid partition
structure defined by a model, we performed the network
modularity maximization using an algorithm similar to the
one used by Guimera and Amaral (2005).

The range of M is between –0.5 and + 1, where M = 0
signifies the lack of any network structure indicative of a
random clustering of nodes in a network. M 4 0.3 indicates
a clear division of the nodes into clusters (Newman 2004).
Negative values relate to modularity structures having fewer
within-cluster links than one would expect by random
chance. The modularity value stays unaltered if all connection
strengths are multiplied by a constant, which is convenient as
exchangeability matrices can be multiplied by any constant
without the model being changed.
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Supplementary material is available at Molecular Biology and
Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

The authors thank the CBRG group (ETH Zurich) for many
fruitful discussions. The BRUTUS team provided the support
with computations on the central cluster of the ETH Zurich.

References
Adachi J, Hasegawa M. 1996. Model of amino acid substitution in pro-

teins encoded by mitochondrial DNA. J Mol Evol. 42:459–468.
Adachi J, Waddell PJ, Martin W, Hasegawa M. 2000. Plastid genome

phylogeny and a model of amino acid substitution for proteins
encoded by chloroplast DNA. J Mol Evol. 50:348–358.

Anisimova M, Liberles DA, Philippe H, Provan J, Pupko T, von Haeseler
A. 2013. State-of the art methodologies dictate new standards for
phylogenetic analysis. BMC Evol Biol. 13:161.

Barak M, Zuckerman NS, Edelman H, Unger R, Mehr R. 2008. IgTree�:
creating immunoglobulin variable region gene lineage trees.
J Immunol Methods. 338:67–74.

Betts MJ, Russell RB. 2007. Bioinformatics for geneticists. Chichester
(United Kingdom): John Wiley & Sons, Ltd.

Chahwan R, Edelmann W, Scharff MD, Roa S. 2012. AIDing antibody
diversity by error-prone mismatch repair. Semin Immunol. 24:
293–300.

Clark LA, Ganesan S, Papp S, van Vlijmen HW. 2006. Trends in antibody
sequence changes during the somatic hypermutation process.
J Immunol. 177:333–340.

Cowell L, Kim H, Humaljoki T, Berek C, Kepler T. 1999. Enhanced
evolvability in immunoglobulin V genes under somatic hypermuta-
tion. J Mol Evol. 49:23–26.

Das S, Hirano M, Tako R, McCallister C, Nikolaidis N. 2012. Evolutionary
genomics of immunoglobulin-encoding loci in vertebrates. Curr
Genomics. 13:95–102.

de Wildt RM, van Venrooij WJ, Winter G, Hoet RM, Tomlinson IM. 1999.
Somatic insertions and deletions shape the human antibody reper-
toire. J Mol Biol. 294:701–710.

Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN,
DeKosky BJ, Ernandes MJ, Georgiev IS, Kim HJ, Pancera M, et al.
2014. Developmental pathway for potent V1V2-directed HIV-neu-
tralizing antibodies. Nature 509:55–62.

Fischer N. 2011. Sequencing antibody repertoires. MAbs 3:17–20.
Gaeta BA, Malming HR, Jackson KJ, Bain ME, Wilson P, Collins AM. 2007.

iHMMune-align: Hidden Markov model-based alignment and iden-
tification of germline genes in rearranged immunoglobulin gene
sequences. Bioinformatics 23:1580–1587.

Gellert M. 2002. V(D)J recombination: RAG proteins, repair factors, and
regulation. Annu Rev Biochem. 71:101–132.

Gil M, Zanetti MS, Zoller S, Anisimova M. 2013. CodonPhyML: fast
maximum likelihood phylogeny estimation under codon substitu-
tion models. Mol Bio Evol. 30:1270–1280.

Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, Ni I, Mei L,
Sundar PD, Day GMR, et al. 2009. Precise determination of the
diversity of a combinatorial antibody library gives insight into the
human immunoglobulin repertoire. Proc Natl Acad Sci U S A. 106:
20216–20221.

Guimera R, Amaral LAN. 2005. Functional cartography of complex met-
abolic networks. Nature 433:895–900.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O.
2010. New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0.
Syst Biol. 59:307–321.

Hasegawa M, Kishino H, Yano T. 1985. Dating of the human-ape split-
ting by a molecular clock of mitochondrial DNA. J Mol Evol. 22:
160–174.

Henikoff S, Henikoff JG. 1992. Amino acid substitution matrices from
protein blocks. Proc Natl Acad Sci U S A. 89:10915–10919.

Holmes I, Rubin GM. 2002. An expectation maximization algorithm for
training hidden substitution models. J Mol Biol. 317:753–764.

Honegger A, Pl€uckthun A. 2001. Yet another numbering scheme for
immunoglobulin variable domains: an automatic modeling and
analysis tool. J Mol Biol. 309:657–670.

Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, Moriyama
C, Watanabe T, Takubo R, Doi Y, et al. 2010. Antibody recycling by
engineered pH-dependent antigen binding improves the duration of
antigen neutralization. Nat Biotechnol. 28:1203–1207.

Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. 1992. Sequences
of proteins of immunological interest. Cambridge (MA): DIANE
Publishing.

Katoh K, Misawa K, Kuma KI, Miyata T. 2002. MAFFT: a novel method
for rapid multiple sequence alignment based on fast Fourier trans-
form. Nucleic Acids Res. 30:3059–3066.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability. Mol Biol
Evol. 30:772–780.

Klosterman PS, Uzilov AV, Benda~na YR, Bradley RK, Chao S, Kosiol C,
Goldman N, Holmes I. 2006. XRate: a fast prototyping, training and
annotation tool for phylo-grammars. BMC Bioinformatics 7:428.

Le SQ, Gascuel O. 2008. An improved general amino acid replacement
matrix. Mol Biol Evol. 25:1307–1320.

Lefranc MP, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G,
Bellahcene F, Wu Y, Gemrot E, Brochet X, Lane J, et al. 2009.
IMGT, the international ImMunoGeneTics information system.
Nucleic Acids Res. 37:D1006–D1012.

Lefranc MP, Pommi�e C, Ruiz M, Giudicelli V, Foulquier E, Truong L,
Thouvenin-Contet V, Lefranc G. 2003. IMGT unique numbering for
immunoglobulin and T cell receptor variable domains and Ig super-
family V-like domains. Dev Comp Immunol. 27:55–77.

Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, Fire AZ, Roskin
KM, Schramm CA, Zhang Z, et al. 2013. Co-evolution of a

818

Mirsky et al. . doi:10.1093/molbev/msu340 MBE

since 
--
s
since 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msu340/-/DC1
http://www.mbe.oxfordjournals.org/


broadly neutralizing HIV-1 antibody and founder virus. Nature
496:469–476.

Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik
KV. 1998. Gene transfer to the nucleus and the evolution of chlo-
roplasts. Nature 393:162–165.

Mathonet P, Ullman CG. 2013. The application of next generation se-
quencing to the understanding of antibody repertoires. Front
Immunol. 4:265.

Maul RW, Gearhart PJ. 2010. AID and somatic hypermutation. Adv
Immunol. 105:159–191.

Menzel U, Greiff V, Khan TA, Haessler U, Hellmann I, Friedensohn S,
Cook SC, Pogson M, Reddy ST. 2014. Comprehensive evaluation and
optimization of amplicon library preparation methods for high-
throughput antibody sequencing. PloS one 9(5):e96727.

Newman ME. 2004. Analysis of weighted networks. Phys Rev E. 70:
056131.

Newman ME, Girvan M. 2004. Finding and evaluating community struc-
ture in networks. Phys Rev E. 69(2):026113.

Nishihara H, Hasegawa M, Okada N. 2006. Pegasoferae, an unexpected
mammalian clade revealed by tracking ancient retroposon inser-
tions. Proc Natl Acad Sci U S A. 103:9929–9934.

Oprea ML 1999. Antibody repertoires and pathogen recognition: the
role of germline diversity and somatic hypermutation (Ph.D. disser-
tation). The University of New Mexico Albuquerque, New Mexico.

Rogozin IB, Kolchanov NA. 1992. Somatic hypermutagenesis in immu-
noglobulin genes. II. Influence of neighbouring base sequences on
mutagenesis. Biochim Biophys Acta. 1171:11–18.

Sanderson MJ, Donoghue MJ, Piel W, Eriksson T. 1994. TreeBASE: a
prototype database of phylogenetic analyses and an interactive
tool for browsing the phylogeny of life. Am J Bot. 81:183.

Sela-Culang I, Kunik V, Ofran Y. 2013. The structural basis of antibody-
antigen recognition. Front Immunol. 4:302.

Smith TF, Waterman MS. 1981. Identification of common molecular
subsequences. J Mol Biol. 147:195–197.

Strauch EM, Fleishman SJ, Baker D. 2014. Computational design of a pH-
sensitive IgG binding protein. Proc Natl Acad Sci U S A. 111:675–680.

Szalkowski AM. 2012. Fast and robust multiple sequence alignment with
phylogeny-aware gap placement. BMC Bioinformatics 13:129.

Szalkowski AM, Anisimova M. 2013. Graph-based modeling of tandem
repeats improves global multiple sequence alignment. Nucleic Acids
Res. 41:e162.

Taylor WR. 1986. The classification of amino acid conservation. J Theor
Biol. 119:205–218.

Wagner SD, Milstein C, Neuberger MS. 1995. Codon bias targets muta-
tion. Nature 376:732.

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009.
Jalview version 2: A Multiple Sequence Alignment and Analysis
Workbench,. Bioinformatics 25(9):1189–1191.

Whelan S, Goldman N. 2001. A general empirical model of protein
evolution derived from multiple protein families using a
maximum-likelihood approach. Mol Biol Evol. 18:691–699.

Wilson PC, Bouteiller OD, Liu YJ, Potter K, Banchereau J, Capra JD,
Pascual V. 1998. Somatic hypermutation introduces insertions
and deletions into immunoglobulin v genes. J Exp Med. 187:
59–70.

Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C, Chen X, Longo NS,
Louder M, McKee K. 2011. Focused evolution of HIV-1 neutralizing
antibodies revealed by structures and deep sequencing. Science 333:
1593–1602.

Wyckoff GJ, Wang W, Wu CI. 2000. Rapid evolution of male reproduc-
tive genes in the descent of man. Nature 403:304–309.

Xu Z, Zan H, Pone EJ, Mai T, Casali P. 2012. Immunoglobulin class-switch
DNA recombination: induction, targeting and beyond. Nat Rev
Immunol. 12:517–531.

Yaari G, Uduman M, Kleinstein SH. 2012. Quantifying selection in high-
throughput immunoglobulin sequencing data sets. Nucleic Acids
Res. gks457.

Yang Z. 1996. Phylogenetic analysis using parsimony and likelihood
methods. J Mol Evol. 42:294–307.

Yang Z. 2006. Computational molecular evolution. Chicago (IL): Oxford
University Press.

Yang Z, Nielsen R, Hasegawa M. 1998. Models of amino acid substitution
and applications to mitochondrial protein evolution. Mol Biol Evol.
15:1600–1611.

Ye J, Ma N, Madden TL, Ostell JM. 2013. IgBLAST: an immunoglobulin
variable domain sequence analysis tool. Nucleic Acids Res. 41:
W34–W40.

Zhu J, Ofek G, Yang Y, Zhang B, Louder MK, Lu G, McKee K, Pancera M,
Skinner J, Zhang Z, et al. 2013. Mining the antibodyome for HIV-1–
neutralizing antibodies with next-generation sequencing and phy-
logenetic pairing of heavy/light chains. Proc Natl Acad Sci U S A. 110:
6470–6475.

819

Antibody-Specific Substitution Model . doi:10.1093/molbev/msu340 MBE


