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ABSTRACT

A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark
energy. This problem is one of model selection, where the aim is to differentiate between cos-
mological models with different numbers of parameters. However, the power of these surveys
is traditionally assessed by estimating their ability to constrain parameters, which is a different
statistical problem. In this paper, we use Bayesian model selection techniques, specifically
forecasting of the Bayes factors, to compare the abilities of different proposed surveys in
discovering dark energy evolution. We consider six experiments — supernova luminosity mea-
surements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic
oscillation measurements by WFMOS and JEDI — and use Bayes factor plots to compare
their statistical constraining power. The concept of Bayes factor forecasting has much broader

applicability than dark energy surveys.
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1 INTRODUCTION

Uncovering the nature of dark energy in the Universe is perhaps
the greatest challenge facing cosmologists in coming years. In re-
cent months, many proposed experiments to probe dark energy have
been defined, especially in response to a call for white papers by the
Dark Energy Task Force set up jointly in the US by the NSF, NASA
and DOE. These propose a variety of techniques to constrain dark
energy parameters, including the luminosity distance—redshift rela-
tion of Type Ia supernovae (SNe Ia) , the angular-diameter distance—
redshift and expansion rate-redshift relations measured by baryon
acoustic oscillations, and use of weak gravitational lensing to probe
the growth rate of structures.

Following on from heritage of the cosmic microwave back-
ground (CMB) anisotropy studies, the standard tool used to il-
lustrate the power of a given instrument or survey is a plot of
the projected parameter errors around one or more fiducial mod-
els, estimated using a Fisher information matrix approach or
likelihood analysis of Monte Carlo simulated data (Knox 1995;
Jungman et al. 1996; Bond, Efstathiou & Tegmark 1997;
Zaldarriaga, Spergel & Seljak 1997; Efstathiou & Bond 1999).
Typically, a projection of the parameter uncertainties on to a two-
parameter equation-of-state model for dark energy is deployed,
showing how tightly parameters are expected to be constrained
around, for instance, the cosmological constant model. The impli-
cation is intended to be that if the true values lie outside those error
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ellipses, then the survey will be able to exclude the cosmological
constant model.

However, the principal goal of such surveys is usually identi-
fied as being the discovery of dark energy evolution. This is not
a parameter estimation question, but rather one of model selection
(Jeffreys 1961; MacKay 2003; Gregory 2005), where one seeks to
compare cosmological models with different numbers of variable
parameters. Within the framework of Bayesian inference, the sta-
tistical machinery to make such comparisons exists, and is based
around statistics known as the Bayesian evidence and the Bayes
factor. The Bayes factor has the literal interpretation of measuring
the change in relative probabilities of two models in light of obser-
vational data, updating the prior relative model probabilities to the
posterior relative model probabilities.

In this paper, we use Bayesian model selection tools to assess the
power of different proposed experiments. Our method is related to
the Expected Posterior Odds (ExPO) forecasting recently developed
by Trotta (2005). The main difference is that he takes the present
observational constraints on the extended model, and seeks to esti-
mate the fraction of that parameter space within which that model
can be distinguished from a simpler embedded model. By contrast,
we take a theoretically motivated view of the parameter space of
interest, and seek the locations within that parameter space corre-
sponding to dark energy models which are distinguishable from a
cosmological constant by a given experiment. We also differ com-
putationally, in that as well as using approximate techniques, we use
the nested sampling algorithm of Skilling (2004), as implemented
by Mukherjee, Parkinson & Liddle (2006), to compute the evidences
accurately numerically.



1726  P. Mukherjee et al.

This paper is organized as follows. In Section 2, we introduce
model selection in the Bayesian framework. Section 3 describes
the dark energy surveys we make model selection forecasts for, and
Section 4 presents the results. We conclude in Section 5. We consider
some additional technical details and review the standard parameter
forecast procedure in Appendices A and B.

2 BAYESIAN MODEL SELECTION

2.1 The model selection framework

The Bayesian model selection framework has now been described
in a variety of places (Jaffe 1996; MacKay 2003; Marshall, Hobson
& Slosar 2003; Saini, Weller & Bridle 2004; Gregory 2005; Trotta
2005; Mukherjee et al. 2006) and we will keep our account brief.

In this context, a model is a choice of parameters to be varied
to fit the data, its predictions being reflected in the prior ranges for
those parameters. A model selection statistic aims to set up a tension
between model complexity and goodness of fit to the observed data,
ultimately providing a ranked list of models based on their proba-
bilities in light of data. Within Bayesian inference, the appropriate
statistic is the Bayesian evidence E (also known as the marginal
likelihood), which is the probability of the data given the model in
question. It is given by integrating the likelihood P(D|6, M) over
the set of parameters 6 of model M, in light of data D, that is

EM)=P(DIM) = /d@ P(D|6, M)P(O|M), (1)

where the prior P(8|M) is normalized to unity. The evidence is thus
the average likelihood of the model over its prior parameter space.
Rather than focusing simply on the best-fitting parameters (which
will always tend to favour the most complex model available), it
additionally rewards models with good predictiveness.

By Bayes theorem, the evidence updates the prior model proba-
bility to the posterior model probability. The ratio of the evidences
of two models, M, and M|, is known as the Bayes factor (Kass &
Raftery 1995):

BOI = . (2)

Note that the prior model probabilities are to be chosen in the
Bayesian approach, and different people may have different opinions
as to those. Nevertheless, everyone will agree on whether the Bayes
factor led to their original belief becoming more or less tenable
relative to another model in light of the data. In describing results
from Bayes factors, it is common to presume that the prior model
probabilities are equal, and we will follow that practice; anyone who
thinks otherwise can readily recalculate the posterior relative model
probability.

The Bayesian evidence provides a ranked list of the models in
terms of their probabilities, obviating the need to specify an arbi-
trary significance level as in frequentist chi-squared tests. Neverthe-
less, one still has to decide how big a difference will be regarded
as significant. A useful guide as to what constitutes a significant
difference between models is given by the Jeffreys’ scale (Jeffreys
1961); labelling as M the model with the higher evidence, it rates
In By; < 1 as ‘not worth more than a bare mention’, 1 < In By <
2.5 as ‘substantial’, 2.5 < In B < 5 ‘strong’ to ‘very strong’ and
5 < In By, as ‘decisive’. Note that In By; = 5 corresponds to odds
of 1 in about 150, and In By, = 2.5 to odds of 1 in 13.

2.2 Forecasts and the Bayes factor plot

In order to forecast the power of an experiment for model selec-
tion, we ask the following question: given a well-motivated simpler
model embedded in a larger parameter space, how far away does the
true model have to lie in order that the experiment is able to exclude
the simpler model? There are many such cases present in cosmology,
for example, A cold dark matter (ACDM) in the space of evolving
dark energy models, the question of whether we live in a spatially
flat universe, or whether the initial power spectrum of perturbations
is exactly scale invariant, or exactly a power law, etc. Here, we will
use the dark energy as a worked example. The Bayesian evidence
of models with dark energy has been computed from current obser-
vational data sets by several authors (Bassett, Corasaniti & Kunz
2004; Saini et al. 2004; Mukherjee et al. 2006), all finding that the
simple ACDM model is the preferred fit to present data. Our aim
here is to forecast its outcome in light of future data sets, in order
to assess the power of those surveys for model selection.

Our procedure is as follows. We first select an experimental con-
figuration. We then consider a set of ‘fiducial models’ characterized
by parameter values A, which we will consider in turn to be the true
model. For each choice of fiducial model in our dark energy space,
we generate a set of simulated data D with the properties expected
of that experiment. We then compute the evidences of the two mod-
els we seek to distinguish, here the ACDM model and the general
dark energy model. For definiteness, we choose to assess a set of
dark energy experiments by their ability to distinguish a ACDM
model from a two-parameter dark energy model with equation of
state given by

w(z) = wo + we(l — a), 3

where w( and w,, are constants and a is the scale factor. Although the
latter is sometimes referred to as the Linder parametrization based
on its use in Linder (2003), it appears to have been first introduced
by Chevallier & Polarski (2001).

Here @ refers to all the parameters of the model, but we are prin-
cipally interested in the dependence of the Bayes factor on the extra
parameters characterizing the extended model, here w( and w,. Our
main plots therefore show the difference in log evidence between the
ACDM model and the two-parameter evolving dark energy model,
plotted in the wo—w, plane. This is the Bayes factor plot, which
is presented in Section 4 for different dark energy surveys, with
contours showing different levels at which the two models can be
distinguished by data simulated for each experiment.

In general the Bayes factor is a function of all the fiducial param-
eters, not just the dark energy ones. For the dark energy application
this dependence turns out to be unimportant, but for completeness
we discuss some issues relating to this in Appendix A.

Use of the Bayes factor plots to quantify experimental capabilities
is quite distinct, both philosophically and operationally, from the use
of parameter error forecasts; for readers unfamiliar with the latter we
provide a short review in Appendix B. We highlight the advantages
of the Bayes factor approach as follows.

(1) Most experiments, particularly dark energy experiments, are
motivated principally by model selection questions, for example,
does the dark energy density evolve, and so should be quantified by
their ability to answer such questions.

(i) In Bayes factor plots, the data are simulated at each point
of the dark energy parameter space that is to be confronted with
the simpler ACDM model, whereas parameter error forecasts are
plotted around only selected fiducial models (often just one). In
particular, in the latter case the data are usually simulated for a
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model that people hope to exclude, rather than the true model which
would allow that exclusion.

(iii) The Bayesian model selection procedure accords special
status to the ACDM model as being a well-motivated lower di-
mensional model, which in Bayesian terms is rewarded for its pre-
dictiveness in having a smaller prior volume. Parameter estimation
analyses do not recognize a special status for such models, for ex-
ample, the same criterion would be used to exclude w = —0.948 as
w = —1. Model selection criteria provide a more stringent condi-
tion for acceptance of new cosmological parameters than parameter
estimation analyses. Model selection analyses can also accrue pos-
itive support for the simpler model, whereas parameter estimation
methods can only conclude consistency of the simpler model.

(iv) In parameter error studies, it is necessary that the simple
model is embedded as a special case of the second model. While
the models we discuss here are indeed of that type, the Bayes factor
could also be used to compare non-nested models (e.g. two different
types of isocurvature perturbation).

(v) Although it is not essential to do so, most parameter esti-
mation forecasts assume a Gaussian likelihood in parameter space,
while the Bayes factor plot uses the full likelihood.

Set against these advantages, the only disadvantages of the Bayes
factor method are that it is computationally more demanding, and
that its conceptual framework has yet to become as familiar as that
of parameter estimation.

2.3 Bayes factor evaluation

We use the nested sampling algorithm (Skilling 2004; Mukherjee
et al. 2006), which is fast enough to enable exact evaluations of
the evidence for many fiducial parameter values. For comparison,
we also compute results with the Savage—Dickey method outlined in
Trotta (2005), using a Fisher matrix approximation to the likelihood
about the true model, given as equation (B3) in Appendix B. We
discuss how the results from the two methods compare in one case,
and present our main results using the more accurate nested sampling
method.

2.3.1 Nested sampling algorithm

The Bayes factor can be found by calculating the evidences of the
two models independently, and then taking their ratio. This method
requires integration over the extra cosmological parameters, which
does not feature in the Savage—Dickey method. Here, we use our
implementation of the nested sampling algorithm (as described in
Mukherjee et al. 2006) to perform the integration. To quickly sum-
marize, the algorithm (Skilling 2004) recasts the problem as a one-
dimensional integral in terms of the remaining ‘prior mass’ X, where
dX = P(6|M) d6. The integral becomes

1
E:/ L(X)dX, 4
0

where L(X) is the likelihood P(D|6, M). The algorithm samples
the prior a large number of times, assigning an equal prior mass to
each sample. The samples are then ordered by likelihood, and the
integration follows as the sum of the sequence,
m L
E=Y) E. Ej==X0- X, ©)
j=1
where the lowest likelihood sample goes into the sum, and is dis-
carded to be replaced by a new sample selected under the condition

Model selection and dark energy surveys 1727

that it lies above the likelihood of the discarded sample. In this way,
the algorithm works its way in to the highest likelihood peak.

We compute the evidences using 300 live points, averaging over
six repetitions of the calculation. This requires approximately 10*
likelihood evaluations per evidence computation.

2.3.2 Savage-Dickey formula

Bayes factors for two nested models can be computed using the
Savage—Dickey density ratio (Dickey 1971, Verdinelli & Wasserman
1995; see Trotta 2005 for an application to cosmological model
selection). Assuming a Gaussian approximation to the likelihood,
the Savage-Dickey formula of an extended model M; with two
free model parameters (@1, 92) and flat priors (A6, A6,), versus a
simpler model M with §, = él* and 6, = @2*, is

A, A6,
2w +/det F—!

where F,, is the marginalized 2 x 2 Fisher matrix evaluated at 6.
Our conventions are defined in Appendix B, and we have used the
hat sign for the extended model parameters to emphasize that the
Bayes factors directly compare the fiducial models of the parameter
estimation analysis to the simpler nested model.

In our specific case, M| consists of all dark energy models
parametrized by different values of wy and w,, while M is the
cosmological constant model which is nested in M| with wy = —1
and w, = 0. We use equation (6) to compute the Bayes factor as
function of w and w, to determine the range of dark energy models
that a given experiment is able to distinguish from ACDM.

From equation (6), we can see that the Bayes factor depends on
two multiplicative terms, namely an exponential factor and an over-
all amplitude. The former accounts for the distance in the parameter
space of the model M| from M in units of the forecasted parameter
uncertainty. The latter accounts for the fraction of the accessible
prior volume of the extended model M, in light of the data, and
hence this factor penalizes the model M, for having a large param-
eter space compared to model M. As shown in Trotta (2005), this
factor can be interpreted as an estimate of the informative content
of the data,

VR DN ALCE xdl

Boi(6y,0,) = (©6)

)

being the order of magnitude by which the prior volume of model
M will be reduced by the arrival of the forecasted data.

3 DARK ENERGY SURVEYS

3.1 The surveys

We have simulated observational data for two types of future dark
energy experiments: luminosity distance probes made through the
measurement of SNe la, and angular-diameter distance measure-
ments from baryonic acoustic oscillations (BAO). Some of the ex-
periments considered have weak-lensing parts too (SNAP, JEDI
and ALPACA), but we do not derive dark energy constraints from
simulated weak-lensing measurements here.! Note that all these

! Both SN Ia and BAO are distance indicators, while weak lensing is sensitive
to growth and dark energy perturbations. Complementarity of weak lensing
with SN Ia/BAO will thus be very interesting in probing dark energy more
comprehensively.
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experiments are presently undergoing optimization of their survey
structure which may improve their science return.

For the SNe Ia, we compared four different surveys. The CFHT
Supernova Legacy Survey (SNLS) is already underway but we con-
sider the full five-year survey, while the Supernova Acceleration
Probe (SNAP) and the Joint Efficient Dark Energy Investigation
(JEDI) satellite missions, plus the Advanced Liquid-mirror Probe
for Astrophysics, Cosmology and Asteroids (ALPACA) ground-
based survey, are all proposed experiments. For all experiments, we
assumed the same spread in magnitude §,, = 0.18 of the SNe, rep-
resenting the combined effect of measurement error and intrinsic
dispersion in the light curve corrected luminosity [the intrinsic dis-
persion alone was recently estimated as 0.12 mag by SNLS (Astier
etal. 2006)]. We used the number distribution of SNe Ia with redshift
for the different surveys as outlined in the literature; the total num-
bers used are 700, 2000, 13 000 and 86 000 for SNLS (Pritchet 2004;
Astier et al. 2006), SNAP (Aldering et al. 2004), JEDI (Crotts et al.
2005) and ALPACA (Corasaniti et al. 2005), respectively. We also
assumed all surveys would have support from an extra 300 nearby
SNe Ia observed by ground-based telescopes in the redshift range
0.03 < z < 0.08, which also had a slightly smaller spread in mag-
nitude (8, = 0.15). We assumed no systematic errors in any of the
magnitudes, only statistical errors (except for one comparison case
shown later).

For the baryonic acoustic oscillations, we compared two differ-
ent surveys, the ground-based Wide-Field Fibre-fed Multi-Object
Spectrograph (WFMOS) and the satellite mission JEDI (JEDI will
perform both an SN Ia survey and a BAO survey). The BAO surveys
measure both angular-diameter distance D 4(z) and the Hubble pa-
rameter H(z) in a series of redshift bins. We calculated the expected
errors of the measurements in each bin using the Fisher matrix ap-
proach of Seo & Eisenstein (2003), marginalizing over the physical
matter density Q2,42

In order to obtain accurate results from experiments of these types,
it is necessary that strong degeneracies with the matter density are
removed by bringing in constraints from other sources. We make the
assumption that by the time these surveys are operative, data com-
pilations including Planck satellite observations will have provided
a measurement of 2., to an accuracy of £0.01 (see e.g. Pogosian
et al. 2005). We include such a measurement by adding an extra
term to the likelihood centred around the fiducial density parame-
ter value. In the absence of such external information, dark energy
surveys would give a much poorer return. We will briefly explore
the effect of varying this assumption in Section 4.5. Similarly in
the BAO case, we assume a 1 per cent measurement uncertainty on
Qunh? (see e.g. Tegmark et al. 2000).

3.2 Priors

The model priors are the parameter ranges over which the evidence
integral is carried out. Ordinarily in model selection, these are sup-
posed to be the wide priors seen as appropriate when the model
was first considered, and not those motivated by current data. If one
allows the model priors to ‘follow the data’ into a small region of
parameter space, then model selection calculations will always be
inconclusive in the long term, as this requires each new experiment
to exclude a model again on its own, rather than the cumulative
effect of all observations.? The precise results for the Bayes factor

2 An alternative, equivalent, view more in the Bayesian spirit is that one can
update the model prior ranges after new data, provided one also updates the

will have some dependence on the choice of priors (see below),
though the effect of the choices on model comparison or on survey
comparison is diminished as the same priors are used for the com-
mon model parameters and the same priors are used for each survey
being compared.

Our choices are as follows. We only consider flat Universes, so
that @, = 1—Q,. For the model priors, we impose the prior ranges
—2 < wy < —0.333 and —1.333 < w, < 1.333 on the interesting
parameters, and 0 < ,,, < 1 and 0.5 < & < 0.9 on the other parame-
ters (the Hubble parameter is needed only for the baryon oscillation
probes). The fiducial values for 2, and % are taken to be 0.27 and
0.7, respectively.

Note that for the phenomenological two-parameter evolving dark
energy model, the model priors on wy and w, that we have chosen
to work with are somewhat arbitrary. However, if the prior space
were reduced for instance by a factor of 2, that would increase the
In E of the evolving dark energy model by at most In2 ~ 0.69,
and this would not significantly affect our contours or conclusions
which are based on differences in In E of 2.5 and 5. We make a brief
investigation of some prior dependencies in Section 4.5.

One should note that our conclusions also depend to some extent
on our chosen dark energy parametrization being able to describe
the true model. One could consider more general cases, such as
the four-parameter models of Corasaniti & Copeland (2003) and
Linder & Huterer (2005). For the purpose of assessing the power of
an experimental proposal, it seems reasonable to presume that exper-
iments capable of distinguishing two-parameter models are likely
also to be better under other parametrizations. If the effect of dark
energy were in fact a non-smooth variation in the equation of state
and a non-smooth variation of the expansion history with redshift,
then our results are too optimistic; the validity of reparametrizing
the observables, which are the expansion history in different redshift
bins as measured by the surveys, into (wg, w,) would need to be
tested when the data arrive. Aspects of parametrization have been
explored in Wang & Tegmark (2004) and Bassett et al. (2004).

4 RESULTS

4.1 Comparison of calculational techniques

We begin by comparing our two methods of computing the Bayes
factor, focussing on the SNAP mission SN survey. The Bayes factor
plots are shown in Fig. 1. In the left-hand panel, we plot isocon-
tours of Bayes factors in the Wo—, plane inferred from the nested
sampling method. The plot shows the generic structure expected of
Bayes factor plots. In the central region, the simulated data are for
models very close to ACDM, so that model gives a good fit and
is further rewarded for its predictiveness, giving a positive Bayes
factor which would support ACDM over the dark energy model. At
the zero contour (the innermost one plotted) the models fare equally
well, and then at greater distances the dark energy model becomes
favoured. If the true parameters lie outside those contours, SNAP
will be able to exclude ACDM at the probability corresponding to
the contour level.

We see a strong degeneracy between the two parameters, meaning
that SN data are not good at constraining models in this particular
parameter direction. This same degeneracy shows up in the usual

model probabilities and keeps track of them as well. In practice, cosmological
data analysis tends to re-apply a broad set of data to models with wide priors
each time, which is consistent with the model selection philosophy.
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Figure 1. The Bayes factor plot for the SNAP mission SN survey. The left-hand panel shows the calculation using nested sampling, and the right-hand plot
using the Savage—Dickey formula with the Fisher information matrix. The contour levels are In B equal to 0, —2.5 and —5.

Fisher matrix error projection method. Its precise direction depends
on the redshift distribution of the SNe.

In the right-hand panel, we plot the projected Bayes factor con-
tours derived from the Savage—Dickey formula for the same ex-
perimental characteristics and priors assumed in the previous case.
We see that this method gives generally good agreement with the
nested sampling computation, indicating that our calculations are
robust. Some slight differences are apparent, but this is expected
as our version of the Savage-Dickey method employs a Gaussian
approximation for the likelihood which may become poor at large
distances from ACDM, with the Fisher matrix method underesti-
mating the covariance matrix. For parameter estimation, this is not
amajor concern, since deviations from the Gaussian approximation
occur in the tail of the likelihood distribution, and quoted errors usu-
ally refer to the 68 per cent confidence intervals. However, model
selection calculations rely on good modelling well into the tails of
the distribution.

Having verified that our methods give similar results, henceforth
we will show results from the nested sampling method, since al-
though it is computationally more intensive it does not assume a
Gaussian likelihood.

4.2 Comparison with parameter error forecasting

In this paper, we are strongly advocating the use of Bayes factor plots
to quantify experimental capabilities, for the reasons enumerated
in Section 2.2. It is useful to see explicitly what differences this
gives as compared to the traditional parameter forecast approach,
and so Fig. 2 shows a plot of likelihood contours, obtained from a
Markov chain Monte Carlo analysis of data simulated for the SNAP
SN survey, using precisely the same assumptions as Fig. 1, and
assuming that ACDM is the true model.

We see they share the same general shape, and that the same
principal parameter degeneracy is picked out. Obviously the two
plots are conceptually very different and so caution is needed in
comparing. We see that the Bayes factor contours are significantly
wider, indicating that model selection sets a more stringent condition
for dark energy evolution to be supported by the data. Indeed, the
95 per cent Fisher parameter contour lies within the In By, = 0
contour where model selection gives the models equal probability,
hence by using the Fisher matrix plot we could rule out ACDM
with data that actually favours it. It is fairly generic for that to be
the case, indicating that 95 per cent parameter estimation ‘results’

tend not to be robust under more sophisticated statistical analyses.
This is a manifestation of Lindley’s ‘paradox’ as discussed by Trotta
(2005) — that parameter values rejected under a frequentist test can
nevertheless be favoured by Bayesian model selection.

4.3 Comparison of dark energy surveys

We now turn to a comparison of the six dark energy surveys de-
scribed above. We stress once more that this comparison considers
the statistical uncertainties alone, and several of these experiments
are likely to be limited by systematics. The criteria that enable the
systematics to be most effectively minimized are likely to be dif-
ferent from those giving experiments raw statistical power. Fur-
ther, we are working under the limitation of the particular wo—w,
parametrization; dark energy in reality could be different.

Fig. 3 shows the six surveys, the upper four being SN surveys
and the lower two being the baryon acoustic oscillation surveys. The
innermost contoured region is where the evidence of the ACDM
model is greater than that of the evolving dark energy model
(In By; > 0). The outer contours show In By = —2.5 and —5 so

-2 -1.5 -1 -0.5

Wo

Figure 2. This plot shows a parameter error forecast for the SNAP SN Ia
experiment, taking ACDM as the true model. The contour levels indicate
68 and 95 per cent. While this figure uses the full likelihood, in this case a
Gaussian approximation using the Fisher matrix gives essentially identical
results.
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Figure 3. Bayes’ factor forecasts for some future dark energy surveys. Contours are shown for log(B¢;) > 0, —2.5 and —5. An independent measurement of
Qm to £0.01 is assumed. These plots show statistical uncertainties only, and several of these experiments are likely to be dominated by systematics.

that the data provide strong evidence in favour of the evolving dark
energy model. As with parameter estimation contours, the smaller
the contours the more powerful the experiment is.

As expected, we see a range of constraining powers depending on
the scale of the experiments. We also see that they broadly share the
same principal degeneracy direction, with slight rotations visible
from the different probing of redshift bins. The massive size of
the expected ALPACA data set gives it the smallest contour area
amongst SN Ia experiments, with its more limited redshift range
making its degeneracy more vertical.

The baryon oscillation probes share almost the same principal de-
generacy as the SN Ia; although they use the angular-diameter dis-
tance rather than the luminosity distance, these two are related by the
reciprocity relation and hence follow the same degeneracy shape if
the uncertainties in each redshift bin follow the same shape. A probe
which partly included the growth of structure, such as weak lens-
ing, would be expected to have a somewhat different degeneracy;
this has been shown using Fisher parameter contours for the SNAP
lensing survey though the rotation is still smaller than one would
like.
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Table 1. Two experimental figures of merit: the areas in the Wo—®, plane
where In Bg; exceeds —2.5, and the value of In Bg; at Wy = —1 and
W, = 0. The former measures the region of parameter space where the
experiment would not be able to exclude the ACDM model, while the latter
measures the strength with which the experiment would support ACDM
were it the true model. The values of In Bg; are additive between surveys
and for independent probes of dark energy within the same survey.

Experiment Area In Byi1(—1,0)
SNLS 0.51 3.7
SNAP 0.35 4.5
JEDI SN 0.19 5.0
ALPACA 0.08 6.1
WEMOS 0.26 4.8
JEDI BAO 0.04 6.0

Note that the logarithms of the Bayes factors are additive, so if
more than one of these surveys happen, or if there are two indepen-
dent parts to a survey, then their Bayes factor plots can be added
together to give a net Bayes factor plot.

In addition to plotting Bayes factor contours; one can further
compress the information on how powerful an experiment is by
computing the area within a particular contour level, to give a single
‘figure of merit’. Table 1 summarizes these areas, expressed in
coordinate units, for the six experiments, showing the area where
In By, exceeds —2.5. Note that this corresponds to the parameter
area in which an experiment cannot strongly exclude ACDM, and
hence small numbers are better. For a more extensive discussion
of figures of merit for optimization of dark energy surveys, in a
parameter estimation rather than model selection framework, see
Bassett (2005) and Bassett, Parkinson & Nichol (2005).

4.4 Support for ACDM

We now consider the possibility of the experiments ruling out the
dark energy model in favour of ACDM, rather than the opposite
which we have focused on thus far. Unlike parameter estimation
methods, Bayesian model selection can offer positive support in
favour of the simpler model. Because the simpler model is nested
within the dark energy model, it can never fit the data better, but it
can benefit from the volume effect of its smaller parameter space.
All one needs to do is read off the Bayes factor for the case where
the fiducial model is ACDM. Table 1 shows In Bg; at vy = —1 and
w, = 0, that is, when ACDM is the true model.

We find that this value is above 2.5 for all surveys, and above 5
for several of them. Thus, many of the surveys are capable of ac-
cumulating strong evidence supporting ACDM over evolving dark
energy. This can be seen as another figure of merit quantifying the
power of experiments. Note again that the values of In By, are ad-
ditive between surveys and for independent probes of dark energy
within the same survey.

Note that the absolute value of this figure of merit is more sensitive
to the prior ranges chosen for the dark energy parameters, which set
the volume factor. However, the relative comparison of surveys is
again not affected by this.

4.5 Variation of assumptions

We end by examining the effect of varying some of the assumptions
that went into the calculations, focussing on the SNAP SN survey for
definiteness. We do this in three ways, one by changing the presumed
knowledge on 2, that complements the dark energy survey, one by
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Figure 4. Bayes’ factor forecasts for SNAP assuming different exter-
nal knowledge of Q. Contours are again shown for log(Bo;1) > 0, —=2.5
and —5. A Gaussian external constraint on Q, is assumed, of width 0.03
(top panel) reflecting approximately the current level of uncertainty on it,
and 0.003 (lower panel) reflecting an optimistic outcome.

looking at an alternative prior in the dark energy model space and
finally by altering the assumed dispersion of SN luminosities and
allowing for a simple model of systematics.

As mentioned before, the return on dark energy surveys is quite
sensitive to the availability of external constraints to remove param-
eter degeneracies, particularly 2., in the case of the SNe. Fig. 4
shows this effect for the SNAP SN survey, with different constraints
on 2., to be compared with our standard assumption leading to the
left-hand panel of Fig. 1. One sees a significant worsening of the
Bayes factor contours in the case of weaker knowledge on Q2,,.

Altering the constraint on £2,,, can have a different effect on dif-
ferent experiments. For instance, if it were more stringent, then the
difference between SNLS and SNAP or JEDI would be greater —
the requirement for a more sensitive experiment would be greater.
Similarly, the relative comparison is dependent on the nature of dark
energy itself; if a parametrization more complex than w¢—w,, proved
necessary, it would be more important to make precise high-redshift
observations (e.g. SNAP or JEDI versus ALPACA).

Fig. 5 modifies our assumptions in a different way, this time
altering the prior on the dark energy parameters. It assumes a prior
appropriate to quintessence models, namely that w > —1 at all
redshifts. The evidence integral for the dark energy model is then
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Figure5. SNAP Bayes’ factor contours for the quintessence prior on wg and
w,. The lower left-hand region is cut-off by the prior. The dashed contour
shows the location of the In Bo; = —5 contour for our full prior, as given
in Fig. 1.

carried out over a narrower region in the dark energy parameters,
giving a boost to the evidence of the dark energy model relative to
ACDM. However, the effect is small; the dashed line shows where
the outer contour lay with our full dark energy prior and it has shrunk
in only marginally.

Caldwell & Linder (2005) classified quintessence models into
freezing and thawing models and delineated areas of the wo—w,
space where those models typically lie. According to Fig. 5, freezing
models can only be decisively distinguished from ACDM by the
SNAP SN survey if @y 2 —0.9, and thawing models if @y 2 —0.87.

We have also investigated how changing the prior ranges on the
dark energy parameters alters the areas given in Table 1. In this
case, we narrowed the priors on w¢ and w, by a factor of 2 in each
direction. In the cases, where the posterior still lies within the pri-
ors, this shifts the evidence by In 4 >~ 1.4 in favour of the dark
energy model. Unsurprisingly, we find this reduces the areas within
which ACDM cannot be excluded, typically by 10-20 per cent.
Importantly, however, this change preserves the rankings of the
experiments.

Finally, in Fig. 6, we examine how the outer contour would shift if
a smaller magnitude dispersion were achieved (we take 6,,, = 0.13),
and separately under a standard (but crude) modelling of possible
systematics (see for example Kim et al. 2004). The systematics
have been modelled as an increased redshift-dependent uncertainty
in magnitude of (z/zp.x)8mys per redshift bin with §m gy, = 0.02
mag, and added in quadrature to the (intrinsic) statistical uncertainty.
For SNAP, this type of systematic has quite a small effect. There
can be other types of systematics in the data, but we do not try to
model them here as the ability of different experiments to detect
and (internally) resolve systematics would be different and a proper
study of systematics and the required marginalization over them can
only be done once the data arrive.

5 CONCLUSIONS

In this paper, we have introduced the Bayes factor plot as a tool for
assessing the power of upcoming experiments. It offers a full im-
plementation of Bayesian model selection as a forecasting tool. As
compared to the traditional parameter error forecasting technique, it

T~
1t
05
z° 0
-0.5f SNAP SN-la
——— with sys
-1~ 0.13 mag int
2 15 -1 ~0.5
Yo

Figure 6. The main contours match the left-hand panel of Fig. 1, showing
the SNAP SN survey. Additionally, the dashed contour shows how the outer
contour shifts under a simple modelling of systematics, and the dot—dashed
contour shows how the outer contour would move if the magnitude error
were smaller.

offers a number of advantages enumerated in Section 2.2. Amongst
those, perhaps the most important are that the observational data are
simulated at each point in the plane, rather than at a small number
of fiducial models, and that the Bayes factor plot properly captures
the experimental motivation as being one of model selection rather
than parameter estimation.

As a specific example, we have used the Bayes factor plots to
examine a number of proposed dark energy surveys, concentrating
on their ability to distinguish between the ACDM model and a
two-parameter dark energy model. Fig. 3 indicates the region of
parameter space outside which the true model has to lie, in order
for the experiment to have sufficient statistical power to exclude
ACDM using model selection statistics.

An important caveat is that our plots do not show the effects of
systematics, which are likely to be the dominant uncertainty for
many of the experiments. This drawback is shared by parameter
error forecasts, and it is more or less the nature of systematic uncer-
tainties that they cannot be usefully modelled in advance of actual
observational data being obtained. In judging the true merit of an
experimental proposal, it is therefore essential to judge how well
structured it is for optimal removal of systematics, as well as look-
ing at its raw statistical power.

While we have focused on dark energy as a specific application,
the concept of the Bayes factor plot has much broader applicability,
and is suitable for deployment in a wide range of cosmological
contexts.
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APPENDIX A: MARGINALIZING OVER
SIMULATED DATA

In the main body of this paper, we have plotted the Bayes factor
as a function of the fiducial values of the dark energy parameters,
assuming particular values for the other parameters in the fiducial
model. In general, however, the Bayes factor is a function of all
the fiducial model parameters, not just the ones of principal interest,
though a practical problem is that we cannot easily plot the evidence
ratio By as a function of more than two variables 0.

One solution is marginalization over the parameters that we are
not interested in, as one does in parameter estimation, assuming
those parameters to lie within the range motivated by present data.
As the fiducial parameters § belong to the definition of the data, we
need to marginalize the evidences, P(D|M), rather than the Bayes
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factors. Formally, the marginalization must take place in data space,
so when we wish to integrate out a ‘nuisance’ parameter 9H which
the data is a function of, we should take into account a transforma-
tion factor 4/ Zi (0D, /06,,)?, evaluated at each 0 along the integral.
However, provided the evidence varies only weakly over the rele-
vant range of the fiducial models, or if our model depends (nearly)
linearly on its parameters, then this function is a constant which
cancels when computing the Bayes factor. In this case, we can just
average the evidences. This will also conserve the relation By, =
1/B .

In practice, the main determining factor in whether particular ex-
tra parameters are justified by the data is the true values of those
parameters themselves, rather than values of the other parameters.
Often, then, one can choose fixed values of the uninteresting pa-
rameters, presenting results on a slice through the fiducial parame-
ter space. Indeed, this turns out to be the case for the dark energy
surveys in this paper.

APPENDIX B: PARAMETER ERROR
FORECASTING

In this paper, we are advocating the use of Bayes factors to quantify
the power of upcoming experiments, in place of parameter error
forecasts. For comparison, we provide a brief overview of param-
eter error forecasting here, and discuss some of its features and
limitations.

The idea is to simulate a sample of experimental data and then
infer the parameter uncertainties using standard likelihood analysis.
More specifically, assuming a model M specified by a set of param-
eters § = {0, }, a sample of data D with the expected experimental
errors is generated for a particular fiducial model with parameter
values 6. Then a likelihood P(D|9, M) is computed and the con-
fidence intervals on the 6 parameters are inferred by computing a
posterior parameter probability distribution via Bayes’ rule,

P(D|6, M)P(O|M)
POID,M)y= ——F ——. B1)
P(DIM)
As a result, the parameter uncertainties depend on both the experi-
mental characteristics and the choice of the fiducial model.

A simplified way of carrying out such an analysis is to use the
Fisher matrix approximation. By construction, the fiducial model
parameter values § maximize the likelihood. Hence expanding In
P(D|6, M) to quadratic order in 60 = 6 — 6, one obtains (Bond
1995; Tegmark, Taylor & Heavens 1997):

1
P(DIO. M) ~exp | = > Fudb,s0, |, (B2)
v
which is a Gaussian approximation to the likelihood with zero mean

and with variance given by the inverse of the Fisher matrix F,,,
where

dD; dD;
F,, = cil L B3
w=2_Ci 26, 06, (B3)

1
The sum is over all measurements and the partial derivatives are eval-
uated at the fiducial model parameter values . The matrix Cj; is
the data covariance matrix; for independent measurements (e.g. dif-
ferent SNe) it simplifies to o2(D;) d;;. The parameter errors are then
given by the square root of the diagonal components of the covari-
ance matrix, 0(6,) = /(F~!),,. It is evident from equation (B3)
that more accurate data, characterized by smaller uncertainty o (D),
provide larger Fisher matrix components, hence smaller parameter
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Figure B1. The marginalized 68 and 95 per cent confidence contours in
Qm —w plane. The fiducial models are: a ACDM with w = —1 and
Qm = 0.3 (solid line), a dark energy model with w = —0.85 and Q, =
0.35 (dash—dotted line) and a phantom model with w = 1.16 and 2, = 0.26
(dash line).

errors. It can also be noted that for a given experiment, the param-
eters which are better constrained are those for which the partial
derivatives are larger.

Since these derivatives are computed at the fiducial model, it is
natural to expect that the size of the projected errors varies for dif-
ferent fiducial parameter values. These contours are usually plotted
with the aim of drawing a conclusion based on the true model hav-
ing different parameter values from those of the fiducial model. But
the dependence on the choice of fiducial model means that there
is no guarantee that the conclusions based on contours around,
for example, the ACDM model can be used to rule that model
out.

As an explicit example, we compute the Fisher matrix errors
of dark energy parameters from SN Ia luminosity—distance mea-
surements. We assume experimental characteristics from the pro-
posed SNAP mission as discussed in Kim et al. (2004). We consider
two different dark energy models, one parametrized by a constant
equation-of-state parameter w, and a second by the two-parameter
equation-of-state family of equation (3). We assume an indepen-
dent measurement of €2, with uncertainty +0.03 to reduce param-
eter degeneracies, and compute the marginalized confidence con-
tours around different fiducial models in €2,,, —w and w¢—w, planes,
respectively.

In Fig. B1, we plot the 68 and 95 per cent ellipses around three
models: a ACDM model with w = —1 and Q,, = 0.3, a dark energy
model with w = —0.88 and 2,, = 0.35 and a phantom model with

Figure B2. Marginalized 68 and 95 per cent contours in wo—w, plane. The
fiducial models are: ACDM (solid line), a dark energy model with wo =
—0.8 and w, = —1 (dash—dotted line) and a phantom model with wo =
—1.4 and w, = —0.2 (dash line). For all three models, 2, = 0.3.

w = —1.16 and 2,;, = 0.26. The alignment of the strongest degener-
acy line differs amongst the models. This is because the degeneracy
in the w—2,, plane is not a straight line, but rather a curve (see
e.g. Weller & Albrecht 2001). Note also that the ellipses around the
fiducial models have different sizes. As Fig. B1 shows, if the true
model lies on say the 95 per cent confidence limit of the ACDM
data, one cannot necessarily presume that the ACDM model would
lie on the 95 per cent confidence limit of data simulated for the true
model. It is possible to compute a contour indicating the locus of the
fiducial models for which ACDM lies at their 95 per cent confidence
limit, and indeed such a locus is shown in fig. 1 of Kratochvil et al.
(2004), but constructing it is a rather cumbersome procedure.

This drawback turns out to be less severe for dark energy mod-
els parametrized by equation (3). In Fig. B2, we plot the 68 and
95 per cent ellipses in the wo—w, plane with €, = 0.3 around a
ACDM model, a phantom model with wy = —0.8 and w, = —1
lying along the degeneracy line of the ACDM, and a constant phan-
tom model with wy = —1.4 and w, = —0.2. The dependence on
the fiducial model is still present, since the ellipses become larger
as the fiducial model shifts orthogonal to the principal degeneracy
direction towards more negative equation-of-state values. Fiducial
models along the same degeneracy line whose 95 per cent contours
include the ACDM model are within the 95 per cent ellipse of the
ACDM as well.
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