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Abstract — In this article we analyze a finite element method for solving H(div;Ω)-elliptic
interface problems in general three-dimensional Lipschitz domains with smooth material inter-
faces. The continuous problems are discretized by means of lowest order H(div;Ω)-conforming
finite elements of the first family (Raviart–Thomas or Nédélec face elements) on a family of
unstructured oriented tetrahedral meshes. These resolve the smooth interface in the sense of
sufficient approximation in terms of a parameter δ that quantifies the mismatch between the
smooth interface and the finite element mesh. Optimal error estimates in the H(div;Ω)-norms
are obtained for the first time. The analysis is based on a so-called δ -strip argument, a new ex-
tension theorem for H1(div)-functions across smooth interfaces, a novel non-standard interface-
aware interpolation operator, and a perturbation argument for degrees of freedom in H(div;Ω)-
conforming finite elements. Numerical tests are presented to verify the theoretical predictions
and confirm the optimal order convergence of the numerical solution.

Keywords: H(div;Ω)-elliptic interface problems, finite element methods, face elements, con-
vergence analysis

1. Introduction

Given a bounded domain Ω ⊂ R3 with a Lipschitz boundary, we assume
that the domain Ω consists of two subdomains Ω1 and Ω2, where Ω1 ⋐ Ω,
Ω2 := Ω \Ω1. The internal interface Γ := ∂Ω1 is assumed to be sufficiently
smooth, namely, at least C2-smooth (see Fig. 1 for an illustration of the geo-
metric setting). We are concerned with solving the H(div;Ω)-elliptic interface
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Figure 1. An illustrative sketch of the setting of the problem.

problem

−grad(χ divu)+βu = f in Ω (1.1)

with Dirichlet boundary condition

u ·n = 0 on ∂Ω (1.2)

and jump conditions on the interface

[n ·u] = 0 on Γ (1.3)

[χ divu] = 0 on Γ (1.4)

where f ∈ L2(Ω) is the source term, and n stands for a unit normal vector to
the boundary ∂Ω1 pointing into Ω2. By [v] := v1 − v2 we denote the jump of
a function v across the interface Γ. For ease of exposition, we assume that the
coefficient functions χ and β are piecewise constant, i.e.

χ(x) =

{
χ1, x ∈ Ω1

χ2, x ∈ Ω2,
β (x) =

{
β1, x ∈ Ω1

β2, x ∈ Ω2

where χi and βi, i = 1,2, are positive constants. The more general case of
piecewise smooth uniformly positive coefficients in L∞(Ω) can be treated sim-
ilarly with no essential difficulty by using techniques like local averaging in an
element.

As a rule, H(div;Ω)-elliptic interface problems like (1.1)–(1.4) arise from

the first-order system least-squares formulation of elliptic interface problem,

or preconditioning for the mixed finite element using a gradient formulation

of the Dirichlet problem (see, e.g., [2,7,12,17,26] and the references therein).
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Finite element methods for H(div;Ω)-elliptic problems have been well stud-

ied in [2, 14, 17]. Nevertheless, the discontinuity of the coefficients across the

smooth interface creates additional challenges. First, the global regularity of

the solution might be significantly lower than the local regularity in each sub-

domain due to the jump of coefficients across the interface. Thus, the tech-

niques used for traditional H(div;Ω)-finite element methods with full regular-

ity are not applicable here. Second, we are confronted with the issues of how

to approximate the smooth interface by the finite element mesh, how to define

practical numerical quadrature for those elements partially cut through by the

interface, and, last but not least, whether it is still possible to obtain optimal

convergence order using the H(div;Ω)-conforming finite element method for

H(div;Ω)-elliptic interface problems? Below we address all these issues.

Due to the practical relevance of interface problems in many engineer-

ing and industrial applications, numerical solution methods for interface prob-

lems have been investigated extensively. One may refer to the monograph [20]

and the references therein for a history of the development in this research

field. Numerous variants of finite element methods (FEMs) for classical el-

liptic interface problems in H1(Ω)- and H(curl;Ω)-settings have been ex-

tensively studied in the past few decades. Interested readers may refer to

[3,4,6,9,13,16,18,19,24] . Nevertheless, to the best knowledge of the authors,

there seems to exist no corresponding work on the convergence analysis of

H(div;Ω)-elliptic interface problems discretized by means of interface-aligned

face elements.

This article completes the numerical analysis of conforming finite ele-

ment methods for three important classes of elliptic interface problems, namely

those set in H1(Ω), H(curl;Ω) and H(div;Ω). General higher order Lagrange

finite element methods for H1(Ω)-elliptic interface problems were discussed

in [19]. In this paper key tools and concepts like the δ -strip argument and the

perturbed interpolation were first introduced. A crucial insight obtained in [19]

was that the optimal convergence order depends not only on the mesh size

but also on the mismatch between the interface and the mesh. Subsequently,

in [16] we investigated H(curl;Ω)-elliptic interface problems using lowest or-

der edge elements of the first family. We derived optimal order convergence in

the H(curl;Ω)-norm for the first time. We relied on novel techniques such as

the generalization of the concept of perturbed interpolation to edge elements,

an H1(curl;Ωi) extension theorem and what we dubbed a ‘pyramid argument’.

The main contribution of the current work is to derive optimal order con-
vergence in the H(div;Ω)-norm for H(div;Ω)-elliptic interface problems us-
ing lowest order Raviart–Thomas (or Nédélec) H(div;Ω)-conforming finite
elements [5, 22]. We follow the lines of [16], with new twists, entailed by the
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‘more non-local’ nature of the degrees of freedom for H(div;Ω)-conforming
(face) finite elements. Therefore, the analytical tools and techniques had to be
adjusted. This led to:

• a new non-standard interface-aware face element based interpolant,
which is shown to possess optimal approximation in the sense of the
H(div;Ω)-norm, see Subsection 2.4;

• a modified δ -strip argument for quantifying the relation of error estimate
near the interface in terms of the mismatch parameter δ between the
triangulation and the smooth interface, see Corollary 3.1;

• a new extension theorem for H1(div;Ωi) functions across smooth in-
terfaces for i = 1,2, which bridges the gap between standard and non-
standard interpolation and thus is crucial for the convergence analysis,
see Theorem 3.2;

• a perturbation argument for the degrees of freedom of H(div;Ω)-con-
forming finite elements, see the proof of the pivotal Lemma 4.2.

The remainder of the paper is organized as follows: In Section 2, we first
introduce some necessary notations and assumptions to be used later, then de-
rive the variational formulation for the H(div;Ω)-elliptic interface problem,
and propose a practical finite element approximation using the lowest order
Raviart–Thomas finite element spaces. In Section 3 we establish some impor-
tant auxiliary results, including a δ -strip argument for error estimation near
the interface and the construction of a new extension operator for H1(div;Ωi)
functions across smooth interfaces for i = 1,2. In Section 4, we prove optimal
order convergence in the sense of H(div;Ω)-norm of the proposed finite ele-
ment method for H(div;Ω)-elliptic interface problems. In Section 5, numerical
experiments are presented to justify the theoretical prediction of the optimal
convergence order. We summarize the work and point out future directions in
Section 6.

2. Finite element approximation

We stick to the usual notations for Sobolev spaces H(div;Ω), H0(div;Ω), etc.,
see [12, Chap. 1] or [21]. We also write

H1(div;Ω) =
{

v ∈ H1(Ω) | divv ∈ H1(Ω)
}

.

For a function u, we denote by ui its restriction to Ωi, i.e., ui := u|Ωi
for i = 1,2.
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2.1. Weak formulation

The weak formulation of (1.1)–(1.4) is straightforward and reads as follows.

Problem (Q). Seek u ∈ H0(div;Ω) such that

a(u,v) =
∫

Ω
f ·vdx ∀ v ∈ H0(div;Ω) (2.1)

with the bilinear form defined by

a(u,v) :=
2

∑
i=1

∫

Ωi

(χi divui ·divvi +βiui ·vi) dx . (2.2)

By the assumptions on χ and β in Section 1, the bilinear forms a(·, ·) in (2.2)
agrees with the H(div;Ω)-inner product of the Hilbert space H0(div;Ω) up to
the weights χi’s and βi’s, and the associated energy norm

‖u‖a = a(u,u)1/2 (2.3)

is equivalent to the H(div;Ω)-norm. This ensures the existence and uniqueness
of the solution of (2.1) by the Lax–Milgram Lemma [10, Theorem 1.1.3].

Throughout the paper, we assume that the solution of (2.1) has the regular-
ity H0(div;Ω)∩H1(div;Ω1)∩H1(div;Ω2), which is a natural assumption in
the present geometric setting.

2.2. Triangulations

Let the polyhedral domain Ω ∈ R3 be equipped an oriented unstructured tetra-
hedral meshes (Th)h in the sense of [15, Def. 3], where h stands for the mesh-
width. We denote by Fh, Eh and Nh the respective sets of oriented faces,
oriented edges and vertices of the triangulation Th. The quality of Th can
be gauged by means of its meshsize h := maxK hK , shape regularity measure
ρ(Th)and quasi-uniformity measure γ(Th) [8, Sect. 3] as follows

ρ(Th) := max
K∈Th

hK

rK

, h := max
K∈Th

hK , γ(Th) := max
K∈Th

h

hK

where

hK := sup{|x−y| : x,y ∈ K}
rK := sup{r > 0 : ∃x ∈ K; |x−y| < r ⇒ y ∈ K} .
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In the sequel, we will frequently denote by c and C generic positive constants
which may depend on the domain Ω, the coefficients χi’s, βi’s and the mesh
parameters ρ(Th) and γ(Th), but must not depend on the meshwidth h and the
related functions.

In the remainder of this section, we shall illustrate our assumptions on the
triangulation in relation to the interface. First of all, our finite element dis-
cretization scheme relies heavily on the concept of interface-aware triangula-

tion, see [16, Ass. 2.1]:

Assumption 2.1 Interface-awareness. The triangulation Th is interface-
aware if for every K ∈ Th all its four vertices are either in Ω1 or in Ω2, and

this element K is assumed to intersect with the interface Γ in such a way that

at most three of its vertices are located on the interface Γ while all remaining

vertices are either in Ω1 or in Ω2.

Let us comment on Assumption 2.1 before we proceed. To meet the re-
quirement of Assumption 2.1, the triangulation Th should not be too coarse
with respect to the interface, i.e., it is not allowed to have all the four ver-
tices of an element K ∈ Th located on the interface Γ. This might be the case
for some element on a rather coarse triangulation surrounded by the interface
of large curvature. Nevertheless, we can always refine the mesh until all the
elements satisfies Assumption 2.1 owing to the smoothness of the interface.

When an element K satisfies K ∩Γ 6= ∅, it is called an interface element,
otherwise a non-interface element. The set of all interface elements is denoted
by T∗ := {K ∈Th |K∩Γ 6= ∅} and T i

∗ := {K ∈T∗ | all nodes of K are in Ωi }
represents the set of all interface elements of Ωi, i = 1,2. For a fixed small
δ > 0, we define the δ -strip regions around the interface in Ω and Ωi, i = 1,2,
respectively, by

Sδ := {x ∈ Ω | dist(x,Γ) < δ }, Si
δ := {x ∈ Ωi | dist(x,Γ) < δ }, i = 1,2.

It is obvious that Sδ = S1
δ ∪S2

δ ∪Γ and T∗ = T 1
∗ ∪T 2

∗ , and these δ -strip regions
will be used for the error estimate near the interface, which in general cannot
be captured using the techniques of standard interpolation approximation. For
a vivid illustration of the concepts above, readers may refer to Fig. 2 for a 2D
scenario for better understanding.

According to Assumption 2.1, for any K ∈ T∗, it must intersect with the
interface Γ in one and only one of the following three situations:

1. One vertex of K is located on the interface Γ, and the vertex located on
the interface is called an interface vertex.
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Figure 2. Sδ : the region of width 2δ between the two closed dashed lines around the closed

solid interface line Γ. Interface elements: K3 ∈T 1
∗ , K4 ∈T 2

∗ . Non-interface elements: K1 ∈T 1,

K2 ∈ T 2.
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Figure 3. (a): Two typical tetrahedral interface elements K1 and K2 intersect with the interface
Γ. The interface are visualized by the intersected piecewise smooth curves composed of curved
segments on the surfaces of the tetrahedra K1 and K2. The interface edges are e1, e2 and e3

denoted by straight (dashed) line segments; (b): An interface face f of the first kind; (c): An
interface face f1 of the second kind.

2. Two vertices of K are located on the interface Γ, and the oriented edge
with two vertices on the interface is called an interface edge.

3. Three vertices of K are located on the interface Γ, and the triangular ori-
ented face with three vertices on the interface is called an interface face

of the first kind, while the face with only two vertices on the interface is
called an interface face of the second kind.

And these notions are further illustrated by two typical interface elements in-
tersecting the interface as shown in Fig. 3.

For the sake of discretization, the smooth interface Γ has to be approx-
imately resolved by tetrahedral meshes. We quantify the quality of the ap-
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proximation of the smooth interface Γ by the triangulation Th in terms of a
parameter δ through the following definition (see [16, Def. 2.2]).

Definition 2.1. The triangulation Th is said to resolve the interface Γ up

to an error δ if it can be decomposed as

Th = T
1 ∪T

2 ∪T
1
∗ ∪T

2
∗

where
T

i = {K ∈ Th ; K ⊂ Ωi \Sδ }
and K ∈ T i

∗ if

max{dist(x,Γ∩K) ; x ∈ K ∩Ωi′ } 6 δ

for i = 1,2, where we define i′ = 1 if i = 2 and i′ = 2 if i = 1.

We may refer to Fig. 2 for an illustration of Definition 2.1. It is worth re-
marking that although we assume that all vertices of an element K must belong
to either subdomain Ω1 or Ω2, it is allowed that the interface may cut some
elements into two parts lying in two different subdomains, see, for instance,
triangle K4 in Fig. 2. By Definition 2.1 we easily see that any interface ele-
ment K can be embedded in the union of the interface strip Sδ and one of the
subdomains Ω1 and Ω2.

For a smooth interface Γ approximated by a union of triangular faces of
the triangulation Th, we may further quantify the parameter δ in terms of the
meshsize h as given by the next assumption.

Assumption 2.2. The interface Γ is C2-smooth. For the interface-aware

meshes, there exists some δ of order h2 for appropriately small h such that

K ∩Ω2 ⊂ S2
δ for all elements K ∈ T 1

∗ , and K ∩Ω1 ⊂ S1
δ for all elements K ∈

T 2
∗ .

A detailed proof of Assumption 2.2 of δ -approximation property for the
interface-aware triangulation in two dimensions can be found in [9] using local
coordinate system and the same idea can be easily extended to 3D with no
essential changes.

For the subsequent error estimate, we will use a crucial perturbed inter-
polation operator. To that end, we first introduce three more helpful auxiliary
concepts aided with the sketches in Fig. 4.

Definition 2.2 (interface twin edge). For any oriented interface edge e1 ∈
Eh, there exist two interface elements K1 and K2, with non-interface vertices
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Figure 4. Illustration of interface twin edges and faces. (a): The interface twin edges are ẽ1, ẽ2

and ẽ3 denoted by the piecewise smooth curves composed of curved segments on the interface;

(b): An interface twin face f̃ of the first kind; (c): An interface twin face f̃1 of the second kind;
(d): small volume V

f , f̃
sandwiched by interface (twin) faces of first kind; (e): slim area Se1,ẽ1

enclosed by interface (twin) edges.

p1 and p2, respectively, which share the interface edge e1 and another interface
vertex q1, such that there is a unique oriented curve ẽ1 which is the intersection
of the interface and two triangular faces determined by p1 with e1, and p2 with
e1, respectively, and shares with e1 the same starting and end points. We call
ẽ1 the interface twin edge associated with e1 (see Fig. 4a for an illustration).

It is emphasized that any interface edge is always a straight line segment,
and the associated interface twin edge could be a piecewise smooth curve (see,
e.g., the smooth curve ẽ1 in Fig. 4a) which shares the two endpoints with the
interface edge e1.

Definition 2.3 (interface twin face of the first kind). For any oriented in-
terface face of the first kind f ∈Fh enclosed by three interface edges e1,e2,e3 ∈
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Eh, with which three interface twin edges ẽ1, ẽ2, ẽ3 are associated, respec-

tively, there exists a unique smooth surface f̃ on the interface circumscribed

by ẽ1, ẽ2, ẽ3. We call f̃ an interface twin face of the first kind associated with

the face f . The orientation of f̃ is determined in the sense that it approximates
that of f as meshes refine (see Fig. 4b).

Definition 2.4 (interface twin face of the second kind). For any oriented
interface face of the second kind f1 ∈ Fh with an interface edge e1 ∈ Eh, with
which the interface twin edge ẽ1 are associated, if f1 is an interface face of

an interface element K ∈ T i
∗ , i = 1 or 2, then there exists a unique piecewise

planar surface,

f̃1 = ( f1 ∪Se1,ẽ1
)\Ωi′

with ‘ \’ being understood as set minus operation. The orientation of f̃1 is

determined in such a way that f1 and f̃1 share the same orientation as f1 on

f1 \ Se1,ẽ1
and f̃1 extends this orientation on the other part Se1,ẽ1

\ f1. We call

f̃1 an interface twin face of the second kind associated with the face f1 (see
Fig. 4c).

For an oriented interface face of the second kind fi consisting of one inter-
face edge ei ∈ Eh (with which the interface twin edges ẽi are associated), we
will need the following set

Sei,ẽi
= ( fi \ f̃i)∪ ( f̃i \ fi)

which denotes the slim open piecewise planar surface set surrounded by the
curves ei and ẽi for i = 1,2,3 (see Fig. 4e).

For an interface face f of the first kind enclosed by three interface edges
e1,e2,e3 ∈ Eh, with which three interface twin edges ẽ1, ẽ2, ẽ3 are associated,
respectively, we denote by V

f , f̃
the closed volume set enclosed by the surfaces

f , f̃ , Se1,ẽ1
, Se2,ẽ2

and Se3,ẽ3
(see Fig. 4d). It is readily to see by Assumption 2.2

that
V

f , f̃
⊂ Sδ , Sei,ẽi

⊂ Sδ , i = 1,2,3.

For the interface-aware triangulation, it is easy to deduce that

|V
f , f̃
| ∼ δh2, |Sei,ẽi

| ∼ δh (2.4)

where | · | represents either volume or area measures.
In the sequel, the triangulation Th will be assumed to be sufficiently fine

to allow the existence of interface twin edges. For some interface with bizarre



Convergence analysis of FEM 197

geometry the interface twin edges might not be well defined for certain coarse
meshes. But due to the C2-smoothness of the interface, we can always refine
the mesh till a desired interface twin edge (resp. the associated interface twin
face) is obtained for any interface edge.

2.3. Finite element discretization

A suitable trial space Fh ⊂ H0(div;Ω) for the Galerkin discretization of (2.1)
is supplied by the lowest order Raviart–Thomas elements of the first family
(see, e.g., [5, 22]), that is,

Fh :=
{

vh ∈ H0(div;Ω) | vh|K(x) = aK +bKx,

aK ∈ R3, bK ∈ R, x ∈ K ∀K ∈ Th

}
.

Writing F̂h for the set of all interior faces of Th, the degrees of freedom of Fh

are given by the surface integrals

vh 7→
∫

f
vh ·n dS , f ∈ F̂h .

It is well established that there exists a well-defined global finite element inter-
polation operator Πh : H1(div;Ω) 7→ Fh (cf. [21, Thm. 5.25, Sect. 5.4]), which
has the following approximation property.

Lemma 2.1. The interpolation operator Πh possesses the optimal approx-

imation property

∃C = C(ρ(Th)) : ‖u−Πhu‖H(div;Ω) 6 Ch‖u‖H1(div;Ω) ∀ u ∈ H1(div;Ω).
(2.5)

Moreover, we recall that face elements are an affine equivalent family of
finite elements with respect to the pullback transformation (see [15, 21])

Bv̂(x̂) := det(B)v(x) , x = Bx̂+ t , B ∈ R3,3, t ∈ R3. (2.6)

On a tetrahedron K with vertices [a1,a2,a3,a4] and barycentric coordinates
λ1,λ2,λ3,λ4, the local shape function associated with a face f = [ai,a j,ak] are
given by (see [15, Sect. 3.2])

b
f
K = 2

(
λi gradλ j ×gradλk +λ j gradλk ×gradλi

+λk gradλi ×gradλ j

)
, 1 6 i < j < k 6 4 . (2.7)
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They can be assembled into a collection of global bases {bi, i = 1, . . . , ♯F̂h}
of Fh.

The following lemma can be shown by adapting the proof of Lemma 3.12
from [15] to bound the local basis functions in terms of the mesh size h.

Lemma 2.2. Let Th be a quasi-uniform, oriented unstructured tetrahedral

mesh in Ω with meshsize h. Then there exist some positive constants C such that

the local basis functions b
f
K , f ⊂ ∂K, satisfy the following error estimates

‖b
f
K‖2

H(div;K) 6
C

h
, ‖divb

f
K‖2

H(div;K) 6
C

h3
. (2.8)

With the finite element function spaces presented above, the finite element
approximation of (2.1) can be stated as follows.

Problem (Qhhh). Seek uh ∈ Fh such that

a(uh,vh) =
∫

Ω
f ·vh dx ∀ vh ∈ Fh . (2.9)

The existence and uniqueness of the solution of (2.9) follow from the
Lax–Milgram lemma [10, Theorem 1.1.3], similar to those of the continuous
Problem (Q). One natural idea to derive the estimate of discretization error is
through the best approximation error estimate in light of the quasi-optimality
from Cea’s lemma. But this is only possible, if the Galerkin matrix is computed
exactly.

The exact evaluation of the stiffness matrix associated with the bilinear
form a(·, ·) in (2.9) can be very complicated on an interface element when it
is cut through by the interface, especially in three dimensions. A much more
convenient formulation is obtained by replacing the original bilinear form (2.2)
with an approximate bilinear form ah(·, ·):

ah(uh,vh) = ∑
K∈T

∫

K
(χK divuh ·divvh +βKuh ·vh) dx (2.10)

where the coefficients χK’s and βK’s are elementwise constant. In our present
setting of piecewise constant coefficients, for every K ∈ T , χK = χi (βK = βi,
respectively) if K ∈ T i or T i

∗ for i ∈ {1,2}.
With the modified bilinear form in (2.10), we can now define a more prac-

tical finite element method for the variational Problem (Q) by replacing a(·, ·)
by ah(·, ·).

Problem (Q̃hhh). Find uh ∈ Fh such that

ah(uh,vh) =
∫

Ω
f ·vh dx ∀vh ∈ Fh. (2.11)



Convergence analysis of FEM 199

It can be immediately seen that the bilinear form ah(·, ·) still preserves

coercivity and continuity, and thus the well-posedness of Problem (Q̃h) is as-
sured. Moreover, the two bilinear forms ah and a are related to each other by

a(u,v) = ah(u,v)+a∆(u,v) (2.12)

where the residual bilinear form a∆(·, ·) satisfies

|a∆(u,v)| 6 C‖u‖H(div;Sδ )‖v‖H(div;Sδ ) (2.13)

with the constant C depending only on the coefficients χi’s and βi’s.

2.4. Interface-aware interpolation operator

The modification of the bilinear form for ease of computation of stiffness
matrix complicates the error estimate quite a lot. We have to recover quasi-
optimality by taking into account numerical crime. It is worth remarking that
there are no ambiguities of the interpolation operator Πh when applied for
functions in H0(div;Ω)∩ H1(div;Ω1) ∩ H1(div;Ω2), but the corresponding
interpolant is not a good candidate to yield best approximation error esti-
mate. It is worth pointing out that the original idea to derive error estimate
by combining Cea’s lemma with interpolation error estimate of Πh, which
works in H(div;Ω)-elliptic problems, fails in H(div;Ω)-elliptic interface one.
Instead we shall define a problem-specific interface-aware interpolation oper-
ator, which can be viewed as a perturbed version of Πh. The pivotal idea is
to define a perturbed degree of freedom for each interface face of an interface
element by a surrogate degree of freedom defined through the interface twin
face. To be more precise, we elucidate the idea in the following definition,
cf. [16, Sect. 2.4].

Definition 2.5 (interface-aware interpolation operators). Let Th be an
oriented unstructured tetrahedral triangulation satisfying Assumptions 2.1 and
2.2 with mesh size h, and Fh the lowest order Raviart–Thomas elements on Th.

For a function u ∈ H0(div;Ω)∩H1(div;Ω1)∩H1(div;Ω2), we define a
perturbed interface-aware interpolation operator

Π̃h : H0(div;Ω)∩H1(div;Ω1)∩H1(div;Ω2) 7→ Fh

and its interpolation Π̃h as follows:

∫

f
Π̃hu ·n dS =





∫

f
u ·n dS, f ∈ Fh is a non-interface face

∫

f̃
u ·n dS, f ∈ Fh is an interface face associated

with an interface twin face f̃ .
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We remark that the interface-aware interpolation operator Π̃h is introduced
only for the subsequent theoretical error estimates, and it is not needed in the

numerical implementation of the finite element method (Q̃h).

3. Theoretical tools

In this section, we supply some technical results which are indispensable
tools for the subsequent convergence analysis of finite element methods for
H(div;Ω)-elliptic interface problems.

We first recall an important inequality, under the same problem setting as
in Section 1, which will be used for the error estimate in the region near the
smooth interface. The proof is similar to that of [19, Lemma 2.1].

Lemma 3.1. Let i ∈ {1,2}. Then it holds for any zi ∈ H1(Ωi) that

‖zi‖L2(Si
δ
) 6 C

√
δ‖zi‖H1(Ωi)

provided that δ is sufficiently small. Here the constant C depends only on the

smooth interface and the domain Ω.

There is a straightforward corollary to Lemma 3.1 which can be viewed as
its vectorized version in H1(div) spaces by simply using the Cauchy–Schwarz
inequality.

Corollary 3.1 (δδδ -strip argument). Let i ∈ {1,2}. Then it holds for any
zi ∈ H1(div;Ωi) that

‖zi‖H(div;Si
δ
) 6 C

√
δ‖zi‖H1(div;Ωi)

provided that δ is sufficiently small. The constant C depends only on the
smooth interface and the domain Ω.

Next, motivated by the construction of extension operators for functions in
Sobolev spaces Hk(Ω) [1, 11], we develop in this subsection a new extension
theorem for functions in the H1(div) space. This new extension result will play
a crucial role in the subsequent error estimate on interface elements.

It is well-known that (see, e.g., [11, Theorem 1, Sec. 5.4]) for a connected
bounded domain in U ⊂ R3 with C2-smooth boundary there exists a bounded
linear extension operator

E : H2(U) → H2(R3)
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such that for any scalar function u ∈ H2(U):

1. Eu = u a.e. in U ;

2. ‖Eu‖H2(R3) 6 C‖u‖H2(U) with the constant C depending only on U .

Compared with the extension of scalar functions, vector fields must be
extended in a more delicate way to conserve their properties. In [16, Thm. 4.3],
the following H1(curl)-extension theorem is proved based on the commuting
diagram property [15]:

Ecurl(grad p) = grad(E p). (3.1)

Theorem 3.1 (H111(curl)-extension theorem). Assuming that U is a con-

nected bounded domain in R3 with C2-smooth boundary. Then there exists a

bounded linear extension operator:

Ecurl : H1(curl;U) → H1(curl;R3) (3.2)

such that for each u ∈ H1(curl;U):

1. Ecurlu = u a.e. in U;

2. ‖Ecurlu‖H1(curl;R3) 6C‖u‖H1(curl;U), with the constant C depending only

on U.

Analogously, suppose u∈H1(div;U) and we wish to extend u to be a func-
tion ũ ∈ H1(div;R3). Since for a vector-valued function w ∈ H1(curl;U) we
have curlw ∈ H1(div;U), it seems promising to define an H1(div)-extension
operator Ediv still based on the commuting diagram property [15]:

Ediv(curlw) = curl(Ecurlw). (3.3)

With such motivation, we are now able to show the H1(div)-extension theo-
rem across the smooth boundary, whose proof will be given in detail in Ap-
pendix A.

Theorem 3.2 (H111(div)-extension theorem). Assume that U is a connected

bounded domain in R3 with C2-smooth boundary. Then there exists a bounded

linear extension operator:

Ediv : H1(div;U) → H1(div;R3), i = 1,2 (3.4)

such that for each u ∈ H1(div;U):
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1. Edivu = u a.e. in U;

2. ‖Edivu‖H1(div;R3) 6 C‖u‖H1(div;U), with the constant C depending only

on U.

For our subsequent analysis, we need the following special version of The-
orem 3.2.

Corollary 3.2. There exist two bounded linear operators

Ei
div : H1(div;Ωi) → H1(div;Ω), i = 1,2 (3.5)

such that for each u ∈ H1(div;Ωi):

1. Ei
divu = u a.e. in Ωi;

2.
∥∥Ei

divu
∥∥

H1(div;Ω)
<∼ ‖u‖H1(div;Ωi)

.

Proof. Noticing Assumption 2.2 that the interface Γ is C2-smooth, and
some slight modification in the proof of Theorem 3.2 immediately yields the
desired result. 2

The following inequality in a pyramid can be found in [16, Lemma 3.6],
and will be applied to the error estimates in those pyramids with slender bottom
faces in the next section.

Lemma 3.2. Let P be a pyramid with F being its quadrilateral bottom

face and O its apex (see Fig. 5). Then we have

‖u‖2
L2(F) 6

3

d
‖u‖L2(P)(hP‖gradu‖L2(P) +‖u‖L2(P)) ∀u ∈ H1(P)

where d := dist(O,F), hP := max{|x−y| : x,y ∈ P}. Moreover, if d ∼ O(hP)
and hP < 1, we have

‖u‖2
L2(F) 6 C

(
1

hP

‖u‖2
L2(P) +‖gradu‖2

L2(P)

)
∀u ∈ H1(P) (3.6)

with C > 0 independent of hP.
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d

F

O

Figure 5. Sketch of the pyramid in Lemma 3.2.

4. Convergence analysis

In this section, we show the optimal convergence for the H(div)-elliptic in-
terface problem using the lowest order H(div;Ω)-conforming finite element
approximation. We first state a technical lemma to be used for the convergence
theorem.

Lemma 4.1. Let u ∈ H0(div;Ω) ∩ H1(div;Ω1) ∩ H1(div;Ω2). Then we

have

∑
K∈T 1∗

‖E1
divu1‖2

H(div;K∩Ω2)
6 ‖E1

divu1‖2
H(div;S2

δ
) 6 Cδ‖u1‖2

H1(div;Ω1)
(4.1)

∑
K∈T 1∗

‖u2‖2
H(div;K∩Ω2)

6 ‖u2‖2
H(div;S2

δ
) 6 Cδ‖u2‖2

H1(div;Ω2)
. (4.2)

Analogously,

∑
K∈T 2∗

‖E2
divu2‖2

H(div;K∩Ω1)
6 ‖E2

divu2‖2
H(div;S1

δ
) 6 Cδ‖u2‖2

H1(div;Ω2)
(4.3)

∑
K∈T 2∗

‖u1‖2
H(div;K∩Ω1)

6 ‖u1‖2
H(div;S1

δ
) 6 Cδ‖u1‖2

H1(div;Ω1)
. (4.4)

Proof. We only prove (4.1)–(4.2) since the estimates (4.3)–(4.4) can be
shown in exactly the same manner. To see (4.1), we note

⋃
K∈T 1∗

K ∩Ω2 ⊂ S2
δ

and that all elements of Th are pairwise disjoint, the first inequality in (4.1)
follows immediately from Assumption 2.2. For the second estimate, using the
Corollary 3.1 and the continuity property of the extension operator E1

div yields

‖E1
divu1‖2

H(div;S2
δ
)
6 Cδ‖E1

divu1‖2
H1(div;Ω2)

6 Cδ‖u1‖2
H1(div;Ω1)

.

The estimate (4.2) is obtained analogously by noting the fact that
⋃

K∈T 1∗
K ∩

Ω2 ⊂ S2
δ . 2
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To obtain the convergence result, we need to show an appropriate interpo-

lation error estimate for the interface-aware interpolation operator Π̃h in Defi-
nition 2.5. The following estimate is the counterpart of [16, Lemma 4.2], with
a much more involved proof, however, due to more complicated geometrical
considerations.

Lemma 4.2. Let u ∈ H0(div;Ω) ∩ H1(div;Ω1) ∩ H1(div;Ω2). Then we

have

∥∥∥u− Π̃hu

∥∥∥
H(div;Ω)

6 C

(
h+

√
δ +

δ√
h

)(
‖u‖H1(div;Ω1)

+‖u‖H1(div;Ω2)

)
(4.5)

with constant C > 0 depending on ρ(Th), γ(Th) and Ω, but independent of h,

δ and u.

Proof. Let K ∈ T 1
∗ . We notice the crucial identity is

Π̃hu

∣∣∣
K

= Π̃hE1
divu

∣∣∣
K

.

Then we can decompose the difference u− Π̃hu over K into three parts:

(
u− Π̃hu

)∣∣∣
K

=
(
u−E1

divu
)∣∣

K
+

(
E1

divu−ΠhE1
divu

)∣∣
K

+
(

ΠhE1
divu− Π̃hE1

divu
)∣∣∣

K
. (4.6)

Noting that u = E1
divu on K ∩Ω1 and employing Lemma 4.1 leads to

∑
K∈T 1∗

∥∥u−E1
divu

∥∥2

H(div;K)
= ∑

K∈T 1∗

∥∥u−E1
divu

∥∥2

H(div;K∩Ω2)

6 C ∑
K∈T 1∗

‖u‖2
H(div;K∩Ω2)

+ ∑
K∈T 1∗

∥∥E1
divu

∥∥2

H(div;K∩Ω2)

6 Cδ ‖u‖2
H1(div;Ω1)

. (4.7)

A classical interpolation result ( [21, Theorem 5.25, pp. 124]) for the stan-
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e1

e2

e3

f

n

(a)

ẽ1

ẽ2

ẽ3

f̃

n

(b)

Figure 6. Orientations of interface (twin) faces.

dard interpolation operator Πh and the continuous property of E1
div give

∑
K∈T 1∗

∥∥E1
divu−ΠhE1

divu
∥∥2

H(div;K)
6 C ∑

K∈T 1∗

h2
∥∥E1

divu
∥∥2

H1(div;K)

6 Ch2
∥∥E1

divu
∥∥2

H1(div;Ω)
6 Ch2 ‖u‖2

H1(div;Ω1)
. (4.8)

The most challenging issue comes from the third term in the right hand side
of (4.6), where we observe that the only difference between two interpolation
functions involved lies in the degrees of freedom associated with the interface
faces of first and second kind. Without loss of generality, let us consider a
typical case, namely picking up the interface element K1 as shown in Fig. 4a
as our current K and assuming that most part of K1 lies in Ω1.

We shall investigate the error estimate in K1 in detail step by step with

reference to Fig. 4. First of all, we have by the definition of Πh and Π̃h:

∥∥∥ΠhE1
divu − Π̃hE1

divu

∥∥∥
2

H(div;K1)
=

∥∥∥∥
(∫

f
E1

divu ·d~S−
∫

f̃
E1

divu ·d~S
)

b f

+
3

∑
i=1

(∫

fi

E1
divu ·d~S−

∫

f̃i

E1
divu ·d~S

)
b fi

∥∥∥∥
2

H(div;K1)

.

Without loss of generality, all basis functions b fi
, i = 1,2,3, and b f refer to

outgoing fluxes with normal vectors pointing outward. Here we play the trick

to enclose V
f , f̃

by adding Sei,ẽi
, i = 1,2,3, to f and − f̃ (which means f̃ with

opposite orientation) and subtracting the surplus. Note that for h sufficiently

small, the orientations of f and f̃ are approximately the same as indicated by
the outward normal direction n in Figs. 6a and 6b. Note that the orientations of

Sei,ẽi
’s depends only on those of fi and f̃i.
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Then the equality above can be rewritten as the following crucial identity:
∥∥∥∥
(∫

f
E1

divu ·d~S−
∫

f̃
E1

divu ·d~S
)

b f

+
3

∑
i=1

(∫

fi

E1
divu ·d~S−

∫

f̃i

E1
divu ·d~S

)
b fi

∥∥∥∥
2

H(div;K1)

=

∥∥∥∥
(∫

f∪(− f̃ )∪Se1,ẽ1
∪Se2,ẽ2

∪Se3,ẽ3

E1
divu ·d~S

)
b f

+
3

∑
i=1

(∫

Sei,ẽi

E1
divu ·d~S

)
(b fi

−b f )

∥∥∥∥
2

H(div;K1)

:=
∥∥Θ+Λ

∥∥2

H(div;K1)
.

An insightful observation of the orientations of f , f̃ , Se1,ẽ1
, Se2,ẽ2

and Se3,ẽ3

enables us to apply the divergence law to further estimate Θ:

‖Θ‖2
H(div;K1)

6 C
∥∥b f

∥∥2

H(div;K1)

(∫

V
f , f̃

divE1
divu dV

)2

6 C
1

h3

(∫

V
f , f̃

divE1
divu dV

)2

6 C
|V

f , f̃
|

h3

(∫

V
f , f̃

|divE1
divu|2 dV

)

where we employ the H(div)-estimates for the basis function b f in Lemma 2.2
in the second inequality and use the Cauchy–Schwarz inequality in the third
one.

Another important observation is the following divergence-free property:

div(b f1

K −b
f2

K ) = 0 (4.9)

where f1, f2 are two different faces of any tetrahedron K with the same orien-
tation, i.e., both pointing either inward or outward with respect to K. With this
in mind, we now estimate Λ as follows:

‖Λ‖2
H(div;K1)

6 C
3

∑
i=1

∥∥(b fi
−b f )

∥∥2

L2(K1)

(∫

Sei,ẽi

E1
divu ·d~S

)2

6 C
3

∑
i=1

(∥∥b fi

∥∥
L2(K1)

+
∥∥b f

∥∥2

L2(K1)

)(∫

Sei,ẽi

E1
divu ·d~S

)2

6 C
|Se,ẽ|

h

(∫

Se,ẽ

|E1
divu|2 dS

)
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where we employ the L2-estimates for the basis function b f b fi
in Lemma 2.2

and use the Cauchy–Schwarz inequality in the last inequality.

It is pointed out that the local error estimate above is done within an ele-
ment. The same argument can be applied for any element patch by combining
K1 with adjacent interface elements with no interface face of the first kind.
Hence taking summation over all the interface faces and noticing that all slen-
der volumes corresponding to the interface faces of the first kind are restricted
in the δ -region with finite overlap due to the quasi-uniformity assumption of
the triangulation, i.e., ⋃

f∈Fh
f⊂Sδ

V
f , f̃

⊂ Sδ (4.10)

thus we obtain

∑
K∈T 1∗

∥∥∥ΠhE1
divu− Π̃hE1

divu

∥∥∥
2

H(div;K)

<∼ ∑
K∈T 1∗

(

∑
f∈Fh

f⊂K∩Sδ

|V
f , f̃
|

h3

(∫

V
f , f̃

|divE1
divu|2 dV

)

+ ∑
e∈Eh

e⊂K∩Sδ

|Se,ẽ|
h

(∫

Se,ẽ

|E1
divu|2 dS

))

<∼
δ

h

∥∥divE1
divu

∥∥2

L2(Sδ )
+

δ

h

∥∥E1
divu

∥∥2

L2(Sδ )
+δ

∥∥gradE1
divu

∥∥2

L2(Sδ )

<∼
(

δ 2

h
+δ

)
‖u‖2

H1(div;Ω1)
.

(4.11)

Here we substitute (2.4) into the first inequality, make use of the inclusion
(4.10) and apply Lemma 3.2 in the second one, and finally employ the δ -strip
argument (Corollary 3.1) together with the continuity of the extension operator

E1
div in the last one.

Now for any non-interface element K ∈T 1, u∈H1(div;K) and u−Π̃hu =
u−Πhu. Again a classical interpolation result (cf. [21]) yields

∑
K∈T 1

∥∥∥u− Π̃hu

∥∥∥
2

H(div;K)
= ∑

K∈T 1

‖u−Πhu‖2
H(div;K)

<∼ ∑
K∈T 1

h2 ‖u‖2
H1(div;K)

<∼ h2 ‖u‖2
H1(div;Ω1)

. (4.12)
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Combining (4.6), (4.7), (4.8), (4.11), and (4.12) yields

∑
K∈T 1∪T 1∗

∥∥∥u− Π̃hu

∥∥∥
2

H(div;K)
<∼

(
δ 2

h
+δ +h2

)
‖u‖2

H1(div;Ω1)
. (4.13)

Completely analogously, we repeat the previous argument by interchang-

ing the indices from 1 to 2 and arrive at the error estimate for any K ∈T 2∪T 2
∗ .

The desired error estimate results from combining the two parts of contribu-
tion, which completes our proof. 2

Now we are in a position to state our main theorem about the optimal con-
vergence of Galerkin solutions of H(div)-elliptic interface problems by face
elements.

Theorem 4.1. Let u and uh be the solutions to Problems (Q) and (Q̃h),
respectively, and assume u ∈ H0(div;Ω)∩H1(div;Ω1)∩H1(div;Ω2). Then we

have the following error estimate under Assumptions 2.1 and 2.2:

‖u−uh‖H(div;Ω) 6 Ch(‖u‖H1(div;Ω1)
+‖u‖H1(div;Ω2)

) (4.14)

with constant C > 0 depending on χi’s, βi’s, ρ(Th), γ(Th) and Ω, but inde-

pendent of h, δ and u.

Proof. We apply the first Strang lemma (see, e.g., [10], Theorem 4.1.1) to
(2.9) and (2.11)

‖u−uh‖H(div;Ω) 6 C inf
wh∈Fh

{
‖u−wh‖H(div;Ω) + sup

vh∈Fh

|a(wh,vh)−ah(wh,vh)|
‖vh‖H(div;Ω)

}
.

(4.15)

In particular, we choose wh = Π̃hu. By Lemma 4.2 we have

‖u− Π̃hu‖H(div;Ω) 6 C

(
δ√
h

+h+
√

δ

)(
‖u‖H1(div;Ω1)

+‖u‖H1(div;Ω2)

)
.

(4.16)
Next, for any vh ∈ Fh we can derive by using Lemma 4.1 and Corollary 3.1

that

|a∆(Π̃hu,vh)| 6 C‖Π̃hu‖H(div;Sδ )‖vh‖H(div;Sδ )

6 C
(
‖u‖H(div;Sδ ) +‖u− Π̃hu‖H(div;Sδ )

)
‖vh‖H(div;Sδ )

6 C

(√
δ +h+

δ√
h

)(
‖u‖H1(div;Ω1)

+‖u‖H1(div;Ω2)

)
‖vh‖H(div;Ω)
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which implies that

sup
v∈Fh

|a∆(Π̃hu,vh)|
‖vh‖H(div;Ω)

6 C

(√
δ +h+

δ√
h

)(
‖u‖H1(div;Ω1)

+‖u‖H1(div;Ω2)

)
.

(4.17)
The desired estimate now follows from Assumption 2.2 by substituting δ ∼
O(h2) into wherever δ occurs in (4.15)–(4.17) and plugging (4.16)–(4.17) into
(4.15). 2

Remark 4.1. The optimal convergence result in Theorem 4.1 does not ad-
dress the impact of coefficients, which is implicitly taken into account in the
generic constant C. Actually the relative size ratio of coefficients could have
enormous effect in the numerical computation, especially when it is extremely
large or small. This issue is beyond the scope of our current work and will be
addressed in the future.

5. Numerical experiments

In this section, we conduct numerical test to verify the theoretical prediction of
the convergence analysis developed in previous sections. Our numerical exper-
iments are implemented using Matlab combined with the commercial package
Femlab. We will test the first family of Nédélec face elements of the lowest
order. It is remarked that we use non-nested families of triangulations in order
to make sure they are interface-aware. Note that after each step of mesh refine-
ment, some regularly refined interface elements have to be slightly adjusted to
meet the interface-aware condition. In the sequel, we will test the convergence
rates for the relative error in the H(div;Ω)-norm which is defined by

Relative H(div;Ω) error :=
‖u−uh‖H(div;Ω)

‖u‖H(div;Ω)

(5.1)

and relative error in the energy norm, namely,

Relative energy error :=
‖u−uh‖a

‖u‖a

. (5.2)

Note that both H(div;Ω) and energy norms are numerically computed using a
fourth order quadrature rule.

Example 5.1. The computational domain is taken to be a ball Ω = {(x,y,z):

x2 +y2 +z2 6 r2}, and the interface Γ is a spherical surface {(x,y,z) : x2 +y2 +
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z2 = r1}. The exact solution u(x,y,z) is given by

u(x,y,z) =





1

χ1

u1(x,y,z), x2 + y2 + z2 6 r1

1

χ2

u2(x,y,z), r1 < x2 + y2 + z2 6 r2

(5.3)

where u1(x,y,z) is given by




(y− z)+n1(r
2
1 − x2 − y2)(z− x)−n1(r

2
1 − x2 − y2)(x− y)

−n1(r
2
1 − x2 − y2)(y− z)+(z− x)+n1(r

2
1 − x2 − y2)(x− y)

n1(r
2
1 − x2 − y2)(y− z)−n1(r

2
1 − x2 − y2)(z− x)+(x− y)




and u2(x,y,z) by




(y− z)+n2(r
2
1 − x2 − y2)(r2

2 − x2 − y2)(z− x)
−n2(r

2
1 − x2 − y2)(r2

2 − x2 − y2)(x− y)

−n2(r
2
1 − x2 − y2)(r2

2 − x2 − y2)(y− z)+(z− x)
+n2(r

2
1 − x2 − y2)(r2

2 − x2 − y2)(x− y)

n2(r
2
1 − x2 − y2)(r2

2 − x2 − y2)(y− z)
−n2(r

2
1 − x2 − y2)(r2

2 − x2 − y2)(z− x)+(x− y)




.

For this example, we fix r1 = 1, r2 = 2, n2 = 20, n1 = n2(r
2
2−r2

1), β1 = β2 =
1 and derive the source functions f through the equation (1.1) for different pairs

Figure 7. A sample slice view of the triangulation of interface-aware mesh in 3D.
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Figure 8. The convergence rates for: (a) χ1 = 1, χ2 = 10; (b) χ1 = 1, χ2 = 103; and (c) χ1 = 1,

χ2 = 10−3, respectively.
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Figure 9. Relative error in the energy norm versus relative jump of coefficients for a fine trian-
gulation with meshsize h = 0.1232 in Example5.1.

of χ1 and χ2, using the exact solution (5.3) which satisfies the homogeneous
boundary condition and jump conditions on the interface. Numerical conver-
gence tests are carried out to analyze the rates of the error decay using lowest
order face elements of the first family. We start our tests on a rather coarse
mesh with maximum mesh size h = 2 and then refine the mesh in a regular and
uniform way which subdivides a coarse element into eight smaller ones. The
refinement process will be done for three consecutive times which amounts to
2,568,192 degrees of freedom at the finest mesh with mesh size h = 0.125.

A slice view of the interface-aware mesh are shown in Fig. 7. From Fig. 8a
with χ1 = 1 and χ2 = 10, it can be clearly seen that as the mesh gets finer
and finer, the line of the convergence rate tends to be parallel to the reference
line of first order convergence in terms of the mesh size. More precisely, in
the asymptotic sense, face elements indeed yield the optimal first order con-
vergence in the H(div;Ω) norm as predicted by theory. Next, we adjust the
relative jump of the coefficients χ2/χ1 to be 103 and 10−3, respectively, and
also plot the corresponding convergence rates in Figs. 8b and 8c. Similar obser-
vations with asymptotic tendency of first order convergence rate with respect
to the meshsize further consolidate our theoretical result.

Last, we test the relation between the relative error in the energy norm and
relative jump of the coefficients χ2/χ1. On a typical fine mesh with mesh size
h = 0.1232 with 4,396,225 degrees of freedom. We increase the relative jump
of coefficients from 10−8 to 108 by fixing χ1 or χ2 to be unity and plot the
corresponding relative energy error curve versus the relative jump in Fig. 9. It
can be seen that the numerical solution converges quite robustly in the sense
of energy norm with respect to the relative jump of coefficients.
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6. Conclusion

We have analyzed the convergence of the H(div;Ω)-conforming finite ele-
ment method for H(div;Ω)-elliptic interface problems based on families of
interface-aligned meshes. The difficulty mainly arises from the discontinuity
of the coefficient in the second order term of equation (1.1). Optimal conver-
gence results in H(div;Ω)-norm are obtained under reasonable regularity as-
sumptions. With this work, we have completed the finite element convergence
analysis for standard second order elliptic interface problems [19], H(curl;Ω)-
elliptic interface problems [16] and H(div;Ω)-elliptic interface problems (this
work). Optimal rates can be established for each case.

Appendix A

Proof of Theorem 3.2. 1. We first prove the half ball extension follow-
ing [1, 25].

For a fixed x0 ∈ Γ, we first suppose that ∂U is flat near x0 which is lying
in the plane {x | x3 = 0}. We assume that there exists an open ball

B = {x; |x−x0| < r}

with center x0 and radius r > 0 such that

{
B+ := B∩{x3 > 0} ⊂U ,

B− := B∩{x3 < 0} ⊂ R3 \U .

2. Suppose p ∈ C∞(U). We define a H1(curl) reflection of p from B+ to
B−:

p̃ =





p(x), x ∈ B+




∑
3

j=1
λ j p

1
(
x1,x2,−

x3

j

)

∑
3

j=1
λ j p

2
(
x1,x2,−

x3

j

)

∑
3

j=1
−λ j

j
p3

(
x1,x2,−

x3

j

)




, x ∈ B− (A.1)

where (λ1,λ2,λ3) are the solutions of the 3×3 system of linear equations

3

∑
j=1

(
−1

j

)k

λ j = 1, k = 0,1,2 (A.2)
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which has the unique solution (λ1,λ2,λ3) = (6,−32,27). It is readily checked
that

p̃ ∈C1(B).

Now we define a reflection of curlp from B+ to B− in view of (3.3).

c̃urlp =

{
curlp, x ∈ B+

curl p̃, x ∈ B− (A.3)

or

c̃urlp =








p3
x2
− p2

x3

p1
x3
− p3

x1

p2
x1
− p1

x2


 , x ∈ B+




∑
3

j=1
−λ j

j
p3

x2

(
x1,x2,−

x3

j

)

−∑
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−λ j

j
p2

x3

(
x1,x2,−

x3

j

)

∑
3

j=1
−λ j

j
p1

x3

(
x1,x2,−

x3

j
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−∑
3
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−λ j

j
p3
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(
x1,x2,−

x3

j

)
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3

j=1
λ j p

2
x1

(
x1,x2,−

x3

j

)

−∑
3

j=1
λ j p

1
x2

(
x1,x2,−

x3

j

)




, x ∈ B−.

(A.4)

Comparing the components of c̃urlp in (A.4) in B+ and B−, we derive a
tentative extension formula for a vector-valued function w = (w1,w2,w3)

t ∈
C∞(B+) as follows:

w̃(x) =




w̃1(x)

w̃2(x)

w̃3(x)


 :=





w(x), x ∈ B+




∑
3

j=1
−λ j

j
w1

(
x1,x2,−

x3

j

)

∑
3

j=1
−λ j

j
w2

(
x1,x2,−

x3

j

)

∑
3

j=1
λ jw

3
(
x1,x2,−

x3

j

)




, x ∈ B−.
(A.5)
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3. We claim w̃ ∈C1(B) and thus div w̃ ∈C0(B). This can be demonstrated
by a detailed computation. Indeed according to (A.5) and (A.2),

lim
x3→0+

w̃i(x) = lim
x3→0−

w̃i(x), i = 1,2,3 (A.6)

lim
x3→0+

w̃i
x j
(x) = lim

x3→0−
w̃i

x j
(x), i, j = 1,2,3. (A.7)

4. We prove

‖w̃‖H1(div;B) 6 C‖w‖H1(div;B+) . (A.8)

In fact, by the definition of w̃ we can derive

∫

B
|w̃(x)|2 dx =

∫

B+
|w(x)|2 dx+

∫

B−

∣∣∣∣∑
3

j=1

λ j

− j
w1

(
x1,x2,−

x3

j

)∣∣∣∣
2

dx

+
∫

B−

∣∣∣∣∑
3

j=1

λ j

− j
w2

(
x1,x2,−

x3

j

)∣∣∣∣
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6 C
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2
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3

j=1
λ jw

3
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(
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x3

j
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6 C

∫

B+
|gradw(x)|2 dx
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∫

B
|div w̃(x)|2 dx =

∫
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x1
(x)+w2

x2
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j
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6 C

∫

B+
|divw(x)|2 dx

∫

B
|graddiv w̃(x)|2 dx =

3
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x1,xk
(x)+w2

x2,xk
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2
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6 C

∫

B+
|graddivw(x)|2 dx .

The estimate (A.8) now follows readily from the above four inequalities.

5. If ∂U is not flat near x0, we can find a C2-mapping Φ, with the inverse
Φ−1, such that Φ flattens ∂U near x0. We can write y = Φ(x), x = Φ−1(y), and

v(y) := w(Φ−1(y)). Choosing a small ball B and arguing as in the previous
steps, we can extend v from B+ to a function ṽ defined in B such that ṽ ∈
C1(B) and thus curl ṽ ∈ C0(B) and the following estimate holds for any v ∈
H1(div;B+):

‖ṽ‖H1(div;B) 6 C‖v‖H1(div;B+) . (A.9)

Letting W := Φ−1(B), W+ := Φ−1(B+) and converting back to the x-variable,
we have

‖ṽ‖H1(div;W ) 6 C‖v‖H1(div;W+) . (A.10)

6. Due to the compactness of ∂U , there exist finitely many open balls Wi,
i = 1,2, . . . ,N, such that ∂U ⊂ ⋃N

i=1Wi. Take W0 ⋐ U such that U ⊂ ⋃N
i=0Wi.
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Let {ϑi}N
i=0 be a partition of unity associated with Wi, i = 0,1,2, . . . ,N. For any

given smooth w = ∑N
i=0 wi with wi = ϑiw, let w̃ = w0 +∑N

i=1 w̃i, where w̃i are
extensions of wi defined in Wi for i = 1,2, . . . ,N. Replacing ṽ and v in (A.10)
with w̃i and wi, respectively, and taking summation from 0 to N we obtain

‖w̃‖H1(div;R3) 6 C‖w‖H1(div;U) (A.11)

for some constant C depending on U but not on w.

7. Hereafter we define an extension operator

Edivw = w̃

and observe that the mapping w 7→ Edivw is linear. Using the density of C∞(U)
in H1(div;U), we can verify that the operator Ediv is what we desire.

This completes the proof of the theorem. 2
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22. J. Nédélec, Mixed finite elements in R3. Numer. Math. (1980) 35, 315 – 341.

23. P.-O. Persson and G. Strang, A simple mesh generator in Matlab. SIAM Review (2004) 46,
329 – 345.

24. M. Plum and C. Wieners, Optimal a priori estimates for interface problems. Numer. Math.
95 (2003) 95, 735 – 759.

25. S. Seeley, Extensions of C∞ functions defined on a half space. Proc. Amer. Math. Soc.
(1961) 15, 625 – 626.

26. P. Vassilevski and R. Lazarov, Preconditioned mixed finite element saddle point elliptic
problems. Numer. Linear Alg. Appl. (1996) 3, 1 – 20.


