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Background. Intermittent preventive treatment in infants (IPTi) is the administration of sulfadoxine-
pyrimethamine (SP) at 2, 3, and 9 months of age to prevent malaria. We investigated the influence of IPTi on
drug resistance.

Methods. Twenty-four areas were randomly assigned to receive or not receive IPTi. Blood collected during
representative household surveys at baseline and 15 and 27 months after implementation was tested for SP and
resistance markers.

Results. The frequency of SP in blood was similar in the IPTi and comparison areas at baseline and at
15 months. dhfr and dhps mutations were also similar at baseline and then increased similarly in both arms after
15 months of SP-IPTi. First-line treatment was switched from SP to artemether-lumefantrine before the final
survey, when SP positivity fell among infants in comparison areas but increased in IPTi areas. This was accompa-
nied by an increase in dhfr but not dhps mutations in IPTi areas (P = .004 and P = .18, respectively).

Conclusions. IPTi did not increase drug pressure or the selection on dhfr and dhps mutants, when SP was the
first-line malaria treatment. Introduction of artemether-lumefantrine was followed by an increase in dhfr muta-
tions, consistent with weak selection attributable to SP-IPTi, but not by an increase in dhps mutations, suggesting
a fitness cost of this mutation.
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Intermittent preventive treatment in infants (IPTi)
consists of treatment doses of an antimalarial at the
time of routine vaccinations in the first year of life.
IPTi can reduce malaria and anemia in young children
in malaria-endemic countries [1], but concerns
remain about its effect on drug resistance.

IPTi has been associated with increases in resistant
parasites among recipients [2–4], although this is not

a consistent finding [5]. More important, however, is
the effect of IPTi on the spread of resistance through
the whole population. Models suggest only a small
effect at this level [6, 7], but this has not been evaluat-
ed in the field. We measured the impact of IPTi with
sulfadoxine-pyrimethamine (SP) on population-wide
resistance in a setting of high malaria endemicity in
southern Tanzania.

There is no established method for the evaluation of
the effect of public health interventions on the spread
of resistance. It is important to test the effects over as
many replicates as possible, to reduce the likelihood of
confounding due to an imbalance between interven-
tion and comparison arms. The optimal size of each
replicate is not known: they should be large enough to
ensure that contaminating gene flow between inter-
vention and comparison areas does not obscure
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selection of resistant parasites but not so large that the evalua-
tion becomes unfeasible or the parasite populations in different
replicates are so unrelated they are incomparable. This suggests
a need for baseline studies of genetic exchange between repli-
cates, which we did using neutral microsatellite markers.

The drug recommended for IPTi is SP, a coformulation of
competitive inhibitors of the folate biosynthesis enzymes dihy-
dropteroate synthase (DHPS; inhibited by sulfadoxine) and di-
hydrofolate reductase (DHFR; inhibited by pyrimethamine).
Resistance to SP is conferred by substitutions within the active
site of target enzymes, as inferred by in vitro studies [8–12],
by the predictive association of particular mutations with
treatment failure [13–15], and from overrepresentation of mu-
tations in recrudescent infections after treatment [16–26]. In
both enzymes, increasing numbers of substitutions confer
increasing levels of insensitivity to drug, with single- or
double-mutant dhfr alleles being mildly resistant while the
triple-mutant dhfr allele is highly resistant. The combination
of the dhfr triple-mutant N51I + C59R + S108N (CIRN) and
the dhps double-mutant A437G + K540E (SGE) predicts
failure of SP treatment [13–15]. Drug pressure arising from
IPTi-SP can be assessed in a number of ways. First, blood
specimens from a representative sample of people living in in-
tervention and comparison areas can be tested for sulfadoxine;
the proportion of positive blood spots reflects drug pressure in
the different populations.

Second, dhfr and dhps resistance mutations can be tracked
in intervention and comparison areas. If gene frequencies
measured at baseline are similar in the 2 arms, then direct
comparison of frequencies at follow-up indicates the differing
degrees of selection. Estimation of the selection coefficient of
key resistance alleles in intervention and comparison areas
provides a measure of the rate of change of gene frequencies.

The third approach is to estimate the linkage disequilibrium
between different dhfr and dhps alleles, in particular the dhfr
triple-mutant CIRN and the dhps double-mutant SGE. These
2 alleles independently segregate on 2 different chromosomes
but can be maintained in linkage disequilibrium by drug selec-
tion despite recombination, because of the improved survival
of the combined CIRN +SGE genotype.

By using these approaches, we report a community-
randomized study that evaluated the extent to which IPTi
increased drug pressure and the selection of resistant parasites.

METHODS

Study Area
The study was conducted in 5 districts of southern Tanzania
[27], with a total population of approximately 900 000 individ-
uals, including approximately 23 400 infants. The districts are
subdivided into 24 administrative areas, called divisions. IPTi
was randomly assigned to 12 divisions [28], leaving 12

divisions as controls, and unblinded IPTi implementation
started in all 62 vaccinating health facilities in intervention di-
visions in April 2005. Tablets of SP were offered to children
attending facilities for routine vaccinations with diphtheria–
tetanus toxoid–acellular pertussis, hepatitis B virus, and oral
poliovirus vaccine, at approximately 2 and 3 months of age,
and a third dose was offered when attending for measles vac-
cination, at about 9 months of age. Children weighing <5 kg
received a quarter tablet of Fansidar, and those weighing ≥5 kg
received a half tablet of Fansidar; 1 tablet contains 500 mg of
sulfadoxine and 25 mg pyrimethamine. In 2006, a minimum
estimate of 47% of neonates aged 6–11 months had received
at least 2 doses of IPTi, with a maximum of 76% having re-
ceived at least 1 dose in IPTi areas [28].

At study start, first-line treatment for malaria was SP, but
this changed in 2006 to artemether-lumefantrine (ALu)
which became available after the 2006 survey. Diagnostic facil-
ities were only available at approximately 10% of health
facilities, so the majority of malarial diagnoses were made
presumptively.

Household Surveys
Cross-sectional surveys in a representative cluster sample of
households from the 24 divisions were conducted in July–
August 2004 (baseline) and July–August 2006 (follow-up). A
third survey was conducted during July–November 2007. The
baseline [27] and 2006 [28] surveys are described in detail else-
where. In brief, all residents in 8 clusters of 30 households
were sampled from each division for blood sampling. Each
household in a division had an equal chance of inclusion, and
no substitute household was included if residents were repeat-
edly absent or did not wish to participate. A modular ques-
tionnaire was administered using personal digital assistants
(PDAs) [29]. Participants of all ages were invited to attend a
measuring station located in the middle of the village, where a
sample of blood was collected by finger prick and tested for
Plasmodium falciparum malaria parasitemia, using the HRP-
II–based Paracheck rapid diagnostic test (Orchid Biomedical
Systems, Goa, India). A drop of blood was collected onto
Whatman III filter paper. After air drying, filter papers were
stored in ziplock plastic bags and shipped to the molecular
laboratory for analysis. Sample sizes were amended for the
2006 and 2007 surveys, based on the prevalence of parasitemia
and intracluster correlation coefficient of parasitemia in the
previous survey. In 2006, this resulted in the random selection
of 10 households per cluster for molecular studies. In 2007,
sampling was stratified by age on the basis of the prevalence
of parasitemia, such that all children aged 2–11 months, 12%
of children aged 1–4 years, and 3% of children aged ≥5 years
were sampled. This approach was expected to yield similar
numbers of positive samples in each age group, and overall
estimates of prevalence were weighted during the analysis
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according to the sampling fraction. Each survey was powered
to estimate the prevalence of dhfr triple-mutant and dhps
double-mutant alleles to within 15% of the true absolute prev-
alence in each trial arm. The 2006 and 2007 surveys each had
80% power to detect a change of ≥10 percentage points in the
frequency of dhps double-mutant alleles from baseline.

High-Performance Liquid Chromatography (HPLC) Analyses
The quality of a representative number of tablets of Fansidar
was assessed using HPLC as described previously [30]. A
simple random sample of filter papers with adsorbed blood
samples were analyzed for SP, using HPLC with photodiode
array detection. Antimalarial drugs were extracted from the
filter paper into methanol, and 20 µL was injected directly
onto the HPLC column with gradient elution from 100%
solvent A (20 mM ammonium formate; pH 2.7) to 100%
solvent B (acetonitrile) over 15–25 minutes at a flow rate of
1.35 mL/minutes and a detector setting of 259 nm. Peak iden-
tity was confirmed by measuring the retention time, spiking
the sample with commercially available standards, and deter-
mining the absorbance spectra by using the photodiode array
detector. HPLC equipment and software were from Dionex
(Camberley, United Kingdom). The sampling procedure was
modified in the 2007 survey to account for the age stratifica-
tion, with a simple random sample of 200 individuals per age
group selected without considering the treatment arm from
which the samples came.

SNP Genotyping
Blood spots from infected individuals were selected for analy-
sis, with a maximum of 1 infected individual sampled at
random per household. Parasite DNA was extracted using the
chelex method [31], and polymerase chain reaction (PCR)–
based sequence-specific oligonucleotide probing (SSOP) at
codons 436, 437, and 540 of dhps and codons 50, 51, 59 and
108 of dhfr was performed using methods described previous-
ly [31]. Samples taken during 2007 were sequenced using Big
Dye V3.1 dye terminator sequencing and ABi 3730 DNA ana-
lyzer (Applied Biosystems, Foster City, CA). The same
primers were used to preamplify dhfr for SSOP and direct se-
quence typing [31] Two additional primers were used in se-
quencing dhps [32]. A sample was considered to have a single
haplotype when only 1 sequence variant was found at each
locus. In mixed genotype infections, majority genotypes were
recorded if their hybridization signal was twice that of the mi-
nority sequence. One haplotype only was counted from each
infection, and mixed infections in which haplotypes could not
be resolved were omitted from the frequency calculations.

Microsatellite Analysis
To describe the extent of gene flow between divisions, 6 mi-
crosatellite markers, PfG377, PfPk2, PolyA, ARA, TA109, and

TA87, were amplified in baseline survey samples following a
protocol previously described [33]. Amplification products
were diluted a ratio of 1:100 into Hi Di formamide, run with
LIZ-500 size standard on the ABi 3730 DNA analyzer
(Applied Biosystems), and analyzed using Genemapper soft-
ware (Applied Biosystems).

Multiplicity of infection was determined by counting the
number of peaks observed at PolyA, PfPk2, and TA109 and
calculating the average number of peaks across the 3 loci. This
is a more conservative estimator of multiplicity of infection
than taking the largest of the 3 values.

Molecular and HPLC laboratory analyses were conducted
with laboratory workers blind to whether samples came from
IPTi or comparison areas.

Data Processing and Analytical Methods
Palm m130 PDAs with 8 Mb RAM and running Pendragon
Forms 4.0 software were used to enter data in the field. Auto-
mated range, consistency, and completeness checks were per-
formed at the time of data entry. Particular attention was paid
to the accuracy of dates because age is prone to recall errors.

Molecular and HPLC data analyses were performed in the
statistical package R [34]. Analytical methods were those ap-
propriate for cluster-randomized trials with a small number of
clusters [35], with statistical testing based on the t test, using a
summary measure (eg, mean frequency) of the data from each
of the 12 intervention and 12 comparison divisions. This
adjusts both for the survey and study designs. Weighted t tests
were used for comparisons across age strata of the HPLC data,
using Bland’s method [36].

Population structure at the unlinked microsatellites for all
pairwise comparisons of divisions was determined using the
fixation index FST, calculated in Arlequin [37], and Nei’s stan-
dard genetic distance [38], calculated in Phylip [39]. FST calcu-
lates the portion of expected heterozygosity that is attributable
to population subdivision, whereas Nei’s distance is based on
allele frequency differences between populations. Both indices
range between 0 and 1, with 0 indicating that populations are
identical.

Ethics
The trial (clinical trials registration NCT00152204) was ap-
proved by local and national institutional review boards (the
Ifakara Health Institute [formerly the IHRDC] and the Na-
tional Tanzania Medical Research Co-coordinating Commit-
tee). Ethics and research clearance were also obtained from
LSHTM and from the Ethics Commission of the Cantons of
Basel-Stadt and Basel-Land, Switzerland. During field
work, information sheets in Swahili were provided, and
written informed consent was sought from the heads of all
households.
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RESULTS

Figure 1 shows that parasite prevalence, multiplicity of infec-
tion, and the age-pattern of each was comparable in interven-
tion and comparison divisions at each survey point. Parasite
prevalence fell to a similar extent in both arms during the
trial. Heterozygosity, a measure of genetic diversity, was high
across the 24 divisions, with mean values ranging from 0.771
to 0.831. Pairwise FST values ranged from <0 to 0.07 (only 5
comparisons were significantly >0), and Nei’s standard genetic
distance ranged from 0.031 to 0.139 (data available on

request), indicating a high degree of genetic similarity among
divisions.

SP Detection
Figure 2 shows the proportion of SP-positive blood spots in
comparison and intervention populations, by age. At both
baseline and in 2006, there was no evidence of any difference
in SP positivity between trial arms in the group aged <1 year
(2004, P = .251; 2006, P = .186) or the group aged ≥1 year
(2004, P = .34; 2006, P = .38). In 2007, the proportion of SP-
positive blood spots was lower in the comparison arm than in

Figure 1. Parasite prevalence among age groups, with 95% confidence intervals, for the baseline 2004 survey (A) and the postintervention surveys in
2006 (B ) and 2007 (C ). The comparison arm is shown by a dashed green line, and the intervention arm is denoted by a solid red line. The multiplicity of
infection was measured in 2004 and 2007 and is shown by the box plots (comparison, green; intervention, red), which specify the median among
divisions in each arm, with interquartile ranges and the upper and lower extremes of the distribution. Statistical outliers are indicated by small squares.
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the intervention arm in the <1 year group (8.8% [n = 117] vs
37.1% [n = 79]; P = .0003). There was no significant difference
in the ≥1 year group (7.3% [n = 218] vs 9.1% [n = 180];
P = .57).

Resistance Alleles and Selection Coefficients
Table 1 shows the number of samples typed and included in
subsequent analyses and the frequency of the various alleles

identified. Mutations were found at codons 51, 59, and 108
but not codon 164 of dhfr and at codons 436, 437, and 540 of
dhps. In 2007, the 581 dhps mutation was found in 0.5% of
samples from the comparison arm but was absent from the
intervention arm. A previously unidentified S436H substitu-
tion was found among 12 of the 394 samples sequenced for
dhps in 2007.

The frequencies of the dhfr triple-mutant CIRN allele and
the dhps double-mutant SGE haplotypes in each division are
shown in Figure 3. The general trend was for dhfr mutant fre-
quencies to increase over time. The CIRN allele frequency was
not different in the 2 study arms in 2004 (P = .89) or 2006
(P = .93), and SGE frequencies were also comparable between
arms at these times (2004, P = .52; 2006, P = .54). However, in
2007, the CIRN allele frequency was higher in the intervention
than in the comparison arm (P = .004). The frequency of the
SGE allele was (nonsignificantly) higher in the intervention
arm than in the comparison arm (P = .18).

The corresponding selection coefficients were similar in the
2 arms of the trial between 2004 and 2006 (Table 2). However,
the 2006–2007 SGE selection coefficient became negative,
most markedly in the comparison arm.

To assess the specific impact of IPTi among infants, we
compared resistance allele frequencies in subjects aged <1 year
with those among subjects aged >1 year. There was some evi-
dence that the frequency of resistance alleles was higher
among those aged <1 year than in older age groups across
both arms at all time points (Table 3). There was no discern-
ible effect of IPTi on the frequency of resistance among sub-
jects aged <1 year in the intervention arm. Among subjects
aged ≥1 year, the only evidence of a difference in resistance
allele frequencies was in 2007, when the CIRN allele frequency
was 13 percentage points higher in the intervention arm
(P = .034).

Linkage Disequilibrium
There was strong evidence of linkage disequilibrium between
the dhfr triple-mutant CIRN and the dhps double-mutant
SGE (Table 4), with a statistically significant association in
both arms at all 3 time points, except for the intervention arm
in 2007.

DISCUSSION

We have described the impact of IPTi on the spread of resis-
tance to SP at the population level. We monitored SP drug
pressure, dhfr and dhps mutation frequencies, selection coeffi-
cients, and linkage disequilibrium in the context of a pilot im-
plementation of IPTi in a total population of approximately 1
million in southern Tanzania. Representative cross sectional
household surveys were performed in 2004, before the intro-
duction of IPTi, and again in 2006 and 2007, after 15 and 27

Figure 2. Proportion of sulfadoxine-pyrimethamine (SP)–positive blood
spots in control (blue) and intervention (red) arms. SP positivity among
children aged <12 months (A) and children aged ≥12 months (B ) are
shown for 3 surveys, conducted in 2004, 2006, and 2007. Whiskers
denote 95% confidence intervals, and the significance values arising
from comparisons of SP positivity rates within the arms of the trial
between consecutive time points are indicated.
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Table 1. Number of Samples Typed and Included in the Analysis of Drug Resistance Alleles and the Frequencies of All dhfr and dhps Alleles Detected Over the 3 Surveys

Survey 2004 2006 2007

DHFR

No. samples 2144 2441 850

Typed at all SNPs 1234 1539 513

Mixed 411 424 104

Comparison (n = 415) Intervention (n = 408) Comparison (n = 524) Intervention (n = 591) Comparison (n = 202) Intervention (n = 207)

CIRN 0.435 0.444 0.512 0.517 0.600 0.743
CNRN 0.295 0.284 0.340 0.350 0.196 0.138

CNCS 0.131 0.148 0.052 0.059 0.047 0.036

CICN 0.058 0.063 0.069 0.053 0.15 0.08
CNCN 0.035 0.029 0.006 0.007 0.008 0.006

CICS 0.005 (…) 0.004 (…) (…) (…)

CIRS 0.016 (…) (…) 0.002 (…) (…)
CNRS 0.025 0.032 0.016 0.012 (…) (…)

DHPS

No. samples 2144 2441 850

Typed at all SNPs 1199 1458 529

Mixed 197 379 135

Comparison (n = 499) Intervention (n = 503) Comparison (n = 509) Intervention (n = 570) Comparison (n = 194) Intervention (n = 200)

SGE 0.352 0.383 0.529 0.564 0.467 0.570

SAK 0.488 0.487 0.320 0.322 0.402 0.330
SGK 0.021 0.026 0.015 0.014 0.006 0.005

AAK 0.075 0.052 0.045 0.029 0.038 0.012

AAE 0.002 0.004 0.002 0.003 (…) (…)
AGE (…) (…) 0.017 0.004 0.012 0.003

CAE (…) (…) (…) 0.002 (…) (…)

CAK 0.010 0.008 0.005 0.008 0.013 0.021
FAE (…) 0.003 (…) (…) (…) (…)

FAK 0.028 0.024 0.019 0.017 0.011 0.018

FGK (…) 0.002 (…) (…) (…) (…)
SAE 0.025 0.010 0.048 0.036 (…) (…)

HAKAA na na na na 0.046 0.041

SGEGA na na na na 0.005 (…)
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months of IPTi implementation. Malaria transmission, reflect-
ed by parasite prevalence, multiplicity of infection, and the
age-pattern of each, was comparable in IPTi and comparison
areas throughout the study. There was considerable genetic di-
versity among parasites across the study area, and gene flow

studies found no evidence of population subdivision between
divisions. At baseline, the genetic determinants of SP resis-
tance were present at similar frequencies in each study arm.

Between 2004 and 2006, while SP was the first-line treat-
ment for malaria infections and the drug used for IPTi, the
frequency of the CIRN and SGE alleles increased at a compa-
rable rate in both study arms. The overall prevalence of SP
was 11%–13% and not different between the comparison and
intervention arms. Thus, IPTi had no measurable effect on SP
drug pressure over that generated by its widespread use for
treatment, suggesting that the number SP doses used for IPTi
was balanced by the number of SP treatments for illness epi-
sodes in comparison areas. IPTi may therefore be of greater
value in areas where access to vaccination-based preventive
services is better than access to drugs through curative
services.

In late 2006, the national treatment policy with ALu was
rolled out, and SP use decreased. However, the proportion of
people aged >12 months who were positive for SP had
changed little by the time of the 2007 survey, with SP detected
in all age strata. There was a statistically significant decrease
in detectable SP among individuals aged <12 months living in
comparison areas, presumably because these infants were
increasingly treated with ALu. In contrast, SP increased in
infants where IPTi-SP continued.

The change in SP drug pressure in infants living in IPTi
areas was associated with an overall increase in the frequency
of the dhfr triple mutation and a corresponding 3-fold diff-
erence in the selection coefficient for the CIRN allele. This
suggests a population-wide effect on P. falciparum genotypes
of an intervention targeting children aged 2–9 months. In
contrast, the dhps double-mutant frequencies stabilized in
both comparison and intervention divisions following with-
drawal of SP as first-line therapy, with a suggestion of a de-
crease in the comparison arm, in keeping with the notion that
the SGE double mutant carries a fitness cost [40].

The study has a number of limitations. We were limited to
12 intervention and 12 comparator divisions. Therefore,

Figure 3. Division-specific frequencies of the dhfr triple-mutant CIRN
allele (A) and the dhps double-mutant SGE allele (B ) in the comparison
(blue) and intervention (red) replicate divisions over time. The bold lines
indicate the mean frequency in each treatment arm.

Table 2. Selection Coefficients and Mean Change in CIRN and SGE Allele Frequencies Across Divisions Within Trial Arms Between
Consecutive Time Points

Mean Difference in Frequency

Allele, Trial Arm 2004–2006 P s 2006–2007 P s 2004–2007 P s s, 2004–2006–2007

CIRN

Comparison 0.077 .955 0.090 0.089 .057 0.044 0.166 .152 0.075 0.077
Intervention 0.073 0.089 0.226 0.146 0.299 0.108 0.105

SGE

Comparison 0.177 .938 0.069 −0.062 .278 −0.060 0.115 .316 0.026 0.033
Intervention 0.181 0.067 0.006 −0.002 0.187 0.044 0.047

Abbreviation: s, selection coefficient.
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Table 3. Allele Frequencies in People Under 1 Year Old and in People Older Than 1 Year

2004 2006

Within
Age Groups

Between
Age Groups

Within
Age Groups

Between
Age Groups

Controla 95% CI Interventiona 95% CI Pb
Control

Pb
Intervention

Pb Controla 95% CI Interventiona 95% CI Pb
Control

Pb
Intervention

Pb

dhfr age <1 y

CNCS 1/21 (0.05) –.56 (.147) 0/20 (0) … .341 2/41 (0.05) –.024 (.122) 1/52 (0.02) –.020 (.053) .4021

CNRN 7/21 (0.33) .073 (.594) 4/20 (0.2) –.22 (.455) .468 10/41 (0.24) .115 (.404) 21/52 (0.4) .166 (.626) .2845

CIRN 12/21 (0.57) .334 (.848) 16/20 (0.8) .545 (1.022) .234 22/41 (0.54) .341 (.756) 29/52 (0.56) .355 (.787) .8718

dhfr age ≥1 y

CNCS 59/394 (0.15) .035 (.236) 65/388 (0.17) .06 (.249) .767 .178 .004 23/483 (0.05) .025 (.079) 33/539 (0.06) .032 (.143) .221 .928 .030

CNRN 113/394 (0.29) .217 (.373) 107/388 (0.28) .186 (.391) .909 .760 .546 169/483 (0.35) .275 (.418) 189/539 (0.35) .240 (.402) .6046 .253 .510

CIRN 166/394 (0.42) .321 (.531) 169/388 (0.44) .337 (.508) .950 .209 .008 250/483 (0.52) .421 (.607) 275/539 (0.51) .342 (.585) .4784 .741 .354

dhps age <1 y

SAK 4/26 (0.15) –.56 (.456) 6/23 (0.26) .038 (.38) .931 12/46 (0.26) .127 (.533) 12/52 (0.23) .147 (.532) .9402

AAK 1/26 (0.04) –.42 (.109) 0/23 (0) … .343 1/46 (0.02) –.025 (.067) 0/52 (0) … .3388

SGE 20/26 (0.77) .496 (.987) 14/23 (0.61) .445 (.919) .698 27/46 (0.59) .355 (.716) 37/52 (0.71) .452 (.787) .4603

dhps age ≥1 y

SAK 242/473 (0.51) .436 (.580) 237/480 (0.49) .412 (.585) .840 .025 .005 146/463 (0.32) .246 (.400) 155/518 (0.30) .237 (.411) .9814 .946 .876

AAK 36/473 (0.08) .055 (.097) 28/480 (0.06) .033 (.076) .126 .246 .000 21/463 (0.05) .017 (.078) 17/518 (0.03) .015 (.048) .3329 .298 .001

SGE 152/473 (0.32) .290 (.366) 180/480 (0.38) .274 (.470) .373 .004 .018 247/463 (0.53) .439 (.613) 303/518 (0.58) .460 (.649) .6246 .918 .468
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2007 2006 vs 2007

Within
Age Groups

Between
Age Groups

Within
Age Groups

Controla 95% CI Interventiona 95% CI Pb
Control

Pb
Intervention

Pb
Control

Pb
Intervention

Pb

dhfr age <1 y

CNCS 1/47 (0.013) –0.16 (.042) 1/46 (0.023) –.028 (.073) .715 .334 .832

CNRN 11/47 (0.18) .051 (–.311) 5/46 (0.10) –.034 (.239) .363 .383 .027

CIRN 28/47 (0.66) .472 (–.840) 37/46 (0.80) .632 (–.963) .217 .402 .081

dhfr age ≥1 y

CNCS 9/155 (0.06) .021 (– .089) 7/161 (0.04) .008 (–.072) .479 .049 .532 .870 .119

CNRN 30/155 (0.19) .110 (–.265) 23/161 (0.15) .068 (–.223) .406 .930 .553 .003 .002

CIRN 95/155 (0.60) .513 (–.681) 119/161 (0.73) .633 (–.821) .034 .528 .423 .160 .001

dhps age <1 y

SAK 12/40 (0.31) .036 (–.574) 11/42 (0.3) .082 (–.518) .974 .871 .766

AAK 2/40 (0.036) .023 (–.095) 1/42 (0.03) –.037 (.098) .886 .654 .341

SGE 25/40 (0.634) .381 (– .887) 25/42 (0.55) .297 (–.798) .592 .487 .602

dhps age ≥1 y

SAK 62/154 (0.424) .301 (–.548) 48/158 (0.33) .238 (–.416) .175 .380 .801 .142 .960

AAK 6/154 (0.035) .006 (–.063) 2/158 (0.01) –.006 (.027) .122 .964 .540 .504 .057

SGE 69/154 (0.443) .314 (–.572) 96/158 (0.59) .488 (–.686) .066 .154 .749 .257 .608

a Data are proportion (%) of subjects.
b Calculated by the t test.

Table 3 continued.
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despite restricted randomization, there is still potential for un-
recognized confounders to render the study arms different in
important respects. Because the study arms were comparable
in terms of transmission intensity, baseline SP resistance
markers, and SP drug pressure, and because care was taken to
select representative samples of households during the surveys,
there should be increased confidence in the validity of the
results. We used counting of haplotypes among single and
majority infections to generate simple estimates of haplotype
frequency. While there are computationally sophisticated
methods of incorporating mixed infections, these require
thresholds of detection of minor alleles to be standard across
assays for different loci, if systematic bias is to be avoided. We
did not use these measures because this could not be guaran-
teed across the large number of replicate assays performed
during the course of this study. Second, a large number of sig-
nificance tests were carried out and some of the differences
may have arisen by chance. Nevertheless, adjustment of P
values using the Bonferroni correction does not materially
affect our results or conclusions. Third, follow-up continued
for <2 years after the introduction of IPTi, and estimates of
IPTi coverage were between 47% and 76% [28]. More pro-
nounced effects may have been documented with longer
follow-up or higher levels of coverage. Fourth, the use of
HRP-II–based rapid diagnostic tests means that, because the
HRP-II antigen persists after treatment, an individual may
have been identified as parasite positive for >2 weeks after the
infection had been effectively treated [41]. This resulted in a
proportion of RDT-positive samples being PCR negative, re-
ducing the number of samples contributing to analyses and
the statistical power of the evaluation. However, both the geo-
graphical scale and the significant differences in selection pres-
sures and haplotype frequencies between the study arms add
plausibility to the evaluation. These results and conclusions
are specific to SP in eastern Africa. The fitness costs of the
SGE allele may be different in western Africa, where an alter-
native dhps allele is found [42]. In addition, the increase in
frequency of resistance mutations is not linear, and this study
was conducted when the baseline level of resistance was
already high. The results may be different in settings with
lower baseline resistance.

This study was conceived to evaluate the effect of IPTi-SP
on the spread of SP resistance and the risk that IPTi-SP might
undermine SP treatment efficacy. We have shown that IPTi-SP
did not exacerbate the spread of resistance when delivered
alongside SP for first-line malaria treatment. However, malaria
treatment in many settings now depends on ACTs. When
ACTs were introduced into the study area, the frequency of
the dhfr triple mutant continued to climb, but the frequency
of the dhps double mutant appeared to decrease. As treatment
failure occurs primarily when dhfr triple is found in combina-
tion with dhps double, we conclude that IPTi-SP is unlikely to
undermine SP treatment efficacy.

The World Health Organization has recommended that
IPTi-SP be considered in areas of moderate or intense malaria
transmission [43], but not if the frequency of the 540 muta-
tion—a marker of the quintuple mutation—is ≥50%. Many
countries fulfilling the intensity criterion fail the resistance cri-
terion [44]. Our study suggests that quintuple-mutation fre-
quencies may fall once ACTs are deployed, and it draws
attention to the need to monitor molecular markers of SP re-
sistance where IPTi-SP may otherwise be useful for malaria
control.
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