
Biometrika (2005), 92, 4, pp. 893–907

© 2005 Biometrika Trust

Printed in Great Britain

Lower bounds for the number of false null hypotheses for
multiple testing of associations under general dependence

structures

B NICOLAI MEINSHAUSEN  PETER BÜHLMANN
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S

We propose probabilistic lower bounds for the number of false null hypotheses when
testing multiple hypotheses of association simultaneously. The bounds are valid under
general and unknown dependence structures between the test statistics. The power of
the proposed estimator to detect the full proportion of false null hypotheses is discussed
and compared to other estimators. The proposed estimator is shown to deliver a tight
probabilistic lower bound for the number of false null hypotheses in a multiple testing
situation even under strong dependence between test statistics.
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1. I

When we are testing multiple hypotheses simultaneously, it is often of interest to select
a subset of hypotheses which show a significant deviation from the null hypothesis.
Adjusting for the multiplicity of the testing problem is commonly achieved by calculating
a suitable error rate like the family-wise error rate, see for example Westfall & Young
(1993) and Holm (1979), or the false discovery rate, as introduced by Benjamini &
Hochberg (1995). Instead of selecting a subset of significant hypotheses, however, one
might sometimes rather be interested in just testing a global null hypothesis; see Donoho
& Jin (2004) for a recent development in this field and possible areas of application.

Here we consider an intermediate approach. The goal is to estimate the total number m1
of false null hypotheses among all m tested hypotheses. For a chosen level a, we propose
probabilistic lower bounds m@ 1 , for the total number m1 of false null hypotheses, for which
it holds under arbitrary and unknown dependence between the test statistics that

pr (m@
1
∏m
1
)�1−a. (1·1)

The estimator m@ 1 can be used as a global test of significance, as the global null hypothesis
m1=0 can be rejected at level a if m@ 1>0. On the other hand, estimates of m1 are useful
for tighter estimation of error rates. Storey (2002) showed for example that less con-
servative estimates of the false discovery rate are possible if an estimate of m1 is available.
Likewise, with an estimate of m1 to hand, more powerful procedures are possible if the
multiplicity adjustment is carried out using the per-comparison or the per-family error
rate; see for example Shaffer (1995) and Dudoit et al. (2003) for an overview of the most
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common multiple hypotheses testing procedures. In the context of gene expression micro-
array experiments, it is often of interest to test for differential expression; that is, to test
the null hypothesis for each gene that its expression level follows the same distribution
under various clinical classes (Golub et al., 1999; Alon et al., 1999). As well as being of
interest in its own right, a lower bound on the number m1 of differentially expressed genes
is helpful for tighter estimation of common error rates.

A second application is provided by the Taiwanese-American occultation survey, one
goal of which is to estimate the number of objects in the Kuiper Belt (Liang et al., 2002).
This number is inferred from the rate of occultations of stars by Kuiper belt objects, which
results in a very high-dimensional multiple testing problem. In this case, one is exclusively
interested in estimating the number m1 of false null hypotheses and not in identifying
precisely which hypotheses show a significant deviation from the null hypothesis. As a
third example, consider the detection and quantification of climate change. Frei & Schär
(2001) examined the existence of a trend in the occurrence of extreme precipitation events
in the alpine region. Precipitation events are recorded at a large number of stations.
No recording station might show a significant effect when taking the multiplicity of the
testing problem into account. With the proposed estimators it is nevertheless possible to
give a probabilistic lower bound for the number of stations where an increase in extreme
precipitation events is indeed occurring.

Allowing arbitrary dependence requires a special structure of the data. However,
for multiple testing of associations the requirements are in general fulfilled. The gene-
expression example and the detection of trends in extreme precipitation events are
amenable to the analysis presented in this paper. In contrast, the astronomical example
does not allow for permutation-based testing, which is central to our approach.
Incidentally, the gene-expression and extreme-precipitation examples are also those appli-
cations in which the issue of dependence among test statistics is particularly pressing.
Expression levels are sometimes heavily correlated among genes, and the occurrence of
extreme precipitation events is likewise very much correlated among recording stations,
especially if they are located in the same geographical region.

Starting with Schweder & Spjøtvoll (1982), estimators have been developed for m1 that
are conservative in the sense that

E(m@
1
)∏m

1
. (1·2)

The number of true null hypotheses is estimated in Schweder & Spjøtvoll (1982) by a
linear fit of the empirical distribution of p-values; see also the recent application to neuro-
imaging data in Turkheimer et al. (2001). Another idea in the paper of Schweder &
Spjøtvoll (1982) that also appears in Storey (2002) is to estimate the number of true
null hypotheses by the number of p-values greater than some threshold l and then divide
by 1−l. Suggestions for an adaptive choice of l are proposed in Storey (2002). For
independent test statistics, an estimator with property (1·1) was proposed in Genovese &
Wasserman (2004). The estimator proposed in this paper is to our knowledge the first to
provide a lower bound for m1 under general dependence structures between the test
statistics.

2. M

2·1. Setting and notation

Let yµY be a class variable with Y={1, . . . , h} for some hµN or, more generally, a
variable with Y=R. Let (X

y
)
yµY

be a family of m-dimensional random variables with
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components X
y
={X

y,1
, . . . , X

y,m
}. In multiple testing of associations, one is interested in

whether or not the distribution of the components of X
y
are independent of yµY.

Assume that there is some set Sk{1, . . . , m} such that the joint distribution of
{X
y,k

; kµS} is identical for all values of the variable yµY:

{X
y,k

; kµS}={X
y∞,k

; kµS} (2·1)

for all y, y∞µY. Let N be a subset of {1, . . . , m} such that (2·1) is fulfilled and such that
there is no subset that fulfils (2·1) and has larger cardinality. The cardinality of N is
denoted by m0 . The quantity m0 can be interpreted as the number of true null hypotheses
in the sense that it describes the number of components of X

y
whose distribution is not

dependent on the class variable yµY. Note that the definition of the set N of true null
hypotheses depends on the joint distribution of all components in this set. In particular,
consider the case in which the marginal distributions of two components X

y,l
and X

y,k
are both independent of y, but their joint distribution is not. Then k and l are not both
members of any set S that fulfils (2·1) and hence do not both count towards the number
of true null hypotheses. The number of false null hypotheses is defined as m1=m−m0 .
Note that the setting is also applicable to cases where y is random.

2·2. A simple example

We begin with a simple example to clarify ideas and notation. The setting is similar to
that of linear discriminant analysis. Let the class variable be binary with Y={0, 1}. Let
X
y=0

and X
y=1

both follow Gaussian distributions with common but unknown covariance
matrix S:

X
y=0
~N
m
(0, S ), X

y=1
~N
m
(h, S ).

The vector h of means has components h= (h1 , . . . , hm ). The null hypothesis for each
component k=1, . . . , m is that the distribution is identical under either y=0 or y=1,
which is equivalent to h

k
=0. The set N of true null hypotheses is thus given by

N={k : h
k
=0}. In the context of gene expression microarray data, the class variable y

might distinguish between cancerous and non-cancerous tissue, and the question arises of
whether or not the expression levels for genes show a systematic upward or downward
shift between these conditions.

2·3. Confidence interval

It is assumed that an n-dimensional vector ( y1 , . . . , yn )µYn of class variables is avail-
able, along with corresponding observations of X

y
1

, . . . , X
y
n

, which are assumed to be
independent. We suppose that a suitable test is provided for independence of the marginal
distributions of X

y,k
(k=1, . . . , m) from the class variable y. The outcome of such a

test, applied to every component k=1, . . . , m, is a set of p-values P1 , . . . , Pm , where
P
k
~Un[0, 1] if kµN. For example, for a two-sample problem with yµ{0, 1}, as in § 2·2,

a t-test or a Wilcoxon test is appropriate for testing for a shift in location between the
two groups. In general, the test will be adapted to the problem at hand. The number of
hypotheses with p-values in a given rejection region [0, c] is denoted by R(c):

R(c)= ∑
kµ{1,...,m}

1{P
k
∏c}.
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The number of false rejections, denoted by V (c), is the number of p-values P
k

below c,
where k is a member of the set N:

V (c)= ∑
kµN

1{P
k
∏c}.

We first introduce the key concept of a bounding function. Unless stated otherwise let C
be the interval [0, 1]. A bounding function at level a is a random function G

a
(c) which is

monotonically increasing with c for every realisation such that

prCsup

cµC

{V (c)−G
a
(c)}>0D<a. (2·2)

We will show explicitly in § 2·5 how a bounding function can be constructed. The proposed
estimator of m1 is given as the maximal difference between the realised number of rejections
R(c) and a bounding function G

a
(c) at level a:

m@
1
= sup

cµC

{R(c)−G
a
(c)}. (2·3)

The estimator of m0 is simply m@ 0=m−m@ 1 . As mentioned above, C=[0, 1] unless stated
explicitly. Note that both R(c) and G

a
(c) are monotonically increasing with c. Furthermore,

the number R(c) of p-values less than or equal to c is constant except for a set of at most m
points of discontinuity, at which the supremum in (2·3) is attained. The supremum
can hence be efficiently evaluated by maximising over the finite random set of realised
p-values. We show that the estimator of m0 indeed provides a probabilistic upper bound
for the number of true null hypotheses.

T 1. A one-sided (1−a) confidence interval for m0 is given by [0, m@ 0]. A
one-sided (1−a) confidence interval for m1 is given by [m@ 1 , m]. In particular,

pr (m@
1
∏m
1
)�1−a.

A proof is given in the Appendix. Note that Theorem 1 allows for arbitrary dependence
among the components of the m-dimensional X

y
; we only require independence of the n

observations X
y
1

, . . . , X
y
n

, that is for the data sample.
The properties of the estimator are solely determined by the choice of the bounding

function. In particular, the power to detect true nonnull hypotheses is markedly different
for different choices of the bounding functions. We are going to discuss in the sequel a
general method for obtaining tight bounding functions.

2·4. SuYcient criterion for a bounding function

It is not possible to verify criterion (2·2). Criterion (2·2) requires knowledge of the
distribution of V and hence of m0 , which is the very quantity one is trying to estimate.
We shall show that the distribution of V can in some sense be bounded from above by
the computable distribution of a random variable V p, obtained by permutations of the
class variables ( y1 , . . . , yn ).

Let Z be the sample with ordered values ( y(1) , . . . , y(n) ) of the class variables ( y1 , . . . , yn ):

Z={(y
(i)

, X
y
i

)}
i=1,...,n

.

Let p be a random permutation of {1, . . . , n} and define the action of a p on Z by the
permutation of the class labels according to p, p(Z)={(y

p(i)
, X
y
i

)}
i=1,...,n

. Define the
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random variable Pp
k

(k=1, . . . , m) as the p-value of the kth hypothesis under randomly
permutated class labels, where each of the n! permutations of the set {1, . . . , n} has equal
probability:

Pp
k
(Z)=P

k
{p(Z)}.

The random variable V p (c) is now defined as the number of components, k, for which
Pp
k

is smaller than c:

V p (c)= ∑
kµ{1,...,m}

1{Pp
k
∏c}.

The distribution of V p is determined by the unknown distribution of the test statistics.
However, the distribution of V p conditional on Z is computable if we use all n! per-
mutations of the class variables ( y1 , . . . , yn ). The distribution of V p thus yields, in a sense
made precise below, a useful upper bound for the distribution of V .

T 2. For any Mk{1, . . . , m}, define Z
M

as Z
M
={(y

(i)
; X
y
i
,k
, kµM)}

i=1,...,n
. For

any Mk (1, . . . , m}, let G
M,a

(c) be a random, s(Z
M

)-measurable function. If, for all
Mk{1, . . . , m} and Z

M
=z
M

,

prCsup

cµC
q ∑
kµM

1{Pp
k
∏c}−G

M,a
(c)r>0|Z

M
=z
MD<a,

then G
a
(c)=max

M
G
M,a

(c), where the maximum is taken pointwise for each cµ[0, 1], is a
bounding function in the sense of (2·2).

Proof. Consider M=N. Let PB be the random permutation that puts all class variables
into their original position. Conditional on Z

N
=z

N
, it holds that all permutations

are equally likely, pr(PB =pA |Z
N
=z

N
)= (1/n!). Thus, using V (c)=W

kµN
1{PpA
k
∏c}, and

G
a
(c)�G

N,a
(c), we obtain

prCsup

cµC

{V (c)−G
a
(c)}>0|Z

N
=z

ND
∏ prCsup

cµC
q ∑
kµN

1{Pp
k
∏c}−G

N,a
(c)r>0|Z

N
=z

ND ,
where the probability is with respect to a random permutation p, with equal probability
1/n! for every permutation. By the assumption in Theorem 2, applied to G

N,a
, and

integration over Z, it can be seen that the right-hand side of the last inequality is smaller
than a. In summary, it holds for all Z

N
=z

N
that

prCsup

cµC

{V (c)−G
a
(c)}>0|Z

N
=z

ND<a,
and the proof follows by integrating out over Z

N
. %

Often, it is not necessary to verify the condition in Theorem 2 for every subset
Mk{1, . . . , m}. Most bounding functions are monotone in M in the sense that
G
M
1
,a
(c)�G

M
2
,a
(c) for all c and all M2kM1 . If this monotonicity constraint is fulfilled, it

holds that G
a
(c)=max

M
G
M,a

(c)=G
{1,...,m},a

(c), that is the bounding function G
a

must
satisfy

prCsup

cµC
q ∑
kµ{1,...,m}

1{Pp
k
∏c}−G

a
(c)r>0|Z=zD<a, (2·4)
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where the probability is with respect to a random permutation p. One example that fulfils
the monotonicity constraint is provided by the bounding function that corresponds to
control of the familywise error rate; see § 2·6. Another important example is the quantile
bounding function, as described below. It can be derived as the upper endpoint, that is
M={1, . . . , m}, of a monotonically increasing sequence of s(Z

M
)-measurable functions

G
M,a

(c), and it hence suffices to check for the quantile bounding function that (2·4) is
fulfilled.

2·5. Quantile bounding functions and computation

We propose to use the quantile function of V p (c) as a bounding function. Let Qb
z
(c)

be the b-quantile of V p (c), conditional on Z=z. This function can be computed by
random permutations of the class variables. Let b(a) be the minimal value of bµ[0, 1]
such that (2·4) is fulfilled for Qb

z
(c). The quantile function Qb(a)

z
(c) is then a valid bounding

function. Note that any function G
a

which fulfils (2·4) is bounded from below by the
(1−a)-quantile of V p (c); that is G

a
(c)�Q1−a

z
(c) for any bounding function G

a
. It follows

that 1−a∏b(a)∏1.
Let P be a set of random permutations of the class variable. For the finite set P,

the computation of the quantile functions can be limited to the set of quantiles
bµ{1, 1−1/|P|, 1−2/|P|, . . . , 1/|P|}. For b=1, criterion (2·4) is surely fulfilled. The
value b(a) is found by checking iteratively, starting with b=1 and then for successively
lower values of b, whether or not criterion (2·4) is fulfilled for the quantile function
Qb
z
(c). Note that, if the criterion is not fulfilled for some b, then it cannot be fulfilled for

any value lower than b. The value b(a) is the lowest value for which criterion (2·4) is
fulfilled.

To check whether or not criterion (2·4) is fulfilled for the quantile function Qb
z
(c),

calculate for every pµP the p-values Pp
k

(k=1, . . . , m) of all hypotheses. Check, for every
permutation pµP, whether or not V p (c)∏Qb

z
(c) for all cµ{Pp

1
, . . . , Pp

m
}. If this condition

is fulfilled, set c(p)=0. Otherwise, set c(p)=1. Criterion (2·4) is fulfilled if and only if
W

p
c(p)<a|P|.

By (2·3), the estimator of m1 is then given by

m@
1
= sup

cµC

{R(c)−Qb(a)
z

(c)}.

As a result of the monotonicity of Qb(a)
z

(c), the supremum is attained by some value of c
in the finite, random set of realised p-values {P1 , . . . , Pm}. Evaluation of the supremum is
hence achieved by maximising over a finite set of points. It holds by positivity of the
bounding function that 0∏m@ 1∏m.

It might seem that the computational burden of this procedure is prohibitive if a
permutation-based test is used for computation of the p-values, as the algorithm as laid
out here involves in these cases a double permutation. It is therefore of interest to note
that the algorithm also works when we use, instead of p-values, raw test statistics.

2·6. Connection to the family-wise error rate

Another possible choice of a bounding function is given by

G
a
(c)=q0, for c∏g(a),

2, for c>g(a),
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where g(a) is the largest value in [0, 1] such that (2·4) is fulfilled. By Bonferroni’s inequality,
g(a)�1/m. The estimate (2·3) for this bounding function is given by

m@ fw
1
=R{g(a)},

and is equal to the number or rejections when controlling the family-wise error rate at
level a.

2·7. Asymptotic power

Here we compare the asymptotic powers of m@ fw
1

and m@ 1 to detect the correct proportion
of false null hypotheses. The ability of the estimators to identify a large proportion of all
false null hypotheses depends of course on the power of the individual tests. We settle
here for the simple setting of a two-sample problem, where a one- or two-sided Wilcoxon
test is used to test whether or not the distribution of a random variable X

y=0
is shifted

compared to the distribution of another random variable X
y=1

. The total number n of
observations is given by n=n0+n1 , where n0 is the number of independent observations
of X
y=0

and n1 is the number of independent observations of X
y=1

.
We are particularly interested in how well the estimators can cope with a large number m

of tests. Thus for the following analysis m is increasing with n, so that m=m(n)�2 for
n�2. Both X

y=0
and X

y=1
are assumed to be finite-dimensional. For n observations,

the first m(n) components are tested for association with the class variable. We need three
reasonable assumptions.

Assumption 1. There exists some c>0 such that, for all false null hypotheses kµNc,

|pr (X
y=0,k

<X
y=1,k

)−1
2
|>c.

Assumption 2. The dependence between test statistics is such that, for some tµ(0, 1),

sup

cµC

∑
m

k,l=1
|cov(1{P

k
∏c}, 1{P

l
∏c})|=o(m1+t )

for m=m(n)�2.

Assumption 3. The proportion of false null hypotheses converges to kµ(0, 1), while the
proportion of observations from class y=1 converges to some nµ(0, 1):

m
1
(n)/m(n)� k (for n�2 ), n

1
/n� n (for n�2 ).

Assumption 1 could be relaxed by replacing c with a sequence c
n

such that c
n
� 0

sufficiently slowly as n�2. However, it suffices in its current form to illustrate the
difference in power between the estimators. Assumption 2 is a weak condition regarding
the strength of correlation between test statistics. For example it is fulfilled if test statistics
are block-dependent and the size of the largest block is increasing at most as o(mt ). For
independent test statistics, the assumption is fulfilled for any t>0. The second part of
Assumption 3 seems reasonable. An interesting field for further research would be to study
the behaviour of the estimators for k=0, where the proportion of false null hypotheses
is vanishing for n�2; see Meinshausen & Rice (2006) for the case of independent test
statistics.
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T 3. L et Assumptions 1–3 be fulfilled and let n−1 log m(n)�2 for n�2.
T hen, for n�2, in probability,

m@ fw
1

/m
1
� 0, m@

1
/m
1
� 1.

From an asymptotic point of view, estimation of m1 by m@ 1 is thus more powerful than
estimation by m@ fw

1
. Note that the number of hypotheses increases very quickly in the result

above as a function of the number of observations.
In general, the power of m@ fw

1
to detect the presence of false null hypotheses deteriorates

with the number of tested hypotheses. The estimator m@ fw
1

is equal to the number of
rejections that can be made under control of the family-wise error rate, as already
mentioned above, and it is well known that the family-wise error rate is very conservative
if the number of tested hypotheses is large. The result in Theorem 3 is thus perhaps not
very surprising. However, Theorem 3 shows that, for the purpose of estimating m1 ,
more powerful estimators are available which do not suffer from vanishing power for an
increasing number of tested hypotheses.

2·8. Composite null hypotheses

The method was primarily developed to test for identical distribution of the com-
ponents of X

y
for all yµY. In practice, one might like to allow for more general composite

null hypotheses, and here we show how the proposed method can be generalised.
Suppose that the family X

y
(yµY ) of random variables is parameterised by a vector

h= (h1 , . . . , hm )µHm. Consider first the case of point null hypotheses h
k
=0. The set of

true null hypotheses therefore corresponds to the set N={k : h
k
=0} and the number

of true null hypotheses is given by m
0
=Wm
k=1

1{h
k
=0}.

Now suppose that the null hypothesis is given rather by h
k
µH0 for every component

k=1, . . . , m, and some H05H. In this case the number of true null hypotheses is given
by m

0
=Wm
k=1

1{h
k
µH
0
}. The proposed method can be applied without further modifi-

cations to this problem under the perhaps crucial assumption that one can couple together
the values h

k
µH0 and h

k
=0 in the following sense. Let P

k
(h
k
) be the p-value of the kth

hypothesis under parameter value h
k
. Suppose now that the parameterisation is so chosen

that almost surely the p-values under any h
k
µH0 are at least as large as under h

k
=0:

h
k
µH
0
[P
k
(h
k
)�P

k
(0) (2·5)

almost surely. Then the proposed estimators m@ 1 have the desired property that
pr (m@ 1∏m1 )�1−a, where m1 is now defined as m

1
=Wm
k=1

1{h
k
µH
0
}. This follows by an

inspection of the proof of Theorem 2. Such a coupling can be achieved for a large number of
potentially interesting composite null hypotheses. As an example, consider again the setting
of § 2·2. Let the null hypotheses be given not by h

k
=0 but instead by h

k
µH0= (−2, 0],

so that m1 measures only the number of hypotheses in which the shift in mean for class
y=1 compared to class y=0 is positive. If we use a sensible test like the t-test or the
Wilcoxon test, it is obvious that (2·5) is fulfilled in this case.

2·9. Estimation of error rates

There is by now a multitude of error rates for multiple hypothesis testing; see Shaffer
(1995) or Dudoit et al. (2003) for an overview. The most important ones are the family-
wise error rate, the per-comparison error rate, which is defined as E(V )/m, the expected
number of Type I errors V divided by the total number m of hypotheses. Furthermore
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there is the per-family error rate, E(V ). Finally there is the false discovery rate, which is
defined as E(Q), where Q is the proportion of falsely rejected hypotheses, that is Q=V /R
if R>0 and Q=0 if R=0. Storey (2002) was the first to make use of an estimator of m0
to give a less conservative estimator of the false discovery rate. Our proposed estimators
of m0 can also be used to give less conservative estimators of the per-comparison and per-
family error rates. The values of the per-comparison and per-family error rates are given
for a fixed rejection region [0, c] by

=m
0
c/m, =m

0
c.

The value of m0 is unknown but bounded by m. The error rates can thus be trivially
bounded from above by ∏c and ∏mc. These bounds are rather conservative
if there are many false null hypotheses. For example, if we use the proposed estimator m@ 0
of m0 , less conservative estimators are obtained. For the per-comparison error rate, the
proposed estimator of the per-comparison error rate is

 =m@
0
c/m.

This estimator never exceeds the conservative upper bound:  ∏c. We are still on the
safe side, however, as the estimator is, by Theorem 1, larger than the true value of the
per-comparison error rate with high probability:

pr( �)�1−a.

A similar result holds for the per-family error rate. In Storey (2002), it was shown that
a useful estimator for the false discovery rate, when rejecting all hypotheses with p-value
less than c, is given by m0c/R(c). Let m@ 0 be some estimator of m0 . A plug-in estimator for
the false discovery rate is then @ =m@ 0c/R. In particular, the estimator of m0 in Storey
(2002) is

m@ St
0
=

m−R(l)

1−l
. (2·6)

This estimator has the property that E(m@ St
0
)�m

0
and E(@ )�. Instead of using

m@ St
0

as an estimator of m0 , it is possible to use different estimators, such as our m@ 0 . We
compare both estimators in the sequel.

3. N 

3·1. Simulated data

The set-up for the numerical comparison is the same as in the example of § 2·2. The
set N of true null hypotheses is generated by randomly drawing m0 elements from
the set {1, . . . , m}. For kµN, h

k
=0, whereas, for false null hypotheses with kµNc,

h
k
=1. The Wilcoxon test is used to test for a shift in mean between the distributions

of X
y=0

and X
y=1

for all m components. The total number n of observations is assumed
to be even and there are n/2 independent observations of X

y=0
and n/2 observations of

X
y=1

. The covariance matrix S is defined by S=aK−1, where a is a scale factor,
chosen so that the diagonal of S has unit entries and K is an m×m matrix with unit
entries in the diagonal and K

ij
=f/2 if |i− j|=1 or {i, j}={1, m}, and K

ij
=0 otherwise.

Independent test statistics are obtained if f=0. If f=0·995, this gives a covariance matrix
with nondiagonal entries in the range of 0 to 0·9. About 90% of all correlations are
below 0·01.
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For n=60 observations, the empirical distribution of m@ 1/m1 , at level a=0·05, is shown
in Fig. 1 for 100 simulations and independent test statistics under an increasing number m
of hypotheses. The number of false null hypotheses m1 is kept at a constant proportion
0·1 of all hypotheses. It can be observed in Fig. 1(b) that the power of a method that
controls the family-wise error rate, corresponding to m@ fw

1
, vanishes for large m as expected

from Theorem 3. The proposed estimator m@ 1 shows qualitatively different behaviour. The
power actually increases for increasing m, converging to a positive value close to 1. In
Fig. 1(c), the smoother estimator of m1 , proposed in Storey & Tibshirani (2003) and
denoted by m@ ST,sm

1
, is shown for comparison. The bias of this estimator is smaller, but the

variance is substantially larger than for any of the proposed estimators.

Fig. 1: Simulated data. Box-plots for the ratio m@ 1/m1 as a function of the number m of tested hypotheses
for independent test statistics, for (a) the proposed estimator m@ 1 , (b) the number of rejections m@ fw

1
when controlling the family-wise error rate, and (c) the smoother estimator m@ ST,sm

1
.

Next, a more thorough simulation study is done for m=1000 hypotheses. The number
of false null hypotheses is varied with m1µ{0, 100, 500}. The estimators m@ 1 and m@ fw

1
are

compared in Table 1. Additionally, the estimator m@ St
1

is shown, as proposed in Storey
(2002); see equation (2·6). The parameter l has to be chosen heuristically and the
commonly-made choice l=0·5 is used. A bootstrap method for obtaining an optimal
choice of l was proposed in Storey (2002). The resulting estimator is denoted by m@ St,b

1
.

Finally, the smoother estimator m@ ST,sm
1

proposed in Storey & Tibshirani (2003) is shown.
If there is no single false null hypothesis, m1=0, the estimators m@ fw

1
and m@ 1 estimate m1

correctly by 0 in at least 100(1−a) percent of the simulations, as expected from property
(1·1). In contrast, in this case the estimators m@ St

1
, m@ ST,sm
1

and m@ St,b
1

produce large estimators
of m1 , especially for dependent test statistics. Note that these last three estimators are
thresholded at 0 and m respectively, and the conservative property that E(m@ 1 )<m1 is
thereby lost. Hence the average value of m@ St

1
is often larger than m1 in the simulations

shown here.
The power of m@ fw

1
to detect a sizeable proportion of all false null hypotheses is in

general poor, as already expected from theoretical considerations above. Furthermore, the
estimator m@ St,b

1
, with a bootstrap choice of l, seems unsuitable for dependent test statistics.

The smoother estimator m@ ST,sm
1

likewise has a large bias and variance for dependent test
statistics. The original estimator m@ St

1
with fixed l seems to be the most useful among

m@ St
1
, m@ St,b
1

and m@ ST,sm
1

, at least for the data examined here.
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Table 1: Simulation study. T he average value, mean, standard
deviation, , root mean squared error, , and the prob-
ability pr (m@ 1>m1 ) of overestimation, pr, for diVerent esti-
mators of m1 , the number of false null hypotheses. Except for

pr, values are rounded to the nearest integer

f=0 f=0·995
Mean   pr Mean   pr

m1=0
m@ 1 0 0 0 0·02 0 0 0 0·03
m@ fw
1

0 0 0 0·00 0 0 0 0·00
m@ St
1

10 17 20 0·37 96 136 166 0·48
m@ ST,sm
1

19 29 35 0·45 211 259 333 0·55
m@ St,b
1

61 72 94 0·88 278 300 408 0·64

m1=100
m@ 1 85 4 14 0·00 72 10 30 0·00
m@ fw
1

45 5 55 0·00 46 13 56 0·00
m@ St
1

99 31 30 0·48 152 169 176 0·48
m@ ST,sm
1

91 60 60 0·42 250 291 326 0·52
m@ St,b
1

163 75 98 0·89 357 292 388 0·67

m1=500
m@ 1 435 14 66 0·00 428 22 75 0·00
m@ fw
1

224 11 276 0·00 229 51 276 0·00
m@ St
1

495 22 23 0·44 510 109 109 0·54
m@ ST,sm
1

486 48 50 0·38 529 232 233 0·59
m@ St,b
1

543 55 70 0·86 651 154 215 0·73

This leaves m@ St
1
, with an appropriate predetermined choice of l, and m@ 1 as sensible

estimators of m1 . In terms of root mean squared error, m@ St
1

is best for independent
test statistics and larger proportions m1/m of false null hypotheses. For dependent test
statistics, either m@ St

1
or m@ 1 has the lowest root mean squared error. The probability of

overestimating m1 is conservatively controlled with m@ 1 at level a, as expected from
Theorem 1. With m@ St

1
, the probability of overestimating m1 is usually around 0·5. The

high variance of m@ St
1

under dependent test statistics suggests that there is a rather high
probability of overestimating m1 by a large amount.

3·2. Microarray data

With microarray studies it is possible to monitor the expression values of several
thousand genes simultaneously. A common aim with microarray studies is to find differen-
tially expressed genes, that is genes whose expression values show systematic variation
among different groups. Given a class variable y like tumour type or clinical outcome, it
can be tested for each gene k if the expression values X

y,k
are associated with y. We look

at three microarray studies, in all of which the response variable is binary, yµY={0, 1}.
In the study on breast cancer from van’t Veer et al. (2002), y corresponds to the clinical
outcome; in the leukaemia study in Golub et al. (1999), the class variable y distinguishes
between two different subtypes of leukaemia; and finally, in a colon cancer study in Alon
et al. (1999), y indicates absence or presence of colon cancer. The number of genes involved
is m=5408 for the breast cancer study, m=3571 for the leukaemia study and m=2000
for the colon cancer study.
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In Table 2, estimators of m1 with the property that pr(m@ 1>m1 )<a are compared. For
the estimator m@ 1 , the approach laid out in § 2·5 is used. The estimator m@ fw

1
is equivalent

to the number of rejections when controlling the family-wise error rate. We use the step-
down method of Westfall & Young (1993, p. 62) to control the family-wise error rate. Also
shown is the number of rejections for control of the family-wise error rate, based on the
Bonferroni correction.

Table 2. Estimates m@ 1 of the number m1 of diVerentially expressed genes,
with pr (m@ 1>m1 )<a, for three gene expression microarray datasets

a=0·05 a=0·01
Colon Leukaemia Breast Colon Leukaemia Breast

m@ fw
1

, Bonferroni 55 266 2 32 191 0
m@ fw
1

, Step-down 64 281 3 36 202 0
m@ 1 286 957 355 245 811 126

With the estimator m@ 1 , a consistently higher proportion of false null hypotheses are
detected than with control of the family-wise error rate. The gain of using the proposed
estimator compared to control of the family-wise error rate depends on the number of
tested hypotheses. Indeed, the least dramatic gain, which still represents roughly a factor
of four, is for the colon cancer and leukaemia data with the lowest number of tested
hypotheses. The gain is most pronounced for the breast-cancer data, where not a single
rejection can be made when controlling the family-wise error rate at level a=0·01, while
the estimator m@ 1 at the same level indicates that there are more than 100 true null
hypotheses.
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A

Proofs

Proof of T heorem 1. It suffices to show that pr (m@ 1>m1 )<a, where m@ 1=sup
cµC

{R(c)−G
a
(c)}.

The number of rejections can be split into R(c)=S(c)+V (c), where S(c) is the number of correct
rejections. Let Nc be the complement of N in {1, . . . , m}. Then S(c)=W

kµNc
1{P
k
∏c}. Note that

sup
cµC

{S(c)}=S(1)=m1 . Thus

pr (m@
1
>m
1
)=prCsup

cµC

{R(c)−G
a
(c)}>m

1D
=prCsup

cµC

{V (c)+S(c)−G
a
(c)}>m

1D
∏prCsup

cµC

{V (c)−G
a
(c)}+S(1)>m

1D
∏prCsup

cµC

{V (c)−G
a
(c)}>0D .
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The function G
a
(c) is a bounding function at level a. The quantity

prCsup

cµC

{V (c)−G
a
(c)}>0D

is thus strictly smaller than a by definition of G
a
, and the claim follows. %

L A1. L et Qb
z
(c) be the b-quantile of V p (c), conditional on Z=z, under a rank-based test.

L et C be the corresponding discrete set of p-values. It holds for any n>0 and zµZ under Assumption 2
that there exists a sequence d

m
~m−1/2+t/2 such that inf

b�n
Qb
z
(c)/m

0
� c− d

m
. Furthermore,

Q1−b
z

(c)/m∏c/b for all cµ(0, 1).

Proof. For the first claim, it is sufficient to show that pr{c−V p (c)/m0>dm |Z=z}� 0
for m�2 and all cµC. Replace V p (c)=Wm

k=1
1{Pp
k
∏c} by the smaller random variable

W

kµN
1{Pp
k
∏c}, where the sum stretches only over components k in the set N of true null

hypotheses. As a rank-based test is used, it holds that the distribution of {Pp
k
; kµN}, conditional

on Z, is identical to the distribution of {P
k
; kµN}. Hence it is sufficient to show that

pr (c−m−1
0
W

kµN
1{P
k
∏c}>d

m
)� 0 for m�2. Note that E(m−1

0
W

kµN
1{P
k
∏c})=c. It follows

by Assumption 2 and k<1 that var (m−1
0
W

kµN
1{P
k
∏c})=o(m−1+t ). The first part of the claim

thus follows by Chebychev’s inequality.
For the second part it is sufficient to show that, for every cµC, pr{V p (c)/m>c/b|Z=z}<b,

where V p (c)=Wm
k=1

1{Pp
k
∏c}. Let P be the set of all possible permutations of {1, . . . , n}. Then

the above is equivalent to showing that

1

n!
∑
pµP

1A ∑m
k=1

1{Pp
k
∏c}>mc/bB<b. (A·1)

Assume to the contrary that (A·1) is not fulfilled. This implies that, for at least bn! of all per-
mutations, Wm

k=1
1{Pp
k
∏c}>mc/b and hence (n!)−1 W

pµP
1{Pp
k
∏c}>mc. However, as a rank-based

test is used, it has to hold that pr (Pp
k
∏c|Z=z)=n!−1 W

pµP
1{Pp
k
∏c}∏c, which leads to a

contradiction. Hence (A·1) is fulfilled and the claim follows. %

Proof of T heorem 3. The estimator is given by m@ fw
1
=R{g(a)}. According to (2·4), the value

of g(a) is the minimal value of g such that, for a given Z=z, pr{V p (1−g)>0|Z=z}<a, which
is equivalent to Q1−a

z
(1−g)∏0. By Lemma A1, there exists some sequence d

m
~m−1/2+t/2

so that Q1−a
z

(c)/m
0
�c−d

m
. It follows that m0{1−g(a)−d

m
}∏0. Let cmin be the minimal

p-value under a Wilcoxon test, cmin=n0 !n1 !/n!. If cmin>1−g(a), it follows that R{1−g(a)}=0
and hence m@ fw

1
=0. Hence it suffices to show that m0 (cmin−dm )�2 for n�2 as then

cmin>1−g(a) eventually, implying that R{1−g(a)}� 0 for n�2. By Stirling’s formula, it holds
that −log cmin=cn{1+o(1)} for some c>0 and n�2. On the other hand, for some d>0,
−log d

m
=d log m{1+o(1)}. As log m(n)/n�2 for n�2, it follows that d

m
/cmin� 0 for n�2.

It thus suffices to show that m0cmin�2, which is, since k<1, equivalent to showing that
mcmin�2 for n�2. This follows again by −log cmin=O(n) and log m(n)/n�2 for n�2.

For the proposed estimator m@
1
=max

cµC
{R(c)−Qb(a)

z
(c)}, it is first shown that

pr(m@ 1/m1>1+e)� 0

for any e>0. It clearly holds that b(a)�1−a. By Assumption 2 and Lemma A1, there exists some
sequence d

m
~m−1/2+t/2 such that, for all cµC, Qb(a)

z
(c)/m

0
�c−d

m
. Since

R(c)∏m
1
+ ∑
kµN

1{P
k
∏c},
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it holds that

pr (m@
1
/m
1
>1+e)∏prCsup

cµC
q ∑
kµN

1{P
k
∏c}−m

0
(c−d

m
)>em

1rD .
As m0dm=o(m1 ), the term m0dm can without loss of generality be neglected. Note that |C|∏n2 for
the Wilcoxon test. By Bonferroni’s inequality, it thus remains to be shown that

prA ∑
kµN

1{P
k
∏c}−m

0
c>em

1B=o(n−2 )

for all cµC and n�2. It holds that E(W
kµN

1{P
k
∏c})=m

0
c. Furthermore, by Assumption 2,

var(W
kµN

1{P
k
∏c})=o(m1+t ). By Chebyschev’s inequality and since kµ(0, 1), it follows that

pr(W
kµN

1{P
k
∏c}−m

0
c>em

1
)=O(mt−1 ). As log m(n)/n�2 for n�2, it follows that

prA ∑
kµN

1{P
k
∏c}−m

0
c>em

1B=o(n−2 ),

which proves the claim.
It remains to be shown that pr(m@ 1/m1<1−e)� 0 for any e>0 and n�2. By Lemma A1,

Q1−b
z

(c)/m∏c/b for all cµ(0, 1). As b(a)∏a/|C| and |C|∏n2, it follows that Qb(a)
z

(c)∏mcn2/a for
all cµ(0, 1). Let

c
n
=max{cµC : c∏n−2/log n}.

Then, from the above results and since k>0, Qb(a)
z

(c
n
)/m
1
=o(1) for n�2. Since

m@
1
= sup

cµC

{R(c)−Qb(a)
z

(c)}�R(c
n
)−Qb(a)

z
(c
n
)

and Qb(a)
z

(c
n
)/m
1
=o(1) for n�2, it remains to be shown that, for any e>0,

pr{R(c
n
)/m
1
<1−e}� 0

for n�2. By Assumption 2, var{R(c)/m1}=o(1). By Chebychev’s inequality it hence suffices to
show that, for any e>0, E{R(c

n
)/m1}>1−e for m=m(n) large enough. The number of rejections

R(c
n
)=Wm

k=1
{P
k
∏c
n
} is bounded from below by W

kµNc
1{P
k
∏c
n
}, and it thus suffices to show

under Assumption 1 that, for any false null hypothesis kµNc, pr(P
k
∏n−1/log n)� 1 for n�2.

This follows from Lemma A2 below, which completes the proof. %

L A2. L et X
y=0

and X
y=1

be two independent random variables fulfilling Assumption 1. T he
numbers of independent observations of each variable are given by n0 and n1 respectively, and
n=n0+n1 . L et P be the p-value of a false null hypothesis under a one- or two-sided W ilcoxon test.
Under Assumption 3, it holds for any d>0 that pr (P<n−d )� 1 for n�2.

Proof. It suffices to show the result for a one-sided Wilcoxon test, where the null hypothesis is
H0 : pr(X

y=0
<X
y=1

)=1
2
and the alternative is given by H

A
: pr(X

y=0
<X
y=1

)>1
2
. By Assumption 1,

all false null hypotheses satisfy pr(X
y=0
<X
y=1

)>1
2
+c for some c>0. Let R1 , . . . , Rn be the ranks

of the combined observations of X
y=0

and X
y=1

. The test statistic is given by W=Wn1i=1
R
i
, where

the sum is understood to stretch only over observations where y=1. Under the null hypothesis,
E(W )=n1 (n+1)/2. Let w

c
= (1+c)n1 (n+1)/2. Under Assumption 3, n1/n� nµ(0, 1) for n�2.

Hence it follows by Theorem 2.1 in Stone (1967) that, under the null hypothesis H0 , pr (W>w
c
)=

O{exp (−cn)} for some constant c>0. Thus, for any value of d>0, pr (W>w
c
)=o(n−d ) for

n�2. It thus remains to be shown that, under the alternative, pr (W∏w
c
)� 0 for n�2. Under

the alternative hypothesis, E(W )� (1+2c)n1 (n+1)/2 and var (W )=O(n3 ). From Chebychev’s
inequality, it indeed follows that, under the alternative, pr(W∏w

c
)� 0 for n�2, which completes

the proof. %



907Multiple testing

R

A, U., B, N., N, D., G, K., Y, S., M, D. & L, A. (1999). Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Cell Biol. 96, 6745–50.
B, Y. &H, Y. (1995). Controlling the false discovery rate: a practical and powerful approach

to multiple testing. J. R. Statist. Soc. B 57, 289–300.
D, D. & J, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist.
32, 962–95.
D, S., S, J. & B, J. (2003). Multiple hypothesis testing in microarray experiments. Statist.
Sci. 18, 71–103.
F, C. & S, C. (2001). Detection probabilities of trends in rare events: Theory and application to

heavy precipitation in the Alpine region. J. Climate 14, 1568–84.
G, C. &W, L. (2004). A stochastic process approach to false discovery control. Ann. Statist.
3, 1035–61.
G, T., S, D., T, P., H, C., G, M., M, J., C, H., L, M.,
D, J., C,M., B, C. & L, E. (1999). Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. Science 286, 531–7.
H, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6, 65–70.
L, C.-L., R, J.,  P, I., A, C., A, T.,W, A. &M, S. (2002). Statistical

methods for detecting stellar occultations by Kuiper belt objects: the Taiwanese-American occulation survey.
Statist. Sci. 19, 265–74.
M, N. & R, J. (2006). Estimating the proportion of false null hypotheses among a large number

of independently tested hypotheses. Ann. Statist. 34. To appear.
S, T. & S, E. (1982). Plots of p-values to evaluate many tests simultaneously. Biometrika
69, 493–502.
S, J. (1995) Multiple hypothesis testing: A review. Ann. Rev. Psychol. 46, 561–84.
S, M. (1967). Extreme tail probabilities for the null distribution of the two-sample Wilcoxon statistic.
Biometrika 54, 629–40.
S, J. (2002). A direct approach to false discovery rates. J. R. Statist. Soc. B 64, 479–98.
S, J. & T, R. (2003). Statistical significance for genomewide studies. Proc. Nat. Acad. Sci.
100, 9440–5.
T, F., S, C. & S, K. (2001). Estimation of the number of true null hypotheses in

multivariate analysis of neuroimaging data. NeuroImage 13, 920–30.
’ V, L., D, H.,   V, M., H, Y., H, A., M, M., P, H.,   K, K.,
M, M., W, A., S, G., K, R., R, C., L, P., B, R. &
F, S. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 406, 742–7.

W, P. & Y, S. (1993). Resampling-based Multiple T esting: Examples and Methods for p-value
Adjustment. New York: John Wiley & Sons.

[Received January 2004. Revised June 2005]


