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1Laboratoire de Physique Nucléaire et Hautes Energies, CNRS-IN2P3/Universités Paris VI et Paris VII, 4 Place Jussieu, Tour 33, 75252 Paris Cedex 05,
France
2Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH
3Department of Physics, Durham University, South Road, Durham DH1 3LE
4W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National
Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA
5Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3/INPG/Université Joseph Fourier Grenoble 1, 53 avenue des Martyrs, 38026
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ABSTRACT
Due to their large dynamical mass-to-light ratios, dwarf spheroidal galaxies (dSphs) are
promising targets for the indirect detection of dark matter (DM) in γ -rays. We examine their
detectability by present and future γ -ray observatories. The key innovative features of our
analysis are as follows: (i) we take into account the angular size of the dSphs; while nearby
objects have higher γ -ray flux, their larger angular extent can make them less attractive targets
for background-dominated instruments; (ii) we derive DM profiles and the astrophysical J-
factor (which parametrizes the expected γ -ray flux, independently of the choice of DM particle
model) for the classical dSphs directly from photometric and kinematic data. We assume very
little about the DM profile, modelling this as a smooth split-power-law distribution, with and
without subclumps; (iii) we use a Markov chain Monte Carlo technique to marginalize over
unknown parameters and determine the sensitivity of our derived J-factors to both model and
measurement uncertainties; and (iv) we use simulated DM profiles to demonstrate that our
J-factor determinations recover the correct solution within our quoted uncertainties.

Our key findings are as follows: (i) subclumps in the dSphs do not usefully boost the signal;
(ii) the sensitivity of atmospheric Cherenkov telescopes to dSphs within ∼20 kpc with cored
haloes can be up to ∼50 times worse than when estimated assuming them to be point-like.
Even for the satellite-borne Fermi-Large Area Telescope (Fermi-LAT), the sensitivity is signif-
icantly degraded on the relevant angular scales for long exposures; hence, it is vital to consider
the angular extent of the dSphs when selecting targets; (iii) no DM profile has been ruled out
by current data, but using a prior on the inner DM cusp slope 0 ≤ γ prior ≤ 1 provides J-factor
estimates accurate to a factor of a few if an appropriate angular scale is chosen; (iv) the J-factor
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is best constrained at a critical integration angle αc = 2rh/d (where rh is the half-light radius
and d is the distance from the dwarf) and we estimate the corresponding sensitivity of γ -ray
observatories; (v) the ‘classical’ dSphs can be grouped into three categories: well constrained
and promising (Ursa Minor, Sculptor and Draco), well constrained but less promising (Carina,
Fornax and Leo I), and poorly constrained (Sextans and Leo II); and (vi) observations of
classical dSphs with the Fermi-LAT integrated over the mission lifetime are more promis-
ing than observations with the planned Cherenkov Telescope Array for DM particle mass
� 700 GeV. However, even the Fermi-LAT will not have sufficient integrated signal from
the classical dwarfs to detect DM in the ‘vanilla’ Minimal Supersymmetric Standard Model.
Both the Galactic Centre and the ‘ultrafaint’ dwarfs are likely to be better targets and will be
considered in future work.

Key words: astroparticle physics – methods: miscellaneous – galaxies: dwarf – galaxies:
kinematics and dynamics – dark matter – gamma-rays: general.

1 IN T RO D U C T I O N

The detection of γ -rays from dark matter (DM) annihilation is one of
the most promising channels for indirect detection (Gunn et al. 1978;
Stecker 1978). Since the signal goes as the DM density squared, the
Galactic Centre seems to be the obvious location to search for such
a signal (Silk & Bloemen 1987). However, it is plagued by a confus-
ing background of astrophysical sources (see e.g. Aharonian et al.
2004). For this reason, the dwarf spheroidal galaxies (dSphs) orbit-
ing the Milky Way have been flagged as favoured targets, given their
potentially high DM densities and small astrophysical backgrounds
(Lake 1990; Evans, Ferrer & Sarkar 2004).

Despite the growing amount of kinematic data from the classical
dSphs, the inner parts of their DM profiles remain poorly con-
strained and can generally accommodate both cored or cuspy solu-
tions (see e.g. Koch et al. 2007; Strigari et al. 2007a; Walker et al.
2009a, hereinafter W09). There are two dSphs – Fornax and Ursa
Minor – that show indirect hints of a cored distribution (Kleyna et al.
2003; Goerdt et al. 2006); however, in both cases, the presence of a
core is inferred based on a timing argument that assumes we are not
catching the dSph at a special moment. Theoretical expectations
remain similarly uncertain. Cusps are favoured by cosmological
models that model the DM alone, assuming it is cold and collision-
less (e.g. Navarro, Frenk & White 1996a). However, the complex
dynamical interplay between stars, gas and DM during galaxy for-
mation could erase such cusps leading to cored distributions (e.g.
Navarro, Eke & Frenk 1996b; Read & Gilmore 2005; Mashchenko,
Wadsley & Couchman 2008; Goerdt et al. 2010; Governato et al.
2010; Cole, Dehnen & Wilkinson 2011). Cores could also be an
indication of other possibilities such as self-interacting DM (e.g.
Hogan & Dalcanton 2000; Moore et al. 2000).

Knowledge of the inner slope of the DM profile is of critical
importance as most of the annihilation flux comes from that re-
gion. Lacking this information, several studies have focused on
the detectability of these dSphs by current γ -ray observatories
such as the satellite-borne Fermi-Large Area Telescope (Fermi-
LAT) and atmospheric Cherenkov telescopes (ACTs) such as the
HESS, MAGIC and VERITAS, using a small sample of cusped
and cored profiles (generally one of each). Most studies rely on
standard core and cusp profiles fitted to the kinematic data of
the dSph of interest (Bergström & Hooper 2006; Sánchez-Conde

et al. 2007; Bringmann, Doro & Fornasa 2009; Pieri et al. 2009a;
Pieri, Lattanzi & Silk 2009b). Other authors use a ‘cosmologi-
cal prior’ from large-scale cosmological simulations (e.g. Kuhlen
2010). Both approaches may be combined, such as in Strigari
et al. (2007b) and Martinez et al. (2009) who rely partially on
the results of structure formation simulations to constrain the in-
ner slope and then perform a fit to the data to derive the other
parameters. However, such cosmological priors remain sufficiently
uncertain that their use is inappropriate for guiding observational
strategies. There have been only a few studies (e.g. Essig, Sehgal
& Strigari 2009) which have not assumed strong priors for the
DM profiles.

In this work, we revisit the question of the detectability of DM an-
nihilation in the classical Milky Way dSphs, motivated by ambitious
plans for next-generation ACTs such as the Cherenkov Telescope
Array (CTA). We rely solely on published kinematic data to derive
the properties of the dSphs, making minimal assumptions about the
underlying DM distribution. Most importantly, we do not restrict
our survey of DM profiles to those suggested by cosmological sim-
ulations. We also consider the effect of the spatial extent of the
dSphs, which becomes important for nearby systems observed by
background-limited instruments such as ACTs.

This paper extends the earlier study of Walker et al. (2011) which
showed that there is a critical integration angle (twice the half-light
radius divided by the dSph distance) where we can obtain a robust
estimate of the J-factor (that parametrizes the expected γ -ray flux
from a dSph, independently of the choice of DM particle model;
see Section 2), regardless of the value of the central DM cusp slope
γ . Here, we focus on the full radial dependence of the J-factor.
We consider the effect of DM sublumps within the dSphs, discuss
which dSphs are the best candidates for an observing programme,
and examine the competitiveness of next-generation ACTs as DM
probes.

This paper is organized as follows. In Section 2, we present a
study of the annihilation γ -ray flux, focusing on which parameters
critically affect the expected signal. In Section 3, we discuss the
sensitivity of present/future γ -ray observatories. In Section 4, we
present our method for the dynamical modelling of the observed
kinematics of stars in dSphs. In Section 5, we derive DM density
profiles for the classical dSphs using a Markov chain Monte Carlo
(MCMC) analysis, from which the detection potential of future
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γ -ray observatories can be assessed. We present our conclusions in
Section 6.1

This paper includes detailed analyses from both high-energy as-
trophysics and stellar dynamical modelling. To assist readers from
these different fields in navigating the key sections, we suggest that
those who are primarily interested in the high-energy calculations
may wish to focus their attention on Sections 2, 3 and 5 before
moving to the conclusions. Readers from the dynamics community
may instead prefer to read Sections 2, 4 and 5. Finally, those who
are willing to trust the underlying modelling should proceed to Sec-
tion 5 where our main results regarding the detectability of dSphs
are presented in Figs 12, 15, 16 and 17 (shown later).

2 TH E DA R K M AT T E R A N N I H I L AT I O N
S I G NA L : K E Y PA R A M E T E R S

2.1 The γ -ray flux

The γ -ray flux �γ (photons cm−2 s−1 GeV−1) from DM annihilation
in a dSph, as seen within a solid angle ��, is given by (see Appendix
A for definitions and conventions used in the literature)

d�γ

dEγ

(Eγ , ��) = �pp(Eγ ) × J (��) . (1)

The first factor encodes the (unknown) particle physics of DM
annihilation which we wish to measure. The second factor encodes
the astrophysics viz. the line-of-sight (l.o.s.) integral of the DM
density squared over solid angle �� in the dSph – this is called the
‘J-factor’. We now discuss each factor in turn.

2.1.1 The particle physics factor

The particle physics factor (�pp) is given by

�pp(Eγ ) ≡ d�γ

dEγ

= 1

4π

〈σannv〉
2m2

χ

× dNγ

dEγ

, (2)

where mχ is the mass of the DM particle, σ ann is its self-annihilation
cross-section and 〈σ annv〉 is the average over its velocity distribu-
tion, and dNγ /dEγ is the differential photon yield per annihilation.
A benchmark value is 〈σ annv〉 ∼ 3 × 10−26 cm3 s−1 (Jungman,
Kamionkowski & Griest 1996), which would result in a present-
day DM abundance satisfying cosmological constraints.

Unlike the annihilation cross-section and particle mass, the dif-
ferential annihilation spectrum [dNγ /dEγ (Eγ )] requires us to adopt
a specific DM particle model. We focus on a well-motivated class
of models that are within reach of upcoming direct and indirect ex-
periments: the Minimal Supersymmetric Standard Model (MSSM).

1 Technical details are deferred to appendices. In Appendix A, we comment
on the various notations used in similar studies and provide conversion
factors to help compare results. In Appendix B, we provide a toy model
for quick estimates of the J-factor. In Appendix D, we calculate in a more
systematic fashion the range of the possible ‘boost factor’ (due to DM
clumps within the dSphs) for generic dSphs. In Appendix E, we show that
convolving the signal by the point spread function (PSF) of the instrument
is equivalent to a cruder quadrature sum approximation. In Appendix F, we
discuss some technical issues related to confidence level (CL) determination
from the MCMC analysis. In Appendix G, the reconstruction method is
validated on simulated dSphs. In Appendix H, we discuss the impact of the
choice of the binning of the stars and of the shape of the light profile on the
J-factor determination.

In this framework, the neutralino is typically the lightest stable par-
ticle and therefore one of the most favoured DM candidates (see
e.g. Bertone, Hooper & Silk 2005). A γ -ray continuum is pro-
duced from the decay of hadrons (e.g. π 0 → γ γ ) resulting from
the DM annihilation. Neutralino annihilation can also directly pro-
duce mono-energetic γ -ray lines through loop processes, with the
formation of either a pair of γ -rays (χχ → γ γ ; Bergström & Ullio
1997), or a Z0 boson and a γ -ray (χχ → γ Z0; Ullio & Bergström
1998). We do not take into account such line-production processes
since they are usually subdominant and very model-dependent
(Bringmann, Bergström & Edsjö 2008). The differential photon
spectrum we use is restricted to the continuum contribution and is
written as

dNγ

dEγ

(Eγ ) =
∑

i

bi

dNi
γ

dEγ

(Eγ , mχ ) , (3)

where the different annihilation final states i are characterized by a
branching ratio bi.

Using the parameters in Fornengo, Pieri & Scopel (2004), we
plot the continuum spectra calculated for a 1-TeV mass neutralino
in Fig. 1.

Apart from the τ+τ− channel (dot–dashed line), all the annihi-
lation channels in the continuum result in very similar spectra of
γ -rays (dashed lines). For charged annihilation products, internal
bremsstrahlung (IB) has recently been investigated and found to en-
hance the spectrum close to the kinematic cut-off (e.g. Bringmann
et al. 2008). As an illustration, the long-dashed line in Fig. 1 cor-
responds to the benchmark configuration for a wino-like neutralino
taken from Bringmann et al. (2008). However, the shape and am-
plitude of this spectrum are strongly model-dependent (Bringmann
et al. 2009) and, as argued in Cannoni et al. (2010), this contri-
bution is relevant only for models (and at energies) where the line
contribution is dominant over the secondary photons.

We wish to be as model-independent as possible, and so do not
consider IB. In the remainder of this paper, all our results will
be based on an average spectrum taken from the parametrization

Figure 1. Differential spectra (multiplied by x2) of γ -rays from the frag-
mentation of neutrino annihilation products (here for a DM particle mass of
mχ = 1 TeV). Several different channels are shown, taken from Fornengo
et al. (2004), and an average parametrization (Bergström et al. 1998) is
marked by the black solid line; this is what we adopt throughout this paper.
The black dashed line is the benchmark model BM4 (Bringmann et al. 2008)
which includes IB and serves to illustrate that very different spectra are pos-
sible. However, the example shown here is dominated by line emission and
therefore highly model-dependent; for this reason, we do not consider such
effects in this paper.
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(Bergström et al. 1998; solid line in Fig. 1):

dNγ

dEγ

= 1

mχ

dNγ

dx
= 1

mχ

0.73e−7.8x

x1.5
, (4)

with x ≡ Eγ /mχ . Finally, in order to be conservative in deriving
detection limits, we also do not consider the possible ‘Sommer-
feld enhancement’ of the DM annihilation cross-section (Hisano,
Matsumoto & Nojiri 2004; Hisano et al. 2005).2 This depends in-
versely on the DM particle velocity, and thus requires precise mod-
elling of the velocity distribution of the DM within the dSph; we
will investigate this in a separate study.

2.1.2 The J-factor

The second term in equation (1) is the astrophysical J-factor which
depends on the spatial distribution of DM as well as on the beam
size. It corresponds to the l.o.s. integration of the DM density
squared over solid angle �� in the dSph:

J =
∫

��

∫
ρ2

DM(l, �)dld�. (5)

The solid angle is simply related to the integration angle αint by

�� = 2π[1 − cos(αint)] .

The J-factor is useful because it allows us to rank the dSphs by their
expected γ -ray flux, independently of any assumed DM particle
physics model. Moreover, the knowledge of the relative J-factors
would also help us to evaluate the validity of any potential detection
of a given dSph, because for a given particle physics model, we
could then scale the signal to what we should expect to see in the
other dSphs.

All calculations of J presented in this paper were performed
using the publicly available CLUMPY package (Charbonnier, Combet
& Maurin, 2011 ) which includes models for a smooth DM density
profile for the dSph, clumpy DM substructures inside the dSph, and
a smooth and clumpy Galactic DM distribution.3

2.1.3 DM profiles

For the DM halo, we use a generalized (α, β, γ ) Hernquist profile
given by (Hernquist 1990; Dehnen 1993; Zhao 1996)

ρ(r) = ρs

(
r

rs

)−γ [
1 +

(
r

rs

)α] γ−β
α

, (6)

where the parameter α controls the sharpness of the transition
from inner slope, limr→0dln (ρ)/dln (r) = −γ , to outer slope
limr→∞dln (ρ)/d ln (r) = −β, and rs is a characteristic scale. In
principle, we could add an additional parameter in order to intro-
duce an exponential cut-off in the profile of equation (6) to mimic
the effects of tidal truncation, as proposed in, for example, the
Aquarius (Springel et al. 2008) or Via Lactea II (Diemand et al.
2008) simulations. However, the freedom to vary the parameters rs,
α and β in equation (6) already allows for density profiles that fall
arbitrarily steeply at large radius. Moreover, given that our MCMC
analysis later shows that the outer slope β is unconstrained by the

2 This effect depends on the mass and the velocity of the particle; the result-
ing boost of the signal and the impact on detectability of the dSphs has been
discussed, for example, in Pieri et al. (2009b).
3 In Appendix B, we provide approximate formulae for quick estimates of
the J-factor and cross-checks with the numerical results.

available data and that the J-factor does not correlate with β, we
choose not to add further shape parameters.

For profiles such as γ ≥ 1.5, the quantity J from the inner regions
diverges. This can be avoided by introducing a saturation scale rsat

that corresponds physically to the typical scale where the annihi-
lation rate [〈σv〉ρ(rsat)/mχ ]−1 balances the gravitational infall rate
of DM particles (Gρ̄)−1/2 (Berezinsky, Gurevich & Zybin 1992).
Taking ρ̄ to be about 200 times the critical density gives

ρsat ≈ 3 × 1018
( mχ

100 GeV

)
×

(
10−26 cm3 s−1

〈σv〉
)

M� kpc−3.

(7)

The associated saturation radius is given by

rsat = rs

(
ρs

ρsat

)1/γ


 rs . (8)

This limit is used for all of our calculations.

2.2 Motivation for a generic approach and reference models

In many studies, the γ -ray flux (from DM annihilation) is calculated
using the point-source approximation (e.g. Bergström & Hooper
2006; Kuhlen 2010). This is valid so long as the inner profile is
steep, in which case the total luminosity of the dSph is dominated by
a very small central region. However, if the profile is shallow and/or
the dSph is nearby, the effective size of the dSph on the sky is larger
than the PSF of the detector, and the point-source approximation
breaks down. For upcoming instruments and particularly shallow
DM profiles, the effective size of the dSph may even be comparable
to the field of view of the instrument. This difference in the radial
extent of the signal does matter in terms of detection (see Section 3).
Hence, we do not assume that the dSph is a point source but rather
derive sky maps for the expected γ -ray flux.

2.2.1 Illustration: a cored versus cusped profile

Fig. 2 shows J as a function of the integration angle αint for a dSph
at 20 kpc (looking towards its centre). The black solid line is for
a cored profile (γ = 0) and the green dashed line is for a cuspy
profile (γ = 1.5); both are normalized to unity at αint = 5◦. For the
cuspy profile, ∼100 per cent of the signal is in the first bin, while
for the cored profile, J builds up slowly with αint, and 80 per cent

Figure 2. Finite size effects: J as a function of the integration angle αint for
a dSph at 20 kpc (pointing towards the centre of the dSph). The black solid
line is for a cored profile (γ = 0) and the green dashed line is for a cuspy
profile (γ = 1.5); both are normalized to unity at αint = 5◦.
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Table 1. The required normaliza-
tion ρs to have M300 = 107M� for
a sample of (1, 3, γ ) profiles with
varying scale radius rs.

ρs (107 M� kpc−3)
γ /rs (kpc) 0.10 0.50 1.0

0.00 224 25.8 16.02
0.25 196 18.6 10.22
0.50 170 13.4 6.47
0.75 146 9.5 4.06
1.00 125 6.7 2.52
1.25 106 4.7 1.54
1.50 88 3.2 0.92

of the signal (with respect to the value for αint = 5◦) is obtained for
α80 per cent ≈ 3◦. This is also indicated by the symbols which show the
contribution of DM shells in two angular bins – whereas the (green)
hollow squares have a spiky distribution in the first bin (γ = 1.5),
the (black) filled circles (γ = 0) show a very broad distribution
for J.

The integration angle required to have a sizeable fraction of the
signal depends on several parameters: the distance d from the dSph,
the inner profile slope γ and the scale radius rs. Small integration
angles are desirable since this minimizes contaminating background
γ -ray photons and maximizes the signal-to-noise ratio. Thus, the
true detectability of a dSph will depend on its spatial extent on the
sky, and thus also on d, γ and rs.

2.2.2 Generic dSph profiles

As will be seen in Section 5, the errors on the density profiles of the
Milky Way dSphs are large, making it difficult to disentangle the
interplay between the key parameters for detectability. Hence, we
select some ‘generic profiles’ to illustrate the key dependencies.

The most constrained quantity is the mass within the half-light
radius rh (typically a few tenths of a kpc), as this is where most
of the kinematic data come from (e.g. W09; Wolf et al. 2010). For
the classical Milky Way dSphs, the typical mass within rh ∼ 300 pc
is found to be M300 ∼ 107 M� (Strigari et al. 2008, see also the
bottom panel of Fig. 13 shown later). If the DM scale radius is
significantly larger than this (rs � rh) and the inner slope γ � 0.5,
we can approximate the enclosed mass by

M300 � 4πρsr
3
s

3 − γ

(
300 pc

rs

)3−γ

≈ 107 M� . (9)

The parameter ρs is thus determined completely by the above con-
dition, if we choose the scale radius rs and cusp slope γ .

Table 1 shows, for several values of rs and γ , the value required
for ρs to obtain the assumed M300 mass. We fix α = 1, β = 3
but our results are not sensitive to these choices.4 The values of
rs are chosen to encompass the range of rs found in the MCMC
analysis (see Section 5). To further convince ourselves that the
generic profiles we present here are a possible description of real
dSphs, we checked (not shown) using typical stellar profiles and
properties of these objects (i.e. half-light radius of a few 100 pc)
that a flat ∼10 km s−1 velocity dispersion profile within the error

4 For a different mass for the dSph, the results for J below have to be rescaled
by a factor (Mnew

300 /107 M�)2 since the density is proportional to M300, while
J goes as the density squared.

bars is recovered. We also study below the effect of moving these
dSphs from a distance of 10 kpc to 300 kpc, corresponding to the
typical range covered by these objects.

2.2.3 Substructures within the dSph

Structure formation simulations in the currently favoured �CDM
(cold DM plus a cosmological constant) cosmology find that DM
haloes are self-similar, containing a wealth of smaller ‘substructure’
haloes down to Earth-mass haloes (e.g. Diemand, Moore & Stadel
2005). However, as emphasized in the introduction, such simula-
tions typically neglect the influence of the baryonic matter during
galaxy formation. It is not clear what effect these have on the DM
substructure distribution. For this reason, we adopt a more generic
approach. We assess the importance of clumps using the following
recipe5:

(i) we take a fraction f = 20 per cent of DM mass in the form of
clumps;

(ii) the spatial distribution of clumps follows the smooth one;
(iii) the clump profiles are calculated à laBullock et al. (2001)

(hereinafter B01), that is, an ‘NFW’ profile (Navarro et al. 1996a)
with concentration related to the mass of the clumps;

(iv) the clump mass distribution is ∝ M−a (a = −1.9), within a
mass range Mmin–Mmax = [10−6–106] M�.

Although these parameters are very uncertain, they allow us to
investigate the impact of subtructures on the J-factor. They are var-
ied within reasonable bounds in Section 2.3.2 (and Appendix D)
to determine whether the subclump contribution can boost the sig-
nal. Note that a 20 per cent clump mass fraction is about twice as
large as the fraction obtained from numerical simulations (see e.g.
Springel et al. 2008). This generous fraction does not affect our
conclusions, as discussed below.

2.3 Jsm and Jsubcl for the generic models

As an illustration, we show in Fig. 3 one realization of the
2D distribution of J from a generic core profile (γ = 0) with
rs = 1 kpc (subclump parameters are as described in Section 2.2.3).
The dSph is at d = 100 kpc. We note that our consideration of a
γ = 0 smooth component with NFW subclumps is plausible if, for
example, baryon-dynamical processes erase cusps in the smooth
halo but cannot do so in the sub-subhaloes. The total J is the sum
of the smooth and subclump distributions. The centre is dominated
by the smooth component, whereas some graininess appears in the
outskirts of the dSph.

In this particular configuration, the ‘extended’ signal from the
core profile, when integrated over a very small solid angle, could
be subdominant compared with the signal of NFW subclumps that
it hosts. The discussion of cross-constraints between detectability
of subhaloes of the Galaxy versus subclumps in the dSph is left for
a future study.

In the remainder of this paper, we will replace for simplicity the
calculation of Jsubcl(αint) by its mean value, as we are primarily in-
terested in ‘unresolved’ observations. Hence, clumps are not drawn
from their distribution function, but rather 〈Jsubcl〉 is calculated from

5 More details about the clump distributions can be found in Appendix B2.
See also, for example, Section 2 in Lavalle et al. (2008) and references
therein, as we use the same definitions as those given in that paper.
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Figure 3. Two-dimensional view (x- and y-axes are in degrees) of J for
the generic dSph with γ = 0 and rs = 1 kpc at d = 100 kpc (M300 =
107 M�). The subclumps are drawn from the reference model described in
Section 2.2.3, that is, f = 20 per cent, subclump distribution follows smooth,
and subclump inner profiles have NFW with B01 concentration. From the
top to bottom panel: αint = 0.◦1, 0.◦05 and 0.◦01. For the sake of comparison,
the same colour scale is taken for the three integration angles (J is in units
of M2� kpc−5).

Figure 4. J as a function of the angle θ away from the dSph centre for a dSph
at 100 kpc with rs = 0.5 kpc (ρs is given in Table 1). The integration angle
αint = 0.◦01. For the four inner slope values γ , the various contributions to J
are shown as the solid (total), dashed (smooth) and dotted lines (subclumps).

the integration of the spatial and luminosity (as a function of mass)
distributions (see Appendix B2).

2.3.1 Radial dependence of J(θ )

The radial dependence of J is shown in Fig. 4 for four values of γ (for
an integration angle αint = 0.◦01). The dashed lines show the result
for the smooth distribution, the dotted lines show the subclump
contribution, and the solid lines are the sum of the two. The peak of
the signal is towards the dSph centre. As long as the distribution of
clumps is assumed to follow the smooth one, regardless of the value
of γ , the quantity (1 − f )2Jsm(0) always dominates (at least by a
factor of a few) over 〈Jsubcl(0)〉. (Recall that in our generic models,
all dSphs have the same M300.) The scatter in Jtot(0) is about four
orders of magnitude for γ ∈ [0.0–1.5], but only a factor of 20 for
γ ∈ [0.0–1.0]. Beyond a few tenths of degrees, 〈Jsubcl〉 dominates.
The crossing point depends on a combination of the clump mass
fraction f , γ , rs, d and αint. The dependence of J on the two latter
parameters are discussed in Appendix C. The radial dependence is
as expected: the smooth contribution decreases faster than that of
the subclump one, because the signal is proportional to the squared
spatial distribution in the first case, but directly proportional to
the spatial distribution in the second case. Halving f to match the
fraction from N-body simulations would have a 25 per cent effect
on (1 − f )2Jsm, but decreases Jsubcl by a factor of 4, so that the
cross-over between the two components would occur at a larger
angle (Fig. 4).

2.3.2 Boost factor

Whether or not the signal is boosted by the subclump population is
still debated in the literature (Strigari et al. 2007b; Kuhlen, Diemand
& Madau 2008; Pieri, Bertone & Branchini 2008; Pieri et al. 2009a).
As underlined in the previous sections, the subclump contribution
towards the dSph centre never dominates over the smooth one if
the spatial profile of the subclumps follows that of the smooth
distribution, and if the integration angle remains below some critical
angle discussed below.

Let us first define properly the parameters with respect to which
this boost is calculated, as there is sometimes some confusion about
this. Here, we define it with respect to the integration angle αint (the
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Figure 5. Boost factor as a function of αint × (d/100 kpc) for different
inner slopes γ and with subclumps following the smooth profile (see Sec-
tion 2.2.3): the dSph is at d = 100 kpc (lines) or d = 10 kpc (symbols).

pointing direction is still towards the dSph centre):

B(αint) ≡ (1 − f )2Jsm(αint) + Jsubcl(αint)

Jsm(αint)
. (10)

In most studies, the boost has been calculated by integrating out to
the clump boundary (i.e. αall

int = Rvir/d). However, the boost depends
crucially on αint (the radial dependence of the smooth and subclump
contributions differs, see Section 2.3.1).

We plot in Fig. 5 the boost for different inner slopes γ , where a
direct consequence of equation (C7) is the αint × d rescaling. For
rs � 0.1 kpc (regardless of γ ), or for γ � 1.5 (regardless of rs), the
signal is never boosted.6 For small enough αint, B is smaller than
unity, and if γ is steep enough, B ≈ (1 − f )2. For large values, a
plateau is reached as soon as αintd � Rvir (taken to be 3 kpc here). In
between, the value of the boost depends on rs and γ of the smooth
component. Going beyond this qualitative description is difficult, as
the toy-model formulae of Appendix B2 give results correct to only
a factor of ∼2 (which is inadequate to evaluate the boost properly).

To conclude, the maximum value for subclump follows smooth
is �2, and this value is reached only when integrating the signal
out to Rvir/d. The boost could still be increased by varying the sub-
clump properties (e.g. taking a higher concentration). Conversely, if
dynamical friction has caused the subclump population to become
much more centrally concentrated than the smooth component, then
the boost is decreased. This is detailed in Appendix D. For the most
realistic configurations, there is no significant boost when a clump
mass fraction f = 20 per cent is used. Naturally, this result is even
more true for the smaller f found in N-body simulations so we
disregard the boost for the rest of this paper and consider only the
smooth contribution.

6 The difference between the level of boost observed for rs = 0.1 and
1 kpc can be understood if we recall that the total mass of the clump is
fixed to 300 pc, regardless of the value of γ or rs. For rs = 0.1 kpc, ρs ∼
O(109 M� kpc−3), whereas for rs = 1 kpc, ρs ∼ O(107 M� kpc−3). As
Jsm ∝ ρ2

s whereas Jsub ∝ ρs, the relative amount of Jsub with respect to Jsm

is expected to decrease with smaller rs. This is indeed what we observe in
the figure (solid versus dashed lines).

3 SENSI TI VI TY OF PRESENT/ FUTURE γ -RAY
O B S E RVATO R I E S

Major new ground-based γ -ray observatories are in the planning
stage, with the CTA (CTA Consortium 2010) and AGIS (AGIS
Collaboration 2010) as the main concepts. As the designs of these
instruments are still evolving, we adopt here generic performance
curves (described below), close to the stated goals of these projects.
For the LAT of the Fermi γ -ray satellite, the performance for 1-year
observations of point-like, high-Galactic-latitude sources is known
(Fermi-LAT Collaboration 2010), but no information is yet avail-
able for longer exposures or for extended objects. We therefore
adopt a toy likelihood-based model for the Fermi sensitivity, tuned
to reproduce the 1-year point-source curves. We note that whilst this
approach results in approximate performance curves for both the
ground- and the space-based instruments, it captures the key differ-
ences (in particular, the differences in collection area and angular
resolution) and illustrates the advantages and limitations of the two
instrument types, as well as the prospects for the discovery of DM
annihilation in dSphs within the next decade.

3.1 Detector models

The sensitivity of a major future γ -ray observatory based on an
array of Cherenkov telescopes (FCA in the following, for ‘Future
Cherenkov Array’) is approximated based on the point-source dif-
ferential sensitivity curve (for a 5σ detection in 50 hours of obser-
vations) presented by Bernlöhr et al. (2008). Under the assumption
that the angular resolution of such a detector is a factor of 2 better
than the HESS (Funk et al. 2008) and has the same energy de-
pendence, and that the effective collection area for γ -rays grows
from 104 m2 at 30 GeV to 1 km2 at 1 TeV, the implied cosmic-ray
(hadron and electron) background rate per deg2 can be inferred and
the sensitivity thus adapted to different observation times, spectral
shapes and source extensions. Given that the design of instruments
such as the CTA is not yet fixed, we consider that such a simplified
response, characterized by the following functions, is a useful tool
to explore the capabilities of a generic next-generation instrument:

LS = −13.1 − 0.33X + 0.72X2, (11)

LA = 6 + 0.46X − 0.56X2, (12)

ψ68 = 0.038 + exp −(X + 2.9)/0.61, (13)

where

X = log10 (photon energy/TeV), (14)

LS = log10(differential sensitivity/erg cm−2 s−1), LA =
log10(effective area/m2), and ψ68 is the 68 per cent contain-
ment radius of the PSF in degrees.

For the Fermi detector, a similar simplified approach is taken;
the numbers used below are those provided by Fermi-LAT Collab-
oration (2010). The effective area changes as a function of energy
and the incident angle to the detector, reaching a maximum of
≈8000 cm2. The effective time-averaged area is then εA�/4π and
the data-taking efficiency ε ≈ 0.8 (due to instrument dead-time
and passages through the South Atlantic Anomaly). The PSF again
varies as a function of energy (with a much smaller dependence
as a function of incidence angle), from 10◦ to a few tenths of a
degree over the LAT energy range. A rate of 1.5 × 10−5 cm−2 s−1

sr−1 (>100 MeV) and a photon index of 2.1 are assumed for the
background. The sensitivity is then estimated using a simplified
likelihood method which provides results within 20 per cent of the
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sensitivity for a 1-year observation of a point-like source given by
Fermi-LAT Collaboration (2010).

Whilst both detector responses are approximate, the comparison
is still useful. Our work incorporates several key aspects not con-
sidered in earlier studies, including the strong energy dependence
of the angular resolution of both ground- and space-based instru-
ments in the relevant energy range of 1 GeV to 1 TeV and hence the
energy-dependent impact of the angular size of the target region.

3.2 Relative performance for generic haloes

Using the results from Section 2.2.2 and the detector performance
models defined above, we can begin to investigate the sensitivity of
future ACT arrays and the Fermi-LAT detector (over long obser-
vation times) to DM annihilation in dSphs. The detectability of a
source depends primarily not only on its flux, but also on its angular
extent. The impact of source extension on detectability is dealt with
approximately (in each energy bin independently) by assuming that
the opening angle of a cone which incorporates 80 per cent of the
signal is given by

θ80 =
√

ψ2
80 + α2

80 , (15)

where ψ80 = 1.25ψ68 is assumed for the FCA and interpolated from
values given for 68 and 95 per cent containment for the LAT (Fermi-
LAT Collaboration 2010); here, α80 is the 80 per cent containment
angle of the halo emission. The validity of this approximation (at
the level of a few per cent) has been tested (see Appendix E) by
convolving realistic halo profiles with a double Gaussian PSF as
found for the HESS (Horns 2005). An 80 per cent integration circle
is close to optimum for a Gaussian source on a flat background
(in the background-limited regime). Fig. 6 shows the 80 per cent
containment radius of the annihilation flux of generic haloes as a
function of the inner slope γ . This result can be parametrized as

α80 = 0.◦8(1 − 0.48γ − 0.137γ 2)

(
rs

1 kpc

) (
d

100 kpc

)−1

. (16)

It is clear that for a broad range of d, γ and rs, the characteristic
angular size of the emission region is larger than the angular reso-
lution of the instruments under consideration. It is therefore critical
to assess the performance as a function of the angular size of the
dSph as well as the mass of the annihilating particle.

Figure 6. The cone angle encompassing 80 per cent of the annihilation flux
as a function of the inner slope γ . Several different values of rs and distance
d are shown for each γ , all scaled by 1 kpc/rs and 100 kpc/d. The best-fitting
curve is also shown, corresponding to equation (16).

Fig. 7 shows the relative sensitivity of Fermi and an FCA within
our framework as a function of the mass of the annihilating particle,
adopting the annihilation spectrum given in equation (4), with the
several panels illustrating different points. From Fig. 7 (top panel,
the case of a point-like signal for different observation times), it
is clear that the Fermi-LAT has a considerable advantage for lower
mass DM particles (mχ 
 1 TeV) on the time-scale for construction
of an FCA (i.e. over a 5–10 yr mission lifetime) in comparison to a
deep ACT observation of 200 h. Furthermore, the Fermi-LAT is less
adversely affected by the angular extent of the target regions (see
Fig. 7, bottom panel), due to its modest angular resolution in the
energy range where it is limited by background, meaning that the
source extension is well matched to the PSF of the instrument. The
middle panel of this figure illustrates the impact of different ap-
proaches to the analysis. In the case that there is a DM candidate
inferred from the discovery of supersymmetry at the Large Hadron
Collider (LHC) (quite possible on the relevant time-scale), a search
optimized on an assumed mass and spectral shape can be made
(solid curves). However, all instruments are less sensitive when a
generic search is undertaken. Simple analyses using all the photon
flux above a fixed energy threshold (arbitrarily set to reduce back-
ground) are effective only in a relatively narrow range of particle
mass. For example, keeping only >100 GeV photons works well
for ACTs for 0.3–3 TeV particles, whereas keeping all photons >1
GeV works moderately well in the 0.1–0.2 TeV range, but is much
less sensitive than the higher threshold cut over the rest of the can-
didate DM particle mass range. The features of these curves are
dictated by the expected shape of the annihilation spectrum. From
equation (4), the peak photon output (adopting the average spec-
trum for DM annihilation) occurs at an energy which is an order
of magnitude below the particle mass – effective detection requires
that this peak occurs within (or close to) the energy range of the
instrument concerned.

The total annihilation flux from a dSph increases at smaller dis-
tances as 1/d2 for fixed halo mass, making nearby dSphs attractive
for DM detection. However, as Fig. 7 shows, the increased angu-
lar size of such nearby sources raises the required detection flux.
Fig. 8 illustrates the reduction of an FCA sensitivity as a function
of the distance of a generic dSph. Inner slopes γ = 0 and γ =
1 have been considered and rs is fixed to 1 kpc. The sensitivity is
expressed relative to that obtained using the full annihilation sig-
nal in the point-like approximation. Even for γ = 1, the point-like
approximation leads to an order of magnitude overestimate of the
detection sensitivity for nearby (∼20 kpc) dSphs. A further compli-
cation is how to establish the level of background emission arising
from the residual non-γ -ray background. A common method in
ground-based γ -ray astronomy is to estimate this background from
an annulus around the target source (see e.g. Berge, Funk & Hinton
2007). The dashed lines in Fig. 8 show the impact of estimating the
background using an annulus between 3.◦5 and 4.◦0 from the target.
This approach has a modest impact on sensitivity and is ignored in
the following discussions as it reduces both the detectable flux and
θ 80 and leads to a small improvement in some cases only.

4 J EANS/MCMC A NA LY SIS O F D SPH
K I N E M AT I C S

4.1 dSph kinematics with the spherical Jeans equation

Extensive kinematic surveys of the stellar components of dSphs
have shown that these systems have negligible rotational support
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Figure 7. Approximate sensitivities of the Fermi-LAT (blue lines), HESS
(black lines) and the FCA described above (red lines) to a generic halo with
J = 1012 M2� kpc−5, as a function of the mass of the annihilating particle
and for the annihilation spectrum of equation (4). Top panel: the impact
of observation time is illustrated: dashed lines give the 1-year and 20-hour
sensitivities for Fermi and the FCA/HESS, respectively, while the solid
lines refer to 10-year (200-hour) observations. Middle panel: the impact
of analysis methods is considered for 5-year (100-hour) observations using
Fermi (FCA). The solid lines show likelihood analyses in which the mass
and spectrum of the annihilating particle are known in advance, while the
dashed and dotted lines show simple integral flux measurements above fixed
thresholds of 1 and 100 GeV, respectively. Note that the 1-GeV cut implies
accepting all events for the FCA (where the trigger threshold is ≈20 GeV).
Bottom panel: the impact of the angular extension of target sources, as
given by the halo profile in Fig. 6, is illustrated. The solid lines reproduce
the likelihood case from the middle panel for a point-like source, with the
values of α80 of 0.◦1 (dashed) and 1◦ also shown.

Figure 8. Relative DM annihilation detection sensitivity for a 100-hour
FCA observation, as a function of dSph distance for different inner slopes
γ and with rs fixed to 1 kpc. The sensitivity for a realistic approach using
θ80 is given relative to the sensitivity to a point-like source with the same
flux. Larger values correspond to poorer performance (larger values of the
minimum detectable flux). The assumed spectral shape is again as given
by equation (4) with mχ = 300 GeV. This sensitivity ratio depends on the
strategy used to estimate the background level at the dSph position. The
dashed lines show the impact of using an annulus between 3.◦5 and 4.◦0 of
the dSph centre as a background control region. The solid line assumes that
the background control region lies completely outside the region of emission
from the dSph.

(with the possible exception of the Sculptor dSph, see Battaglia et al.
2008). If we assume that the dSphs are in virial equilibrium, then
their internal gravitational potentials balance the random motions
of their stars. In order to estimate dSph masses, we consider here
the behaviour of dSph stellar velocity dispersion as a function of
distance from the dSph centre (analogous to rotation curves of spiral
galaxies). Specifically, we use the stellar kinematic data of Walker,
Mateo & Olszewski (2009c) for the Carina, Fornax, Sculptor and
Sextans dSphs, the data of Mateo, Olszewski & Walker (2008) for
the Leo I dSph, and data from Mateo et al. (in preparation) for the
Draco, Leo II and Ursa Minor dSphs. W09 have calculated veloc-
ity dispersion profiles from these same data under the assumption
that l.o.s. velocity distributions are Gaussian. Here we re-calculate
these profiles without adopting any particular form for the velocity
distributions. Specifically, for a given dSph, we divide the velocity
sample into circular bins containing approximately equal numbers
of member stars,7 and within each bin, we estimate the second
velocity moment (squared velocity dispersion) as

〈V̂ 2〉 = 1

N − 1

N∑
i=1

[(Vi − 〈V̂ 〉)2 − σ 2
i ], (17)

where N is the number of member stars in the bin. We hold 〈V〉
fixed for all bins at the median velocity over the entire sample.
For each bin, we use a standard bootstrap re-sampling to estimate
the associated error distribution for 〈V̂ 2〉, which is approximately
Gaussian. Fig. 9 displays the resulting velocity dispersion profiles,
〈V̂ 2〉1/2(R), which are similar to previously published profiles.

In order to relate these velocity dispersion profiles to dSph
masses, we follow W09 in assuming that the data sample in each

7 Kinematic samples are often contaminated by interlopers from the Milky
Way foreground. Following W09, we discard all stars for which the algo-
rithm described by Walker et al. (2009b) returns a membership probability
less than 0.95.
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Figure 9. Velocity dispersion profile data for the eight classical dSphs, obtained as described in the text (the impact of the binning choice is discussed in
Appendix H1). The solid lines correspond to the best-fitting models for the inner slope when γ is left free (dark), γ is fixed to 1 (blue) and γ is fixed to 0
(red). Because of the large degeneracies among the halo parameters (see Section 5.1 for a list), we do not list the corresponding best-fitting parameters. The
motivation for showing these profiles is to illustrate that our halo model is capable of describing the kinematic data, and that the inner profile is not constrained
by the data.

dSph a single, pressure-supported stellar population that is in dy-
namical equilibrium and traces an underlying gravitational potential
dominated by DM. Implicit is the assumption that the orbital mo-
tions of stellar binary systems contribute negligibly to the measured
velocity dispersions.8 Furthermore, assuming spherical symmetry,
the mass profile, M(r), of the DM halo relates to (moments of) the
stellar distribution function via the Jeans equation:

1

ν

d

dr
(νv̄2

r ) + 2
β(r)v̄2

r

r
= −GM(r)

r2
, (18)

where ν(r), v̄2
r (r) and βaniso ≡ β(r) ≡ 1 − v̄2

θ /v̄
2
r describe the

three-dimensional density, radial velocity dispersion and orbital
anisotropy, respectively, of the stellar component. Projecting along
the l.o.s., the mass profile relates to observable profiles, the pro-
jected stellar density I(R) and velocity dispersion σ p(R), according
to (Binney & Tremaine 2008, hereinafter BT08)

σ 2
p (R) = 2

I (R)

∫ ∞

R

(
1 − βaniso

R2

r2

)
νv̄2

r r√
r2 − R2

dr. (19)

8 Olszewski, Pryor & Armandroff (1996) and Hargreaves, Gilmore & Annan
(1996) conclude that this assumption is valid for the classical dSphs stud-
ied here, which have measured velocity dispersions of ∼10 km s−1. This
conclusion does not necessarily apply to recently discovered ‘ultrafaint’
Milky Way satellites, which have measured velocity dispersions as small as
∼3 km s−1 (McConnachie & Côté 2010).

Note that while we observe the projected velocity dispersion and
stellar density profiles directly, the l.o.s. velocity dispersion pro-
files provide no information about the anisotropy, βaniso. Therefore,
we require an assumption about βaniso; here, we assume βaniso =
constant, allowing for non-zero anisotropy in the simplest way. For
constant anisotropy, the Jeans equation has the solution (e.g. Mamon
& Łokas 2005)

νv̄2
r = Gr−2βaniso

∫ ∞

r

s2βaniso−2ν(s)M(s) ds. (20)

We shall adopt parametric models for I(R) and M(r) and then find
values of the parameters of M(r) that, via equations (19) and (20),
best reproduce the observed velocity dispersion profiles.

4.1.1 Stellar density

Stellar surface densities of dSphs are typically fitted by Plummer
(1911), King (1962) and/or Sérsic (1968) profiles (e.g. Irwin &
Hatzidimitriou 1995). For simplicity, we adopt here the Plummer
profile:

I (R) = L

πr2
h

1

(1 + R2/r2
h )2

, (21)
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which has just two free parameters: the total luminosity L and
the projected9 half-light radius rh. Given spherical symmetry, the
Plummer profile implies a three-dimensional stellar density (BT08)
of

ν(r) = − 1

π

∫ ∞

r

dI

dR

dR√
R2 − r2

= 3L

4πr3
h

1

(1 + r2/r2
h )5/2

. (22)

Since we assume that DM dominates the gravitational potential at
all radii (all measured dSphs have central mass-to-light ratios � 10,
e.g. Mateo 1998), the value of L has no bearing on our analysis.
We adopt values of rh (and associated errors) from Table 1 in the
published erratum to W09; these data originally come from the star
count study of Irwin & Hatzidimitriou (1995). We have checked
that a steeper outer slope or a steeper inner slope for the light profile
leaves unchanged the conclusions (see Appendix H2).

4.1.2 DM halo

For the DM halo, we follow W09 in using a generalized Hernquist
profile, as given by equation (6). In terms of these parameters, that
is, the density ρs at scale radius rs, plus the (outer, transition, inner)
slopes (α, β, γ ), the mass profile is

M(r) = 4π

∫ r

0
s2ρ(s)ds = 4πρsr

3
s

3 − γ

(
r

rs

)3−γ

2F1

[
3 − γ

α
,
β − γ

α
;

3 − γ + α

α
; −

(
r

rs

)α]
, (23)

where 2F1(a, b; c; z) is Gauss’ hypergeometric function.
Equation (6) includes plausible halo shapes ranging from the

constant-density ‘cores’ (γ = 0) that seem to describe rotation
curves of spiral and low-surface-brightness galaxies (e.g. de Blok
2010, and references therein) to the centrally divergent ‘cusps’ (γ >

0) motivated by cosmological N-body simulations that model only
the DM component. For (α, β, γ ) = (1, 3, 1), equation (6) is just the
cuspy NFW (Navarro et al. 1996a; Navarro, Frenk & White 1997)
profile.

4.2 MCMC method

For a given halo model, we compare the projected (squared) ve-
locity dispersion profile σ 2

p (R) (obtained from equation 19) to the

empirical profile 〈V̂ 2〉(R) (displayed in Fig. 9) using the likelihood
function

ζ =
N∏

i=1

1√
2πVar[〈V̂ 2〉(Ri)]

exp

[
−1

2

(〈V̂ 2〉(Ri) − σ 2
p (Ri))2

Var[〈V̂ 2〉(Ri)]

]
,

(24)

where Var[〈V̂ 2〉(Ri)] is the variance associated with the empirical
mean square velocity, as estimated from our bootstrap re-sampling.

In order to explore the large parameter space efficiently, we em-
ploy MCMC techniques, that is, we use the standard Metropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings 1970) to gen-
erate posterior distributions according to the following prescription:
(1) from the current location in parameter space, Sn draw a prospec-
tive new location, S′, from a Gaussian probability density centred

9 For consistency with W09, we define rh as the radius of the circle enclosing
half of the dSph stellar light as seen in projection. Elsewhere, this radius is
commonly referred to as the ‘effective radius’.

on Sn; (2) evaluate the ratio of likelihoods at Sn and S′; and (3) if
ζ (S′)/ζ (Sn) ≥ 1, accept such that Sn+1 = S′, else accept with proba-
bility ζ (S′)/ζ (Sn), and Sn+1 = Sn with probability 1 − ζ (S′)/ζ (Sn). In
order to account for the observational uncertainty associated with
the half-light radius adopted from Irwin & Hatzidimitriou (1995),
for each new point, we scatter the adopted value of rh by a random
deviate drawn from a Gaussian distribution with standard deviation
equal to the published error. This method effectively propagates the
observational uncertainty associated with the half-light radius to the
posterior distributions for our model parameters.

Solutions of the Jeans equations are not guaranteed to correspond
to physical models, as the associated phase-space distribution func-
tions may not be everywhere positive. An & Evans (2006) have
derived a necessary relation between the asymptotic values of the
logarithmic slope of the gravitational potential, the tracer density
distribution and the velocity anisotropy at small radii. Models which
do not satisfy this relation will not give rise to physical distribution
functions. In terms of our parametrization, this relation becomes

γtracer � 2βaniso. (25)

We therefore exclude from the Markov chain those models which
do not satisfy this condition. Because the Plummer profiles we use
to describe dSph surface brightness profiles have γ tracer = 0, this
restriction implies βaniso � 0. Given our assumption of constant
velocity anisotropy, this disqualifies all radially anisotropic models.
Relaxing this condition affects the results on the J-factors, but the
difference is contained within their CLs (see Appendix H2).

For this procedure, we use the adaptive MCMC engine CosmoMC
(Lewis & Bridle 2002).10 Although it was developed specifically for
analysis of cosmic microwave background data, CosmoMC pro-
vides a generic sampler that continually updates the probability
density according to the parameter covariances in order to optimize
the acceptance rate. For each galaxy and parametrization, we run
four chains simultaneously, allowing each to proceed until the vari-
ances of parameter values across the four chains become less than
1 per cent of the mean of the variances. Satisfying this convergence
criterion typically requires ∼104 steps for our chains. We then es-
timate the posterior distribution in parameter space using the last
half of all accepted points (we discard the first half of points, which
we conservatively assume corresponds to the ‘burn-in’ period).

5 D E T E C TA B I L I T Y O F M I L K Y WAY D S P H S

This section provides our key results. For the benefit of readers who
start reading here, we summarize our findings so far.

In Section 2, we focused on generic (1, 3, γ ) profiles to show
that, most of the time, the substructure contribution is negligible,
and to check that the only relevant dSph halo parameters are the
density normalization ρs, the scale radius rs and the inner slope γ

(because JdSph ∝ r2γ
s × (αintd)3−2γ , see also Appendix B).

In Section 3, we provided the sensitivity of present and future
γ -ray observatories, showing how it is degraded when consider-
ing ‘extended’ sources (e.g. a flat profile for close dSphs), and an
instrument response that varies with energy.

In Section 4, we presented our method to perform a MCMC anal-
ysis of the observed stellar kinematics in the eight classical Milky
Way dSphs under the assumptions of virial equilibrium, spheri-
cal symmetry, constant velocity anisotropy and a Plummer light
distribution. The analysis uses the observed velocity dispersion

10 Available at http://cosmologist.info/cosmomc
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Figure 10. Joint distributions and marginalized PDFs of parameters entering the MCMC for the Draco dSph. The off-diagonal plots show joint distributions
that highlight correlations between the parameters, while the on-diagonal plots are the marginalized PDFs of the parameters. This marginalization includes the
marginalization over the velocity anisotropy parameter βaniso. (We do not plot a marginalized PDF or correlation for βaniso since it is a nuisance parameter for
our analysis here.)

profiles of the dSphs to constrain their underlying DM halo poten-
tials, parametrized using the five-parameter models of equation (6).

5.1 Six-parameter MCMC analysis – varying γ

Our kinematic models have six free parameters, for which we adopt
uniform priors over the following ranges:

− log10(1 − βaniso) : [−1, +1];

log10[ρs/(M� pc−3)] : [−10, +4];

log10[rs/pc] : [0, 4];

α : [0.5, 3];

β : [3, 7];

γ : [0, 2] or [0, 1].

The anisotropy parameter βaniso does not enter directly the pro-
file/mass/J calculation, although it is of fundamental importance
for the fit as it can correlate with the DM profile structure param-
eters (so with the mass and the J-factor). We have not checked
explicitly the details of these correlations, but we have checked that

restricting the range of possible βaniso does not significantly impact
on the results for the J calculation. Hence, we do not discuss this
parameter further below.

5.1.1 Parameter correlations

Fig. 10 shows the marginalized probability density functions (PDFs)
of the profile parameters and the joint distributions of pairs of pa-
rameters. The features of these plots are driven by the fact that most
of the stellar kinematic data lie at radii of up to few hundred parsecs
(see Fig. 9). For instance, the outer slope β is not at all constrained
(i.e. the fit is insensitive to the value of β), because only tracers be-
yond a radius of r � 1 kpc are sensitive to this parameter and these
radii are sparsely sampled by the observations. The transition slope
α and then the inner slope γ are the two other least constrained
parameters. In terms of best-fitting models, as shown in Fig. 9,
the match to kinematic data is equally good for varying-γ (black)
models and models in which we fix the value to γ = 0 (blue), or
γ = 1 (red). In the following, we will not discuss further the best-
fitting values. The more meaningful quantity, in the context of an
MCMC analysis providing PDFs, is the median of the distribution.

C© 2011 The Authors, MNRAS 418, 1526–1556
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



1538 A. Charbonnier et al.

Several groups have shown recently that in a Jeans analysis, the
observed flatness of dSph velocity dispersion profiles (Walker et al.
2007) leads to a constraint on M(rh) – the mass enclosed within a
sphere of radius rh – that is insensitive to assumptions about either
anisotropy or the structural parameters of the DM halo (W09; Wolf
et al. 2010). Using for the appropriate radius the mass estimate
(equation 9) and the above constraint leads to a relation between
the profile parameters:

log(ρs) + γ log(rs) ≈ constant.

This relation explains the approximately linear correlations between
these parameters seen, for instance, in the bottom left-hand panel
of Fig. 10.

5.1.2 From ρ(r) to J(αint): uncertainty and impact of γ prior

Fig. F1 shows the density profile for Draco as recovered by our
MCMC analysis. It is notable that the confidence limits are narrower
for radial scales of a few hundreds pc – this is a common feature
of the density profile confidence limits for all the dSphs we have
considered. As discussed above, this is partly due to the fact that
these are the radii at which the majority of the kinematic data lie. The
least constrained ρ(r) (less pronounced narrowing of the confidence
limits) is that of Sextans, for which the range where useful data can
be found is clearly the smallest compared to other dSphs (see Fig. 9).

The variation in the constraints on ρ(r) as a function of radius
impacts directly on the behaviour of J. Complications arise because
it is the profile squared that is now integrated along a l.o.s. (given
the integration angle αint, see equation 5). The median value and
95 per cent CL on J as a function of the integration angle αint is
plotted in Fig. 11 (top panel), for two different priors on γ prior.11

The bottom panel gives the corresponding PDF for two integration
angles. The prior has a strong impact on the result: the median (thick
solid curves and large symbols – top panel) is changed by ∼50 per
cent for αint � 0.◦1, but by a factor of 10 for αint ∼ 0.◦01. However,
the most striking feature is the difference between the CLs: for the
prior 0 ≤ γ prior ≤ 2, the typical uncertainty is three to four orders
of magnitude (red dotted curves), whereas it is only less than or
approximately equal to one order of magnitude for the prior 0 ≤
γ prior ≤ 1 (blue dotted curves).12 The bottom panel of Fig. 11 shows
that log10J has a long and flat tail (associated with large γ values).
This tail is responsible for the large upper limit of the J-factor CLs
for 0 ≤ γ prior ≤ 2.

In Appendix G2, a detailed analysis of the impact of these two pri-
ors is carried on artificial data (for which the true profile is known).
We find that the prior 0 ≤ γ prior ≤ 2 satisfactorily reconstructs ρ(r)
and J(αint), that is, the MCMC CLs bracket the true value. This is
also the case when using the prior 0 ≤ γ prior ≤ 1. However, the
following two important points are noteworthy:

(i) This prior obviously performs better for 0 ≤ γ true ≤ 1 profiles
where it gives much tighter constraints on J.

11 ASCII files containing the most-likely 68 and 95 per cent CLs on αint for
the eight classical dSph, for the prior γ prior ∈ [D − 1], may be found in the
online version of this paper, see Supporting Information.
12 Note that this behaviour is grossly representative of all dSphs, although the
integration angle for which the uncertainty is the smallest and the amplitude
of this uncertainty depend, respectively, on the dSph distance (see Section 2.3
for the generic dependence) and on the range/precision of the kinematic data
(see above).

Figure 11. Top panel: J(αint) for Draco as a function of the integration
angle. The solid lines correspond to the median model and dotted lines to
the 95 per cent lower and upper CLs. The two sets of curves correspond to
two different γ prior for the MCMC analysis on the same data. Bottom panel:
PDF of the J-factor for αint = 0.◦01 (grey) and αint = 0.◦1 (black), when the
range of the inner slope prior is [0–1] (solid lines) or [0–2] (dashed lines).

(ii) For cuspier profiles (e.g. γ true = 1.5), this prior succeeds
slightly less (than the prior 0 ≤ γ prior ≤ 2) in reconstructing ρ(r),
but it does surprisingly better on J in terms of providing a value
closer to the true one (see details and explanations in Appendix G2).

DM simulations and observations do not favour γ > 1, although
steeper profiles can still fit the kinematic data in a Jeans analysis. In-
deed, the Aquarius simulations indicate values of γ slightly smaller
than 1, and although some recent simulations (Ishiyama, Makino
& Ebisuzaki 2010) have argued for cuspy profiles, this happens for
microhaloes only. Given that the J-factor for the cuspier profiles is
only marginally more (or even less) reliable when using the prior
0 ≤ γ prior ≤ 2, we restrict ourselves to the 0 ≤ γ prior ≤ 1 prior below.

Note that other sources of bias exist. First, the reconstruction
of ρ(r) or J(αint) is affected by the choice of binning used in the
estimation of the empirical velocity dispersion profiles. Appendix
H1 shows that we obtain slightly different results when we ap-
ply our method to empirical velocity dispersion profiles calculated
from the same raw kinematic data, but using different numbers of
bins. We find that the effects of binning add an extra factor of a
few uncertainty on J for the least well measured (in terms of ra-
dial coverage) dSphs, for which more measurements are desirable.
(On the other hand, Fornax and Sculptor are found to provide ro-
bust results against different binnings.) Secondly, we note that the
analysis presented here uses a fixed profile for the light distribution
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Table 2. Positions of the classical dSphs (Mateo 1998) sorted according to their distance: longitude, latitude, distance, 2rh (taken from Irwin &
Hatzidimitriou 1995), the Galactic angle away from the centre φ = cos −1[cos (longitude)cos (latitude)] and αc ≈ 2rh/d (see Walker et al. 2011). The
remaining columns are the median values with 68 per cent (95 per cent) CLs for M300 and log10[J(αint)] from the six-parameter MCMC analysis (0 ≤
γ prior ≤ 1). For conversion factors to units used in other studies, please refer to numbers given in Appendix A.

dSph Longitude Latitude d 2rh φ αc M300 log10[J(0.◦01)] log10[J(0.◦1)] log10[J(αc)]a

(◦) (◦) (kpc) (kpc) (◦) (◦) (107 M�) (M2� kpc−5)

Ursa Minor 105.0 +44.8 66 0.56 100.6 0.49 1.54+0.18(+0.33)
−0.21(−0.42) 10.5+0.8(+1.5)

−0.6(−1.2) 11.7+0.5(+0.8)
−0.3(−0.6) 12.0+0.3(+0.5)

−0.1(−0.2)

Sculptor 287.5 −83.2 79 0.52 88.0 0.38 1.34+0.12(+0.23)
−0.13(−0.23) 10.0+0.5(+0.9)

−0.5(−0.8) 11.3+0.2(+0.4)
−0.2(−0.3) 11.7+0.1(+0.2)

−0.1(−0.1)

Draco 86.4 +34.7 82 0.40 87.0 0.28 1.22+0.15(+0.28)
−0.14(−0.28) 9.8+0.5(+0.9)

−0.5(−0.8) 11.2+0.2(+0.4)
−0.2(−0.3) 11.6+0.1(+0.2)

−0.1(−0.2)

Sextans 243.5 +42.3 86 1.36 109.3 0.91 0.61+0.38(+0.96)
−0.31(−0.43) 9.4+1.7(+2.9)

−1.2(−1.8) 10.7+1.1(+1.9)
−0.8(−1.1) 11.1+0.7(+1.5)

−0.4(−0.6)

Carina 260.1 −22.2 101 0.48 99.2 0.27 0.59+0.10(+0.60)
−0.07(−0.14) 9.3+0.3(+0.8)

−0.4(−0.8) 10.5+0.2(+0.4)
−0.1(−0.2) 10.9+0.1(+0.1)

−0.1(−0.1)

Fornax 237.1 −65.7 138 1.34 102.9 0.56 1.01+0.30(+0.60)
−0.17(−0.28) 9.5+0.5(+1.1)

−0.5(−0.8) 10.8+0.2(+0.5)
−0.2(−0.3) 10.5+0.3(+0.7)

−0.2(−0.4)

Leo II 220.2 +67.2 205 0.30 107.2 0.08 0.94+0.26(+0.50)
−0.18(−0.29) 11.6+0.8(+1.7)

−0.8(−1.5) 11.7+0.7(+1.6)
−0.6(−0.9) 11.7+0.7(+1.6)

−0.6(−0.9)

Leo I 226.0 +49.1 250 0.50 117.1 0.11 1.22+0.24(+2.52)
−0.21(−0.36) 9.7+0.3(+1.0)

−0.2(−0.5) 10.7+0.1(+0.3)
−0.1(−0.2) 10.7+0.1(+0.3)

−0.1(−0.2)

aNote that the values for log10[J(αc)] differ from those quoted in Walker et al. (2011) as the MCMC analysis is slightly different here.

which, when combined with our assumption of constant velocity
anisotropy, restricts the possible halo profiles we can recover. Our
constraints on ρ(r) and J(αint) are therefore sensitive to these as-
sumptions (see e.g. Strigari, Frenk & White 2010, for an example of
fitting the dSph kinematic data with cusped profiles when the light
profile is also allowed to be cusped), although this does not change
our conclusions (see Appendix H2 where different light profiles
are used). This situation is set to change over the coming years as
new distribution function-based models will permit constraints to
be placed on the slope of the DM density profiles (Wilkinson et al.,
in preparation).

5.1.3 Best constraints on J: median value and CLs

As validated by the simulated data, we are now able to provide
robust (although possibly not the best achievable with current data)
and model-independent constraints on J(αint) for the eight classi-
cal dSphs. The results are summarized in Table 2 in terms of the
median, and 68 and 95 per cent CLs. The J-factor is calculated for
αint = 0.◦01 (an angle slightly better than what can be achieved with
the FCA), αint = 0.◦1 (typical of the angular resolution of existing
GeV and TeV γ -ray instruments) and αc = 2rh/d (as proposed in
Walker et al. 2011). We do not report the values of ρs and rs as these
vary across a large range – and therefore do not give additional
useful information – nor the value of γ as it is forced in the range
0 ≤ γ prior ≤ 1 to give the least biased J value.

There is no simple way to provide unambiguously the best target,
as their relative merit depends non-trivially on their distance, their
mass and the integration angle selected. As proposed in Walker
et al. (2011), since the most robust constraint on J is obtained for
αint = αc, having different integration angles for each dSph can be
a good starting point to establish a relative ranking. The situation is
complicated further for background-limited instruments such as the
CTA, as some loss of sensitivity can occur (see e.g. fig. 4 of Walker
et al. 2011). This is discussed, taking into account the full detail of
the instruments, in Section 5.3. However, in this respect, the best
target for future instruments may eventually become Leo II, which,
despite a quite large uncertainty, outshines all other dSphs at αint =
0.◦01 (see also Fig. 12). We note, however, that it is the dsph with

the smallest amount of kinematic data at present (so it has the most
uncertain J-factor).

5.1.4 dSphs in the diffuse Galactic DM signal: contrast

The uncertainties in J are illustrated from a different viewpoint
in Fig. 12. It shows, in addition to the mean, 68 and 98 per cent
CLs on the J-factors, the latitudinal dependence of the Galactic DM
background (smooth and Galactic clump contributions) for the same
integration angle.13 For a typical present-day instrument resolution
(integration angle αint ∼ 0.◦1), we recover the standard result that
the Galactic Centre outshines all dSphs.

The three panels illustrate the loss of contrast (signal from the
dSph with respect to the diffuse Galactic DM signal) as the integra-
tion angle is increased. This is understood as follows: the integrand
appearing in equations (C4) and (C5) is mostly insensitive to the
l.o.s. direction a few tens of degree away from the Galactic Centre,
so that equation (C6) holds, giving an α2

int dependence.
For detectability (see also Section 3), the naı̈ve approach of max-

imizing the integration angle (to maximize JdSph) must be weighed
against the fact that an increased integration angle means more as-
trophysical γ -ray and cosmic-ray background. For large integration
angles, dSphs also have poor contrast against the diffuse Galactic
DM annihilation signal, indicating that the Galactic halo is a better
target for any search on angular scales � 1 (see e.g. Abramowski
et al. 2011b for such a search with the HESS).

5.1.5 Comparison with other works

Comparison between different works can be difficult as every author
uses a different definition, notations and units for the astrophysical

13 The smooth profile is taken to be an Einasto profile, the clump distribution
is a core one, whereas their inner profile is Einasto with concentration and
parameters à la B01. Normalizing the mass distribution to have 100 clumps
more massive than 108 M�, and taking dP/dM∝M−1.9, leads to a DM
fraction into clumps of ∼10 per cent for clumps distributed in the range
10−6–1010 M� (see e.g. Lavalle et al. 2008, and references therein). The
local DM distribution is fixed to the fiducial value ρ� = 0.3 GeV cm−3.
The exact configuration is unimportant here as this plot is mostly used for
illustration purpose.
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Figure 12. Galactic contributions to J for the smooth (blue-dashed line),
mean clump (red-dotted line) and sum (black-solid line) versus the angle
from the Galactic Centre. The symbols show J for the dSphs, assuming a
prior of 0 ≤ γ prior ≤ 1 on the central DM slope. The central point corresponds
to the median values, the solid bars to the 68 per cent CLs and the dotted
bars to the 95 per cent CLs. The integration angle is, from the top to bottom,
0.◦01, 0.◦1 and 1◦, respectively. The Galactic contributions Jsm and 〈Jsubcl〉
scale as α2

int, but JdSph does not, changing the contrast of the dSphs with
respect to the DM Galactic background (see text for details).

factor. To ease the comparison, we provide in Appendix A conver-
sion factors between standard units (we also point out issues to be
aware of when performing such comparisons).

Below is a comparison with just a few of the works published
on the subject, and only for the objects that these studies and the
present one have in common:

(i) The Evans et al. (2004) values of J/�� for Draco (with �� =
10−5 i.e. αint = 0.◦1) for all the profiles they explored (cored, γ =

0.5, γ = 1, γ = 1.5) are larger (after correction by ��, given their
definition of the astrophysical factor) than our 95 per cent CL upper
limit for this object, shown in Table 2. The difference is probably
related to our data set which is about twice as large as that used by
Evans et al. (2004).

(ii) Strigari et al. (2007b) provide directly the γ -ray flux (i.e.
including the particle physics term), so that we can only compare
our respective rankings. These agree in general but for Sculptor we
find a larger flux than Draco, contrary to these authors.

(iii) Pieri et al. (2009a) focused on Sextans, Carina, Draco and
Ursa Minor. They found the latter to have the largest J (�cosmo in
their notation) of these four objects, followed by Draco, Carina and
Sextans. For the last two, this ranking is similar to ours. However,
while their values of J fall within our 68 per cent (Ursa Minor,
Sextans) or 95 per cent (Carina) CL, their value for Draco is above
our 95 per cent CL upper limit.

(iv) Essig et al. (2009) also performed a statistical study on Draco
and Ursa Minor, to determine their profiles from kinematic data and
to derive the CLs on the J-factor. Given that their integration is
performed on a slightly larger opening angle (0.◦14), our results
appear to be in agreement. Their 90 per cent CL limits are two to
three times larger than the 95 per cent CL limits given in Table 2,
but this may be due to the larger range they adopt for the prior on
the inner slope (see Appendix G1).

(v) Kuhlen (2010) gives the astrophysical factors of all the dSphs
using a point-like approximation and a NFW DM profile, and inte-
grated with a αint = 0.◦15 angular resolution. These can be compared
to the median and CLs we derived in Table 2 for αint = 0.◦1. The
values of Kuhlen (2010) (multiplied by 4π to match our definition
of J) generally fall inside our 68 per cent CL intervals, but for Leo
II his value is just within our 95 per cent confidence interval (CI),
while Draco and Carina cannot be accommodated at all. For these
two objects, the values of Kuhlen (2010) are much larger than the
ones we find, and this is unlikely to be explained by the 0.◦05 dif-
ference in integration angles. A simple explanation is that Kuhlen
(2010) does not use stellar kinematic data directly in his analysis, but
stacks suitable Via Lactea haloes (M300 ≈ 107 M� and appropriate
distances) and uses those averages to estimate J. Focusing on
the ranking (without worrying about contrast to the background
and the other instrumental constraints), both we and Kuhlen (2010)
agree that among the classical dSphs, Ursa Minor is a most promis-
ing target. However, while we find Sculptor and Draco to be the
next most favourable targets, Kuhlen (2010) names Draco and Ca-
rina from his ‘simulation-based’ approach.

For completeness, we also compare our median values with the
J values used by different experimental groups:

(i) The MAGIC Collaboration published point source limits for
Draco (Albert et al. 2008) adopting the scheme of Sánchez-Conde
et al. (2007) of a power-law density profile, with an exponential
cut-off. They examine two scenarios, a cored and a cusped model,
but find no discernable difference when calculating J for integration
angles <0.◦4, that is, larger than the MAGIC PSF. The value of J they
calculate for Draco is higher than ours (after appropriate scaling of
the integration region and unit conversion) by about a factor of 2.

(ii) The VERITAS Collaboration also published limits on Draco
and Ursa Minor (Acciari et al. 2010). They assume a NFW profile,
take the density profiles from Strigari et al. (2007b) and follow
Bergström et al. (1998) for the calculation of J. Whilst the range of
density values in Strigari et al. (2007b) has a physical motivation,
the values used in Acciari et al. (2010) are rather arbitrarily chosen
to be the mid-point of that range, which leads to consistently higher
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J-values than ours (by a factor of 3 for Draco and a factor of 1.2 for
Ursa Minor).

(iii) The HESS Collaboration (Abramowski et al. 2011a) pub-
lished limits on the southern sources Sculptor and Carina using
NFW and isothermal profiles with a number of varying assump-
tions. This leads to a range of calculated J-values (rather than a
single solution) that are consistent with our median value and esti-
mated uncertainties.

(iv) The Fermi Collaboration (Abdo et al. 2010) has published
limits for a number of the sources studied here. They adopted a
NFW profile within the tidal radius and following Martinez et al.
(2009) they calculated the J-value (using an MCMC approach on
the observed stellar velocities) for a 1◦ integration angle which is
compatible with their high-energy PSF. From this, they find Draco
to have a larger J compared to the other dwarfs (a factor of ∼2
higher than the next dwarf which is Ursa Minor), contrary to what
we find in this study.

5.2 Five-parameter MCMC analysis: γ prior fixed

Higher resolution numerical simulations following both DM and
gas, additional kinematic data and new modelling techniques may
help constraining the value of γ in the near future. With the knowl-
edge of γ , we should better constrain the radial dependence of J,
which is crucial to disentangle, for example, DM annihilation from
DM decay (Boyarsky et al. 2006; Palomares-Ruiz & Siegal-Gaskins
2010). The topic of decaying DM goes beyond the scope of this pa-
per, and it will be discussed elsewhere. Below, we merely inspect
the gain obtained on the J prediction when having a strong prior on
γ , and briefly comment on the possibility to disentangle γ = 0 pro-
files from γ = 1.0 profiles in the case of annihilation (if this cannot
be achieved, hopes for disentangling decay from annihilation would
be quite low on a single object).

5.2.1 Parameter correlations

We repeat the MCMC analysis for fixed values of the inner slope
γ prior = 0., 0.5, 1., and 1.5. The priors for the five other parameters
are as given in Section 5.1.

Using equation (9) for the mass having a robust estimate of M(rh)
(W09; Wolf et al. 2010; Amorisco & Evans 2011) gives log (ρs) +
γ log (rs) ≈ constant which reduces to log (ρs) ≈ constant for γ =
0. As a result, we expect a strong correlation between ρs and rs

when γ prior = 1 and none when γ prior = 0. This is confirmed by
the result of our MCMC analysis shown in Fig. 13 (here, for the
Draco case). The half-light radius rh for Draco is ∼200 pc, but we
choose to show the PDF for M300 in the bottom panel of Fig. 13 as
we wish to compare the mass of the dSphs among themselves (see
Table 2). It confirms that the mass within an appropriate radius can
be reliably constrained by the data regardless of the value of γ .

5.2.2 Uncertainties on the profile and on J

For any given γ , the uncertainty on ρ(r) at small radii is related to
the range of rs values at which the asymptotic slope is reached (for
each profile accepted by the MCMC analysis). For γ prior = 0, the
maximum uncertainty on ρ(r) is directly related to the maximum
uncertainty on ρs [since for r 
 rs, ρ(r) is constant] which can
be read off the PDF (top left-hand panel of Fig. 13). This leads
to an order of magnitude uncertainty on ρ(r) for small r, which is
consistent with the 95 per cent CL shown in the top panel of Fig. 14.

Figure 13. Top panels: correlation and PDF of the profile parameters ρs

and rs from the five-parameter MCMC analysis γ prior = 0.0. Middle panels:
same, but for γ prior = 1.0. Bottom panel: PDF of M300, the mass at 300 pc.

For γ > 0, the uncertainty has to be read from the dispersion in the
values of ρsr

γ
s , or equivalently, the mass M300. The bottom panel of

Fig. 13 shows that this mass is well constrained, independently of
γ for the case of Draco (see, however, in Table 2 for a larger spread
for some dSphs), resulting in a smaller uncertainty for γ prior = 1.5
than for γ prior = 0 (top panel of Fig. 13). We checked that the CLs
obtained in Fig. 14 (in Appendix G2) for the artificial data enclose
correctly the range of reconstructed values: they are consistent with
a larger reconstruction bias for γ prior = 0 than for γ prior = 1.5 at
small radii.
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Figure 14. Median values (solid lines, filled symbols) and 95 per cent CLs
(dashed lines, empty symbols) from the fixed γ prior MCMC analysis on
Draco. Top panel: density profiles (the grey arrow indicates the value of rh).
Bottom panel: J-factor (the grey arrow indicates αc ≈ 2rh/d).

For the uncertainty on J, we can obtain a crude estimate by
relying on the approximate formulae given in Appendix B. For γ >

0, J ∝ ρ2
s r

3
s , and substituting the constant M300 relationship leads

to J ∝ r3−2γ
s . The value of rs, as seen in its PDF in the top and

middle panels of Fig. 13, varies by roughly a factor of 10. Because
of the weighting power 3 − 2γ , the uncertainty on J is expected to
be the smallest for γ = 1.5, which is in agreement with the curves in
Fig. 14 (bottom panel). However, the analysis of the artificial data in
Appendix G2 shows that the typical CL on J obtained in the bottom
panel of Fig. 14 is likely to be underestimated for γ prior = 1.5 [up to
factor O(2), see Fig. G2].14 This happens for any integration angle.
For this reason, we cannot rely on the J-value for γ prior = 1.5 and
focus only on the three cases γ prior = 0, 0.5 and 1.0 below.

5.2.3 J(d) and departure from the 1/d2 scaling

Fig. 15 shows the J median values, 65 and 95 per cent CIs as the
symbols, dashed and solid error bars, respectively, for an integration
angle of 0.◦01 (top panel), 0.◦1 (middle panel) and αc ≈ 2rh/d (Walker
et al. 2011). The x-axis is the distance from the dSph (in kpc). For
point-like sources, the J-factor of a single dSph scales as 1/d2,

14 This is understood as for the latter, the inner region (r 
 rs) contributes
the most to J, and even small differences for ρ(r ∼ rs) are bound to trans-
late in sizeable differences for ρ(r → 0). Conversely, similar differences
on ρ for shallower profiles are not an issue as their inner parts do not
contribute to J.

as illustrated by the blue-dashed line. Departure from this scaling
is interpreted as a combination of a mass effect and/or a profile
effect. For instance, Sextans and Carina are dSphs with smaller
M300 with respect to the other ones (see Table 2); consequently,
they are located below the dashed blue line in the top panel of
Fig. 15. The exception is Leo II, which has a ‘small’ mass but is
nevertheless above the dashed line. Although this analysis cannot
constrain γ , we are tempted to interpret this oddity in terms of
a ‘cuspier’ profile (with respect to those for other dSphs), which
would be consistent with the fact that its J remains similar in moving
from αint = 0.◦1 (middle panel) to 0.◦01 (top panel). However, an
alternative explanation (which would be more consistent with the
results obtained in this paper) could be the fact that Leo II has
the smallest amount of kinematic data at present, and that its J is
overestimated (see Appendix H1 to support this line of argument).
We repeat that the relative brightness of the dSphs is further affected
for background-dominated instruments (as described in Section 3),
so that the ranking has to be based on Fig. 16 discussed in the next
section.

The bottom panel of Fig. 15 shows the J-value for an ‘optimal’
integration angle αc that is twice the half-light radius divided by
the dSph distance15 (this corresponds to the integration angle that
minimizes the CLs on J; see Walker et al. 2011). The yellow broken
solid lines show the expected signal from the diffuse Galactic DM
annihilation background, including a contribution from clumpy sub-
structures (the extragalactic background, which also scales as α2

int,
has not been included). The total background may be uncertain by
a factor of a few [depending on the exact Galactic (smooth) pro-
file and local DM density]. Its exact level – which depends on the
chosen integration angle – determines the condition for the loss of
contrast of the dSph signal, that is, the condition for which looking
at the DM halo (rather than at dSphs) becomes a better strategy.

5.2.4 Conclusion for the fixed γ prior analysis

The analysis of simulated data shows that the analysis for γ prior = 1.5
is biased by a factor of O(10) and that the CLs obtained on the real
data are likely to be severely underestimated in that case. However,
such steeply cusped profiles are neither supported by observations
nor motivated by current cosmological simulations. For values of
γ prior ≤ 1, this bias is a factor of a few only, so that it shows that
the results from a fixed γ prior analysis of the eight classical dSphs
are robust. However, this analysis shows that unless very small
integration angles, αint � 0.◦01, are chosen (or if γ true � 1), knowing
the exact value of γ does not help in improving the determination of
J. Indeed, even using Draco, the stellar population of which is one of
the most studied, the CLs of the three reconstructed fluxes (γ prior =
0 in black full circles, γ prior = 0.5 in red triangles and γ prior =
1.0 in blue stars) in Fig. 14 (bottom panel) overlap. Reversing the
argument, if we do not know the inner slope, and if a γ -ray signal
is detected from just one dSph in future, there will be little hope of
recovering the slope of the DM halo from that measurement only.

This means that the best way to improve the prediction of the J-
factor in the future relies on obtaining more data and a more refined
MCMC analysis; an improved prior on the DM distribution makes
little difference.

15 CLs for J(αint) are provided along with this paper for readers interested
in applying our analysis to existing and future observatories.
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Figure 15. Median J-factor values (symbols) and 68 per cent/95 per cent CLs (solid bars/dashed bars ) for the fixed γ prior analysis (the result for γ prior = 1.5 is
not shown because it is not reliable, see Section G2). The blue dashed line shows the expected scaling with distance for point sources: 3.1×1015d−2 (M2� kpc−5).
The panels show, from the top to bottom, three integration angles αint = 0.◦01, 0.◦1 and αc ≈ 2rh/d (an angle very similar to the angle enclosing 80 per cent of
the flux, see Fig. 16) that optimize the determination of the J-factor for a given dSph (hence the error bars are smaller in this plot than in the other two). The
yellow solid lines (and broken lines in the bottom panel) correspond to the Galactic DM background including both the smooth and clumpy distributions. For
the bottom panel, this is not a smooth curve since it depends on the integration angle αint that varies from dSph to dSph in this figure. Note that the choice of
using the critical angle αint = αc is optimal in the sense that it gives the most constrained value for J. However, where the Galactic background annihilation
signal approaches that of the dSphs (see e.g. Sextans and Fornax), the motivation for staring at the dSphs rather than simply looking at the Galactic halo is
gone.

5.3 Sensitivity of γ -ray observatories to DM annihilation in
the dSphs

The potential for using the classical dSph to place constraints on
the DM annihilation cross-section, given the uncertainties in the
astrophysical J-factor, can be seen in Fig. 16. Previous analyses
have adopted the solid angle for the calculation of the J-factor to
be the angular resolution of the telescope for a point-like source,
typically assuming a NFW-like profile (Abdo et al. 2010; Acciari
et al. 2010; Abramowski et al. 2011a). By contrast, our sensitivity
plots take into account finite size effects: (i) the J values are based
on the MCMC analysis with the prior 0 ≤ γ prior ≤ 1, where the cor-
responding J are shown in Fig. 12; and (ii) the energy-dependent
angular resolution has also been taken into account assuming a stan-

dard γ -ray annihilation spectrum (see Section 2.1.1). Moreover, for
the Fermi-LAT, the background level assumed has been increased
(resulting in a 25 per cent worsening of the sensitivity above 100
MeV) to reflect the average situation in the directions of the classi-
cal dSph (the variation between the individual dSphs is only 7 per
cent rms). A likelihood-based analysis is used for both the FCA and
Fermi and a nominal observation zenith angle of 20◦ assumed for
the FCA16 (see Section 3.2).

The panels from the top to bottom correspond to increasing DM
(neutralino) masses. At low values, Fermi has a better sensitivity

16 The energy threshold for a ground-based instrument is dependent on the
zenith angle of observation. This means that the actual energy threshold for
a given object will depend on the object’s declination and the latitude of the,
yet to be determined, FCA site.
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Figure 16. Minimum detectable 〈σv〉 for known dSphs shown as a function of their distance, for different assumed DM masses (separate panels). 100-hour
observations with an FCA (red circles) are compared to 5 years of Fermi observations (blue squares). Error bars indicate 65 per cent (solid lines) and 95 per
cent (dotted lines) confidence limits. The integration angle is adapted to αc of each dSph and the energy-dependent PSF of the two instruments. The strategy of
using α80, rather than αc, is indicated with the hollow symbols for the FCA case. The line for 〈σv〉 = 10−22 cm3 s−1 is drawn for comparison purpose between
the panels.

than the FCA; at a mass of about 1 TeV, the two are comparable,
and for higher masses, the FCA becomes the more sensitive instru-
ment due to the vastly greater effective area at the photon energies
at which the annihilation spectrum is expected to peak. Note that
the precise value of 〈σv〉 where the relative sensitivities of the two
instruments cross depends on the form of the DM annihilation spec-
trum. Since we are examining the uncertainties in the astrophysical
J-factor to the detectability of dSphs, we have used a conservative
spectrum averaged over a number of possible annihilation channels
(see Fig. 1) which results in the majority of produced γ -ray photons
having energies � 10 per cent of the DM particle mass. If we were
to move from a relatively soft spectrum, such as bb to a harder
one, such as τ+τ−, this would benefit both instruments in different
ways. For the Fermi-LAT, a harder spectrum makes the signal easier
to distinguish above the diffuse γ -ray background; indeed, Abdo
et al. (2010) found that the detectable flux limit from a potential

source could vary by a factor of 2–20 (with lower particle masses
benefiting the most) between these different annihilation spectra.
For the FCA, which has a very large effective area to photons ≥
100 GeV, the benefits of having more high-energy photons are very
apparent when it comes to flux sensitivity. For both observatories, an
increased number of high-energy photons needs to be balanced with
the correspondingly better angular resolution, particularly if (e.g.
for the Fermi-LAT) a point-like source becomes spatially resolved.

Our analysis places Ursa Minor as the best candidate for the
northern sky (marginally better than Draco, which has long been a
favourite target of Northern hemisphere observatories), and Sculptor
for the southern sky, when it comes to a favourable median and low
uncertainty in the J-factor. It should be noted, however, that although
the closest objects seem to be favoured, Leo II has the potential to
yield a stronger signal; however, more kinematic data are needed
in order to constrain better its J-factor. In addition, it should be
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noted that the uneven sensitivity of the Fermi-LAT across the sky,
caused in particular by the proximity of bright sources17 as well as
the Galactic diffuse background, can change what is considered the
favorite candidate.

We emphasize that in our analysis the inner slope γ has not
been constrained, but that a better independent determination of
γ in future will not help providing a better determination of J
(see Fig. 15); this is discussed further in the appendices. Carina,
Fornax and Leo I are the targets least favoured. When compared
to existing limits from the Fermi-LAT (Abdo et al. 2010) or the
current generation of ACTs (Acciari et al. 2010; Abramowski et al.
2011a), it can be seen that our limits are not dissimilar to those
that have already been published. For Fermi this is not surprising,
since the source is unresolved and any difference should relate only
to the assumed increase in exposure from 1 to 5 years, resulting
in a factor of a few at best. The similarity in sensitivity between
current and future ACTs is perhaps more surprising, but this as
stated earlier relates to the naı̈ve assumptions made on the form for
the J-factor and the solid angle integrated over; in order to reach the
currently claimed limits requires a deep exposure with an instrument
as sensitive as the CTA.

One last thing to note is that a common way to synthesize a
deeper exposure is to stack observations of different sources to-
gether to provide an effective long exposure of a generic source.
For a common universal halo profile, this may be fine; however, any
analysis will have to take into account the different integration an-
gles for each individual source correctly. If all dSphs do not share a
common halo profile and hence have different γ values, we have to
rely on the varying-γ analysis presented in the previous section and
the relative ranking of potential targets would then be different.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have revisited the expected DM annihilation signal from dSph
galaxies for current (Fermi-LAT) and future (e.g. CTA) γ -ray ob-
servatories. The main innovative features of our analysis are that:
(i) we have considered the effect of the angular size of the dSphs
for the first time. This is important since, while nearby dSphs have
higher γ -ray flux, their larger angular extent can make them sub-
prime targets if the sensitivity is limited by cosmic-ray and γ -ray
backgrounds; (ii) we have determined the astrophysical J-factor for
the classical dSphs directly from photometric and kinematic data.
We have assumed very little about their underlying DM distribu-
tion, modelling the dSph DM profile as a smooth split power law,
both with and without DM subclumps; (iii) we have used a MCMC
technique to marginalize over unknown parameters and determined
the sensitivity of our derived J-factors to both model and measure-
ment uncertainties; and (iv) we have used simulated DM profiles
to demonstrate that our J-factor determinations recover the correct
solution within our quoted uncertainties.

Our key findings are as follows:

(i) Subclumps in the dSphs do not usefully boost the signal.
For all configurations where the subclump distribution follows the
underlying smooth DM halo, the boost factor is at most ∼2–3.
Moreover, to obtain even this mild boost, one has to integrate the
signal over the whole angular extent of the dSph. This is unlikely
to be an effective strategy as the diffuse Galactic DM signal will
dominate for integration angles αint � 1◦.

17 In particular, there is a bright GeV emitter 1FGL J0058.4−3235 only
∼1.◦1 away from Sculptor which significantly worsens the upper limit on
that object as discussed by Abdo et al. (2010).

(ii) Point-like emission from a dSph is a very poor approximation
for high-angular-resolution instruments, such as the next-generation
CTA. For a nearby dSph, using the point-like approximation can lead
to an order of magnitude overestimate of the detection sensitivity.
In the case of a nearby cored profile consisting of very high mass
DM particles, a point-source approximation can be unsatisfactory
even for the modest angular resolution of the Fermi-LAT.

(iii) With the Jeans analysis, no DM profile can be ruled out by
current data. The use of the MCMC technique on artificial data also
shows that such an analysis is unable to provide reliable values for
J if the profiles are cuspy (γ = 1.5). However, using a prior on
the inner DM cusp slope 0 ≤ γ prior ≤ 1 provides J-factor estimates
accurate to a factor of a few.

(iv) The best dSph targets are not simply those closest to us, as
might naı̈vely be expected. A good candidate has to combine high
mass, close proximity, small angular size (�1◦; i.e. not too close),
and a well-constrained DM profile. With these criteria in mind, we
find three categories: well constrained and promising (Ursa Minor,
Sculptor and Draco), well constrained but less promising (Carina,
Fornax and Leo I), and poorly constrained (Sextans and Leo II). Leo
II may yet prove to be a viable target as it has a larger median J-
factor than Ursa Minor; however, more data are required to confirm
its status.

(v) A search based on a known DM candidate (from e.g. forth-
coming discoveries at the LHC) will do much to optimize the search
strategy and, ultimately, the detection sensitivity for all γ -ray ob-
servatories. This is because the shape of the annihilation spectrum
is a strong driver of the photon energy range that can provide the
best information on the candidate DM particle mass. The Fermi-
LAT has great potential to probe down to the expected annihilation
cross-section for particles of mass 
 700 GeV, whereas a ground-
based instrument is more suited for probing particle masses above
a few hundred GeV with a sufficiently deep exposure. However,
even for 5 years of observation with the Fermi-LAT or 100 hours
with the FCA, the sensitivity reach (Fig. 17) remains anywhere
between 4 and 10 orders of magnitude above the expected anni-
hilation cross-section for a cosmological relic (depending on the
mass of the DM particle candidate). Improving these limits will re-
quire a harder annihilation spectrum than the conservative average
we have adopted in this study, or a significant boost (e.g. from the
Sommerfeld enhancement) to the γ -ray production.

Finally, the ultrafaint dSphs have received a lot of interest in the
community lately, as they could be the most DM dominated systems
in the Galaxy. We emphasize that the MCMC analysis we have
performed for the classical dSphs cannot be applied ‘as is’ for these
objects. First, the sample of stars observed is smaller. Secondly, the
velocity dispersion is smaller and suffers from larger uncertainties
than those for the classical dSphs. The robustness and systematic
biases of the MCMC analysis will be discussed elsewhere (Walker
et al., in preparation). Results concerning J for the ultrafaint dSphs
will be presented in a companion paper.
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APPENDI X A : D EFI NI TI ONS, N OTATI ONS
A N D C O N V E R S I O N FAC TO R S

Studies of DM annihilations in the context of dSphs involve both
particle physics and astrophysics. The obvious difference of scales
between the two fields and habits among the two communities have
given rise to a plethora of notations and unit choices throughout the
literature. In this appendix, we provide some explanatory elements
and conversion factors to ease comparison between the different
works published on the subject.

As mentioned in Section 2, we define the differential γ -ray flux
as integrated over the solid angle �� as

d�γ

dEγ

(Eγ , ��) = �pp(Eγ ) × J (��) ,

where

�pp(Eγ ) ≡ d�γ

dEγ

= 1

4π

〈σannv〉
2m2

χ

dNγ

dEγ

and

J (��) =
∫

��

∫
ρ2

DM(l, �) dld�.

The solid angle is simply related to the integration angle αint by

�� = 2π[1 − cos(αint)] .

In our work, the units of these quantities are as follows:

(i) d�γ /dEγ = cm−2 s−1 GeV−1;
(ii) �pp(Eγ ) = cm3 s−1 GeV−3 (sr−1);
(iii) J = M2� kpc−5 (sr).

First of all, note that the location of the 1/4π factor appearing
in �pp is arbitrary. We followed Pieri et al. (2009a) and included it
in the particle physics factor. In other works, it can appear in the
astrophysical factor J (e.g. Bringmann et al. 2009). Therefore, to
compare the astrophysical factors between several studies, one must
first ensure to correct the value of J by 4π if needed. In the text,
we did not explicitly state the solid angle dependence in units of J
as it is a dimensionless quantity.18 The conversion factors (once the
4π issue is resolved) from our J units to those traditionally found
in the literature are as follows:

(i) 1 M2� kpc−5 = 10−15 M2� pc−5

(ii) 1 M2� kpc−5 = 4.45 × 106 GeV2 cm−5

(iii) 1 M2� kpc−5 (sr) = 1.44 × 10−15 GeV2 cm−6 kpc (sr)

Before comparing any number, one must also ensure that the
solid angle �� over which the integration is performed is the same.
In most works, an αint = 0.◦1 angular resolution is chosen, corre-
sponding to �� = 10−5 sr. However, this is not always the case,
as in this study we explore several angular resolutions. Note that
the quantity J̄ ≡ J/�� (in GeV2 cm−5 sr−1, for example) is also
in use and the astrophysical factor can be found under this form in
some papers (e.g. Evans et al. 2004).

A P P E N D I X B : TOY M O D E L FO R J ( IN D SPHS)

The volume of the dSph is not always fully encompassed in the
integration solid angle, as sketched in Fig. B1 (vertical hatched

18 Some authors do, however, explicitly express the solid angle dependence
in their units, for example, Pieri et al. (2009a), who express J (�cosmo in
their notation) in GeV2 cm−6 kpc sr. This is completely equivalent to our
M2� kpc−5 but for the unit numerical conversion factor.
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Figure B1. Sketch of the integration regions contributing to the J-factor:
shown are the full integration region (vertical hatched) or a subregion (cross-
hatched) used for the toy calculations. The letter O shows the observer
position, αint is the integration angle, d is the distance from the dSph and
Rvir is its virial radius.

region) so that a numerical integration is required in general.
However, a reasonable approximation for estimating the depen-

dence of J on the parameters of the problem, that is, the distance
from the dSph d, the integration angle αint, and the profile parame-
ters ρs, rs and γ , is to consider only the volume within the radius

rαint = d × sin(αint) ≈ d × αint, (B1)

where the approximation is valid for typical integration angles αint �
0.◦1. This volume corresponds to the spherical cross-hatched region
in Fig. B1.

The toy model proposed below to calculate J allows us to cross-
check the results of the numerical integration for both the smooth
and the subclump contributions. We find that the model is accurate
enough up to a factor of 2 for γ = 0 and γ > 0.5, so can be used
for gross estimates of any signal from a DM clump.

B1 For the smooth distribution

About 90 per cent of the clump luminosity is usually contained in
a few rs, whatever the profile. The consequences are twofold: first,
as can be read off Table 2, rs/d 
 1, so that the J-factor amounts to
a point-like contribution

Jpoint-like = 4π

d2

∫ min(rαint ,rs)

0
r2ρ2(r)dr. (B2)

Secondly, it means that equation (6) for the profile can be simplified
into the approximate expression

ρapprox(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρsat if r ≤ rsat;

ρs ×
(

r

rs

)−γ

if rsat < r ≤ rs;

0 otherwise.

(B3)

However, for all applications of our toy model, we will keep γ <

3/2, so that the saturation density above is never reached in the
dSphs considered below.

Various regimes. The approximate formulae for J are obtained
by combining equations (B2) and (B3):

Japprox = 4π

d2

∫ min(rαint ,rs)

0
r2ρ2

approx(r)dr. (B4)

Using equation (B1), this leads to

Japprox = 4π

d2

ρ2
s r2γ

s

3 − 2γ
[min(rαint , rs)]

3−2γ . (B5)

This formula gives satisfactory results for cuspy profiles (see be-
low), but has to be modified in the following cases:

(i) If rαint � rs, the integration region encompasses rs. The (1,
3, γ ) profiles decrease faster than r−γ for r ∼ rs; hence, integrating
the toy model up to rs is bound to overshoot the true result. We thus
stop the integration at the radius rx such that ρ true(rx) = ρapprox(rx)/x,
that is,

rx = rs[x
1/(3−γ ) − 1] .

Taking x = 2 gives a satisfactory fit to the full numerical calculation
(see below).

(ii) If rαint � rs and γ = 0, the integration can be performed
analytically up to Rvir and is used instead.

(iii) If rαint � rs and γ = 0, the profile is constant, and integrating
on the cross-hatched region (instead of the vertical hatched one, see
Fig. B1) undershoots the true result. A better approximation is to
integrate on a conic section. For the same reason as given for the
first item, we replace rs by rx (with x = 2) in the calculation of the
cone volume.

Resulting formula. To summarize, the final toy-model formula
proposed for the smooth contribution of the dSph is

Jtoy = 4πρ2
s

d2
×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r2γ
s

min(rx, rαint )
3−2γ

3 − 2γ
if γ > 0;

[I (rαint ) − I (0)] if γ = 0, rαint > rx ;

r2
αint

rs

2
if γ = 0, rαint < rx ;

(B6)

where

rαint = αintd,

rx = rs[x
1/(3−γ ) − 1],

I (x) = −r6
s (r2

s + 5rsx + 10x2)/[30(rs + x)5].

(B7)

Toy model versus numerical integration. Finally, we check the
validity of this toy model by confronting it with the full numerical
integration. Various inner slopes γ of the profile are considered, as
provided in Table 1. Defining the critical distance dcrit for which the
dSph is fully encompassed by the integration region, that is,

dcrit = rs

αint
,

we find dcrit ∼ 50 and 500 kpc for rs = 0.1 and 1 kpc, respectively
(the integration range is αint = 0.◦1). If rx is used instead of rs, this
distance is even smaller. This allows us to test the toy model for
the two regimes. The result is shown in Fig. B2. The symbols show
the full numerical integration, while the lines show the toy-model
calculations.

For profiles steeper than 0.5, the agreement is better than a factor
of 2 for all distances. For flatter profiles, the toy model only gives
results within an order of magnitude. However, for γ = 0, the fix
applied to the toy model allows to regain the correct results within
a factor of 2.

Hence, given the current uncertainties on the profiles, the set of
formulae (B7) and (B7) can safely be used for quick inspection of
the J value of any profile with an inner slope γ of 0, or greater
than 0.5.

B2 For the subclump distribution

The influence of DM substructures on the γ -ray production has been
widely discussed in the literature. These substructures may enhance
the detectability by boosting the γ -ray signal. In this appendix, we
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Figure B2. Toy-model calculation (lines) versus full numerical integration
(symbols) of J as a function of the distance from the dSph. The integration
angle is fixed to αint = 0.◦1 and the (1, 3, γ ) profiles are taken to vary from
γ = 0 to 1.45. For each model, ρs is calculated such as to provide M300 =
107 M�. Top panel: dSphs for which rs = 0.1 kpc. Bottom panel: dSphs for
which rs = 1 kpc.

give an analytical estimation of the effect of subclumps in dSph
spheroidal galaxies, in the same spirit as the toy model developed
in the previous section for the smooth component. For simplicity,
we restrict ourselves to one cored (α, β, γ ) = (1, 3, 0) and one
cusped (1, 3, 1) profile. To characterize the clump distribution, we
use the formalism given in Lavalle et al. (2008).

Substructure distribution. The clump spatial distribution is as-
sumed to follow the dSph DM profile, namely

dP (r)

dV
∝

(
r

rs

)−γ [
1 +

(
r

rs

)−α] γ−β
α

. (B8)

The mass distribution of the clumps is taken to be independent of
the spatial distribution and takes the usual form

dP

dM
= AM−a , (B9)

with M ∈ [Mmin, Mmax] and a ∼ 1.9 from cosmological N-body
simulations (A is the normalization constant for dP/dM to be a
probability).

Clump luminosity. Defining Li, the intrinsic luminosity of the
subclump i, to be

Li ≡
∫

Vcl

ρ2dV , (B10)

the astrophysical contribution to the γ -ray flux from the substruc-
tures of the dSph is

Jclumps = 1

d2

Ncl∑
i=1

Li , (B11)

where Ncl is the number of clumps contained within the integration
angle α and d is the distance from the dSph. The luminosity de-
pends only on the mass of the clump, once a concentration–mass
(cvir–Mvir) relationship is chosen (see e.g. Lavalle et al. 2008, and
references therein), so that Li = L(Mi). Moving to the continuous
limit, equation (B11) reads

Jclumps = 1

d2
N cl

∫ Mmax

Mmin

L(M)
dP

dM
dM . (B12)

Fitting the results from Lavalle et al. (2008), the intrinsic luminos-
ity19 varies almost linearly with the mass of the clump as

LNFW(M) = 1.17 × 108(M/M�)0.91 M2� kpc−3, (B13)

so we have

Jclumps = N clA

d2

(
1.17 × 108

1.91 − a

) (
M1.91−a

max − M1.91−a
min

)
. (B14)

Number of clumps. The fraction F of clumps in the spherical
integration region rαint ≈ αintd (cross-hatched region in Fig. B1) is
given by

F = N cl

N cl
tot

=
∫ rαint

0
4πr2 dP

dV
dr , (B15)

where N cl
tot is the total number of clumps within the dSph. Upon in-

tegration and defining xint = rαint/rs and xvir = Rvir/rs, this becomes

Fcore =
[

4xα + 3

2(xα + 1)2
+ ln(xα + 1) − 3

2

]

×
[

4xvir + 3

2(xvir + 1)2
+ ln(xvir + 1) − 3

2

]−1

for (1, 3, 0)

(B16)

and

Fcusp =
[

1

(xα + 1)
+ ln(xα + 1) − 1

]

×
[

1

(xvir + 1)
+ ln(xvir + 1) − 1

]−1

for NFW. (B17)

Some care is necessary when evaluating the number of clumps
N cl = F ×N cl

tot in the integration region. Whatever the profile, most
of the clumps are located within rs so when rαint > rs, the spherical
integration region of our toy model (cross-hatched region in Fig. B1)
is a good enough approximation, and equations (B16) and (B17)
hold. However, if rαint < rs, then the remainder of the intersecting
cone (vertically hatched region in Fig. B1) could amount to a sig-
nificant contribution to the number of clumps. Cuspy distributions
should only be marginally affected, given their high central concen-
tration. However, this effect may be important for cored profiles.
Whenever rαint < rs, as for the smooth contribution, equation (B16)
is therefore multiplied by the ratio of the intersecting cone volume
to the integration sphere volume, in order to account for that effect.

If the mass of the dSph is Mvir and assuming a fraction f of this
mass is in the form of clumps, one gets using equation (B9)

N cl
tot = f

2 − a

A
Mvir

(
M2−a

max − M2−a
min

)−1
.

19 In this toy model, we limit ourselves to the NFW profiles for the subclumps
in the dSph, and a cvir–Mvir relation taken from B01.
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Figure B3. Toy-model calculation (lines) versus full numerical integration
(symbols) of J as a function of the distance from the dSph. The integration
angle is fixed to αint = 0.◦1 and the two (1, 3, γ ) subclump spatial distributions
are γ = 0 and 1 (their inner profile is a NFW with a cvir–Mvir relation taken
from B01). The calculations assume the fraction of DM in subclumps to be
f = 50 per cent of the total mass of the dSphs, where the smooth profile is
taken as in Fig. B2. Top panel: rs = 0.1 kpc. Bottom panel: rs = 1 kpc.

Resulting formulae. Adding all ingredients together, the contribu-
tion of the substructures to the flux is

Jclumps = 1.17 × 108 Fcore/cusp

d2

(
2 − a

1.91 − a

)

×
(

M1.91−a
max − M1.91−a

min

M2−a
max − M2−a

min

)
f Mvir . (B18)

Toy model versus numerical integration. The comparison be-
tween the two is shown in Fig. B3. The symbols show the full
numerical integration, while the lines show the toy-model calcula-
tions.

For rs = 100 pc, the agreement is better than a factor of 2 for all
distances. For rs = 1 kpc, the toy model only gives results correct
to within a factor of 4 for γ = 1.

Hence, given the current uncertainties on the profiles, equa-
tion (B18) can be used for quick inspection of the J value for
the subclump contribution.

A P P E N D I X C : D I S TA N C E A N D I N T E G R AT I O N
A N G L E D E P E N D E N C E O N J F O R G E N E R I C
DSPHS

This appendix completes the study of the J-factor dependences
started in Section 2.3. All the plots and discussions below rely on

Figure C1. Jsm(θ = 0) as a function of the distance from the dSph for three
profiles γ and three values of rs. The corresponding values for ρs are given
in Table 1.

the generic profiles given in Table 1, and the substructure reference
configuration given in Section 2.2.3.

C1 Distance dependence J(d)

Fig. C1 shows Jsm as a function of the distance from the dSph (we
assume αint = 0.◦1 here and that we are pointing towards the dSph
centre, that is, θ = 0). As we have checked earlier, the subclump
contribution for the reference model at θ = 0 is always subdominant,
so for clarity only Jsm is displayed (f = 0) in the figure.

If the angular size of the signal is smaller than the integration
angle, the distance dependence is expected to be Jsm ∝ d−2. This
is the case for γ = 1.5 for any value of rs (hollow squares curves).
Actually, the three curves follow the point-like source toy formula
(B6) appropriate for steep γ , that is,

J (θ = 0) ∝ ρ2
s × r3

s

d2
. (C1)

However, when the angular size of the emitting region becomes
larger than the integration angle, the above relationship fails. As
most of the flux is emitted within rs, this happens for a critical
distance

dcrit ≈ rs

αint
. (C2)

For rs = 0.1 kpc, this corresponds to dcrit ≈ 60 kpc (see the full
circles dashed curve for γ = 0). Having a dSph closer than this
critical distance does not increase further the signal (see e.g. the
solid and dotted full circles curves for γ = 0 and rs � 0.5 kpc). In the
latter case, taking a larger integration region is not always the best
strategy as, from an experimental point of view, a larger integration
region increases not only the signal but also the background. In this
case, the gain in sensitivity from having a dSph close by is not as
important as what might naı̈vely be expected from the point-like
approximation (see Section 3).

C2 Integration angle dependence J(αint)

We recall that
∫

��
d� = ∫ 2π

0 dβint

∫ αint

0 sin(αint)dαint, where �� =
2π[1 − cos(αint)], so that the J-factor from equation (5) can be
rewritten in the symbolic notation

J (ψ, θ,��) =
∫ 2π

0
F[βint] dβint (C3)
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Figure C2. J × (d/100 kpc)2 as a function of αint × (d/100 kpc) for a generic
dSph with rs = 0.5 kpc: smooth (thick dashed lines) and subclumps (thin
dotted lines). With this rescaling, the case d = 10 kpc (stars) superimposes
on the case d = 100 kpc (empty and full circles).

with

F[βint] =
∫ αint

0
F[βint,αint] dα′

int (C4)

and

F[βint,αint] = sin(αint)
∫ lmax

0
F [r(l, βint, αint)] dl. (C5)

For small integration angles and the case of a flat enough profile, the
integrand in equations (C4) and (C5) does not vary much with αint,
so that for the smooth (F ≡ ρ2) and the mean subclumps (F ≡ ρ),
we have, respectively,

Jsm ∝ α2
int and 〈Jsubcl〉 ∝ α2

int . (C6)

Fig. C2 shows the integration angle dependence for the smooth
(1 − f )2Jsm (dashed lines) and the subclump mean 〈Jsubcl〉 (dotted
lines) contributions. (The pointing direction is towards the dSph
centre.)

For γ = 0 (solid black circles), the α2
int scaling holds up to

αcrit
int ∼ 3◦ if d = 10 kpc (as given by equation C2). A plateau is

reached when the entire emitting region of the dSph is encompassed
(i.e. for a few rs/d). For γ = 1 (blue empty circles), the curves are
slightly more difficult to interpret, as the profile is not steep enough
for it to be considered fully point like (and thus ‘independent’ of
αint), given the integration angles considered.20 Finally, the rescaling
used in Fig. C2 implies

Jd1(αint) = Jd2

(
αint

d2

d1

)
×

(
d2

d1

)2

. (C7)

20 The dependence can be understood by means of the toy-model formulae
(B6) and (B7). For αint < αcrit

int , we have

J[γ�0.5] ∝ r2γ
s × (αintd)3−2γ .

For γ = 1 (empty blue circles), J is then expected to scale linearly with
αint, which is observed for the smooth (dashed blue line) and to some extent
for the subclump contribution (dotted blue line). However, for the latter, the
transition region (around rs) falls from a slope α = 1 towards an outer slope
β = 3 (instead of falling from α2 = 1 to β2 = 6). Hence, for αint > αcrit

int ,
the subclump contribution continues to build up gradually.

Table D1. Maximum boost and transition regime, that is, (αintd)B =1 in deg
kpc, for which B = 1, for various smooth/subclump parameters for three
inner slopes γ (for the smooth).

Configurationa γ = 0 γ = 0.5 γ = 1

Bmax|(αd)B =1

Referenceb 1.9|19 2.2|21 2.0|30

[global parameters]
α = 1 1.0|40 1.3|60 1.6|160
β = 5 2.3|11 2.0|18 1.3|36

Rvir = 6 kpc 3.0|15 3.5|20 2.9|29
M300 = 2 × 107 M� 1.3|66 1.4|52 1.3|64

[subclump parameters]
dP/dV = Einastoc 1.4|. . . 1.7|. . . 1.7|22

a = 1.7 1.3|62 1.5|50 1.3|61
a = 2.0 2.8|0.2 3.4|8 2.9|16

Mmin = 1 M� 1.5|43 1.7|37 1.5|47
Mmax = 104 M� 2.4|4 2.8|14 2.5|22

f = 0.5 3.4|10 4.2|16 3.5|25
ρsubcl = Einasto 8.7|0.05 10.6|0.35 9.0|4

cvir × 2 7.6|0.06 9.3|0.4 7.9|4.5

aAll parameters are as for reference, except those quoted.
bReference configuration (M300 = 107 M�):
(i) ρsm with (α, β, γ ) = (1, 3, γ ) and dP/dV∝ρsm;
(ii) Rvir = 3 kpc and rs = 1 kpc (for ρsm and dP/dV);
(iii) dP/dM = M−a (a = 1.9) and Msub ∈ [10−6–106] M�;
(iv) f = 0.2, ρsubcl = NFW and cvir–Mvir = B01.
cEinasto parameters taken from Merritt et al. (2006).

APPENDI X D : C OMPLEMENTA RY STUDY O F
T H E BO O S T FAC TO R

In Section 2.3.2, we concluded that the boost could not be larger
than a factor of 2 for all configurations where the subclump spa-
tial distribution follows that of the smooth halo in the dSph. The
calculations were also made for a ‘reference’ configuration of the
subclumps. However, the boost can be smaller (or larger) when the
latter parameters are varied.

In Table D1, we systematically vary all the parameters entering
the calculation in order to compare with the reference-model case.
The two quantities of importance are the maximum boost possible
(which is obtained when αint fully encompasses the clump) and the
transition point αintd for which the boost equals 1 [the minimum
value is always given by (1 − f )2]. The reference results correspond
to the numbers obtained from the dotted lines in Fig. 5, that is, for
rs = 1 kpc. Note that most of the values for Bmax in the table would
be close to unity if rs = 0.1 kpc were to be selected.

D1 Varying the [global parameters]

The four lines under ‘[global parameters]’ keep the recipe of dP/dV
∝ ρsm, but some previously fixed parameters are now varied. The
trend is that a sharper transition zone (larger α), a larger radius of the
dSph, or a smaller mass imply a larger Bmax. The impact of the outer
slope β depends on the value of the inner slope γ . However, the
maximum boost factor reached for these parameters is never larger
than ∼3. The typical transition value lies around 20 deg kpc , which
corresponds, for a dSph located 100 kpc away, to an integration
angle of 0.◦2. Hence, for all these configurations, a large integration
angle should be preferred (this is even worse for closer dSphs).
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D2 Varying the [subclump parameters]

The remaining lines under ‘[subclump parameters]’ show the impact
of the choice of the distribution of subclumps, the mass distribution
parameters (minimal mass and maximal mass of the subclumps,
slope a of dP/dM) and the density profile of the subclumps. Re-
laxing the condition dP/dV∝ρsm has no major impact. In Springel
et al. (2008), a simple Einasto profile with universal parameters was
found to fit all haloes (from the Aquarius simulation) independently
of the halo mass. For that specific case, we use the values found for
the Galaxy in Merritt et al. (2006). The Einasto profile is steeper
than γ = 0, but it decreases logarithmically inwards. Only for γ �
1 (for the smooth component) such a model is able to marginally
increase the maximum boost with respect to the reference model
(instead of decreasing it), which is not unexpected.21 Varying the
mass distribution slope a is understood as follows: for a ≈ 1.9, all
decades in mass contribute about the same amount. When a is de-
creased, the less massive subhaloes dominate, whereas for a �
1.9, the most massive subhaloes dominate the luminosity (e.g.
fig. 4 of Lavalle et al. 2008). This has to be balanced by the fact that
the fraction of DM going into subclumps remains the same (f =
0.2), regardless of the value of a, so that the total number of clumps
in a mass decade also changes. The net result is a smaller boost
when a is decreased, and a larger boost from the more massive sub-
structure when α is increased. In a similar way (a is now fixed to 1.9
again), the mass also has impact on B, but in a marginal way. The
only sizeable impact comes from varying the fraction of mass into
clumps, the subclump profile or the concentration of subclumps.
In the first case, when f increases, the smooth signal decreases by
(1 − f )2, whereas the subclump signal increases as f . Even if f is
increased up to 50 per cent, which is very unlikely (recent simula-
tions such as Springel et al. 2008 tend to give an upper limit of f
� 10 per cent), this gives only a mild enhancement. In the second
configuration, the NFW profile for the subclumps is replaced by an
Einasto one. Despite its logarithmic slope decreasing faster than the
NFW slope γ = 1 below some critical radius, the latter profile is
known to give slightly more signal than the NFW one [ρEinasto(r) >

ρNFW(r) for a region that matters for the J calculation]. This results
in a boost close to 10, regardless of the dSph’s smooth profile. Fi-
nally, we recall that the B01 cvir–Mvir relation is used to calculate
the value of the scale parameter for any subclump mass. In the last
configuration, the concentration parameter is simply multiplied by
a factor of 2, which is probably not realistic. Again, the same boost
of ∼10 is observed. Accordingly, for these last two cases, the tran-
sition angle is reduced, and corresponds to αint < 0.◦01 (for a dSph
at 100 kpc).

To conclude, although boosts by as large as a factor of 10 can be
obtained through suitable combinations of parameters, most of these
combinations are unlikely and require the signal to be integrated on
large angles.

A P P E N D I X E: IM PAC T O F TH E P S F O F TH E
INSTRU M ENT

Fig. E1 shows the impact of the instrument angular resolution on the
80 per cent containment radius for J (for the generic dSphs studied

21 For smaller γ , the smooth distribution, in that case, is flatter than the
subclump one, so that the boost is larger than 1 for small αint and the
transition where B = 1 is ill-defined. However, such a configuration is
highly unlikely as it is exactly the opposite of what is observed in all N-
body simulations.

Figure E1. 80 per cent containment radius (θ80) of PSF-convolved DM
annihilation halo models versus α80.

in Section 3). The solid line corresponds to the quadrature approxi-
mation given by equation (15), whereas the symbols correspond to
the convolved PSF∗halo profile. The PSF is described by the sum
of two Gaussians and is a scaled (factor of 2 improved) version of
the PSF appropriate for the HESS at 200 GeV. Calculated haloes for
a range of α, β, γ models consistent with the stellar kinematics of
the classical dSphs are shown as the grey squares. The quadrature
sum approximation used in this work is shown as a solid line.

A P P E N D I X F: C O N F I D E N C E L E V E L S A N D
P R I O R S

In this appendix, we describe how CIs for the quantities such as
ρ(r) or J are chosen.

F1 Sensitivity of the result to the choice of prior

In the Bayesian approach, the PDF of a parameter x is given by
the product of the MCMC output PDF P(x) and the prior p(x).
The resulting PDF is therefore subjective, since it depends on the
adoption of a prior. However, whenever the latter is not strongly
dependent on x, or if P(x) falls in a range where p(x) does not
strongly vary, the PDF of the parameter becomes insensitive to the
prior. This happens, for instance, if the data give tight constraints
on the parameters.

In our MCMC analysis, we assumed a flat prior for all our halo
parameters, as there is no observationally motivated reason for doing
otherwise. Note, however, that flat priors on the model parameters
do not necessarily translate into flat priors on quantities derived
from those parameters. Specifically, the flat priors on our model
parameters imply a non-flat prior on the DM density (and also on
its logarithm) at a given radius, and hence a non-flat prior on J.
In principle, it is possible to choose a combination of priors for
the parameters that would translate into flat priors on ρ(r), but
we have not done so here. The general impact of such choices,
and the methodology to study the prior-dependent results, has been
discussed in the context of cosmological studies by Valkenburg,
Krauss & Hamann (2008). In this study, we only use a flat prior on
the parameters (or on the log for rs and ρs). The test with artificial
data demonstrates that our reconstructed ρ and J values are sound.
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F2 CIs for ρ(r) and cross-checks

F2.1 Definition

CIs �x, associated with a CL x per cent, are constructed from the
PDF. The asymmetric interval �x ≡ [θ−

x , θ+
x ], such as

CL(x) ≡
∫

�x

P(θ )dθ = 1 − γ,

defines the 1 − γ CL, along with the CI of the parameter θ . We
rely on two standard practices for the CI selection. The first one
(used only in this appendix) is to fix θ−

x to be the lowest value of
the PDF. The CLs then correspond to quantiles. This is useful for
the CI selection of χ 2 values to ensure that the best-fitting value of
a model (i.e. the lowest χ 2) falls in the CI (see e.g. fig. 7 of Putze
et al. 2009). In the second approach, the CI, that is, θ−

x (θ+
x ), is

found by starting from the median θmed of the PDF and decreases
(increases) θ x until we get x per cent/2 of the integral of the PDF.
This approach ensures that the median value of the parameters falls
in the CI; any asymmetry in the CI illustrates the departure from a
Gaussian PDF: this is the one used throughout this paper.

F2.2 Comparison of several choices for the PDF of ρ(r)

Fig. F1 shows the projection for each r of the PDF calculated from
the output MCMC file. To do so, ρ(r) is calculated for each entry of
the thinned chains and then stored as an histogram. This results in
‘boxes’: the larger the box, the more likely the value of ρ(r). From
this distribution, we can calculate the median (thick solid black
line) and the most probable value (thick dotted black line). The
thick solid red line corresponds to the model having the smallest
χ 2 value. We see that the latter differs from the median one for this
dSph, though they can be close for other dSphs in our sample. In
this paper, as our analysis is based on the Bayesian approach, we
disregard the best-fitting model and only retain the median value.

In the first approach, the 68 and 95 per cent CLs are calculated
from the distribution ρr (at each r). They are shown as the dashed
and dotted thick black lines. Note that none of the above lines
corresponds to a physical configuration of ρ(r).

The second approach is to construct the 68 per cent CLs from
a sampling of the (still) correlated parameters. This is achieved by
using all sets of parameters {θ}x per cent CL = {θ i}i=1,...,p, for which

Figure F1. Projected distribution of log10(ρ) along with the values of sev-
eral other estimators for the MCMC analysis of Draco. In this box projection,
the larger the box, the most likely the probability of log10(ρ). For instance,
in the top panel, for log10(r) = −1.5, the PDF of log10(ρ) is distributed in
the range [8–10] and peaks around 9.5.

χ 2(θ i) falls in the 68 per cent CL of the χ 2 PDF (see above). Once
these sets are found, we calculate ρ(r) for each of them, and keep
the maximum and minimum values for each position r. This defines
envelopes of ρ(r) (CIs are found for each r). This is shown as the
dotted and dashed red lines. Such an approach was used in Putze
et al. (2009). The CLs obtained from it are larger than the previous
one. In the above paper, the uncertainties were small even with that
method, so that was not an issue. However, in this study, this makes
a huge difference in the resulting value CL of J.

In order to check which approach is the correct one, we boot-
strapped the Draco kinematic data and calculate from the collection
of ρ(r) from each bootstrap sample the median value and the un-
certainty. The first approach, where the CLs are directly calculated
from the full set of MCMC samples, was in agreement with the
bootstrap approach, meaning that the second one biases the results
towards too large uncertainties. The results of this paper thus rely
on the first and correct approach.

APPENDI X G : A RTI FI CI AL DATA SETS:
VA L I DAT I O N O F T H E MC M C A NA LY S I S

In this section, we examine the reliability of the Jeans/MCMC anal-
ysis by applying it to artificial data sets of 1000 stellar positions and
velocities drawn directly from distribution functions with constant
velocity anisotropy. We assume the form L−2βanisof (ε) for the distri-
bution functions, where the (constant) velocity anisotropy is given
by βaniso = 1 − σ 2

t /σ 2
r , with σ 2

t and σ 2
r being the second moments

of the velocity distribution in the tangential and radial directions,
respectively. The function f (ε) is an unspecified function of energy
ε which we determine numerically using an Abel inversion once the
halo model and stellar density are specified (Cuddeford 1991). We
used the same models as used in Walker et al. (2011), but we present
here a more general study. The set of artificial data covers a grid
of models with γ = 0.1, 0.5, 1.0, rh/rs = 0.1, 0.5, 1.0 and β = 3.1.
For each halo model, we assume βaniso values of 0 (isotropic), 0.25
(radial) or −0.75 (tangential): the βaniso values for the anisotropic
models are chosen to give models with roughly equivalent levels of
anisotropy (in terms of the ratios of the velocity dispersions in the
radial and tangential directions). We also generate a grid of models
with a steeper inner slope γ = 1.5 and β = 4.0. In all cases, the
haloes contain ∼107 M� within 300 pc. We mimic the effects of
observational errors by adding Gaussian noise with a dispersion of
2 km s−1 to each individual stellar velocity generated from the dis-
tribution function. The reconstruction depends on the choice of the
prior γ prior, and this effect is explored in the two sections below.

G1 Prior: 0 ≤ γ prior ≤ 1 versus 0 ≤ γ prior ≤ 2

We start with the free γ prior analysis (see Section 5.1) based on
two different priors. The top panels of Fig. G1 show the ratio of
the reconstructed median profile to the true profile. There are no
significant differences for ρ(r � 1 kpc) when using the prior 0 ≤
γ prior ≤ 2 (top left-hand panel) or 0 ≤ γ prior ≤ 1 (top right-hand
panel): at large radii, the profile does not depend any longer on the
γ parameter. However, it is striking to see that restricting the prior
to 0 ≤ γ prior ≤ 1 greatly improves the determination of the inner
regions for the profile, regardless of the value of γ true. Even for
γ true = 1.5 (green curves), using an incorrect prior does not degrade
too much the reconstruction of the profile.

This result is further emphasized when looking at J. The bottom
panels of Fig. G1 are plotted with the same scale to emphasize
the difference. As J integrates over the inner parts of the profile,
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Figure G1. Ratio of the MCMC profile to the true profile. The lines are
colour-coded with respect to the value of the true inner slope γ true of the
artificial data. Top panels: ratio of the median ρ(r). The two vertical grey
dashed lines correspond to the typical range within which the artificial data
bins are taken. Bottom panels: ratio of J(αint) for the artificial dSphs located
at 100 kpc. Left-hand panels: MCMC analysis with the prior 0 ≤ γ prior ≤ 2.
Right-hand panels: the prior is 0 ≤ γ prior ≤ 1.

the median MCMC value can strongly differ from the true value
for cuspy profiles. This difference can reach up to five orders of
magnitude (over the whole range of αint) for γ true � 0.5 when using
the prior 0 ≤ γ prior ≤ 2. The prior 0 ≤ γ prior ≤ 1 does generally
better and, accordingly, the CIs are much smaller than for the other
prior (for any integration angle).

The behaviour of the γ true = 1.5 case is unexpected. Using the
prior 0 ≤ γ prior ≤ 1 does better than the other one for any integration
angle. Indeed, even if the reconstructed median value is shifted by
a factor of 10, its CLs correctly encompass the true value. It does
better than the 0 ≤ γ prior ≤ 1 prior, which correctly provides CLs
(that bracket the true value), but which are completely useless as
these CLs can vary on approximately eight orders of magnitude.

G2 Strong prior: γ prior fixed

In Fig. G2 below, we use a prior γ prior = 0 for models having γ true =
0, a prior γ prior = 0.5 for models having γ true = 0.5, etc.

A comparison of Figs G1 (using 0 ≤ γ prior ≤ 1 or 0 ≤ γ prior ≤ 2)
and G2 (fixed γ prior) shows that the latter prior only slightly improves
the precision of the J-factor reconstruction for γ true = 0, 0.5 and 1.
However, if γ true = 1.5 (green curves), although the corresponding
J-factor is now better reconstructed than when using the prior 0 ≤

γ prior ≤ 2 (Fig. G1, top left-hand panel), it is surprisingly less reliable
than the strongly biased 0 ≤ γ prior ≤ 1 prior.

The main conclusion is that the knowledge of γ true does not help
providing tighter constraints on J: the uncertainty remains a factor
of a few, except when the inner profile is really cuspy (γ true = 1.5),
in which case it becomes strongly biased/unreliable.

A P P E N D I X H : OT H E R R E C O N S T RU C T I O N
‘BI ASES’ ON THE J-FAC TO R

In this appendix, the MCMC analysis is performed based on the
prior 0 ≤ γ prior ≤ 1, for which the analysis is found to be the most
robust (see the previous appendix).

H1 Impact of the binning of the stars

Fig. H1 shows the impact of using different binnings in the MCMC
analysis. The left-hand panels show the reconstructed (median)
value of the velocity dispersion as a function of the logarithm of r
(to emphasize the differences at small radii), for the binning used
in this paper (black; where each of

√
N bins has

√
N member stars,

where N is the total number of members), a binning with two times
(red) and four times (blue) fewer bins. For Fornax and Sculptor,
the profiles are insensitive to the binning chosen, so that the recon-
struction of the J values’ median and 68 per cent CLs (right-hand
panels) is robust. For other dSphs, the adjusted velocity dispersion
profile is affected either at small radii or at large radii. In the latter
case, the J calculation should not be affected, as the outer part does
not contribute much to the annihilation signal. In the former case, a
deviation even at small radii can affect the associated J by a factor
of a few. The exact impact depends on the integration angle, the
distance from the dSph (which corresponds to a given radius) and
the ‘cuspiness’ of the reconstructed profile (the J value of a core
profile will be less sensitive to differences in the inner parts than
would be that of a cuspy profile). For instance, Draco and Leo I both
have a 2 km s−1 uncertainty below 100 pc, but Draco is three times
closer than Leo I: their J for a given αint have different behaviours
(right-hand panels). The strongest impact is for Leo I that has the
fewest data. The flatness of the J curve seems to indicate a cuspy
profile (all the signal in the very inner parts), which we know are the
least well reconstructed ones (see Appendix G1). Leo I is thus the
most sensitive dSph to the binning, for which a balance between a
sufficient coverage over r and small error bars cannot be achieved.
The ultrafaint dSphs are expected to have even fewer stars, so that
their J calculation is expected to be even more uncertain.

Overall, the choice of binning can produce an additional bias of a
few on the J reconstruction. This is an extra uncertainty factor that
makes Fornax and Sculptor the more robust targets with respect to
their annihilation signal. Surveys in the inner parts and outer parts
of Carina, Draco, Sextans, Leo I, Leo II and Ursa Minor are desired
to get rid of this binning bias.

H2 Impact of the choice of the light profile

Fig. H2 shows the various median values and 68 per cent CIs of
J when changing the assumptions made on the light profile. The
black lines labelled ‘physical’ correspond to the Plummer model
used for the main analysis (see equation 21); the red lines labelled
‘unphysical’ are also Plummer, but the physical constraint given by
equation (25) is relaxed; the blue lines and green lines correspond,
respectively, to a light profile modelled with an (α, β, γ ) profile in
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Figure G2. Fixed γ prior MCMC analysis. Top panel: ρ(r). Bottom panel: J(αint).

Figure H1. For the eight classical dSphs, impact of using several binnings of the stars: black is the binning used throughout this paper (i.e.
√

N bins), red has√
N/2 bins and blue has

√
N/4 bins. Left-hand panels: velocity dispersion as a function of log (r) (symbols are data and lines are the MCMC median values

based on the data). Right-hand panels: corresponding median values and 68 per cent CI for J(αint).
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Figure H2. For the eight classical dSphs, impact of using different light profiles (see text). The solid lines are the MCMC median values and the dashed lines
are the 68 per cent CIs for J(αint).

order to get a steeper outer slope (2, 6, 0) or a steeper inner slope
(2, 5, 1) with respect to the Plummer profile.

Regardless of the light profile used, we recover similar critical
angles for which J is the most constrained. The impact on the J
value is strongest for the least-well-measured profiles (Leo II and
Sextans), but is contained within the 95 per cent CI and marginally
within the 68 per cent CL.

S U P P O RTI N G IN F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article.

ASCII files. ASCII files containing the most-likely, 68 and 95 per
cent CLs on the quantity J(αint) for the eight classical dSphs that
we analysed.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.
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