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Objectives: Laboratory detection of vancomycin-intermediate Staphylococcus aureus (VISA) and their hetero-
geneous VISA (hVISA) precursors is difficult. Thus, it is possible that vancomycin failures against supposedly
vancomycin-susceptible S. aureus are due to undiagnosed VISA or hVISA. We tested this hypothesis in experi-
mental endocarditis.

Methods: Rats with aortic valve infection due to the vancomycin-susceptible (MIC 2 mg/L), methicillin-resistant
S. aureus M1V2 were treated for 2 days with doses of vancomycin that mimicked the pharmacokinetics seen in
humans following intravenous administration of 1 g of the drug every 12 h. Half of the treated animals were
killed 8 h after treatment arrest and half 3 days thereafter. Population analyses were done directly on vegeta-
tion homogenates or after one subculture in drug-free medium to mimic standard diagnostic procedures.

Results: Vancomycin cured 14 of 26 animals (54%; P,0.05 versus controls) after 2 days of treatment. When
vegetation homogenates were plated directly on vancomycin-containing plates, 6 of 13 rats killed 8 h after
treatment arrest had positive cultures, 1 of which harboured hVISA. Likewise, 6 of 13 rats killed 3 days
thereafter had positive valve cultures, 5 of which harboured hVISA. However, one subculture of vegetations
in drug-free broth was enough to revert all the hVISA phenotypes to the susceptible pattern of the parent.
Thus, vancomycin selected for hVISA during therapy of experimental endocarditis due to vancomycin-suscep-
tible S. aureus. These hVISA were associated with vancomycin failure. The hVISA phenotype persisted in vivo,
even after vancomycin arrest, but was missed in vitro after a single passage of the vegetation homogenate
on drug-free medium.

Conclusions: hVISA might escape detection in clinical samples if they are subcultured before susceptibility tests.
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Introduction
The first Staphylococcus aureus with reduced susceptibility to
vancomycin was described by Hiramatsu et al.1 in 1997. The or-
ganism, called Mu50, had an MIC of vancomycin of 8 mg/L. At
that time, the CLSI defined staphylococci for which the MIC of
vancomycin was ≤4 mg/L as susceptible, isolates for which the
MIC was 8–16 mg/L as intermediate and those for which the
MIC was ≥32 mg/L as resistant.2 Therefore, the Mu50 isolate
was defined as a vancomycin- (or glycopeptide-)intermediate
S. aureus (VISA). Concomitantly, the same author reported a
second S. aureus, called Mu3, responsible for vancomycin treat-
ment failure in an adult patient with pneumonia.3 Although

the vancomycin MIC for this isolate was 4 mg/L and the isolate
was formally considered as susceptible at the time, Mu3
contained VISA subpopulations (≤1026 cfu) that grew in the
presence of 5–9 mg/L vancomycin and were not detected by
standard drug-susceptibility testing. The term heteroresistant
VISA (hVISA) was coined to define the Mu3 phenotype. Since
then, a number of cases of VISA and hVISA have been described
worldwide4 and have been associated with vancomycin
treatment failures both in animal experiments5 – 7 and in
humans.7 – 9 Revised CLSI breakpoints now classify isolates with
an MIC between 4 and 8 mg/L of vancomycin as VISA.2

VISA and hVISA are different from fully vancomycin-
resistant S. aureus (VRSA; MIC ≥32 mg/L), which have been
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reported in the USA since 2002.10,11 In VRSA, vancomycin
resistance is due to the acquisition of the vanA determinant,
which also mediates high-level resistance to vancomycin in
enterococci,12 and is situated on a conjugative transposon.13,14

In contrast, the resistance phenotype in VISA and hVISA is
associated with a thickened cell wall15 and various chromo-
somal mutations that affect metabolic and cell wall synthesis
pathways.16 – 21

Because of their relatively low vancomycin MIC, hVISA are no-
toriously difficult to identify by routine laboratory procedures.4

For example, for Mu3 the rate of resistant subpopulations at a
vancomycin concentration of 8 mg/L is in the order of 1026,
which is one to two orders of magnitude below the detection
level of standard susceptibility tests (which use inoculum sizes
of 104 – 5 cfu). Moreover, the hVISA phenotype is reputed to be
unstable, due to the overgrowth of slow-growing resistant sub-
populations by faster-growing susceptible ones in the absence
of the drug.22 This is somewhat reminiscent of the early times
of methicillin-resistant S. aureus (MRSA), where heterogeneous
expression of methicillin resistance passed undetected by
routine laboratory testing, and the organisms were falsely
reported as methicillin susceptible.23

Vancomycin treatment failures of S. aureus infections have
been reported repeatedly, even before the description of VISA
and hVISA.24 These were often attributed to the slow bactericidal
effect of the drug24 and/or to the severity of the patients’ under-
lying conditions.25 However, knowing the difficulty of hVISA and
VISA detection, the question now arises as to whether some of
these vancomycin failures were not due to the lack of identifica-
tion of such organisms. The present experiments addressed this
hypothesis both by studying the natural history of hVISA and
VISA emergence during vancomycin treatment of experimental
endocarditis and by testing the ability of standard culture-based
laboratory procedures to detect the emerging hVISA or VISA. We
also examined the ability of such selected hVISA or VISA to
persist after treatment discontinuation.

Materials and methods

Microorganisms and growth conditions
A vancomycin-susceptible MRSA (strain M1V2, vancomycin MIC of 2 mg/L)
recovered from a patient with endocarditis was used in animal experi-
ments. For certain experiments, strain M1V2 was passaged with vanco-
mycin in the laboratory, as described previously,26 to generate the
isogenic VISA M1V8 (vancomycin MIC of 8 mg/L). Additional reference
strains used for susceptibility testing and agr typing included S. aureus
ATCC 29213 (vancomycin susceptible), hVISA Mu3, VISA Mu50 (both
generously provided by K. Hiramatsu, Juntendo University, Tokyo,
Japan), S. aureus RN6390 (agr group I), RN6607 (agr group II), RN8465
(agr group III), RN4850 (agr group IV) and RN6911 (null agr) (all gener-
ously provided by F. Vandenesch, Lyon, France).27,28 Unless otherwise
stated, all the organisms were grown at 378C either on brain heart infu-
sion (BHI) agar plates (Becton Dickinson, Sparks, MD, USA) or in BHI broth
(Becton Dickinson) with shaking at 120 rpm. Stocks were kept at 2708C in
BHI broth supplemented with 10% (v/v) glycerol.

Bacterial typing
Clonal identity between the parent M1V2 and S. aureus colonies recov-
ered from vegetations of rats with treatment failures was assessed by

PFGE using a CHEF-DR II apparatus (Bio-Rad Laboratories, Hercules, MA,
USA), as described previously.29 The agr group of the parent and
control strains was determined by PCR using previously described
primers.27,28,30

Antimicrobial susceptibility testing
MICs were determined by the broth macrodilution method in
cation-adjusted Mueller–Hinton broth (Becton Dickinson) according to
CLSI standards, with an inoculum of 105–106 cfu/mL, and by Etest on
BHI agar plates, by applying an inoculum with a turbidity equivalent
to that of a 2 McFarland standard.31 The MIC was defined as the
lowest concentration of antibiotic that yielded no visible growth after
24 h of incubation at 378C. Time–kill studies were performed by
adding vancomycin to mid-logarithmic phase cultures at final concen-
trations mimicking peak (40 mg/L) and trough (5 mg/L) drug concentra-
tions achieved in the serum of humans during therapy. Samples were
removed 0, 6, 12 and 24 h after drug addition, serially diluted and
spread on agar plates. Colony counts were determined after 48 h of
incubation at 378C.

In vitro population analysis
Population analyses were carried out by spreading serial dilutions of an
overnight culture (�109 cfu/mL) of the test strains on agar plates con-
taining arithmetic progressions of vancomycin concentrations from 1 to
8 mg/L. Colonies were counted after 48 h of incubation at 378C. Popula-
tion analysis curves were drawn by plotting the numbers of colonies
growing on the plates against the concentrations of vancomycin in the
plates.

Production of endocarditis and installation of an infusion
pump device
All animal experiments were carried out according to the Swiss Federal
Act on Animal Protection. The protocol was approved by the Committee
on the Ethics of Animal Experiments of the Consumer and Veterinary
Affairs Department of the State of Vaud (permit number 879.8). Induc-
tion of sterile aortic vegetations and installation of the infusion pump
to deliver vancomycin were performed as previously described.32,33

Infective endocarditis was induced 24 h later by intravenous (iv) chal-
lenge of the animals with 0.5 mL of saline containing 105 cfu of the
vancomycin-susceptible parent strain M1V2. This inoculum corresponded
to 10 times the minimum size of bacterial inoculum producing endocar-
ditis in ≥90% of the rats.

Vancomycin treatment of experimental endocarditis
Treatment was started 18 h after inoculation and lasted for 2 days.
Treated animals received doses of vancomycin that mimicked the
pharmacokinetics seen in humans following iv administration of 1 g of
the drug every 12 h.34 Control animals received saline. Rates and severity
of valve infection were determined in animals killed either just before
treatment onset, in order to determine the vegetation load at the start
of therapy (control rats), or 8 h (early evaluation) or 72 h (late evaluation)
after the end of therapy. As an additional control, a few untreated
animals were followed over the entire experiment and killed in parallel
to the early and late evaluation timepoints. The vegetations were
dissected under sterile conditions, weighed, homogenized in 1 mL of
saline, serially diluted and plated for colony counts. The limit of detection
was 2 log10 cfu/g of vegetation.
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Pharmacokinetic studies
The concentration of vancomycin in the serum of rats was determined
by an agar diffusion assay with antibiotic medium 1 (Difco) and Bacillus
subtilis ATCC 6633 as the indicator organism. Standard curves were
determined using pooled rat serum. The limit of detection of the assay
was 0.7 mg/L. The linearities of the standard curves were assessed
with a regression coefficient of ≥0.994. Intraplate and interplate
variations were ≤10%.

Ex vivo population analysis
The possible emergence of hVISA or VISA in animals was assessed either by
direct plating of vegetation homogenates on agar containing serial dilu-
tions of vancomycin or by plating the homogenates after overnight
growth in antibiotic-free broth. For direct plating, 0.01 mL aliquots of the
homogenates, plus serial dilutions of them, were used. For plating after
overnight regrowth, 0.01 mL aliquots of the same homogenates were
inoculated into 10 mL of drug-free broth and incubated overnight before
processing as above. Colonies that grew on plates containing 8 mg/L
vancomycin were picked at random and retested for vancomycin MIC.

In vitro and in vivo persistence of the vancomycin
intermediate-resistant phenotype
The in vitro and in vivo persistence of subpopulations with decreased sus-
ceptibility to vancomycin was tested using a laboratory-generated VISA
derivative of parent M1V2, strain M1V8. For in vitro persistence examin-
ation, stationary phase cultures of the susceptible M1V2 strain and of
its vancomycin-passaged VISA derivative M1V8 (vancomycin MIC of
8 mg/L) were left to stand at 378C for 15 days. At several timepoints
during this period, aliquots were removed and plated on agar containing
increasing concentrations of vancomycin. To test the persistence of the
VISA phenotype in vivo, animals with catheter-induced aortic vegetations
were infected with either the vancomycin-susceptible M1V2 or its VISA
derivative M1V8 and followed without therapy for 7 days. Animals were
killed at several timepoints; their vegetations were processed as above
and directly plated on vancomycin-containing agar.

Statistical analysis
The rates of valve infections of the various groups were compared by the
Fisher’s exact test.

Results

agr type and vancomycin susceptibility profile

Test strain M1V2 was agr group II, which is a frequent agr type
associated with vancomycin-intermediate resistance and vanco-
mycin treatment failure.35,36 Its basal MIC of vancomycin was
2 mg/L, as measured both by broth dilution and Etest. According-
ly, population analysis profiles indicated that the entire popula-
tion of M1V2 was inhibited by 4 mg/L vancomycin and
contained no resistant subpopulations (Figure 1). In contrast,
its vancomycin-cycled derivative M1V8 had a vancomycin MIC
of 8 mg/L and behaved like a true VISA in population analyses
(Figure 1). In time–kill studies, parent M1V2 lost 2–
2.5 log10 cfu/mL after 24 h of exposure to vancomycin concen-
trations mimicking peak and trough concentrations of the drug
in the blood, i.e. 40 and 5 mg/L, respectively, whereas VISA
M1V8 resisted killing and lost ≤1 log10 cfu/mL at 24 h in the
same conditions (data not presented).

Pharmacokinetic studies

The peak (30 min after drug injection) and trough (12 h after
drug injection) concentrations (mean+SD for three to six individ-
ual animals) of vancomycin were 42.2+3.7 and 8.8+2.3 mg/L,
respectively. These concentrations of vancomycin in the serum
of rats were very close to the peak and trough vancomycin
concentrations previously reported in the same experimental
model and in humans.26,34

Experimental endocarditis

Figure 2 depicts the natural outcome of valve infection and
vancomycin therapy in rats inoculated with the susceptible
parent M1V2. The median vegetation bacterial density in un-
treated control animals was 8.3 log10 cfu/g at treatment onset
and increased progressively to 11.3 log10 cfu/g (left panel of
Figure 2). In treated animals the outcome of valve infection
was treatment success in 14 of 26 (54%) animals and treatment
failures in 12 of 26 (46%) animals (right panel of Figure 2). PFGE
showed the M1V2 strain used for challenge and the vegetation
isolates were indistinguishable, confirming that they had the
same origin (data not presented).

Population analysis profiles of vegetation homogenates
plated directly or indirectly on vancomycin-containing
agar

Figures 3 and 4 depict the crude data of these analyses. No sub-
populations with intermediate resistance to vancomycin (deter-
mined by the absence of growth on agar plates containing
≥4 mg/L vancomycin) were detected in vegetations plated
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Figure 1. Population analyses of vancomycin-susceptible MRSA M1V2
parent strain and its VISA M1V8 derivative. S. aureus ATCC 29213, hVISA
Mu3 and VISA Mu50 were used as reference strains. The curves are
representative of at least two experiments with each strain. Population
analysis was done with strains after overnight culture at 378C. Cultures
were serially diluted and plated on various concentrations of
vancomycin-containing agar medium.
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directly at treatment onset, when vegetation bacterial densities
were ,9 log10 cfu/g (data not shown). On the other hand, few
colonies growing on increased vancomycin concentrations (i.e.
4 and 8 mg/L) appeared in untreated control animals (one of
four rats killed after 2 days of infection and two of two rats
killed after 5 days of infection; marked in black in Figure 2),
when their vegetation counts reached ≥11 log10 cfu/g, corre-
sponding to resistance rates of �1025 to 1027 (Figure 3a and
b). In contrast, when population analyses were repeated after
overnight regrowth in drug-free broth, no intermediate-resistant
subpopulations were detected (Figure 3c and d). Thus, putative
hVISA were already detected in the vegetations of untreated
rats, provided that they contained large bacterial densities
(�1011 cfu/g) and that they were plated directly on vancomycin-
containing agar without prior growth in drug-free medium.

After 2 days of vancomycin treatment the frequency of such
intermediate-resistant subpopulations had increased �100-fold
(corresponding to rates of 1023 to 1025) when vegetation homo-
genates were plated directly (Figure 4a and b). Moreover, these
intermediate-resistant subpopulations persisted after treatment
arrest (Figure 4b). On the other hand, population analysis profiles
returned to a vancomycin-susceptible profile when homogenates
were regrown overnight in drug-free medium before testing
(Figure 4c and d).

In vitro versus in vivo persistence of vancomycin
intermediate-resistant subpopulations

The observations described above indicate that the vancomycin
intermediate-resistant subpopulations could persist in vivo in
the absence of vancomycin pressure, but were unstable in vitro

after one passage in drug-free broth. To study this in vitro/in
vivo discrepancy further, the vancomycin-susceptible M1V2 and
its VISA derivative M1V8 (Figure 1) were inoculated in vitro and
in vivo in drug-free conditions and the bacterial resistance
phenotypes were followed over time.

For in vitro experiments, 106 cfu of both M1V2 and VISA M1V8
were inoculated in 10 mL of drug-free BHI and incubated with
shaking at 378C for 15 days. At several timepoints, samples of
the cultures were serially diluted and plated on both plain agar
and plates containing 4 or 8 mg/L vancomycin. Figure 5(a)
shows that bacterial counts on plain agar were stable over the
entire period of time. In contrast, in the VISA M1V8 the propor-
tion of bacteria able to grow on 4 or 8 mg/L vancomycin declined
progressively by up to 4 log10 cfu.

For in vivo tests, rats with sterile aortic vegetations were
inoculated with 10 times the ID90 of either strain and were
killed at various times over a follow-up period of 7 days. Their
vegetations were processed as described and plated directly on
plain agar and on plates containing 4 or 8 mg/L vancomycin.
As for in vitro cultures, the entire populations persisted when
assessed on plain agar. On the other hand, the proportion of
intermediate-resistant colonies of VISA M1V8 remained stable
through the 7 days of follow up (Figure 5b). These experiments
further suggest that some in vivo conditions may promote the
stability and persistence of hVISA and VISA subpopulations.

Discussion
The capacity of vancomycin therapy to select for hVISA and their
detection were investigated in rats with experimental endocarditis
due to a vancomycin-susceptible MRSA. Several interesting
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Figure 2. Therapeutic results for experimental endocarditis due to vancomycin-susceptible MRSA M1V2. Vancomycin therapy was started 18 h after
bacterial challenge and lasted for 48 h. Control animals were sacrificed at the onset of therapy (day 0). Vancomycin-treated animals were sacrificed 8
and 72 h after the end of therapy (days 2 and 5, respectively). Each circle above the bars at 2 log cfu/g represents the bacterial density in the
vegetation of a single animal. Circles under the bars represent culture-negative vegetations. Filled circles indicate vegetations that grew
staphylococcal colonies on plates containing ≥4 mg/L vancomycin. P,0.05 by the Fisher’s exact test.
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observations were made. First, using population analysis as
the screening method, we demonstrated that treatment of
vancomycin-susceptible MRSA with vancomycin at doses simulat-
ing human kinetics resulted in the selection of hVISA in animals
with infective endocarditis. This occurred in spite of the fact that
serum concentrations of vancomycin (mean peak and trough con-
centrations of vancomycin in the serum of 42.2 and 8.8 mg/L,
respectively) were constantly above the MIC for the infecting
organism (no growth above 4 mg/L in population analysis). More-
over, the selected hVISA were associated with vancomycin treat-
ment failure. Second, hVISA could be detected in infected
vegetations only if population analysis was performed directly
from the homogenate. Population analysis done after a single
passage of the tissue in drug-free broth, simulating the conditions
in the laboratory when processing clinical specimens, resulted in
the disappearance of the hVISA phenotype. This could have
occurred by spontaneous reversion of the phenotype to that of
the susceptible parent strain by a dilution effect upon subculture
in drug-free medium, as observed previously.37 When hVISA col-
onies from infected vegetations were picked from plates contain-
ing 8 mg/L vancomycin, regrown in drug-free broth and retested
for their susceptibility to vancomycin, the MIC of the drug for the
test organism was 2 mg/L, thus formally considered as susceptible

(data not shown). This further indicates that even the confirmation
as hVISA of S. aureus colonies growing on plates supplemented
with vancomycin could be problematic if standard susceptibility
techniques requiring dilution are used.

S. aureus colonies growing on plates containing 8 mg/L vanco-
mycin were also recovered from some vegetations of animals left
untreated throughout the experiment (2–5 days), provided that
they had high (�11 log10 cfu/g) vegetation bacterial titres.
The emergence of glycopeptide-resistant subpopulations in the
absence of antibiotic pressure has been reported in a rat
model of chronic tissue cage infection with S. aureus, when
high bacterial densities were reached at the infected site,38 as
well in humans.39 This ‘inoculum’ effect was also apparent in
population analysis performed in vitro, when bacterial densities
of strain M1V2 reached 11 log10 cfu/mL. In contrast, the propor-
tion of hVISA was greatly increased in vancomycin-treated
animals, and resistant variants grew readily from vegetations
containing much lower bacterial densities (9–10 log10 cfu/g)
and at �100-fold higher frequency. This suggests that rare
S. aureus cells expressing the heterogeneous vancomycin
resistance trait pre-existed at very low, and thus undetectable,
frequencies before antibiotic treatment, and were readily
selected by vancomycin therapy.
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Figure 3. Ex vivo population analysis performed with vegetation homogenates of animals infected with the vancomycin-susceptible MRSA M1V2 strain
and left untreated for 2 or 5 days (also see Figure 1). Population analysis was performed with vegetation homogenates both directly (a and b) and
after one subculture of the homogenate on vancomycin-free broth (c and d), in order to mimic laboratory conditions when susceptibility tests are
performed. When population analysis was done directly, hVISA emerged from vegetation homogenates of each group of animals. However, after
a single passage on drug-free medium the hVISA phenotype reverted to the susceptible pattern of the parent. Cnt, control. Cnt-,number.
indicates animal vegetation homogenate plated directly on vancomycin-containing agar plates. Cnt-,number.+ indicates animal vegetation
homogenate plated on vancomycin-containing agar plates after one passage in drug-free medium.
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It has been proposed that inoculation of vancomycin-
containing plates with heavy bacterial densities (11 log10 cfu)
could result in vancomycin absorption by bacterial cell walls,
thus allowing the growth of colonies that were not genuinely
resistant to the drug.40 This was not likely to be the case in the
present study, and should alert investigators against the reassur-
ing impression of rare false-positive resistance phenotypes when
using large inocula. It is more likely that these rare phenotypes
represent genuine heteroresistant variants that are hard to
isolate, especially when regrown in drug-free medium during
the isolation process, because they become overgrown by sus-
ceptible populations. These data, however, may potentially be
influenced by different variables. First, the bacterium used in
these experiments had an agr type II background, which has
been shown to be more prone to develop glycopeptide heterore-
sistance than other agr types.35,36 Whether such pre-existing
cells are also present in other agr groups remains to be clarified.
Second, the presence of a heterogeneous subpopulation with
intermediate resistance to vancomycin is more likely in MRSA
with vancomycin MIC of 2 mg/L than in MRSA with vancomycin
MIC of ≤1 mg/L.41

Finally, another important observation of the present experi-
ments was that the hVISA subpopulations selected during

vancomycin therapy persisted in vivo in the absence of antibiotic
pressure. Indeed, while hVISA disappeared after one passage on
drug-free media, they could readily persist in the vegetations, in
the absence of vancomycin selection, for at least 3 days after the
arrest of therapy. The contrast between the instability of the
hVISA phenotype in prolonged liquid culture in vitro and their per-
sistence in vivo is unexplained. After inoculation, the organisms
grew to the stationary phase in both conditions (Figure 5). There-
after, in vitro cultures tended to lose viable counts and hVISA
decreased more rapidly than susceptible cells, whereas in vivo
cultures remained stable and kept their original proportion of
total cfu and hVISA subpopulations. A major characteristic of
VISA strains is cell wall thickening, which is related to an acti-
vated cell wall biosynthetic pathway and nutrient transport
system.42 It has been suggested that cell wall thickness in
hVISA depends on the concentrations of nutrients in the environ-
ment.42 Therefore, one can hypothesize that the progressive dis-
appearance of hVISA in vitro is associated with deprivation of the
culture medium of metabolites necessary for cell wall synthesis.
In contrast, in vivo, nutrients would always be available to con-
struct a thick cell wall, thus maintaining the expression of the
hVISA phenotype. Alternatively, hVISA could persist in vivo
using the same strategy as that used by small colony variants
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Figure 4. Ex vivo population analysis performed with vegetation homogenates of animals infected with the vancomycin-susceptible MRSA M1V2
strain, treated with vancomycin for 2 days and sacrificed 8 h (day 2) or 72 h (day 5) after treatment arrest (also see Figure 1). Population analysis
was performed with vegetation homogenates both directly (a and b) and after one subculture of the homogenate on vancomycin-free broth (c
and d), in order to mimic laboratory conditions when susceptibility tests are performed. When population analysis was done directly, hVISA
emerged from vegetation homogenates of each group of animals. However, after a single passage on drug-free medium the hVISA phenotype
reverted to the susceptible pattern of the parent. VAN, vancomycin. VAN-,number. indicates animal vegetation homogenate plated directly on
vancomycin-containing agar plates. VAN-,number.+ indicates animal vegetation homogenate plated on vancomycin-containing agar plates
after one passage in drug-free medium.
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(SCVs) of S. aureus. Previous studies have suggested that SCVs of
S. aureus display slow growth and reduced haemolytic activity.43

As a consequence, they have a lower ability to induce cell lysis
and are able to persist intracellularly, where they are protected
from the host’s defences.43,44 Like SCVs, hVISA are characterized
by their slow growth and reduced haemolytic activity.4 Moreover,
hVISA may produce increased expression of fibronectin-binding
proteins, which are known to promote endothelial uptake.45,46

Thus, hVISA could easily enter the endothelial cell, which
would provide a niche for their survival.

Detection of hVISA is difficult and different methods and pro-
tocols have been proposed to recognize them.4 The present
results indicated that vancomycin induced the emergence of
hVISA in vivo, but also that appropriate culture techniques, i.e.
spreading infected organs directly on drug-containing media,
should be used to detect them. Thus, we provide an additional
explanation for the elusive nature of hVISA strains in the
diagnostic laboratory, where the clinical samples, and even the

colonies growing on vancomycin-containing agar plates, are
usually subcultured in drug-free medium before processing for
susceptibility tests. These results suggest that, in humans, thera-
peutic failures with vancomycin against supposedly susceptible
S. aureus infection could indeed be the result of hVISA selected
during therapy but remaining undiagnosed. Moreover, the
present experiments also indicated that the hVISA phenotype
is stable in vivo in the absence of antibiotic pressure. These find-
ings are clinically relevant because if hVISA are undetected in
vitro while they persist in the host, continuing vancomycin
therapy might promote the selection of more resistant, stable
VISA in patients.

The search for potential markers that are specifically
expressed by hVISA strains regardless of their genetic back-
ground is warranted. In exploratory experiments we tested
whether in situ imaging or maybe cell size determination
would be of any help, using, for instance, transmission electron
microscopy of infected vegetations (Figure S1, available as Sup-
plementary data at JAC Online). However, although thickening
of cell walls was suggested in some micrographs, it was by no
means a reliable diagnostic tool due to the heterogeneity of
the microbial population. Thus, other markers, which might be
either phenotypic or genotypic, must be sought.
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