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Spread spectrum for imaging techniques in radio interferometry
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ABSTRACT
We consider the probe of astrophysical signals through radio interferometers with a small field
of view and baselines with a non-negligible and constant component in the pointing direction.
In this context, the visibilities measured essentially identify with a noisy and incomplete
Fourier coverage of the product of the planar signals with a linear chirp modulation. In light
of the recent theory of compressed sensing and in the perspective of defining the best possible
imaging techniques for sparse signals, we analyse the related spread spectrum phenomenon and
suggest its universality relative to the sparsity dictionary. Our results rely both on theoretical
considerations related to the mutual coherence between the sparsity and sensing dictionaries
and on numerical simulations.
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1 IN T RO D U C T I O N

Aperture synthesis in radio interferometry is a powerful technique
in radio astronomy, allowing observations of the sky with otherwise
inaccessible angular resolutions and sensitivities. This technique
dates back to more than 60 years ago (Ryle & Vonberg 1946; Blythe
1957; Ryle, Hewish & Shakeshaft 1959; Ryle & Hewish 1960;
Thompson, Moran & Swenson 2004). In this context, the portion
of the celestial sphere around the pointing direction tracked by a
radio telescope array during observation defines the original real
signal or image probed x. The field of view observed is limited by
a primary beam A. Standard interferometers are characterized by
a small field of view, so that the signal and the primary beam are
assumed to be planar. Considering non-polarized radiation, they,
respectively, read as scalar functions x(l) and A(l) of the position
l ∈ R2, with components (l, m). Each telescope pair at one instant
of observation identifies a baseline defined as the relative position
between the two telescopes. With each baseline bλ ∈ R3, with
components (u, v, w) in units of the signal emission wavelength
λ, is associated one measurement called visibility. In the simplest
setting, one also considers baselines with a negligible component
w in the pointing direction of the instrument. Under this additional
assumption, if the signal is made up of incoherent sources, each
visibility corresponds to the value of the Fourier transform of the
signal multiplied by the primary beam at a spatial frequency u ∈ R2,
identified by the components (u, v) of the baseline projection on the
plane of the signal. Radio-interferometric data are thus identified
by incomplete and noisy measurements in the Fourier plane. In the
perspective of the reconstruction of the original image, these data
define an ill-posed inverse problem.

�E-mail: yves.wiaux@epfl.ch

It is well known that a large variety of natural signals are sparse or
compressible in multiscale dictionaries, such as wavelet frames. A
band-limited signal may be expressed as the N-dimensional vector
of its values sampled at the Nyquist–Shannon rate. By definition,
a signal is sparse in some basis if its expansion contains only a
small number K � N of non-zero coefficients. More generally it
is compressible if its expansion only contains a small number of
significant coefficients, i.e. if a large number of its coefficients bear
a negligible value. The theory of compressed sensing demonstrates
that, for sparse or compressible signals, a small number M � N

of random measurements, in a sensing basis incoherent with the
sparsity basis, will suffice for an accurate and stable reconstruction
of the signals (Candès 2006; Candès, Romberg & Tao 2006a,b;
Donoho 2006; Baraniuk 2007; Donoho & Tanner 2009). The mutual
coherence between two bases may be defined as the maximum
complex modulus of the scalar product between unit-norm vectors
of the two bases. Random Fourier measurements of a signal sparse
in real space are a particular example of a good sensing procedure
in this context.

In a very recent work (Wiaux et al. 2009), we presented results
showing that compressed sensing offers powerful image reconstruc-
tion techniques for radio-interferometric data, in the case of base-
lines with a negligible component w. These techniques are based on
global Basis Pursuit (BP) minimization problems, which are solved
by convex optimization algorithms. We particularly illustrated the
versatility of the scheme relative to the inclusion of specific prior
information on the signal in the minimization problems.

In the present work, we raise the important problem of the de-
pendence of the image reconstruction quality as a function of the
sparsity basis or more generally the sparsity dictionary. The larger
the typical size of the waveforms constituting the dictionary in
which the signal is sparse or compressible in real space, the smaller
their extension in the Fourier plane and the smaller the incoherence
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between the sparsity and sensing dictionaries. In the context of com-
pressed sensing, a loss of incoherence leads to a degradation of the
reconstruction quality for a given sparsity K and a given number M
of random measurements.

The detailed structure of radio-interferometric measurements
might actually provide a natural response to this issue. The ap-
proximation of baselines with a negligible component w is a key
assumption in order to identify visibilities with Fourier measure-
ments of the original signal. This approximation actually sets a
strong constraint on the field of view probed by the interferometer,
requiring that it is small enough, not only for the planar approx-
imation of the signal but also to neglect the complete effect of
the component w in the visibilities. We relax this approximation
and consider radio interferometers with a small field of view and
baselines with a non-negligible component w. In this context, each
visibility at spatial frequency u identifies with the Fourier transform
of a complex signal obtained as the product of the original planar
signal and the primary beam with a linear chirp eiπw|l|2 where the
norm |l| identifies the distance to the centre of the image. Note that
this chirp is a priori characterized by a different chirp rate for each
baseline: w = w(u). In the Fourier plane, the modulation amounts
to the convolution of the Fourier transform of the chirp with that
of the signal multiplied by the primary beam, which inevitably
spreads the two-dimensional sample power spectrum of the consti-
tutive waveforms. This spread spectrum phenomenon increases the
incoherence between the sparsity and sensing dictionaries.

In this context, we define signals made up of Gaussian waveforms
with equal size, identified by a standard deviation t, considered as
a rough representation of any kind of astrophysical structures. We
make the simplifying assumption that all baselines, identified by
the spatial frequencies u, have the same component w, so that all
visibilities are affected by the same chirp. A theoretical compu-
tation of the mutual coherence between the sparsity and sensing
dictionaries as a function of t and w naturally proves that the co-
herence decreases when w increases, through the spread spectrum
phenomenon. Our theoretical relation also shows that the coherence
may be decreased as close as required to the minimum coherence
between the real and Fourier spaces through the use of a large
enough chirp rate w. In light of the theory of compressed sensing,
this suggests some universality of the spread spectrum phenomenon
according to which, for a given sparsity K and a given number M of
random measurements, the quality of the BP reconstruction would
not only increase when w increases, but could also be rendered
independent of the sparsity dictionary for a large enough chirp rate
w. In other words, the BP reconstruction could be made as good
for signals sparse in a dictionary of Gaussian waveforms of any
size as for signals sparse in real space. We produce simulations of
the signals considered and perform BP reconstructions from noisy
visibility measurements. Our results confirm the universality of the
spread spectrum phenomenon relative to the sparsity dictionary.

Let us acknowledge the fact that spread spectrum techniques are
widely used in telecommunications. In this context, chirp modula-
tions are used in particular to render transmitted signals more robust
to noise. In the context of compressed sensing, spread spectrum
techniques using pseudo-random modulations have very recently
been highlighted as a means to enhance the signal reconstruction
and render it stable relative to noise (Naini et al. 2009). The use of
chirp modulations has also been proposed in compressed sensing
radar to produce a convolution of a sparse signal in the sparsity basis
itself before performing measurements in that same basis (Baraniuk
& Steeghs 2007; Herman & Strohmer 2009). In this respect, these
techniques are much more related to coded aperture techniques

(Gottesman & Fenimore 1989; Marcia & Willett 2008) as well as to
compressed sensing by random convolution (Romberg 2008) than
to spread spectrum techniques.

In Section 2, we formulate the interferometric inverse problem
for image reconstruction on a small field of view in the presence
of a non-negligible and constant component w of the baselines. In
Section 3, we concisely recall results of the theory of compressed
sensing regarding the definition of a sensing basis and the accu-
rate reconstruction of sparse or compressible signals from BP. In
Section 4, we establish the universality of the spread spectrum phe-
nomenon for a sparsity dictionary made up of Gaussian waveforms,
both from theoretical considerations and on the basis of simulations.
We finally conclude in Section 5.

2 RADI O INTERFERO METRY

In this section, we recall the general form of the visibility mea-
surements and study the approximation of a small field of view
and baselines with a non-negligible component w. We identify in
particular the corresponding spread spectrum phenomenon in the
presence of a constant component w. We also pose the correspond-
ing interferometric inverse problem for image reconstruction.

2.1 General visibilities

In a tracking configuration, all radio telescopes of an interferomet-
ric array point in the same direction on the unit celestial sphere S2

identified by a unit vector ŝ0 ∈ R3. Arbitrary directions are denoted
by unit vectors ŝ ∈ R3. The field of view observed is limited by a
so-called primary beam A(τ ), where the vector τ ≡ ŝ − ŝ0 ∈ R3

identifies directions relative to the pointing direction (see Fig. 1).
The size of its angular support is essentially inversely proportional
to the size of the dishes of the telescopes. We consider a monochro-
matic signal x(τ ) with an emission wavelength λ and made up
of incoherent sources (see Fig. 1). Also considering non-polarized
radiation, both the signal and the primary beam are scalar square-
integrable functions on the sphere, x(τ ), A(τ ) ∈ L2(S2, d�(τ )),

Figure 1. Illustration of notations. The signal probed x(τ ), with τ ≡ ŝ− ŝ0,
extends in any direction on the celestial sphere S2 identified by unit vectors
ŝ ∈ R

3, around the pointing direction ŝ0 ∈ R
3. The field of view of the

radio interferometer is set by the primary beam A(τ ). The baselines also
characterizing the interferometer are vectors bλ ∈ R

3 with norm |bλ|. The
coordinate system R : (O, ê1, ê2, ê3) in R

3 is illustrated, with ê3 identified
with ŝ0, ê2 pointing towards north and ê1 pointing towards east. The com-
ponents of the direction vectors ŝ on the sphere are denoted by (l, m, n),
while those of a baseline are denoted by (u, v, w).
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where d�(τ ) stands for the invariant measure on the sphere. At
each instant of observation, each telescope pair measures a com-
plex visibility defined as the correlation between incoming electric
fields at the positions of the two telescopes. This visibility only de-
pends on the relative position between the two telescopes, defined
as a baseline. The baseline in units of λ is denoted by a vector
bλ ∈ R3 (see Fig. 1). Each visibility measured reads in a general
form as (Thompson et al. 2004)

y (bλ) ≡
∫

S2
Ax (τ ) e−2iπbλ·τ d� (τ ) . (1)

We consider the conventional right-handed Cartesian coordinate
system R : (O, ê1, ê2, ê3) in R3 centred on the Earth. The direction
ê3 identifies with the pointing direction ŝ0. The directions ê1 and
ê2 identify the orthogonal plane, parallel to the plane tangent to the
celestial sphere at the pointing direction, with ê2 pointing towards
north and ê1 pointing towards east. The unit vectors ŝ may be
identified by their components (l, m, n) in R (see Fig. 1). Each
point is thus obviously identified by the two-dimensional vector
l ∈ R2 with components (l, m) in the plane (O, ê1, ê2), while
the component in direction ê3 reads as n(l) = (1 − |l|2)1/2 with
the norm |l| ≡ (l2 + m2)1/2 identifying the distance to the origin
in the plane (O, ê1, ê2). In particular, ŝ0 bears by definition the
components (0, 0, 1) so that τ reads as (l , n(l) − 1). The signal and
primary beam may also be seen as functions of this two-dimensional
vector, respectively, x(l) and A(l). The invariant measure on the
sphere reads as d�(τ ) ≡ n−1 (l)d2l , where d2l ≡ dldm stands
for the canonical invariant measure in the plane (O, ê1, ê2). The
components of bλ are in standard denoted by (u, v, w), so that its
norm reads as |bλ| ≡ (u2 + v2 + w2)1/2 (see Fig. 1). These may also
be divided into the two-dimensional vector u ∈ R2 with component
(u, v) in the plane (O, ê1, ê2) and the component w in direction ê3,
i.e. in the pointing direction of the radio interferometer.

The general form (1) of the visibilities reads in terms of these
coordinates as

y (u, w) =
∫

D2
Ax (l) e−2iπ [u·l+w(n(l)−1)] n−1 (l) d2l, (2)

where the integration is performed inside the unit disc D2 on the
plane (O, ê1, ê2).

In the course of an observation, for each telescope pair, the base-
line components u, v and w all follow a sinusoidal dependence in
time thanks to the Earth rotation, with specific parameters linked
to the parameters of observation. The total number of points (u, w)
probed by all telescope pairs of the array during the observation
provides some coverage in R3 characterizing the interferometer.

2.2 Small field of view and non-negligible w

Note that for a given telescope array, the baseline component w may
be seen as a function w = w(u) of the two-dimensional vector u with
an implicit dependence on the distance between the two telescopes
considered. Each visibility may thus be seen as a function of the two-
dimensional vectors u: y(u, w) = y(u). From this point of view,
the points u probed by all telescope pairs during the observation
provide some coverage of the plane (O, ê1, ê2) also characterizing
the interferometer. The two-dimensional vector u associated with
each telescope pair actually runs over an arc of ellipse in this plane.

In this context, we make the two assumptions of a small field of
view and baselines with a non-negligible component w. First, we
consider a standard interferometer with a primary beam of small
enough angular support, so that the field of view may be identified
with a patch of the tangent plane at ŝ0. Technically, this amounts

to assuming that |l|2 � 1 on the field of view so that the zero-
order expansion n(l) � 1 is valid in the invariant measure on the
sphere, which therefore identifies with that on the plane: d�(τ ) =
d2 l . The signal and the primary beam hence become scalar square-
integrable functions in the plane x(l), A(l) ∈ L2(R2, d2l). Secondly,
we consider interferometers with large enough values of the w(u),
so that the same approximation on n(l) does not hold for the phase
of the imaginary exponential (Thompson et al. 2004). In this case,
any term discarded in n(l) should be small relative to w−1 (u).
We however assume that the further constraint on the field of view
|l|4 � w−1 (u) holds for all u, so that the second-order approxima-
tion n(l) � 1 − |l|2/2 is valid in the imaginary exponential. Under
these conditions, each visibility takes the form

y (u) =
∫

D2
Ax (l) eiπw(u)|l|2 e−2iπu·l d2l. (3)

In other words, the visibility in u identifies with the value in u of the
two-dimensional Fourier transform of a complex signal obtained as
the product of the original planar signal Ax(l) with a linear chirp
modulation C(w(u))(|l|) ≡ eiπw(u)|l|2 . This chirp is characterized by a
chirp rate w(u) depending on u, and |l| now identifies the distance
to the origin in the plane of the signal, i.e. to the point identified by
ŝ0.

Note that in the further approximation that w(u) = 0 for all u,
the chirp indeed disappears and relation (4) reduces to the standard
van Cittert–Zernike theorem. This theorem states that the visibilities
measured identify with the two-dimensional Fourier transform of
the signal multiplied by the primary beam: y(u) = Âx(u) (Wiaux
et al. 2009).

The fact that baselines may have a non-negligible component w is
at the origin of important challenges from the computational point of
view. This issue is related to the fact that the explicit computation of
simulated visibilities in (3) from a signal and the corresponding in-
verse problem have a large complexity. In the case of baselines with
a negligible component w(u) at each u, the simple two-dimensional
Fourier transform relation between the signal and visibilities allows
the use of the fast Fourier transform (FFT), which substantially
lightens the computation. This is no longer possible in the case of
baselines with a non-negligible component w(u) as the chirp mod-
ulation is characterized by a chirp rate explicitly dependent on u,
and therefore needs to be imposed separately for each visibility. A
number of algorithms have been studied in this case, among which
are the faceting algorithms as well as the very recent w-projection
algorithm (Cornwell, Golap & Bhatnagar 2008). In one word this
w-projection algorithm simply computes a unique FFT, after which
the visibility at each u is obtained by the evaluation, at this u,
of the convolution of the Fourier transform of the signal with that
of the chirp with chirp rate w(u). Considerations on the extension
of the corresponding convolution kernel in the Fourier plane allow
us to drastically reduce the computational load in practice. These
algorithmic issues are however not our concern here. We only aim at
discussing how this natural and compulsory chirp modulation may
drastically enhance the quality of signal reconstruction.

2.3 Constant w and spread spectrum phenomenon

We already acknowledged that, in the course of an observation, the
two-dimensional vector u associated with each telescope pair runs
over an arc of ellipse and the corresponding component w follows
a sinusoidal evolution. However, the whole baseline distribution
in R3 is extremely dependent on the specific configuration of the
radio telescope array under consideration. Visibilities from various
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interferometers may also be combined, as well as visibilities from
the same interferometer with different pointing directions through
the mosaicking technique (Thompson et al. 2004). From this point
of view, the baseline distributions are rather flexible.

Relying on this flexibility, we assume that all baselines have
the same component in the pointing direction: w(u) = w.1 This
assumption of constant component w allows us to discard consid-
erations related to specific interferometers. Moreover, it also allows
us to study the impact of a chirp modulation on the basis of a
large range of simulations at light computational load. Under this
assumption, all visibilities indeed identify with the values of the
two-dimensional Fourier transform of a complex signal obtained
as the product of the original planar signal Ax(l) and the same
linear chirp C(w)(|l|) = eiπw|l|2 characterized by the chirp rate w

independent of u:

y (u) = Ĉ(w)Ax (u) . (4)

Note that the multiplication by the chirp modulation amounts to
the convolution of the Fourier transform of the chirp with that of the

original signal multiplied by the primary beam: Ĉ(w)Ax = Ĉ(w)�Âx.
This convolution inevitably spreads the two-dimensional sample
power spectrum of the signal multiplied by the primary beam, i.e.
the square modulus of its Fourier transform, while preserving its
norm.

In particular, the original signal x(l) and the primary beam A(l)
can be approximated by band-limited functions on the finite field
of view set by the primary beam itself. A linear chirp C(w) (|l|) with
chirp rate w is characterized by an instantaneous frequency wl at
position l. On the finite field of view set by the primary beam, it
is therefore approximately a band-limited function. In each basis
direction, the band limit of the signal after convolution B (C(w)Ax) is
the sum of the individual band limits of the original signal mul-
tiplied by the primary beam B (Ax) and of the chirp modulation
B (C(w)) : B (C(w)Ax) = B (C(w)) + B (Ax). This simple consideration al-
ready quantifies the spread spectrum phenomenon associated with
the chirp modulation. Note for completeness that the primary beam
is by definition limited at much lower frequencies than the signal
so that it does not significantly affect its band limit: B (Ax) = B (A) +
B (x) � B (x).

2.4 Interferometric inverse problem

The band-limited functions considered are completely identified by
their Nyquist–Shannon sampling on a discrete uniform grid of N =
N 1/2 × N 1/2 points l i ∈ R2 in real space with 1 ≤ i ≤ N . The
sampled signal is denoted by a vector x ∈ RN ≡ {xi ≡ x(l i)}1≤i≤N

and the primary beam is denoted by the vector A ∈ RN ≡ {Ai ≡
A(l i)}1≤i≤N . The chirp is complex and reads as the vector C (w) ∈
CN ≡ {C(w)

i ≡ C(w)(|l i |)}1≤i≤N . Because of the assumed finite
field of view, the functions may equivalently be described by their
complex Fourier coefficients on a discrete uniform grid of N =
N 1/2 × N 1/2 spatial frequencies ui with 1 ≤ i ≤ N . This grid is
limited at some maximum frequency defining the band limit. Due
to the fact that the chirp is complex, the Fourier transform of the

1 Note for illustration that, for a unique interferometer pointing to the north
celestial pole, each telescope pair would exhibit constant w during obser-
vation. For particular configurations of telescopes in two east–west linear
arrays, all telescope pairs with each telescope belonging to a different array
would produce baselines with an identical value of w.

product C(w) Ax does not bear any specific symmetry property in
the Fourier plane.

As in Wiaux et al. (2009), we assume that the spatial frequencies
u probed by all telescope pairs during the observation belong to the
discrete grid of points ui. The Fourier coverage provided by the M/2
spatial frequencies probed ub, with 1 ≤ b ≤ M/2, can simply be
identified by a binary mask in the Fourier plane equal to 1 for each
spatial frequency probed and 0 otherwise. The visibilities measured
may be denoted by a vector of M/2 complex Fourier coefficients y ∈
CM/2 ≡ {yb ≡ y(ub)}1≤b≤M/2, possibly affected by complex noise
of astrophysical or instrumental origin, identified by the vector n ∈
CM/2 ≡ {nb ≡ n(ub)}1≤b≤M/2. Formally, the measured visibilities
may equivalently be denoted by a vector of M real measures y ∈
RM ≡ {yr}1≤r≤M consisting of the real and imaginary parts of the
complex measures, affected by the corresponding real noise values
n ∈ RM ≡ {nr}1≤r≤M .

In this discrete setting, the Fourier coverage is in general incom-
plete in the sense that the number of real constraints M is smaller
than the number of unknowns N : M < N . An ill-posed inverse
problem is thus defined for the reconstruction of the signal x from
the measured visibilities y:

y ≡ �(w)x + n with �(w) ≡ MFC
(w)

A, (5)

where the matrix �(w) ∈ C(M/2)×N identifies the complete lin-
ear relation between the signal and the visibilities. The matrix
A ∈ RN×N ≡ {Aij ≡ Aiδij }1≤i,j≤N is the diagonal matrix
implementing the primary beam. The matrix C(w) ∈ CN×N ≡
{C(w)

ij ≡ C
(w)
i δij }1≤i,j≤N is the diagonal matrix implementing the

chirp modulation. The unitary matrix F ∈ CN×N ≡ {Fij ≡
e−2iπui ·xj /N 1/2}1≤i,j≤N implements the discrete Fourier transform
providing the Fourier coefficients. The matrix M ∈ R(M/2)×N ≡
{Mbj }1≤b≤M/2;1≤j≤N is the rectangular binary matrix implementing
the mask characterizing the interferometer. It contains only one
non-zero value on each line, at the index of the Fourier coefficient
corresponding to each of the spatial frequencies probed u.

In the perspective of the reconstruction of the signal x, relation
(5) represents the measurement constraint. We take a statistical
point of view and consider independent Gaussian noise on each real
measure yr. Considering a candidate reconstruction x̄, the residual
noise reads as n̄(w) ≡ y −�(w) x̄. The residual noise level estimator,
defined as twice the negative logarithm of the likelihood associated
with x̄, reads as

χ 2
(

x̄; �(w), y
) ≡

M∑
r=1

(
n̄(w)

r

σ (nr )

)2

, (6)

with n̄(w) ∈ RM ≡ {n̄(w)
r }1≤r≤M , and where σ (nr ) stands for the stan-

dard deviation of the noise component nr. This noise level estimator
follows a chi-square distribution with M degrees of freedom. Typ-
ically, this estimator should be minimized by the good candidate
reconstruction. The measurement constraint on the reconstruction
may be defined as a bound χ 2(x̄; �(w), y) ≤ ε2, with ε2 corre-
sponding to some percentile of the chi-square distribution. Let us
note that the expectation value of the χ 2 is equal to its number of
degrees of freedom M, while its standard deviation is (2M)1/2. In
other words, for a large number of degrees of freedom the distri-
bution is extremely peaked around its expectation value. This fact
is related to the well-known phenomenon of the concentration of
measure (Candès et al. 2006b). As a consequence, the value ε2 is
anyway extremely close to M.

In this context, many signals may formally satisfy the measure-
ment constraint. A regularization scheme that encompasses enough
prior information on the original signal is needed in order to find
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a unique solution. All image reconstruction algorithms will differ
through the kind of regularization considered.

3 C OMPRESSED SENSING

In this section, we concisely recall the inverse problem for sparse
signals considered in the compressed sensing framework. We de-
scribe the BP minimization problem set for reconstruction and recall
the randomness and incoherence properties for a suitable sensing
basis.

3.1 Inverse problem for sparse signals

In the framework of compressed sensing (Candès 2006; Candès et al.
2006a,b; Donoho 2006; Baraniuk 2007; Donoho & Tanner 2009),
the signals probed are firstly assumed to be sparse or compressible
in some basis. Technically, one considers a real signal identified by
its Nyquist–Shannon sampling, denoted by the vector x ∈ RN ≡
{xi}1≤i≤N . A real orthonormal basis � ∈ RN×N ≡ {�ij }1≤i,j≤N is
also considered, in which the decomposition α ∈ RN ≡ {αi}1≤i≤N

of the signal is defined by

x ≡ �α. (7)

The signal is said to be sparse or compressible in this basis if it
only contains a small number K � N of non-zero or significant
coefficients αi, respectively.

Secondly, the signal is assumed to be probed by M real linear
measurements denoted by a vector y ∈ RM ≡ {yr}1≤r≤M in some
real sensing basis � ∈ RM×N ≡ {�rj }1≤r≤M;1≤j≤N and possibly
affected by independent and identically distributed noise n ∈ RM ≡
{nr}1≤r≤M . This defines an inverse problem

y ≡ �α + n with � ≡ �� ∈ RM×N, (8)

where the matrix � identifies the sensing basis as seen from the
sparsity itself. The number M of constraints is typically assumed to
be smaller than the dimension N of the vector defining the signal,
so that the inverse problem is ill-posed.

3.2 BP reconstruction

The framework proposes the global BP minimization problem for
the signal recovery. This problem regularizes the originally ill-posed
inverse problem by an explicit sparsity or compressibility prior on
the signal. In the presence of noise, the so-called BP denoise (BP ε)
problem is the minimization of the �1 norm ||ᾱ||1 of the coefficients
of the signal in the sparsity basis under a constraint on the �2 norm
||n̄||2 of the residual noise, with n̄ ≡ y − �ᾱ:

min
ᾱ∈RN

||ᾱ||1 subject to || y − �ᾱ||2 ≤ ε. (9)

Let us recall that the �1 norm of ᾱ is defined as ||ᾱ||1 ≡ ∑N

i=1 |ᾱi |.
The �2 norm of the residual noise is the standard norm of the
corresponding vector: ||n̄||2 ≡ (

∑M

i=1 |n̄i |2)1/2. In these relations,
the notation |a| for a scalar a stands for the complex modulus when
applied to a complex number and the absolute value when applied
to a real number. The BP ε problem is solved by application of non-
linear and iterative convex optimization algorithms (Combettes &
Pesquet 2007; van den Berg & Friedlander 2008).

Note that the �2 norm term in the BP ε problem is identical to a
bound on the χ 2 distribution with M degrees of freedom governing
the noise level estimator.

3.3 Randomness and incoherence

Among other approaches (Donoho & Tanner 2009), the theory of
compressed sensing defines the explicit restricted isometry property
(RIP) that the matrix � = �� should satisfy in order to allow an
accurate recovery of sparse or compressible signals (Candès 2006;
Candès et al. 2006a,b). In that regard, the issue of the design of the
sensing matrix � is of course fundamental. The theory offers various
ways to design suitable sensing matrices, showing in particular that
a small number of measurements is required relative to a naive
Nyquist–Shannon sampling: M � N .

One can actually show that incoherence of � with the sparsity
or compressibility basis � and randomness of the measurements
will ensure that the RIP is satisfied with overwhelming probability,
provided that the number of measurements is large enough relative
to the sparsity K considered (Candès et al. 2006b; Candès 2006,
2008). In particular, measurements may be performed through a
uniform random selection of Fourier frequencies. In this case, the
precise condition for the RIP depends on the degree of incoher-
ence between the Fourier basis and the sparsity or compressibility
basis. The mutual coherence μ between the orthonormal Fourier
and sparsity bases may be defined as the maximum complex mod-
ulus of the scalar product between basis vectors of the two bases.
If the unit-normed basis vectors corresponding to the lines of F

and the columns of � are denoted by { f i}1≤i≤N and {ψ j}1≤j≤N ,
respectively, then the mutual coherence between the bases reads as

μ
(
F, �

) ≡ max
1≤i,j≤N

| f i · ψ j |. (10)

In other words, this mutual coherence identifies with the maximum
complex modulus of the Fourier coefficient values of the spar-
sity basis vectors. Note that the inverse of the mutual coherence,
μ−1(F, �), can also be called the mutual incoherence between the
Fourier and sparsity bases.

In this context, the RIP is already satisfied for a small number of
measurements satisfying the constraint

K ≤ cM

Nμ2
(
F, �

)
ln4 N

, (11)

for some constant c. Under this condition,2 the BP ε reconstruc-
tion of signals well approximated by a K sparse signal is shown to
be accurate and stable relative to noise as well as relative to com-
pressibility, in the sense of a departure from exact sparsity. Let us
emphasize the fact that the mutual coherence plays an essential role
in relation (11) as for fixed M the sparsity recovered increases with
the mutual incoherence, as K ∝ μ−2(F, �).

The incoherence is notably maximum between the Fourier basis
and the real space basis identified by a sparsity matrix � ≡ �

made up of unit spikes: μ(F, �) = N−1/2. In the continuous limit
N → ∞ the real space basis identifies with a Dirac basis and the
maximum incoherence is infinite, corresponding to zero coherence:

lim
N→∞

μ(F, �) = 0. (12)

Hence, for a fixed number M of pure Fourier measurements, the
sparsity recovered K is maximum for signals sparse in real space.

2 Let us also acknowledge the fact that this bound is not tight. Empirical
results (Candès & Romberg 2005; Lustig, Donoho & Pauly 2007) suggest
that ratios M/K between 3 and 5 already ensure the expected reconstruction
quality.
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4 SPR EAD SPEC TRU M UNIVERSALITY

In this section, we define simple astrophysical signals sparse in a
dictionary of Gaussian waveforms and explicitly identify our sens-
ing dictionary for radio-interferometric measurements. We compute
the theoretical coherence between the sparsity and sensing dictio-
naries as a function of the chirp rate and of the size of the Gaussian
waveforms, which suggests the universality of the spread spectrum
phenomenon relative to the sparsity dictionary. We define an ob-
servational set-up and describe our simulations and specific recon-
struction procedures. We finally expose the results of the analysis
and comment on the need for future work along these lines.

4.1 Sparsity and sensing dictionaries

We consider simple astrophysical signals sparse in a dictionary of
Gaussian waveforms, all with equal and fixed size given by a stan-
dard deviation t ∈ R+. These signals are assumed to be probed by
radio interferometers with a Gaussian primary beam A(t0) with a
size identified by a standard deviation t0 ∈ R+. The corresponding
matrix thus reads as A(t0). The value t0 sets the size of the field of
view of interest, which must naturally be larger than the size of the
Gaussian waveforms: t0 > t . We consider a small field of view and
baselines with a non-negligible constant component w, so that the
visibilities measured yb = y(ub) take the form (4). Relying on the
previous discussion relative to the flexibility of realistic baseline
distributions, we also assume that the spatial frequencies ub probed
arise from a uniform random selection of Fourier frequencies. As for
the assumption of constant w, this allows us to discard considera-
tions related to specific interferometers. It also allows us to place our
discussion in a setting which complies directly with the requirement
of the theory of compressed sensing for random measurements. Let
us however recall that specific deterministic distributions of a low
number of linear measurements might in fact also allow accurate
signal reconstruction in the context of compressed sensing (Matei
& Meyer 2008).

In this context, the interferometric inverse problem (5) sim-
ply arises from a uniform random selection of spatial frequen-
cies with a sensing dictionary � ≡ �(w,t0) ≡ MFC

(w)
A(t0) also

parametrized by the size t0 of the primary beam. The sparsity dic-
tionary identifying Gaussian waveforms of size t may be denoted by
� ≡ � (t) ≡ mathsf �(t). The sensing dictionary as seen from the
sparsity dictionary itself therefore reads as �(w,t0,t) ≡ �(w,t0)�(t) ≡
MFC

(w)
A(t0)�(t).

Let us emphasize the fact that the sparsity dictionary is obviously
not an orthogonal basis. Moreover, the sensing dictionary does no
longer correspond exactly to a random selection of vectors in an
orthogonal basis. No precise compressed sensing result similar to
the bound (11) relating sparsity to mutual coherence between such
dictionaries was yet obtained. However, in the line of first results
already proved with redundant dictionaries (Rauhut, Schnass &
Vandergheynst 2008), one can intuitively conjecture that a bound
similar to (11) holds in our context, still exhibiting the same trade-
off between sparsity and mutual coherence. In the perspective of
assessing the BP ε reconstruction quality, it is therefore essential to
understand how the mutual coherence between the sensing and spar-
sity dictionaries depends on the size t of the Gaussian waveforms
and on the chirp rate w.

4.2 Theoretical coherence

After normalization of the vectors of the sparsity and sensing dic-
tionaries in the �2 norm, a simple analytical computation gives the

mutual coherence between the sensing and sparsity dictionaries as

μ
(

FC
(w)

A(t0), �(t)
)

= 2t t0

t2 + t2
0

[
1 +

(
2πwt2t2

0

t2 + t2
0

)2
]− 1

2

. (13)

Note that one can formally re-organize the decomposition of the
matrix �(w,t0,t) into modified sensing and sparsity dictionaries, re-
spectively, �̃ ≡ MF and �̃ (w,t0,t) ≡ C(w)A(t0)�(t). In this perspec-
tive, the mutual coherence μ(FC

(w)
A(t0), �(t)) identifies with the

maximum complex modulus of the Fourier coefficient values of
the modified sparsity dictionary vectors, which depend on the chirp
modulation and on the primary beam. Consequently, the require-
ment for a lower coherence can be fulfilled by an operation that
spreads the two-dimensional sample power spectrum of the signal
in the Fourier plane, while preserving its norm.

The relation (13) is valid both for finite N and in the continuous
limit N → ∞. In this continuous limit, analysing the evolution of
the coherence as a function of the parameters t , t0, and w is very
enlightening.

First, we consider finite non-zero values of the size t0 of the
primary beam and of the chirp rate w. When the size t of the
Gaussian waveforms tends to zero, the mutual coherence tends to
zero:

lim
t→0

μ
(

FC
(w)

A(t0), �(t)
)

= 0 for all w, t0 ∈ R+. (14)

In the absence of chirp modulation and primary beam, this null value
is expected from relation (12) as the modified sparsity dictionary
identifies with the Dirac basis. But we also show that the mutual
coherence gets to this minimum value independently of the chirp
rate w in this limit and less importantly independently of the size
of the primary beam t0.

Secondly, we consider finite non-zero values of the size t0 of
the primary beam and of the size t of the Gaussian waveforms,
with t < t0. In the absence of chirp, i.e. for w = 0, the coherence
is strictly positive: μ(FC

(0)
A(t0), �(t)) = 2t t0/(t2 + t2

0 ). The finite
size t of a Gaussian waveform implies a Gaussian profile of its
Fourier transform with a standard deviation (2πt)−1. The larger
the t, the smaller the extent of the two-dimensional sample power
spectrum in the Fourier plane and the larger the coherence. As
discussed in Section 2.3, in the presence of a chirp, i.e. for w �= 0, the
spectrum is spread by means of the corresponding convolution in the
Fourier plane, while the norm of the signal multiplied by the primary
beam is preserved. This spread spectrum phenomenon reduces the
coherence which, in light of relation (11), should enhance the quality
of the BP ε reconstruction in the context of compressed sensing. In
the limit of an infinite chirp rate, the coherence also tends to its
minimum null value independently of the size t of the Gaussian
waveforms:

lim
w→∞

μ
(

FC
(w)

A(t0), �(t)
)

= 0 for all t, t0 ∈ R+. (15)

This limit provides a strong result in the sense that the incoherence
lost by considering a sparsity dictionary of Gaussian waveforms of
an arbitrary non-zero size t may be completely recovered, thanks to
a chirp modulation with a high enough chirp rate w. Still from rela-
tion (11), this result suggests the universality of the spread spectrum
phenomenon according to which the quality of the BP ε reconstruc-
tion can be rendered independent of the sparsity dictionary for a
large enough component w of the baselines.

4.3 Observational set-up

The signals x considered are built as the superposition of K = 10
Gaussian waveforms, with random positions and a random central
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Figure 2. From left to right, maps and graphs are associated with increasing values of the size td ∈ {2, 4, 8, 16} of the Gaussian waveforms constituting the
sparsity dictionaries �(t) in which the astrophysical signals considered are defined. The top panels represent original signal samples multiplied by the primary
beam. Dark and light regions, respectively, correspond to large and small intensity values. The middle panels represent the one-dimensional sample power
spectra in the square of the intensity units (iu2) and as a function of the radial frequency L1/2 |u| with 0 ≤ L1/2|u| ≤ 32

√
2 for the original signals multiplied

by the primary beam in the above panel (continuous black curve), for the chirp modulation (continuous blue curve) and for the signals spread by the chirp
modulation (continuous red curve). The bottom panels represent the SNR of the reconstructions multiplied by the primary beam as a function of the coverage
identified by the number of complex visibilities M/2 ∈ {50, 100, 200, 300, 400, 500, 1000}. The curves correspond to the �BPε0 reconstructions (dot–
dashed black curve), the �BPε1 reconstructions (dot–dashed red curve), the �BPε0 reconstructions (continuous black curve) and the �BPε1 reconstructions
(continuous red curve). The latter illustrate the spread spectrum universality relative to the sparsity dictionary. Each curve precisely represents the mean SNR
over the 30 simulations and the vertical lines identify the error at 1 standard deviation.

value in the interval [0, 1] in some arbitrary intensity units (iu).
The signals are sampled as images x on a grid of N = 64 × 64 =
4096 pixels. Fields of view L = L1/2 × L1/2 with L1/2 not larger
than several degrees of angular opening may be considered for the
approximation of a planar signal to be valid. A primary beam A(t0)

with a full width at half-maximum (FWHM) 2t0(2 ln 2)1/2 = L1/2

is also considered, centred on the signal and with a unit value at
the centre. In the discrete setting defined in Section 2.4, the inverse
problem is transparent to the precise value of the field of view so that
we do not need to fix it. Observations are considered for M/2 com-
plex visibilities with M/2 ∈ {50, 100, 200, 300, 400, 500, 1000}.
The corresponding coverages of the spatial frequencies ub, relative
to the total number of spatial frequencies ui in the Fourier plane up
to the accessible band limit on the grids B (N,L) = N 1/2/2L1/2, are
roughly between 1 per cent and 25 per cent. Instrumental noise is
also added as independent identically distributed Gaussian noise.
The corresponding standard deviation σ (nr ), identical for all r with
1 ≤ r ≤ M , is set to (σ (nr ))2 = 10−3(�(FA(t0) x))2, where �(FA(t0) x)

stands for the sample standard deviation of the real and imaginary
parts of the Fourier transform of the original signal multiplied by the
primary beam FA

(t0)x. Note that this noise measure is independent
of the chirp modulation, which preserves the norm of the signal.

The size t of the Gaussian waveforms may be written in terms of
a discrete size td as t = tdL

1/2/πN 1/2. We consider the values td ∈
{2, 4, 8, 16} such that the Gaussian waveforms are well sampled
on the grid. For td = 2 the approximate band limit B (A(t0)x) of the
signal is around the same value as B (N,L), while for td = 16 it is
much smaller. All values also satisfy the constraint that the size
of the Gaussian waveforms remains smaller than that of the field
of view: t < t0. Original signal samples multiplied by the primary
beam are reported in the top panels of Fig. 2, one for each value of
td considered. The middle panels notably represent, for each value
of td, the one-dimensional sample power spectrum of the original
signal multiplied by the primary beam, i.e. the average of the two-
dimensional sample power spectrum on all spatial frequencies u on
the same annulus at fixed radial frequency |u| ≡ (u2 + v2)1/2.

The component w may also be written in terms of a discrete
component wd as w = wdN

1/2/L. We consider two extreme values.
The case of baselines with a negligible component w is identified
by wd = 0. The case of baselines with a non-negligible and constant
component w is identified by wd = 1, corresponding to a linear chirp
modulation with a maximum instantaneous frequency wL1/2/2 =
B (N,L), i.e. with an approximate band limit B (C(w)) not much larger
than B (N,L) (see Fig. 3). In other words, the component w is a factor
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Figure 3. Real part (left-hand panel) and imaginary part (right-hand panel)
of the chirp modulation with wd = 1 assumed in the simulations. The chirp
is sampled on a grid of 4N pixels in order to avoid any aliasing artefact. Dark
and light regions, respectively, correspond to positive and negative values.

Table 1. Values with three significant figures of the mutual coherence
μ(FC(w)A(t0), �(t)) between the sparsity and sensing dictionaries, for sizes
of the Gaussian waveforms identified by td ∈ {2, 4, 8, 16}, both in the
absence of chirp modulation, i.e. for wd = 0, and for a chirp modulation
with wd = 1.

Gaussian size td = 2 td = 4 td = 8 td = 16

Coherence for wd = 0 0.0518 0.103 0.205 0.400
Coherence for wd = 1 0.0517 0.102 0.174 0.151

of 2/L1/2 larger than the maximum value of the components u and v

in the plane of the signal, so that for the small fields of view assumed
the baselines are strongly aligned with the pointing direction. One
can check that this value of w is consistent with the constraint for
relations (3) and (4).

Table 1 contains the values of the mutual coherence
μ(FC

(w)
A(t0), �(t)) for the values of td and wd considered. These

values are computed numerically from the definition (10). A com-
putation from the theoretical relation (13) provides the same results,
up to a relative discrepancy of 10 per cent related to the fact that in
our setting the primary beam is not completely contained in the field
view. These numerical values are thus completely in the line of our
discussion of Section 4.2. Additionally, the one-dimensional sam-
ple power spectra of the original signals multiplied by the primary
beam, as well as those of the chirp modulation and of the signals
spread by the chirp modulation are represented in the middle panels
of Fig. 2, directly below the corresponding original signal for each
value of td. These graphs illustrate the spread spectrum phenomenon
due to the chirp modulation and the reduction of the mutual coher-
ence intimately related to it. Up to some normalization, the mutual
coherence is indeed essentially the maximum value of the square
root of the one-dimensional sample power spectrum.

4.4 Simulations and BPε reconstruction procedures

A number of 30 simulations is generated for each value of td and
wd considered. The visibilities are simulated,3 and the signals are

3 In practice, the grids considered allow the sampling at the Nyquist–
Shannon rate for signals with band limits up to B(N,L) in each direction.
This is not the case for the original signals after the chirp modulation. In
order to avoid artificial aliasing effects in the discrete Fourier transform at
the level of the frequencies probed, it is essential to introduce an operator
increasing the resolution of the grids, by zero-padding in the Fourier plane,
between the sparsity and sensing matrices.

reconstructed through the BP ε problem, which is solved by convex
optimization.4 The quality of reconstruction is analysed in terms of
the signal-to-noise ratio (SNR) of the reconstructions multiplied by
the primary beam SNR ≡ −20 log10(�(A(t0)(x−x̄))/�(A(t0) x)), where
�(A(t0) x) stands for the sample standard deviation of the original
signal A(t0)x and �(A(t0)(x−x̄)) for that of the discrepancy signal
A(t0)(x − x̄).

We actually compare two different settings for the reconstruc-
tions. In the first setting, called �BPε , we assume that the Gaussian
waveform dictionary with appropriate t is known, and we use it
explicitly as sparsity dictionary: � ≡ �(t). As a consequence, the
�BPε problem deals with the best possible sparsity value K =
10. The reconstructions in the absence (wd = 0) and in the pres-
ence (wd = 1) of the chirp modulation are, respectively, denoted
by �BPε0 and �BPε1. It is the precise setting in which we just
brought up the spread spectrum phenomenon and its universality on
the basis of considerations relative to the mutual coherence between
the sensing and sparsity dictionaries. In the second setting, called
�BPε , we assume that the sparsity dictionary is the real space basis:
� ≡ �. As a consequence, the �BPε problem deals with the best
possible coherence value μ(F, �) = N−1/2. However, the spar-
sity computed in real space increases drastically with the size of
the Gaussian waveforms, suggesting that the reconstruction quality
should clearly decrease when the Gaussian size increases. The re-
constructions in the absence (wd = 0) and in the presence (wd =
1) of the chirp modulation are, respectively, denoted by �BPε0 and
�BPε1. But the mutual coherence here remains unaffected by the
chirp modulation, so that this modulation should fail to enhance the
reconstruction quality in this case.

This analysis structure is strongly suggested by our interest in un-
derstanding the behaviour of the standard reconstruction algorithms
used in radio interferometry. On the one hand, the standard CLEAN
algorithm is essentially a Matching Pursuit (MP) algorithm (Mallat
& Zhang 1993; Mallat 1998) which works by iterative removal of
the so-called dirty beam, i.e. the inverse Fourier transform of the
mask, in real space (Högbom 1974; Schwarz 1978; Thompson et al.
2004). It is also known that CLEAN provides reconstruction quali-
ties very similar to what we just called the �BPε approach (Marsh &
Richardson 1987; Wiaux et al. 2009). On the other hand, multiscale
versions of CLEAN can in principle account for the fact that the sig-
nal may be sparser in some multiscale dictionary (Cornwell 2008).
Assuming that the signals considered have a very sparse expansion
in such dictionaries, the corresponding performances would prob-
ably be very close to that of our �BPε approach, provided that the
equivalence between MP and BP still holds in a multiscale setting.

4.5 Results

The results of the analysis are reported in the bottom panels of
Fig. 2. The curves represent the mean SNR over the 30 simulations
and the vertical lines identify the error at 1 standard deviation.

First, for each size td of the Gaussian waveforms and each recon-
struction procedure, the SNR obviously benefits from an increase

4 The algorithm is based on the Douglas–Rachford splitting method
(Combettes & Pesquet 2007) in the framework of proximal operator theory
(Moreau 1962). Under our constant w assumption, the computation com-
plexity is driven at each iteration by the complexity of the FFT, i.e. O(N log
N). For the small value of N considered, the reconstruction typically takes
less than 1 min on a single standard processor. The algorithm therefore easily
scales to much larger values of N.
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in the number M/2 of visibilities measured, corresponding to an
increase in the information directly available on the signal.

Secondly, in the absence of chirp it clearly appears that, for each
size td of the Gaussian waveforms and each number of visibilities
measured M/2, the �BPε0 reconstruction exhibits a significantly
better SNR than the �BPε0 reconstruction. This suggests that for the
signals considered, it is better to optimize the sparsity by accounting
for the proper dictionary than to optimize the mutual coherence by
formally postulating that the signal lives in real space. It also appears
that, for each number of visibilities measured M/2, the SNR of both
kinds of reconstructions significantly degrades when the size td of
the Gaussian waveforms increases. This behaviour is due to the
fact that either the mutual coherence, in the case of �BPε0, or
the sparsity, in the case of �BPε0, gets farther from their optimal
values.

Thirdly, the SNR of the �BPε0 and �BPε1 reconstructions re-
main undistinguishable from one another at 1 standard deviation,
independently of the size td of the Gaussian waveforms and of the
number of visibilities measured M/2. This illustrates the fact that
the mutual coherence is already optimal in the absence of chirp
modulation, so that any chirp modulation will fail to enhance the
reconstruction quality. Let us also emphasize that we have imple-
mented the standard CLEAN algorithm for comparison with this
�BPε setting. For each value of td and M and for both wd = 0
and wd = 1, the corresponding SNR of reconstruction (not shown
in Fig. 2) remains, as expected, undistinguishable from both the
�BPε0 and �BPε1 reconstructions at 1 standard deviation.

Fourthly, for any number of visibilities measured M/2 and for
large enough size td of the Gaussian waveforms, the SNR of the
�BPε1 is significantly larger than that of the �BPε0 reconstruction.
This is the spread spectrum phenomenon related to the reduction
of the mutual coherence in the presence of the chirp modulation.
Moreover, the SNR of the �BPε1 reconstruction is essentially in-
dependent of the sparsity dictionary identified by td. This supports
very strongly the principle of universality of the spread spectrum
phenomenon relative to the sparsity dictionary, in perfect agreement
with our theoretical considerations. The reconstruction quality also
appears to be more stable around the mean SNR values in the pres-
ence of the chirp modulation.

Finally, let us note that our pure considerations on sparsity and
mutual coherence led to relation (15), which suggests the spread
spectrum universality and associated optimal reconstructions in the
�BPε setting in the limit of an infinite chirp rate. In practice though,
the SNR of a �BPε reconstruction should saturate at some finite
value, and progressively degrade above this value, due to a leakage
phenomenon. The larger the wd, the larger the spreading of the
spectrum of the signal. But the extent of the Fourier coverages
considered is limited by the band limit B (N,L). Consequently, when
the band limit of the signal after chirp modulation significantly
exceeds the band limit where the visibility distributions are defined,
a significant part of the energy of the signal remains unprobed.

Simulations and reconstructions have actually been performed
for a range of chirp modulations with chirp rates between wd = 0
and wd = 1, as well as for a higher chirp rate wd = 1.5, in both the
�BPε setting and the �BPε setting. In the �BPε setting, the SNR of
reconstruction (not shown in Fig. 2) undergoes a natural continuous
increase for values wd ≤ 1 from the �BPε0 curve to the �BPε1
curve, confirming the spread spectrum phenomenon for all values
of td and M considered. The saturation of the SNR occurs around
wd = 1, and its degradation is for example already significant for
a chirp rate wd = 1.5, for td = 2 and for all values of M consid-
ered. In the �BPε setting, the SNR of reconstruction (not shown

in Fig. 2) exhibits no evolution for values wd ≤ 1, independently
of the values of td and M considered, confirming the fact that the
chirp modulation has no impact on the mutual coherence. However,
the leakage phenomenon obviously also affects the reconstructions.
The corresponding degradation is observed in the same conditions
as for the �BPε setting.

4.6 Comments

A huge amount of work still needs to be envisaged for analysing
the effect of baselines with a non-negligible component w in radio
interferometry. We comment here on three important points.

First, all our results should be confirmed for various levels of
instrumental noise before stronger conclusions are drawn. In partic-
ular, possible implications of the spreading of the signal energy on
all spatial frequencies probed due to the chirp modulation should
be studied as a function of the noise level on each visibility.

Secondly, we assumed perfect knowledge of a sparsity dictionary
made up of simple Gaussian waveforms. A large range of multiscale
dictionaries, notably wavelet frames, may be used in which a large
variety of natural signals are known to be sparse or compressible.
Let us however acknowledge the fact that a non-optimal choice of
a sparsity dictionary will of course have an effect on the sparsity
and possibly degrade the reconstruction. In this perspective, further
analyses should be performed in order to assess the suitability of
specific dictionaries.

For signals with sparse or compressible gradients, a total variation
(TV) norm may be substituted for the �1 norm of the coefficients
in the sparsity dictionary, in the very definition of the minimization
problem. The TV norm of a signal is simply defined as the �1

norm of the magnitude of its gradient (Rudin, Osher & Fatemi
1992). A theoretical result of exact reconstruction holds for such TV
norm minimization problems in the case of Fourier measurements
of signals with exactly sparse gradients in the absence of noise
(Candès et al. 2006a). But no proof of stability relative to noise and
compressibility exists. Such minimization is also accessible through
an iterative scheme from convex optimization algorithms (Candès
& Romberg 2005). Even though our signals would not primarily
be thought to have very sparse gradients, the Gaussian waveforms
have in practice well-defined contours. Preliminary reconstruction
results using this scheme actually show promising reconstruction
qualities.

Thirdly, further analyses should also be performed in order to
understand the effect of the chirp modulation for realistic distribu-
tions of the baseline components (u, v, w) and, in particular, for a
non-constant component w. However, one can already note from the
bottom panels of Fig. 2 that, for each size td of the Gaussian wave-
forms, the SNR of the �BPε1 reconstruction rises very steeply with
the number of visibilities measured M/2, before saturating around
some multiple of the sparsity K = 10. This suggests a selection
procedure in cases where the total number of visibilities measured
is very large relative to the sparsity considered. If a suitable fraction
of visibilities is associated with the suitable coverage of frequencies
ub in the Fourier plane and with a suitable identical value of w, only
these visibilities might be retained in the problem. In such a case,
our present considerations could apply directly.

Let us also recall that the value wd = 1 requires a strong alignment
of the baselines with the pointing direction for small fields of view,
possibly corresponding to an unrealistically large component w. In
this respect, the �BPε1 reconstruction results are asymptotic values.
However, a given baseline component w will actually correspond
to a larger wd on a larger field of view L and for a given band limit
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B (N,L), so that wd = 1 will become more realistic. This is actually the
exact opposite argument to the one used for the definition of faceting
algorithms, which decompose a given field of view on sub-fields
where the effect of w is negligible. In that regard, the extension of
our results on wide fields of view on the celestial sphere will be
essential (Cornwell et al. 2008; McEwen & Scaife 2008), notably
with regard to forthcoming radio interferometers such as the Square
Kilometer Array (SKA; Carilli & Rawlings 2004).5

5 C O N C L U S I O N

We have focused our attention on radio interferometers with a small
field of view and baselines with a non-negligible and constant com-
ponent in the pointing direction, for which a linear chirp modulation
affects the astrophysical signals probed. Considering simple sparse
signals made up of Gaussian waveforms, we have discussed the
sensitivity of imaging techniques relative to the sparsity dictionary
in the context of the theory of compressed sensing. A theoretical
computation of the mutual coherence between the sparsity and sens-
ing dictionaries, as well as the results of our numerical simulations,
suggests the universality of the spread spectrum phenomenon rela-
tive to the sparsity dictionary, in terms of the achievable quality of
reconstruction through the BP ε problem.

AC K N OW L E D G M E N T S

The authors wish to thank L. Jacques for productive discussions
as well as M. J. Fadili for private communication of results on
optimization by proximal methods. The authors also thank the re-
viewer for his valuable comments. YW is Postdoctoral Researcher
of the Belgian National Science Foundation (F.R.S.-FNRS). YB a
Postdoctoral Researcher funded by the APIDIS European Project.

RE FER ENCES

Baraniuk R., 2007, IEEE Signal Process. Mag., 24, 118
Baraniuk R., Steeghs P., 2007, Proc. IEEE Radar Conf. IEEE Signal Proc.

Soc., p. 128
Blythe J. H., 1957, MNRAS, 117, 644

5 http://www.skatelescope.org/
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