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A B S T R A C T

We use observational data on the large-scale structure (LSS) of the Universe measured over

a wide range of scales, from subgalactic up to horizon scale, and on the cosmic microwave

background anisotropies to determine cosmological parameters within the class of adiabatic

inflationary models. We show that a mixed dark matter model with cosmological

constant (LMDM model) and parameters Vm � 0:3710:25
20:15; VL � 0:6910:15

20:20; Vn �
0:0310:07

20:03; Nn � 1; Vb � 0:03710:033
20:018; ns � 1:0210:09

20:10; h � 0:7110:22
20:19; bcl � 2:410:7

20:7 (1s
confidence limits) matches observational data on LSS, the nucleosynthesis constraint,

direct measurements of the Hubble constant, the high-redshift supernova type Ia results and

the recent measurements of the location and amplitude of the first acoustic peak in the

cosmic microwave background (CMB) anisotropy power spectrum. The best model is L-

dominated (65 per cent of the total energy density) and has slightly positive curvature,

V � 1:06: The clustered matter consists of 8 per cent massive neutrinos, 10 per cent baryons

and 82 per cent cold dark matter (CDM). The upper 2s limit on the neutrino content can be

expressed in the form Vnh
2=N0:64

n # 0:042 or, via the neutrino mass, mn # 4:0 eV: The

upper 1(2)s limit for the contribution of a tensor mode to the COBE DMR data is T=S ,

1�1:5�: Furthermore, it is shown that the LSS observations, together with the Boomerang

(1MAXIMA-1) data on the first acoustic peak, rule out zero-L models at more than a 2s
confidence limit.

Key words: cosmic microwave background ± cosmological parameters ± cosmology:

theory ± dark matter ± large-scale structure of Universe.

1 I N T R O D U C T I O N

In the last decade of this century we have obtained important

experimental results which play a crucial role for cosmology: the

Cosmic Background Explorer (COBE) has discovered the large-

scale anisotropies of the cosmic microwave background radiation

(Bennett et al. 1996); the High-Z Supernova Collaboration (Riess

et al. 1998) and the Supernova Cosmology Project (Perlmutter

et al. 1998) found that the Universe is accelerating rather than

decelerating; the Super-Kamiokande experiment (Fukuda et al.

1998) discovered neutrino oscillations that prove the existence of

neutrinos with non-zero rest mass; balloon-borne measurements of

the cosmic microwave background (CMB) temperature fluctua-

tions by Boomerang (de Bernardis et al. 2000) and MAXIMA-1

(Hanany et al. 2000) have measured the height, position and width

of the first acoustic peak, which is in superb agreement with an

adiabatic scenario of galaxy formation.

On the other hand, the comparison of recent experimental data

on the large-scale structure of the Universe with theoretical

predictions of inflationary cosmology have shown for quite some

time that the simplest cold dark matter (CDM) model is ruled out

and we have to allow for a wider set of parameters to fit all

observational data on the status and history of our Universe. These

include spatial curvature (Vk), a cosmological constant (VL), the

Hubble parameter �h ; H0=�100 km s21 Mpc21��; the energy

density of baryonic matter (Vb), cold dark matter (Vcdm), the

number of species of massive neutrinos (Nn) and their density

(Vn ), the amplitude of the power spectra of primordial perturba-

tions in scalar (As) and tensor (At) modes and the corresponding

power-law indices (ns and nt), and the optical depth to early

reionization (t ). Constraining this multidimensional parameter

space determining the true values of fundamental cosmological

parameters, the nature and content of the matter which fills our

Universe is an important and exciting problem of cosmology

which has now become feasible because of the enormous progress

in cosmological observations. About a dozen or more papers have

been devoted to this problem in the last couple of years (see e.g.

Lineweaver 1998; Lineweaver & Barbosa 1998; Bridle et al. 1999;
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Efstathiou & Bond 1999; Tegmark 1999; Balbi et al. 2000; Hu

et al. 2001; Lange et al. 2001; Lyth & Covi 2000; Merchiorri et al.

2000; Novosyadlyj et al. 2000a,b; Tegmark & Zaldarriaga

2000a,b; Tegmark, Zaldarriaga & Hamilton 2001; some reviews

are found in Durrer & Straumann 1999; Primack 2000; Primack &

Gross 2000; Sahni & Starobinsky 2000 and references therein).

However, in spite of these intensive investigations the problem

is still not satisfactorily resolved. Some of the remaining issues are

explained below.

First of all, we would like to have observations that `measure'

cosmological parameters in as model-independent a way as

possible. Clearly, most values of cosmological parameters

obtained from observations of large-scale structure, galaxy

clustering and CMB anisotropies are strongly model-dependent.

If the `correct' model of structure formation is not within the

family investigated, we may not notice it, especially if the error

bars are relatively large. This leads us to the next problem. Even if

cosmological observations have improved drastically, we still

need more accurate data with better defined statistical properties

(e.g. we need to know the correlation of different measurements).

The new CMB anisotropy data are already of this quality but the

galaxy and cluster data are still relatively far from it.

A next important point is the correspondence between

theoretical predictions and observational characteristics used in

the analysis. We have to find a fast but accurate way to compute

the theoretical values, especially when exploring high-dimensional

parameter spaces. All parameters must be fitted simultaneously,

which renders the problem computationally complicated and very

time-consuming. Owing to this difficulty, many authors search

some subset of parameters, setting the others to some fixed

`reasonable' priors, thereby investigating a subclass of cosmo-

logical models. As different authors also use different subsets of

observational data, the resulting cosmological parameters still

vary in a relatively wide range.

Another problem is the degeneracies in that appear in parameter

space, especially in the case when only CMB anisotropy data are

used (Efstathiou & Bond 1999). It can be reduced substantially or

even removed completely if galaxy clustering data, corresponding

to different scales and redshifts, are combined with CMB

measurements. This idea has already been employed on several

occasions and is known under the name `cosmic concordance' (for

a recent review see Tegmark et al. 2000).

The goal of this paper is to determine cosmological parameters

of the subclass of models without a tensor mode and no early

reionization on the basis of LSS data related to different scales and

different redshifts. In Novosyadlyj et al. (2000a) we have used the

same approach to test flat models; we have shown that LMDM

models are preferred in this class of models. There we have also

shown that pure CDM models with h $ 0:5; scale-invariant

primordial power spectrum, vanishing cosmological constant and

spatial curvature are ruled out at very high confidence level, more

than 99.99 per cent. The corresponding class of mixed dark matter

(MDM) models are ruled out at about 95 per cent confidence

level. It was noted (Novosyadlyj et al. 2000b) that the galaxy

clustering data set determines the amplitude of scalar fluctuations

approximately at the same level as the COBE four-year data. This

indicates that a possible tensor component in the COBE data

cannot be very substantial.

In this paper we test LMDM models with non-zero curvature.

Furthermore, we use the data on the location and amplitude of the

first acoustic peak determined from the most accurate recent

measurements of the CMB power spectrum. The data on the

amplitude of the second and third peaks are used as an additional

test for the model preferred by large-scale structure, COBE and

first peak data. We investigate the (in-)consistency of our data set

with the second and third peaks. We also use the SNIa constraint

for comparison.

The outline of the paper is as follows. In Section 2 we describe

the experimental data set that is used here. The calculations of

theoretical predictions and the method employed to determine

cosmological parameters are described in Section 3. In Section 4

we discuss our results and compare them with other investigations.

Our conclusions are presented in Section 5.

2 T H E E X P E R I M E N TA L DATA S E T

Our approach is based on the quantitative comparison of the

theoretical predictions for the characteristics of the large-scale

structure of the Universe with corresponding observational ones.

Theoretical predictions are calculated on the basis of an initial

power spectrum of density perturbations, the shape of which

strongly depends on all parameters supposed here for determina-

tion. Model-independent observational constraints on the inclina-

tion and amplitude of the power spectrum at different scales will

therefore be used in this search.

2.1 CMB data

We use the COBE 4-yr data on CMB temperature anisotropies

(Bennett et al. 1996) to normalize the density fluctuation power

spectra according to Liddle et al. (1996) and Bunn & White

(1997). Therefore, each model will match the COBE data by

construction.

We believe that using all available experimental data on DT/T at

angular scales smaller than the COBE measurement is not an

optimal way to search best-fitting cosmological parameters, owing

to their large dispersion (see for examples fig. 10.1 of Durrer &

Straumann 1999, fig. 2 of Novosyadlyj et al. 2000a or fig. 1 of

Tegmark et al. 2000), which together with the large number of

experimental points, ,70 stipulating a high degrees of freedom,

results in wide ranges for the confidence limits on cosmological

parameters. The Boomerang (de Bernardis et al. 2000) and

MAXIMA-1 (Hanany et al. 2000) experiments represent a new

generation of CMB measurements. They have produced a CMB

map of about ,100 deg2 with a resolution better than half a degree

and a S=N , 2; which allows us to determine the location and

amplitude of the first acoustic peak with high accuracy. The

position of the first and amplitudes of the first, second and third

acoustic peaks in the angular power spectrum of the CMB

temperature fluctuations together with the COBE data are the

main measured characteristics of the CMB power spectrum. They

contain information about amplitude and tilt of the primordial

power spectrum of density fluctuations at largest scales, from a

few tens of Mpc up to the current horizon scale of several

thousand Mpc. They are mainly sensitive to the parameters Vk,

Vmh2, VL, Vbh2 and ns and to the normalization of the initial

power spectrum of density fluctuations.

For example, the Boomerang data indicate that the first peak is

located at the Legendre multipole ~̀
p � 197 ^ 6 and has an

amplitude of ~Ap � 69 ^ 8mK (this 1s error includes statistical

and calibration errors). Here and in the following, a tilde denotes

observed quantities. We use these results in our search procedure.

The MAXIMA-1 data � ~̀p < 220; ~Ap � 78 ^ 6mK� marginally
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match Boomerang data and we will show that using them in

combination with Boomerang data does not change the results

significantly. The positions of the second and third peaks are not

well determined, and we will not use them in the main search

procedure but we use their amplitudes as determined by (Hu et al.

2001) for comparison with the predictions of our best-fitting

model.

2.2 Rich cluster data

The important constraints on the form and amplitude of the matter

power spectrum in the range from 10 h21 Mpc up to scales

approaching 1000 h21 Mpc can be obtained from the study of

clusters of galaxies, their space distribution, mass and X-ray

temperature functions.

The power spectrum reconstructed from the observed space

distribution of clusters has been determined many times for

different samples from Abell, ACO and APM catalogues (see

Einasto et al. 1997; Retzlaff et al. 1998; Tadros, Efstathious &

Dalton 1998; Miller & Batuski 2000 and references therein). The

remarkable feature of the determinations by different groups is

similar slopes of cluster power spectra on scales 0:02 h Mpc21 #
k # 0:1 h Mpc21; n , 21:5 (see above-mentioned references).

Here, we use the power spectrum of Abell±ACO clusters
~PA1ACO�kj� (Retzlaff et al. 1998) as observational input. It is

measured in the range 0:03 h Mpc21 # k # 0:2h Mpc21, where

effects of non-linear evolution are negligible, and it has well-

analysed sources of uncertainties. The cluster power spectrum is

biased with respect to the dark matter distribution. We assume that

the bias is linear and scale-independent. This is reasonable in the

range of scales considered as predicted from local bias models

(Fry & GaztanÄaga 1993) and indicated by numerical simulations

(Benson et al. 2000). In our previous paper (Novosyadlyj et al.

2000a) we have shown that not all the 13 points given in Retzlaff

et al. (1998) are independent measurements and the effective

number of degrees of freedom is 3. However, to make best use of

the observational information we use all 13 points of the power

spectrum to determine cosmological parameters and assign nF � 3

for the number of degrees of freedom in the marginalization

procedure.

A constraint for the amplitude of the fluctuation power

spectrum on cluster scales can be derived from the cluster mass

and the X-ray temperature functions. It is usually formulated as a

constraint for the density fluctuation in a top-hat sphere of

8 h21 Mpc radius, s8, which can be calculated for a given initial

power spectrum P(k) by

s2
8 �

1

2p2

�1

0

k2P�k�W2�8 Mpc k=h� dk; �1�

where W�x� � 3�sin x 2 x cos x�=x3 is the Fourier transform of a

top-hat window function. Recent optical determinations of the

mass function of nearby galaxy clusters (Girardi et al. 1998) give

~s8V
a1

m � 0:60 ^ 0:04; �2�
where a1 � 0:46 2 0:09Vm for flat low-density models and a1 �
0:48 2 0:17Vm for open models (at the 90 per cent confidence

level). Several groups have found similar results using different

methods and different data sets (for a comprehensive list of

references see Borgani et al. 1999). This constraint on s8 is

exponentially sensitive and thus allows only very small error bars.

If the theory is correct, this is of course a great advantage.

However, if our understanding of cluster formation is not entirely

correct, this will lead to discrepancies with other experimental

constraints.

From the observed evolution of the cluster X-ray temperature

distribution function between z � 0:05 and z � 0:32 we use the

following constraint derived by Viana & Liddle (1999):

~s8V
a2

m � 0:56 ^ 0:19V0:1 lgVm1a2

m ; a2 � 0:34

for open models and

~s8V
a2

m � 0:56 ^ 0:19V0:2 lgVm1a2

m ; a2 � 0:47

for flat models (both with 95 per cent confidence limits).

From the existence of three very massive clusters of galaxies

observed so far at z . 0:5 an additional constraint has been

established by Bahcall & Fan 1998:

~s8V
a3

m � 0:8 ^ 0:1; �3�

where a3 � 0:24 for open models and a3 � 0:29 for flat models.

Note that all these constraints are given by slightly different

formulae for either VL � 0 or VL 1 Vm � 1: However, we are

going to use them for arbitrary values of VL and Vm. As our best-

fitting models are relatively close to the flat model, we mainly use

the formula for the flat case. We have checked that our results are

insensitive to this choice.

2.3 Peculiar velocity data

As our approach is based on the initial power spectrum of density

fluctuations, it seems most favourable to use the power spectrum

reconstructed from the observed space distribution of galaxies.

However, the galaxy power spectra obtained from the two-

dimensional APM survey (e.g. Maddox, Efstathiou & Sutherland

1996; Tadros & Sutherland 1996, and references therein), the CfA

redshift survey (Vogeley et al. 1992; Park et al. 1994), the IRAS

survey (Saunders et al. 1992; Saunders et al. 2000) and the Las

Campanas Redshift Survey (da Costa et al. 1994; Landy et al.

1996) differ significantly in both the amplitude and the position of

the maximum. Moreover, non-linear effects on small scales must

be taken into account in their analysis. On the other hand, these

power spectra contain large number of experimental points which

are not independent and a decorrelation procedure for these power

spectra must be employed. For these reasons and also in order to

test the consistency between different data sets, we do not include

galaxy power spectra for the determination of parameters in this

work. It will be interesting to compare our best-fitting parameters

with those obtained in analyses including galaxy power spectra.

Another constraint on the amplitude of the linear power

spectrum of density fluctuations in our vicinity comes from the

study of bulk flows of galaxies in spheres of large enough radii

around our position. As these data may be influenced by the local

supercluster (cosmic variance), we will use only the value of the

bulk motion ± the mean peculiar velocity of galaxies in a sphere

of radius 50 h21 Mpc given by Kolatt & Dekel 1997,

~V50 � �375 ^ 85� km s21: �4�

With its generous error bars, this value is in a good agreement

with other measurements of bulk motion at the scale

40±60 h21 Mpc (Bertshinger et al. 1990; Courteau et al. 1993;

Dekel 1994; see also the review by Dekel 1999).
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2.4 Lya constraints

An important constraint on the linear matter power spectrum on

small scales �k , �2±40� h Mpc21] comes from the Lya forest, the

Lya absorption lines seen in quasar spectra (see Gnedin 1998,

Croft et al. 1998 and references therein). Assuming that the Lya
forest is formed by discrete clouds with a physical size close to the

Jeans scale in the reionized intergalactic medium at z , 2±4;
Gnedin (1998) has derived a constraint on the value of the rms

linear density fluctuations,

1:6 , ~sF�z � 3� , 2:6 �95 per cent confidence level�
at kF < 34V1=2

m h Mpc21: �5�
Taking into account the new data on quasar absorption lines, the

effective equation of state and the temperature of the intergalactic

medium at high redshift were re-estimated recently (Ricotti,

Gnedin & Shull 2000). As a result the value of Jeans scale at z � 3

has moved to kF < 38V1=2
m h Mpc21 (Gnedin, private communica-

tion). Here, we adopt this new value.

The procedure to recover the linear power spectrum from the

Lya forest has been elaborated by Croft et al. (1998). Analysing

the absorption lines in a sample of 19 QSO spectra, they have

obtained the following constraint on the amplitude and slope of

the linear power spectrum at z � 2:5 and kp � 1:5V1=2
m h Mpc21,

~D2
r�kp� ; k3

pP�kp�=2p2 � 0:57 ^ 0:26; �6�

~np ;
D log P�k�
D log k

jkp
� 22:25 ^ 0:18; �7�

at (1s confidence level). The like constraints on the amplitude and

slope of the linear power spectrum were obtained by (McDonald

et al. 2000) from the analysis of absorption lines in a sample of

eight QSOs. We will analyse these constraints in the context of our

task and compare them with previous two. In the main search

procedure, however, we will use the constraints given by Croft

et al. (1998) as based on the more extensive sample of quasars.

2.5 Other experimental constraints

In addition to the CMB and LSS measurements described above,

we also use some results of global observations which are

independent of the LSS model. For the value of the Hubble

constant we set

~h � 0:65 ^ 0:10; �8�
which is a compromise between measurements made by two

groups, Tammann & Federspiel (1997) and Madore et al. (1999).

We also employ a nucleosynthesis constraint on the baryon

density deduced from the determination of the primeval deuterium

abundance,eVbh 2 � 0:019 ^ 0:0024 �95 per cent confidence level�; �9�

given by Burles et al. (1999). The new, more precise determination

(Burles, Nollett & Turner 2001) confirms this value.

Furthermore, we include the distance measurements of super-

novae of type Ia (SNIa), which constrain the cosmic expansion

history (Riess et al. 1998; Perlmutter et al. 1998, 1999). In a

universe with cosmological constant this gives an important

constraint on a combination of the values of the curvature, the

cosmological constant and the matter content of the Universe. We

use the following constraint in our parameter search (Perlmutter

et al. 1999):

�Vme2 0:75VL� � 20:25 ^ 0:125: �10�

3 T H E M E T H O D A N D S O M E T E S T S

One of the main ingredients for the solution to our search problem

is a reasonably fast and accurate determination of the linear

transfer function for dark matter clustering, which depends on the

cosmological parameters. We use accurate analytical approxima-

tions of the MDM transfer function T(k; z) depending on the

parameters Vm, Vb, Vn , Nn and h by Eisenstein & Hu (1999).

According to this work, the linear power spectrum of matter

density fluctuations is given by

P�k; z� � Ask
ns T2�k; z�D2

1�z�=D2
1�0�; �11�

where As is the normalization constant for scalar perturbations and

D1(z) is the linear growth factor, which can be approximated by

(Carroll, Press & Turner 1992)

D1�z� � 5

2

Vm�z�
1 1 z

1

70
1

209Vm�z�2 V2
m�z�

140
1 V4=7

m �z�
� �21

;

where

Vm�z� � Vm�1 1 z�3=�Vm�1 1 z�3 1 VL 1 Vk�1 1 z�2�:
We normalize the spectra to the 4-year COBE data, which

determine the amplitude of the density perturbation at the horizon

scale, dh (Liddle et al. 1996; Bunn & White 1997). The

normalization constant As is then given by

As � 2p2d2
h�3000 Mpc h21�31ns : �12�

The Abell±ACO power spectrum is related to the matter power

spectrum at z � 0; P(k;0) by the cluster biasing parameter bcl. As

argued above, we assume scale-independent, linear bias

PA1ACO�k� � b2
clP�k; 0�: �13�

For a given set of parameters Vm, VL, Vb, Vn , Nn , ns, h, and bcl

the theoretical values of PA1ACO�kj� can now be obtained for the

values kj (table 1 of Novosyadlyj et al. 2000a). We denote them by

yj �j � 1;¼; 13�:
The dependence of the position and amplitude of the first

acoustic peak in the CMB power spectrum on cosmological

parameters has been investigated using cmbfast (Seljak &

Zaldarriaga 1996). As expected, and as we have shown in our

previous paper (Novosyadlyj et al. 2000a), the results are, within

reasonable accuracy, independent of the fraction of hot dark

matter, f n � Vn=Vm; up to fn , 0.6.

For the remaining parameters, ns, h, Vb, Vcdm and VL, we

determine the resulting values `p and Ap using the analytical

approximation given by Efstathiou & Bond (1999). We extend the

approximation to models with non-zero curvature �Vk ;
1 2 Vm 2 VL ± 0� by adding a coefficient for the amplitude and

the peak location, which is determined numerically. The analytical

approximation for the position of the first acoustic peak used here is

`p � 0:746p
������������������
3�1 1 zr�

p R�vm;vk; y�
Is�vm;vb� ; �14�

where vw ; Vwh2; and R � v
1=2
m �sinh�v1=2

k y��=v1=2
k ; v

1=2
m y;

v
1=2
m �sin�jvkj1=2

y��=jvkj1=2
for open, flat and closed models
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respectively. Here y(vm,vk,vL) is given by formula (8b) and

Is(vm,vb) by formulae (17)±(19) of Efstathiou & Bond (1999).

The accuracy of this analytical approximation is better than 1 per

cent.

The approximation for the amplitude of the first acoustic peak

is as follows:

Ap � `p�`p 1 1�
2p

C2

G lp 1
ns 1 1

2

� �
G lp 1

5 2 ns

2

� �
2664

�
G

9 2 ns

2

� �
G

3 1 ns

2

� � 1 0:838A�vb;vcdm; ns�

3775
1=2

; �15�

where ln A�vb;vcdm; ns� � 4:5�ns 2 1�1 a1 1 a2v
2
cdm 1 a3vcdm1

a4v
2
b 1 a5vb 1 a6vbvcdm 1 a7vk; with a1 � 2:376; a2 � 3:681;

a3 � 25:408; a4 � 254:262; a5 � 18:909; a6 � 15:384; a7 �
4:2; and C2 is the quadrupole anisotropy approximated by

C2 � As
p

16

H0

c

� �ns13 G�3 2 ns�
G2 4 2 ns

2

� � G 2 1
ns 1 1

2

� �
G 2 1

5 2 ns

2

� � : �16�

The values a1 2 a6 are the best-fitting coefficients determined

from a grid of models computed with cmbfast (Efstathiou &

Bond 1999). We have added the coefficient a7 in order to account

for curvature. The accuracy of Ap in the parameter ranges that we

consider is better than 5 per cent. We denote `p and Ap by y14 and

y15 respectively.

The theoretical values of the other experimental constraints are

obtained as follows: the density fluctuation s8 is calculated

according to equation (1) with P(k; z) taken from equation (11).

We set y16 � s8V
a1

m ; y17 � s8V
a2

m and y18 � s8V
a3

m with corre-

sponding values of a i �i � 1; 2; 3� for vanishing and non-zero

curvature (see previous section).

The rms peculiar velocity of galaxies in a sphere of radius

R � 50 h21 Mpc is given by

V2
50 �

1

2p2

�1

0

k2P�v��k� e2k2R2
f W2�50 Mpc k=h� dk; �17�

where P(v)(k) is the power spectrum for the velocity field of the

density-weighted matter (Eisenstein & Hu 1999), W(50 Mpc k/h)

is the top-hat window function. A previous smoothing of the raw

data with a Gaussian filter of radius Rf � 12 h21 Mpc is

employed, similar to the procedure which has led to the

observational value. For the scales of interest P�v��k� <
�V0:6H0�2P�k; 0�=k2: We denote the rms peculiar velocity by y19.

The value by Gnedin (1998) from the formation of Lya clouds

constrains the rms linear density perturbation at redshift z � 3 and

wavenumber kF � 38V1=2
m h Mpc21. In terms of the power

spectrum, sF is given by

s2
F�z� �

1

2p2

�1

0

k2P�k; z� e�2k=kF�2 dk: �18�

It will be denoted by y20. The corresponding value of the

constraint by Croft et al. (1998) is

D2
r�kp; z� ; k3

pP�kp; z�=2p2 �19�

at z � 2:5 with kp � 0:008H�z�=�1 1 z��km s21�21; which will be

denoted by y21; H�z� � H0�Vm�1 1 z�3 1 Vk�1 1 z�2 1 VL�1=2 is

the Hubble parameter at redshift z. The slope of the power

spectrum at this scale and redshift,

np�z� ;
D log P�k; z�

D log k
; �20�

is denoted by y22.

For all tests except Gnedin's Lya clouds, we use the density-

weighted transfer function Tcbn(k, z) from (Eisenstein & Hu 1999).

For Gnedin's sF we use Tcb(k, z) according to the prescription of

Gnedin (1998). It must be noted that even in the model with

maximal Vn (,0.2) the difference between Tcb(k, z) and Tcbn (k, z)

is less than 12 per cent for k # kp: Early reionization changes the

evolution of the density perturbation in the baryon component

somewhat on small scales. This effect is not taken into account by

the analytical approximation used here (Eisenstein & Hu 1999).

Therefore, we restrict ourselves to models without early reioniza-

tion. We calculate the Lya tests according to the prescription

given in section 5.4 of (Eisenstein & Hu 1999).

Finally, the values of Vbh2, h and Vm 2 0:75VL are denoted by

y23, y24 and y25 respectively.

The squared differences between the theoretical and observa-

tional values divided by the observational error are given by x2,

x2 �
X23

j�1

~yj 2 yj

D ~yj

� �2

: �21�

Here yÄj and DyÄj are the experimental data and their dispersion,

respectively. The set of parameters Vm, VL, Vn , Nn , Vb, h, ns and

bcl are then determined by minimizing x2 using the Levenberg±

Marquardt method (Press et al. 1992). The derivatives of the

predicted values with respect to the search parameters that are

required by this method are obtained numerically using a relative

step size of 1025 with respect to the given parameter.

In order to test our method for stability, we have constructed a

mock sample of observational data. We start with a set of

cosmological parameters and determine the `observational' data

for them that would be measured in the case of faultless

measurements with 1s errors comparable to the observational

errors. We then insert random sets of starting parameters into the

search program and try to recover the model that corresponds to

the mock data. The method is stable if we can recover our input

cosmological model (for more details of this test procedure see

Novosyadlyj et al. (2000a). The code finds all the previously

known parameters with high accuracy. Even starting very far away

from the true values, our method is revealed as very stable and

finds the `true' model whenever possible. This means that the code

finds the global minimum of x2 independent of the initial values

for the parameters. This also hints that our data set is sufficiently

divers to be free of degeneracies (which plague parameter

searches working with CMB data only).

4 R E S U LT S A N D D I S C U S S I O N

4.1 Calculations

The determination of the parameters1 Vm, VL, Vn , Nn , Vb, h, ns

and bcl by the Levenberg±Marquardt x2 minimization method

(Press et al. 1992) can be realized in the following way: we vary

1 We treat VL and Vm as free parameters, Vk � 1 2 VL 2 Vm:
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the set of parameters Vm, VL, Vn , Vb, h, ns and bcl with fixed Nn

and find the minimum of x2. As Nn can be discrete, we repeat this

procedure three times for Nn � 1; 2, and 3. The lowest of the three

minima is the minimum of x2 for the complete set of free

parameters. Hence, we have seven free parameters. The formal

number of observational points is 25 but, as we have mentioned,

the 13 power spectra points can be described by just three degrees

of freedom, so that the maximal number of truly independent

measurements is 15. Therefore, the number of degrees of freedom

for our search procedure is NF � Nexp 2 Npar � 8 if all observa-

tional points are used. In order to investigate to what extent the

LSS constraints on fundamental parameters match the constraints

implied by SNIa (Perlmutter et al. 1999), we have determined all

eight parameters with and without the SNIa constraint (yÄ25). The

results are presented in Table 1.

Note, that for all models x2
min is in the range NF 2

���������
2NF

p
#

x2
min # NF 1

���������
2NF

p
which is expected for a Gaussian distribution

of NF degrees of freedom. This means that the cosmological

paradigm which has been assumed is in agreement with the data.

(Note here that the reduction of the 13 independent data points

of the cluster power spectrum to three parameters is not important

for our analysis, because removing them from the search

procedure does not change the results essentially, as we will see

later.)

Let us investigate how the parameters of the best-fitting model

vary if we also include the data of the MAXIMA-1 experiment.

The location and amplitude of the first acoustic peak determined

from the combined Boomerang and MAXIMA-1 data are (Hu et al.

2001) `p � 206 ^ 6; Ap � 78:6 ^ 7: If we use them instead of the

values used above, the best-fitting parameters remain practically

unchanged, Vm � 0:37 ^ 0:06; VL � 0:66 ^ 0:06; Vn � 0:03 ^

0:03; Nn � 1; Vb � 0:039 ^ 0:010; ns � 1:05^ 0:04; and h �
0:70 ^ 0:09: Hence, including the MAXIMA-1 data in the

determination of the first acoustic peak is not essential in our

analysis and we will use here the values determined from the

Boomerang data alone. This is however an important confirmation

of the consistency of the two data sets.

We have also analysed the influence of the amplitudes of the

second and third acoustic peaks on the determination of

cosmological parameters in the frame of our approach. If we

add to our data set their values and errors as determined by (Hu

et al. 2001) and calculate them using the analytical approximation

given by the same authors then x2 < 18; which is far too much for

9 degrees of freedom. In this case the best-fitting parameters are

Vm � 0:37 ^ 0:07; VL � 0:72 ^ 0:05; Vn < 0; Vb � 0:046 ^

0:011; ns � 0:97 ^ 0:03 and h � 0:67 ^ 0:08: For the second

acoustic peak and nucleosynthesis constraint the deviations of the

predicted values from their observed counterparts are maximal

(2.8s higher, and 1.4s higher respectively). If we exclude the

nucleosynthesis constraint from the search procedure then

x2=NF < 7=8 and the best-fitting parameters become Vm �
0:34 ^ 0:06; VL � 0:74 ^ 0:05; Vn < 0; Vb � 0:055 ^ 0:012;
ns � 0:98 ^ 0:03 and h � 0:72 ^ 0:08: Practically all used

constraints are satisfied but Vbh2 is 9s higher then value deduced

from the determination of the primeval deuterium abundance by

(Burles et al. 1999) and 12s higher then more recent value (Burles

et al. 2001). This problem of the inconsistency of the Boomerang

and MAXIMA-1 values for the height of the second peak,

especially with the nucleosynthesis constraint on the baryon

abundance, has been discussed at large in the recent literature

(Tegmark & Zaldarriaga 2000b; Durrer, Kunz & Melchiorri 2001;

Esposito et al. 2001; Hu et al. 2001; Lange et al. 2001). As we

have nothing new to add to this subject here, we will not discuss it

any further in this work. In what follows, we exclude the second

and third acoustic peaks from experimental data set in our search

procedure but we will use them in the discussion of our best-fitting

model.

The errors in the best-fitting parameters as presented in Table 1

are the square roots of the diagonal elements of the covariance

matrix which is calculated according to the prescription given in

Press et al. 1992 (chapter 15) or Tegmark & Zaldarriaga 2000a

(appendix A).

4.2 The best-fitting model

The model with one sort of massive neutrinos provides the best fit

to the data, x2
min � 5:9: However, there is only a marginal

difference in x2
min for Nn � 1; 2; 3: With the given accuracy of the

data we cannot conclude whether massive neutrinos are present at

all and if they are, what number of degrees of freedom is favoured.

We summarize that the considered observational data on LSS of

the Universe can be explained by a LMDM inflationary model

with a scale-invariant spectrum of scalar perturbations and a small

positive curvature.

Including the SNIa constraint in the experimental data set

decreases Vm, increases VL slightly and favours Vn < 0; a

LCDM model.

In Table 2 we compare the values of the different observational

constraints with the predictions for the best-fitting models (Table 1

for Nn � 1�: In both cases the calculated characteristics of the LSS

are within the 1s error bars of the observed values. In the last row

we indicate the age of the Universe determined according to the

general expression for non-zero curvature and non-zero L models

Table 1. Cosmological parameters determined from the LSS data described in the text without and with the
SNIa constraint. The errors indicated are the square roots of the diagonal elements of the covariance
matrix.

Nn x2
min Vm VL Vn Vb ns h

Without SNIa constraint

1 5.90 0.37^ 0.06 0.69^ 0.07 0.03^ 0.03 0.037^ 0.009 1.02^ 0.04 0.71^ 0.09
2 6.02 0.42^ 0.08 0.64^ 0.09 0.04^ 0.04 0.038^ 0.010 1.03^ 0.04 0.71^ 0.09
3 6.17 0.47^ 0.10 0.59^ 0.08 0.06^ 0.01 0.038^ 0.010 1.04^ 0.03 0.70^ 0.09

Including SNIa constraint

0±3 6.02 0.32^ 0.05 0.75^ 0.06 ,1024 0.038^ 0.010 1.0^ 0.05 0.70^ 0.09
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(Sahni & Starobinsky 2000)

t0 � H21
0

�1

0

dz

Vm�1 1 z�5 1 Vk�1 1 z�4 1 VL�1 1 z�2 : �22�

The predicted age of the Universe agrees well with recent

determinations of the age of globular clusters. Comparing the

results obtained without and with the SNIa constraint, we

conclude that the values of the fundamental cosmological

parameters Vm, VL and Vk determined by the observational

characteristics of large-scale structure match the SNIa test very

well. This can be interpreted as independent support of the SNIa

result in the framework of the standard cosmological paradigm.

However, in order to elucidate how LSS data constrain

cosmological parameters, we analyse further only the model

obtained without the SNIa constraint.

The best-fitting values of cosmological parameters determined

by LSS characteristics2 are Vm � 0:37 ^ 0:06; VL � 0:69 ^

0:07; Vn � 0:03 ^ 0:03; Nn � 1; Vb � 0:037 ^ 0:009; ns �
1:02 ^ 0:04 and h � 0:71 ^ 0:09: The CDM density parameter

is Vcdm � 0:30 ^ 0:10 and Vk � 20:06 ^ 0:13: The neutrino

content, which is compatible with zero, is very badly determined

(100 per cent error). The obtained value should be interpreted as

an upper limit to the neutrino contribution. Below we will discuss

this upper limit in more detail.

The value of the Hubble constant is close to the result by

Madore et al. (1999) and Mould et al. (2000), somewhat higher

than the directly measured value given in equation (8). The

spectral index coincides with the prediction of the simplest

inflationary scenario: it is close to unity. The neutrino matter

density Vn � 0:03 corresponds to a neutrino mass of mn �
94Vnh2 < 1:4 eV but is compatible with 0 within 1s . The

estimated cluster bias parameter bcl � 2:36 ^ 0:25 fixes the

amplitude of the Abell±ACO power spectrum (Fig. 1).

Recently, it has been shown (Novosyadlyj 1999) that, owing

to the large error bars, the position of the peak of PÄ (k) at

k < 0:05 h Mpc21 does not influence the determination of

cosmological parameters significantly. Only the slope of the

power spectrum on scales smaller than the scale of the peak is

relevant for cosmological parameters. On the other hand, the

relation of the peak in ~PA1ACO�k� obtained from the space

distribution of Abell±ACO clusters around us to the matter

density of the power spectrum of the entire Universe is still under

discussion. Using numerical simulations, Retzlaff et al. (1998)

have shown that the pronounced peak in the spectrum (the fifth

data point in Fig. 1) could be purely caused by cosmic variance.

Therefore, it should not influence cosmological parameters. In

fact, the maximum of our fitting curve is at a different position,

which shows that this peak position is not relevant for the present

work. The oscillation of the ~PA1ACO�k� around the best-fitting

P(k) in Fig. 1 determined from all observable data on LSS reflects

the real distribution of rich clusters of galaxies in the vicinity of

,300 h21 Mpc of our own Galaxy only. This is supported by

similar features in spectra reconstructed from the expanded

sample of Abell±ACO clusters (Miller & Batuski 2000) and IRAS

Point Source Catalog Redshift Survey (Hamilton, Tegmark &

Padmanabhan 2000; Saunders et al. 2000).

Using cmbfast we have calculated the angular power spectra of

CMB temperature fluctuations for both best-fitting models.

Comparison with the COBE, Boomerang and MAXIMA-1

experiments is shown in Fig. 2. The CMB power spectrum

predicted by both best-fitting models matches the data very well

within the range of the first acoustic peak. However, it does not

reproduce the absence of a second peak inferred from the

Boomerang and MAXIMA-1 data at ` . 350: This problem has

been discussed intensively in literature (Tegmark & Zaldarriaga

2000b; Esposito et al. 2001; Hu et al. 2001; Lange et al. 2001).

The lack of power in this range strongly favours models with more

baryons than compatible with standard cosmological nucleosynth-

esis. The MAXIMA-1 data reduces the problem somewhat but

does not remove it entirely (Hu et al. 2000). However, as we shall

discuss, the cosmological parameters which match Boomerang

and MAXIMA-1 data at high spherical harmonics also strongly

disagree with other LSS constraints used here (see Subsection 4.8

below). Furthermore, the Boomerang, MAXIMA-1 and other

CMB data in this range do not match each other very well. This

(and the amount of work already published on this subject, some

of which is cited above) prompted us to ignore the problem of the

second peak in the CMB anisotropy spectrum in this work. Future

flights of Boomerang and MAXIMA and/or the future projects

Figure 1. The observed Abell±ACO power spectrum (filled circles) and

the theoretical spectra predicted by closed LMDM models with parameters

taken from Table 1 �Nn � 1�:

Table 2. Theoretical predictions for the used characteristics of the best-
fitting LMDM model with one class of massive neutrinos with the
cosmological parameters given in Table 1; first line (without SNIa
constraint) and last line (including the SNIa constraint) are compared with
observations.

Characteristics Observationsa Predictions
Without SNIa Including SNIa

`p 197^ 6 197 197
Ap 69^ 8 71.5 71.9
V50, km s21 375^ 85 327 308
s8V

a1

m 0.60^ 0.022 0.61 0.60
s8V

a2

m 0.56^ 0.095 0.58 0.58
s8V

a3

m 0.8^ 0.1 0.69 0.71
sF 2.0^ .3 1.9 1.9
D2
r�kp� 0.57^ 0.26 0.56 0.59

np(kp) 22.25^ 0.2 22.20 22.20
h 0.65^ 0.10 0.71 0.70
Vbh2 0.019^ 0.0012 0.019 0.019
Vm20.75VL 20.25^ 0.125 20.14 20.25
t0, Gyrb 13.2^ 3.0c, 11.5^1.5d 12.6 13.5

a All errors are ^1s .
b Is not used in the search procedure.
c (Carretta et al. 2000).
d (Chaboyer et al. 1998).

2 We still include the direct measurement of h and the nucleosynthesis

constraint in the analysis.
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MAP and Planck will certainly decide on this very important

issue, but we consider it premature to draw very strong

conclusions at this point.

Finally let us mention some global characteristics of a Universe

with our best-fitting cosmological parameters. Its age of t0 �
12:6 Gyr is in the range of values determined from the age of

globular clusters (Chaboyer et al. 1998; Carretta et al. 2000). The

deceleration parameter is q0 � 20:52; in good agreement with the

SNIa constraint presented above leading to (Perlmutter et al. 1998)

~q0 � 20:57 ^ 0:17: The original deceleration �q . 0� changes into

acceleration �q , 0� at the redshift zd < 0:55: The `equality

epoch', rm�ze� � rL�ze�; corresponds to the redshift ze < 0:23:

4.3 The influence of different experimental data

One important question is how sensitive our result responds to

each data point. To estimate this, we exclude some data points

from the search routine and redetermine the best-fitting para-

meters. The results of this procedure are presented in Table 3. In

all cases when data on the first acoustic peak are included Vm 1
VL < 1:06; there is very slight positive curvature �Vk < 20:06�
but compatible with a flat universe, i.e. the geometry is defined

mainly by the position of the first acoustic peak. The LSS data

without CMB measurements favour an open Universe with Vk �
0:14 (fourth row in Table 3). The value of Vm never exceeds 0.56,

VL is always larger 0.47 and in most cases VL . Vm: The best-

fitting values of the spectral index ns and h for the different

observable data sets are in the relatively narrow ranges of

0:99±1:14 and 0:67±0:72 respectively. The baryon content, Vb, is

fixed by the nucleosynthesis constraint. Without this constraint

(row 12 in Table 3) Vb is lower, Vb < 0:001; even below the value

inferred from the luminous matter in the Universe, Vlum ,
7 � 1023:

The hot dark matter content, Vn , is reduced mainly by the Lya
constraints but it is poorly determined in all cases. If instead of or

together with these Lya constraints we use those by McDonald

et al. (2000), which reduce the power at small scales, then the

best-fitting value for the neutrino content is <0.07. In this case,

the predictions for Lya constraints by Gnedin (1998) and Croft

et al. (1998) are out of their 1s ranges. Moreover, the constraints

by McDonald et al. (2000) are not in good agreement with other

data, especially, Bahcall & Fan (1998) and the SNIa constraints.

We have not included these constraints any further in our

determination of cosmological parameters. Note however that

the neutrino content is mainly constrained by the Lya data. If both

Lya tests are excluded, the best-fitting value of Vn rises to 0.21!

Excluding the direct measurement of the Hubble parameter

from our search procedure leads to a substantially larger value of

h , 0:91 which is in disagreement with the direct determination.

The comparison of the first and second rows of Table 3 shows

that the Abell±ACO power spectrum favours a slope of the matter

power spectrum in the range 0:02 # k # 0:1 h Mpc21; n , 21:5;
which results in lowering VL and introduces a small but non-zero

neutrino content.

The constraints ~s8V
a2

m (Viana & Liddle 1999) and D2
r�kp� have

almost no influence on the determination of parameters (rows 6,

10 and 15) owing to their large error bars. They can be removed

from the data set, which reduces the number of effective degrees

of freedom to NF � 5; this is important for the marginalization

procedure.

4.4 Marginalization

The next important question is: `which is the confidence limit for

each parameter marginalized over the others?'. The straight

forward answer is the integral of the likelihood function over the

allowed range of all the other parameters. But for a seven-

dimensional parameter space this is computationally time-

consuming. Therefore, we estimate the 1s confidence limits for

Figure 2. The CMB power spectra predicted by best-fitting LMDM

models with parameters from Table 1 �Nn � 1� and COBE DMR (Bennett

et al. 1996), Boomerang (de Bernardis et al. 2000) and MAXIMA-1

(Hanany et al. 2000) experimental data.

Table 3. Best-fitting values of cosmological parameters determined from the different data sets.

No Data set x2
min=NF Vm VL Vn Vb ns h

1 All observable data points are used 5.90/7 0.37 0.69 0.027 0.037 1.02 0.71
2 ~PA1ACO�k�'s points are excluded 2.12/4 0.32 0.75 0.0 0.039 1.00 0.70
3 ~̀

p, AÄ p are excluded 4.79/5 0.39 0.47 0.058 0.042 1.14 0.67
4 VÄ 50 is excluded 5.54/6 0.37 0.69 0.021 0.038 1.00 0.71
5 ~s8V

a1

m is excluded 4.58/6 0.45 0.61 0.052 0.039 1.03 0.69
6 ~s8V

a2

m is excluded 5.88/6 0.37 0.69 0.027 0.037 1.02 0.71
7 ~s8V

a3

m is excluded 4.72/6 0.38 0.68 0.028 0.038 1.01 0.70
8 All s8 tests are excluded 3.85/4 0.49 0.57 0.060 0.041 1.04 0.68
9 the first Lya test is excluded 5.46/6 0.42 0.65 0.048 0.039 1.02 0.70

10 The second Lya test is excluded 5.81/5 0.37 0.69 0.026 0.037 1.02 0.71
11 Both Lya tests are excluded 4.49/4 0.56 0.50 0.21 0.042 1.04 0.67
12 The nucleosynthesis constraint is excluded 4.52/6 0.29 0.89 0.023 0.001 1.04 0.67
12 The direct constraint on h is excluded 4.18/6 0.29 0.71 0.038 0.023 1.05 0.91
13 Both previous constraints are excluded 4.16/5 0.29 0.71 0.041 0.013 1.07 0.87
14 VÄ 50, ~s8V

a2

m and D2
r�kp� are excluded 5.52/4 0.37 0.69 0.021 0.038 1.01 0.70

15 ~s8V
a2

m and D2
r�kp� are excluded 5.88/5 0.37 0.68 0.028 0.037 1.02 0.71
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all parameters in the following way. By varying all parameters we

determine the six-dimensional x2 hypersurface that contains 68.3

per cent of the total probability distribution. We then project this

hypersurface on to each axis in parameter space. Its shadow on

the parameter axes gives us the 1s confidence limits for the

cosmological parameter under consideration. The 1s confidence

limits obtained in this way for LMDM models with one sort of

massive neutrino are given in Table 4. Including ~s8V
a2

m and ~D2
r�kp�

does not change the marginalized limits significantly.

It must be noted that even though the upper 1s edge for h is

0.93 when marginalized over all other parameters for the data used

here, the resulting age of the Universe is still larger than the lowest

value allowed for the age of the oldest globular clusters, t0 <
10 Gyr if VL . 0:72: In Fig. 3 we present the constraints in the

VL 2 h plane given by the lower limit for the age of the Universe,

10 Gyr, for models with zero and positive curvature. The range

above the corresponding line is excluded by this limit. Thus, the

lower limit for the age of the Universe additionally constrains

the confidence limits on the parameters, h and Vk from above and

VL from below.

We have repeated the marginalization procedure including the

SNIa test (last column in Table 4). In this case we have to use all

input data points (15 independent measurements), because

neglecting ~s8V
a2

m and D2
r�kp� does somewhat change the marginal-

ized limit. Hence, the number of degrees of freedom is NF � 8

(1s confidence limits corresponding to x2 # 15:3�: The SNIa test

reduces the confidence ranges of Vm and VL in spite of the larger

number of degrees of freedom, but it results in somewhat wider

1s error bars for the other parameters owing to the increase of NF

and the low accuracy of the added data points.

4.5 The status of some subclasses of models

The errors presented in Table 4 define the range of each parameter

within which, by adjusting the remaining parameters, a value of

x2
min # 11:8 can be achieved. Of course, the values of the

remaining parameters always lie within their corresponding 68 per

cent likelihoods given in Table 4. Models with vanishing L are

outside this marginalized 1s range of the best-fitting model

determined by the LSS observational characteristics used here,

even without the SNIa constraint (column 2). Let us investigate

the status of these models in more detail. For this, we set VL � 0

as fixed parameter and determine the remaining parameters in the

usual way. The minimal value of x2 is x2 < 24 with the following

values for the other parameters: Vm � 1:15; Vn � 0:22; Nn � 3;
Vb � 0:087; ns � 0:95; h � 0:47; bcl � 3:7 �s8 � 0:60�: This

model is outside the 2s confidence contour of the best-fitting

model for Nn � 3 (Table 1 without SNIa test). The experimental

data that disagree most with L � 0 is that on the first acoustic

peak. If we exclude it from the experimental data set, x2
min < 5:8

for an open model with the following best-fitting parameters:

Vm � 0:48; Vn � 0:12; Nn � 1; Vb � 0:047; ns � 1:3; h � 0:64;
bcl � 2:5 �s8 � 0:82�: This model is inside the 1s confidence

contour of the best-fitting LMDM model obtained without data on

the first acoustic peak (row 3 of Table 3). The reason for this

behaviour is clear: the position of the `kink' in the matter power

spectrum at large scales demands a `shape parameter' G � Vm

h2 , 0:25; which can be achieved either by choosing an open

model or allowing for a cosmological constant. The position of the

acoustic peak that demands an approximately flat model then

closes the first possibility.

Results change only slightly if instead of the Boomerang data

we use Boomerang1MAXIMA-1 as discussed in Section 4.1.

Hence, we can conclude that the LSS observational characteristics

together with the Boomerang (1MAXIMA-1) data on the first

acoustic peak already rule out zero-L models at more than 95 per

cent confidence level and actually demand a cosmological

constant in the same bulk part as direct measurements. We

consider this a non-trivial consistency check!

Flat L models, in contrast, are inside the 1s contour of our

best-fitting model. Actually, the best-fitting flat model has x2
min <

8:3 and the best-fitting parameters Vm � 0:35 ^ 0:05; VL �
0:65 7 0:05; Vn � 0:04 ^ 0:02; Nn � 1; Vb � 0:029 ^ 0:005;
ns � 1:04 ^ 0:06; h � 0:81 ^ 0:06; bcl � 2:2 ^ 0:2 �s8 � 0:96�
are close to our previous (Novosyadlyj et al. 2000a) results with a

somewhat different observational data set.

It is obvious that flat zero-L CDM and MDM models are ruled

out by the present experimental data set at an even higher

confidence limit than by data without the Boomerang and

MAXIMA-1 measurements in (Novosyadlyj et al. 2000a).

4.6 Upper limits for the neutrino mass

As the neutrino content is compatible with zero, we determine an

upper limit for it. We first determine the marginalized 1s , 2s and

3s upper limits for Vn for different values of Nn . Using the best-

fitting value for h at given Vn , we can then determine the

corresponding upper limit for the neutrino mass, mn �
94Vnh2=Nn: The results are presented in Table 5. For more

Table 4. The best-fitting values of all the parameters with
errors obtained by maximizing the (Gaussian) 68 per cent
confidence contours over all other parameters.

Parameter Central value and errors
without SNIa constraint with SNIa constraint

Vm 0:3710:25
20:15 0:3210:20

20:11

VL 0:6910:15
20:20 0:7510:10

20:19

Vn 0:0310:07
20:03 0:010:09

20:0

Vb 0:03710:033
20:018 0:03810:033

20:019

ns 1:0210:09
20:10 1:0010:13

20:10

h 0:7110:22
20:19 0:7010:28

20:18

bcl 2:410:7
20:6 2:210:8

20:5

Figure 3. The lines in the VL±h plane corresponding to the lower limit on

age of the Universe of 10 Gyr established from oldest globular cluster for

models with zero and positive curvature. The range below the

corresponding line is allowed.
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species of massive neutrino the upper limit for Vn is somewhat

higher but mn is still lower for each confidence level. The upper

limit for Vn raises with the confidence level as expected. But the

upper limit for the mass grows only very little because of the

reduction of the best-fitting value for h. The upper limit for

the combination Vnh2=N0:64
n is approximately constant for all

number species and confidence levels. The observational data set

used here establishes an upper limit for the massive neutrino

content of the Universe, which can be expressed in the form

Vnh2=N0:64
n # 0:042 at 2s confidence level.The corresponding

upper limit on the neutrino mass mn # 4 eV is close to the value

obtained by Croft, Hu & Dave (1999).

4.7 Limiting the tensor mode

Up to this point we ignored uncertainties in the COBE normal-

ization. The statistical uncertainty of the fit to the four-year COBE

data, dh, is 7 per cent (1s ) (Bunn & White 1997) and we want to

study how this uncertainty influences the accuracy of cosmo-

logical parameters that we determine.

Varying dh in the 1s range, we found that the best-fitting values

of all parameters except Vn do not vary by more than 7 per cent

from the values presented in Table 1. Only Vn, for which 1s
errors are of the order of 100 per cent, varies in a range of 20 per

cent. These uncertainties are significantly smaller than the

standard errors given in Table 1 and ignoring them is thus

justified. (Including this error raises our standard 1s errors from

typically 10±20 per cent to 11±21 per cent.)

Our results depend on a possible tensor component only via the

COBE data which enters our calculation through the normalization

constant dh, in equations (11) and (12). We can estimate the

maximal contribution of a tensor mode in the COBE DT/T data in

the following way: we disregard the COBE normalization and

consider dh as free parameter to be determined like the others. Its

best-fitting value then becomes dLSS
h � �2:95 ^ 2:55� � 1025 (for

Nn � 1�; while the best-fitting values of the other parameters are

Vm � 0:40 ^ 0:08; VL � 0:66 ^ 0:07; Vn � 0:05 ^ 0:05; Vb �
0:038 ^ 0:010; ns � 1:14 ^ 0:31; h � 0:71 ^ 0:09 and bcl �
2:4 ^ 0:3: The best-fitting value for density perturbation at

horizon scale from the 4-year COBE data for this set of parameters

is larger than the best-fitting value determined from LSS

characteristics, dCOBE
h � 4:0 � 1025 . dLSS

h : This means that

COBE DT/T data may contain a non-negligible tensor contribu-

tion. The most likely value of its fraction is given by T=S �
�dCOBE

h 2 dLSS
h �=dLSS

h : This value is T=S � 0:36 for the corre-

sponding best-fitting values of dCOBE
h and dLSS

h from the

Boomerang data alone and T=S � 0:18 from the combined

Boomerang 1 MAXIMA-1 data. As the standard error is rather

large, <90 per cent, we determine upper confidence limits for T/S

by marginalizing dLSS
h over all the other parameters like we did for

the neutrino content (see subsection 4.6). We then obtain T=S , 1

at 1s confidence level and T=S , 1:5 at 2s confidence level from

the Boomerang data alone for the amplitude and position of the

first acoustic peak. If we use the combined Boomerang 1
MAXIMA-1 data these limits are somewhat lower, 0.9 and 1.3

correspondingly, because of the higher amplitude of the first

acoustic peak measured by MAXIMA-1. The 1s upper constraint

on the tensor mode obtained recently by Kinney, Melchiorri &

Riotto (2001) from the Boomerang and MAXIMA-1 data on the

CMB power spectrum for the same class of models �T=S , 0:8 in

our definition) is very close to the value obtained here.

4.8 Comparison with other parameter estimations

The cosmological parameters determined here from LSS1CMB

data agree well with the values obtained by other methods (see e.g.

the review by Primack 2000). The marginalized 1s ranges are still

rather large owing to the large experimental errors, the large

number of parameters and the high degree of freedom. This, of

course, does not mean that an arbitrary set of parameters within

the marginalized ranges matches the experimental data set with an

accuracy #1s .

We compare our best-fitting model with others found in the

recent literature by testing our data set as well as the Boomerang

and MAXIMA-1 data on the CMB power spectrum. At first we

calculate the predictions of the following models for our data set:

�Vm;VL;Vb; ns; h� � P � �0:49; 0:56; 0:054; 0:92; 0:65� obtained

by Lange et al. (2001) as best-fitting model to the Boomerang and

LSS data (denoted there as model P9); P � �0:68; 0:23; 0.07,1,0.6)

obtained by Balbi et al. (2000) as best-fitting model to the

MAXIMA-1 and COBE DMR data; P � �0:35; 0:65; 0:036;
0.95,0.8) obtained by Hu et al. (2001) as best-fitting model to

the Boomerang 1 MAXIMA-1 data on the first, second and third

acoustic peaks; P � �0:3; 0:7; 0:045; 0:975; 0:82� obtained by

Jaffe et al. (2001) as best-fitting model to the Boomerang 1
MAXIMA-1 1 COBE data on the CMB power spectrum; the

`concordance' model by Tegmark et al. (2000), which favours

P � �0:38; 0:62; 0:043; 0:91; 0:63�: Some authors give several sets

of parameters obtained for different priors or by including

different data sets; we take the one from which we obtain a

minimal x2 for our data set. All these models have no massive

neutrino component, no tensor mode and reionization is either not

included or can be neglected. The predictions of cosmologies with

the above parameters for the data considered in this work are

presented in Table 6. The x2 presented in the last row includes

also

x2
A1ACO �

X13

i�1

PA1ACO�ki�2 b2
clP�ki�

DPA1ACO�ki�
� �2

;

which is small because of the cluster bias, bcl, which is considered

as a free parameter in each model. In spite of the fact that all

parameters of each model are within the marginalized 1s ranges

of the parameters of our best-fitting model, the total value of x2

for the entire parameter sets rules out all the models at more than

2s confidence level. Table 6 indicates the crucial tests. Models A

and C are ruled out mainly by the nucleosynthesis constraint and

the first s8 test (cluster mass function). Model B strongly

disagrees with all s8 tests (14s , 2.6s and 1.6s correspondingly),

both Lya tests (2.6s and 2.5s ), the nucleosynthesis constraint

(5.2s ) and the data on the location of the first acoustic peak

(5.6s ). Moreover, models A and B do not match the SNIa test,

which we have not included in x2. Model D strongly disagrees

with nucleosynthesis constraint (9.4s ) and the Boomerang data on

Table 5. The upper limits for the neutrino content
and mass (in eV) at different confidence levels.

Nn 1s C. L. 2s C. L. 3s C. L.
Vn mn Vn mn Vn mn

1 0.10 3.65 0.13 3.96 0.18 4.04
2 0.15 2.79 0.21 3.06 0.29 3.35
3 0.20 2.40 0.27 2.67 0.35 2.78
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the location of the first acoustic peak (2.6s ). Model E does not

match first and third s8 tests (at 5.1s and 2.4s respectively), the

first Lya test (at 2.4s ) and the data on the location of the first

acoustic peak (3.2s ). The latter is a result of the fact that the

MAXIMA-1 peak position is more than 1s away from the peak

position derived by the Boomerang data alone.

We now calculate the CMB power spectra for these models

using cmbfast (version 3.2) and compare them with the

experimental data from Boomerang (de Bernardis et al. 2000)

and MAXIMA-1 (Hanany et al. 2000). The x2 deviations for all

models including our best-fitting model are presented in Table 7.

The first number indicates the x2 for the range of the first acoustic

peak, 50 # ` # 375 (seven and five data points for the

Boomerang and MAXIMA-1 experiments respectively), for the

second number we have used the entire range, 50 # ` # 750 (12

and 10 data points for the Boomerang and MAXIMA-1

experiments respectively). In the range of the first acoustic peak

our model fits as well as the other models, but the observed power

spectrum at higher spherical harmonics is not reproduced by our

model, as we mentioned above.

Therefore, models which match the Boomerang and/or

MAXIMA-1 CMB power spectrum at high spherical harmonics

(in the range of the second and third acoustic peak) disagree with

some of the s8, Lya and/or nucleosynthesis constraints.

Correspondingly, models which match very well the LSS

observational characteristics predict a CMB power spectrum that

disagrees with measurements by Boomerang and MAXIMA-1 on

very small scales. The resolution of this problem can go in several

directions. If the Boomerang and MAXIMA-1 measurements are

confirmed, nucleosynthesis may have been more complicated than

assumed for the constraint used in this work (Esposito et al. 2001).

Another problem may be the cluster mass function constraint,

which is exponentially sensitive to the value of s8 and might be

too constraining, especially in view of all the uncertainties in the

theory of cluster formation. Therefore, our constraint s8V
a1

m �
0:60 ^ 0:022 has to be taken with a grain of salt and its

incompatibility with, for example, the CMB data may also hint to

a problem in the theory of cluster formation. Last but not least, if

inconsistencies in the determination of cosmological parameters

persist even after a serious improvement of data, e.g. with the

Sloan Digital Sky Survey, this may hint that the correct model is

not within the class considered. If we want to fit a snail within the

class of all known mammals by x2 minimization (or by a much

more sophisticated method), we never obtain a very convincing fit.

5 C O N C L U S I O N S

The main observational characteristics on LSS together with

recent data on the amplitude and location of the first acoustic peak

in the CMB power spectrum and the amplitude of the primordial

power spectrum inferred by the COBE DMR 4-yr data, prefer a

LMDM model with the following parameters: Vm � 0:3710:25
20:15;

VL � 0:6910:15
20:20; Vn � 0:0310:07

20:03; Nn � 1; Vb � 0:03710:033
20:018; ns �

1:0210:09
20:10; h � 0:7110:22

20:19; bcl � 2:410:7
20:7 (1s marginalized ranges).

The central values correspond to a slightly closed �Vk �
20:06� LMDM model with one class of 1.4-eV neutrinos. These

neutrinos make up about 8 per cent of the clustered matter,

baryons are 10 per cent and the rest (82 per cent) is in the form of

a cold dark matter component. The energy density of clustered

matter corresponds to only 35 per cent of the total energy density

of matter plus vacuum, which amounts to V � 1:06: The massive

neutrino content is compatible with zero and we have established

an upper limit in the form of Vnh2=N0:64
n # 0:042 at 2s

Table 6. Theoretical predictions for the observational values by best-fitting models from the
literature: A (Lange et al. 2001), B (Balbi et al. 2000), C (Hu et al. 2001), D (Jaffe et al. 2001), E
(Tegmark et al. 2000).

Characteristics Observations Predictions
A B C D E

`p 197^ 6 206 231 206 213 225
Ap 69^ 8 57 68 63 72 62
V50, km/s 375^ 85 280 310 303 293 239
s8V

a1

m 0.60^ 0.022 0.64 0.91 0.68 0.58 0.43
s8V

a2

m 0.56^ 0.095 0.62 0.93 0.65 0.65 0.42
s8V

a3

m 0.8^ 0.1 0.70 0.96 0.79 0.73 0.49
sF 2.0^ .3 1.7 2.8 2.2 1.9 1.1
D2
r�kp� 0.57^ 0.26 0.51 1.21 0.81 0.62 0.25

np(kp) 22.25^ 0.2 22.25 22.15 22.21 22.22 22.30
h 0.65^ 0.10 0.65 0.60 0.80 0.82 0.63
Vbh2 0.019^ 0.0012 0.023 0.025 0.023 0.030 0.02
Vm20.75VL 20.25^ 0.125 0.07 0.51 20.13 20.23 20.09

x2 27 285 39 105 106

Table 7. The x2 deviation of theoretical predictions for the CMB power spectrum from experimental
results for the models in Table 6 and for our best-fitting model. The first number represents the value of
x2 for the CMB power spectrum in the range of the first acoustic peak, 50 # ` # 375; the second
number is for the entire range 50 # ` # 750: Clearly our model parameters are in serious disagreement
with the experimental CMB data beyond the first acoustic peak.

Experiment x2 our best-fitting model
A B C D E

Boomerang 7.3/12.6 77.2/96.7 6.1/12.8 18.3/24.5 13.6/24.5 11.3/108.5
MAXIMA-1 16.9/18.7 4.6/11.4 15.2/17.0 10.3/11.7 16.2/21.6 11.1/48.5
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confidence level. The upper 2s limit for the neutrino mass is

4.0 eV.

If COBE normalization is disregarded, the best-fitting value of

the density perturbation at horizon scale is dLSS
h � �2:95 ^ 2:55� �

1025 while the best-fitting values of the other parameters are

Vm � 0:40; VL � 0:66; Vn � 0:05; Nn � 1; Vb � 0:038; ns �
1:14; h � 0:71 and bcl � 2:4: Comparison of the best-fitting value

with the COBE 4-yr data dCOBE
h gives an estimate for the

contribution of a tensor mode to the COBE DMR data: T=S �
0:3610:64

20:36 from the Boomerang data on the first acoustic peak and

T=S � 0:1810:72
20:18 (1s confidence limits) when the combined

Boomerang1MAXIMA-1 data are used. The upper limits on

T/S at 2s confidence level for these two cases are 1.5 and 1.3

respectively.

The values for the matter density Vm and the cosmological

constant VL for the best-fitting model are close to those deduced

from the SNIa test. Including this test in the observational data set

results in a somewhat larger value of VL (7 per cent) and slightly

lowers Vm.

The observational characteristics of large-scale structure

together with the Boomerang (1MAXIMA-1) data on the first

acoustic peak rule out zero-L models at more than 2s confidence

limit.
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