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SUMMARY

Using analogies to gaming, we consider the problem of comparing multiple probabilistic seis-
micity forecasts. To measure relative model performance, we suggest a parimutuel gambling
perspective which addresses shortcomings of other methods such as likelihood ratio, informa-
tion gain and Molchan diagrams. We describe two variants of the parimutuel approach for a set
of forecasts: head-to-head, in which forecasts are compared in pairs, and round table, in which
all forecasts are compared simultaneously. For illustration, we compare the 5-yr forecasts of
the Regional Earthquake Likelihood Models experiment for M4.95+ seismicity in California.

Key words: Probabilistic forecasting; Probability distributions; Earthquake interaction, fore-
casting and prediction; Seismicity and tectonics; Statistical seismology.

1 INTRODUCTION

In 1997, Geller et al. published their controversial landmark article
claiming that ‘Earthquakes cannot be predicted’. Seventeen years
later, the statement remains true, but this is not to say that nothing
has changed. One of the primary points that Geller et al. made was
that earthquake predictions—that is, predictive statements about
individual earthquakes—were not being expressed as unambigu-
ously falsifiable statements. To a large extent, this is no longer true:
many researchers have since followed the early suggestions made by
Kagan & Knopoff (1987), Evison & Rhoades (1993) and Kagan &
Jackson (1994) and begun constructing probabilistic forecasts re-
lated to the distribution of earthquakes, or seismicity forecasts. The
resulting proliferation of forecast experiments has highlighted a
second-order problem: how do you assess the performance of earth-
quake and seismicity forecasts in general? And, more specifically,
how do you compare seismicity forecasts, whether they be derived
from different models or from one model with different parameter
values? These questions have scientific as well as practical impli-
cations: researchers can use seismicity forecasts to test hypothe-
ses related to seismogenesis, earthquake clustering and earthquake
triggering; and seismicity forecasts are also the basis for seismic
hazard assessments that influence building codes, insurance rates
and preparatory exercises.

Researchers have applied several methods to compare the per-
formance of seismicity forecasts. To directly compare two proba-
bilistic forecasts, you can calculate the likelihood ratio (Kagan &
Jackson 1995) or the information gain per earthquake (Kagan &
Knopoft 1977; Harte & Vere-Jones 2005; Rhoades et al. 2011).
The likelihood ratio indicates which forecast is more likely to have

generated the observed distribution of earthquakes and the ‘null ob-
servations’ where no earthquakes occurred. The information gain
emphasizes the forecast probabilities where earthquakes occurred
and the total number of earthquakes expected by each forecast.
The Molchan diagram method (Molchan 1991, 1997, 2010, 2011;
Molchan & Kagan 1992; Molchan & Keilis-Borok 2008) applies to
a wider class of earthquake and seismicity forecasts, and it reduces
each forecast to a set of binary earthquake predictions, or alarms
(Kagan 2007; Zechar & Jordan 2008). You calculate the fraction
of earthquakes that did not occur during alarms and the fraction of
space occupied by alarms, where space is measured according to a
reference model. Kossobokov (2004, 2006) noted that such alarms
could be thought of as wagers in a game of what he called seismic
roulette, where Nature controls the wheel. Zhuang (2010) expanded
this notion with a comparison measure that we call the fixed-odds
gambling score; using this method, an earthquake forecast is viewed
as a series of wagers, and the forecast is pitted against a reference
model that functions as the house, or the odds-maker. The fixed-
odds gambling score method applies to models producing binary
predictions (Zhuang & Jiang 2012) and probabilistic forecasts, as
well as point process models that generate continuous (i.e. without
gridding) forecasts.

Each of these methods for comparing earthquake forecasts has
drawbacks. The likelihood ratio is sensitive to the occurrence of
low-probability events, and a single earthquake can strongly af-
fect a forecast comparison. For example, we recall the situation
described by Holliday ez al. (2005, p. 969): suppose that Forecast
A had very large probabilities for 99 of 100 earthquakes and an
extraordinarily small probability for the 100th earthquake, while
Forecast B had intermediate probabilities for all 100 earthquakes.
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Instinctually, we would say that Forecast A is better. However, be-
cause the joint likelihood is sensitive to small values, the likelihood
ratio will favour Forecast B, a result that is intuitively unsatisfying.
The information gain has the same problem. Moreover, the current
tests used to establish statistical significance of the observed in-
formation gain require an assumption about the information gain
distribution (Rhoades et al. 2011): to use the T-test, you assume that
the information gains are normally distributed and for the W-test,
you make the weaker assumption that the information gains are sym-
metrically distributed. Both of these assumptions may be violated
in practice (Eberhard et al. 2012; Taroni et al. 2014). One stum-
bling block associated with the Molchan diagram and the fixed-odds
gambling score is the choice or construction of a reference model:
depending on the format of the candidate model, what reference
model to use can be controversial (Stark 1997; Kossobokov et al.
1999; Marzocchi et al. 2003; Luen & Stark 2008; Marzocchi &
Zechar 2011). Moreover, the parametrization of the reference model
and the parameter value choices can have a strong effect on the re-
sulting assessment (Molchan & Romashkova 2010), and therefore
they must be carefully justified. There is no perfect reference model
for a particular candidate model, let alone a panacea.

Another, more subtle, problem with the fixed-odds gambling
score is that it is not symmetric. Imagine that you take some
Forecast A as the candidate model and some Forecast B as the
reference model, and you calculate the net return of Forecast A. If
you then switch the roles of A and B, there is no guarantee that
B’s net return will be the same size with opposite sign as when
A was the candidate model. When this asymmetry occurs and the
candidate model’s net return is positive in either case, it indicates
that the model performances are, in a sense, nested—A has some
virtues that B lacks, and vice versa. Molchan & Romashkova (2011)
discussed the potential instability of the fixed-odds gambling score:
successfully predicting an event that the reference model says is
very unlikely has a large impact on the gambling score and might
make a candidate model appear better than it really is. If we follow
the gambling analogy, the candidate model can win big on a single
bet.

In this paper, we propose an alternative method for comparing
earthquake and seismicity forecasts: the parimutuel gambling score.
It, too, has many analogues to gambling and therefore the score and
the interpretation of results are intuitive. The main difference be-
tween the parimutuel gambling score and the fixed-odds gambling
score is the lack of a specific reference model. The parimutuel gam-
bling score addresses the drawbacks discussed above and applies to
a wide variety of earthquake forecasts.

In the following section, we introduce mathematical notation,
review the relevant features of the fixed-odds gambling score and
describe the parimutuel gambling score. In Section 3, we describe
the 5-yr Regional Earthquake Likelihood Models (RELM) earth-
quake forecast experiment in California, and in Section 4 we report
the results of analysing the RELM experiment using the parimutuel
gambling score method. In Section 5, we discuss the relationship
between likelihood ratio and parimutuel gambling and describe how
the parimutuel gambling score can be used for model optimization.
In Section 6, we summarize our findings and mention other possible
applications of our method.

2 METHODS

Zhuang (2010) introduced the fixed-odds gambling score and
described its application to three types of candidate forecasts:
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alarm-based, probabilistic, and continuous (i.e. generated by point
process models). Forecasts from each of these classes can be thought
of as a series of wagers, and once a reference model is chosen or con-
structed, a gambling return can be calculated for each wager. Let p
be the probability for an event to happen according to the candidate
forecast and p, be the corresponding reference model probability.
This event could be the occurrence of a single earthquake within
a well-defined space—time—magnitude volume, or it could be the
occurrence of zero earthquakes, or more than one earthquake, in
a volume. You can think of the candidate forecast as two comple-
mentary bets: a wager of p on the event happening and (1 — p) on
the event not happening. If the event occurs, the forecast will lose
(1 — p) and win an amount that is proportional to p and p,. The
gambling return if the event occurs is

1_
AR=—(1-p)+p—2° (1)
Po

If the event does not occur, the return is

Do

AR=(1-p)
1 —po

-p. )

Zhuang (2010) showed these returns guarantee that, if the reference
model is correct, the expected return for any betting strategy is
zero. This method applies when you want to evaluate the skill of
a candidate model relative to a reference model, where the choice
of the reference model is well-justified. However, the game is not
symmetric: exchanging the roles of the candidate model and the
reference model does not yield an equal and opposite return. For
example, if the candidate model probability p = 0.2, the reference
model probability py = 0.5 and the event happens, the return is —0.6.
(The candidate model assigned a lower probability of the event
happening and therefore a loss is sensible). If the roles of the models
are reversed, the gambling return is 1.5. It can also happen that,
given a series of wagers, the sign of the net return is the same
regardless of each model’s role as candidate or reference. This
paradox is particularly counter-intuitive because it seems to indicate
that each model is better (or worse) than the other. One explanation
is that the fixed-odds gambling score is a partial score: it does
not punish random guesses or ‘no-comment’ predictions. If you
know a shortcoming of the reference model, you can win with
a corresponding betting strategy. For example, if you somehow
determine that the reference model consistently underestimates the
earthquake probability under certain conditions, you can win by
betting with certainty (»p = 1) when these conditions are met and
otherwise not bet at all. However, detecting such biases is not trivial,
and neither is constructing or choosing an appropriate reference
model. To address the role reversal paradox, and rather than treating
one model as the reference and allowing it to set the odds, you
can take the view of an alternative betting paradigm: parimutuel
gambling.

Instead of thinking about a candidate model and a reference
model, consider two candidate forecasts, A; and A,, with respective
probabilities for an event to happen p; and p,, and the size of
the ‘pot’ is two. (Because the bets are probabilities, each forecast
bets a total of one unit.) If the event happens, the forecasts, or
bettors, will split the pot in a way that reflects their relative skill.
In particular, the return for each bettor is the ratio of the amount
that the bettor wagered on the outcome to the total amount wagered
on the outcome, multiplied by the size of the pot. The net return
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Table 1. Excerpt of an example forecast specified by a range of longitudes, latitudes and magnitudes,
the expected number of earthquakes in this bin and a masking bit (1 indicates that it should be included

in analyses).

Min. lon. Max.lon. Min.lat. Max. lat. Min. mag. Max. mag. Forecast Mask
—119.2 —119.1 33.7 33.8 5.35 5.45 0.37 1
—118.9 —118.8 383 384 6.15 6.25 0.00 0

is simply the total initial wager (here, one) subtracted from the
return:

)4
D+ p

P2

AR =2
P+ p2

-1 AR, =2

—1. 3)

If the event does not happen, p; and p, in (3) are simply replaced
by 1 — py and 1 — p,, respectively. This equation describes a zero-
sum game: in gambling terms, it is parimutuel gambling without a
vigorish (the fee that the house charges to play). Over a series of wa-
gers, parimutuel gambling leads to a redistribution of wealth, where
the redistribution is driven by skill. And the parimutuel gambling
approach can be simultaneously applied to multiple forecasts: we
generalize to the situation of k forecasts with respective probabilities
D1, P2s - - - » Pi. The net return for the jth forecast is

1
AR; = =1+ kpj ———. (4)
m=1pm

Rather than thinking of p; as the probability for an event to happen
according to the jth forecast, it is useful to instead interpret it as
the probability of the observation conditional on the jth forecast. In
other words, if A, stated that an event would occur with probability
0.3 and the event did not occur, p; = 0.7. Under this interpretation,
(4) applies regardless of the outcome.

The relationship between the parimutuel gambling score and the
fixed-odds gambling score is straightforward: the (implicit) refer-
ence model for parimutuel gambling is the average model. If we
let po = (p1 + p» + ... + pu)/k, (1) and (4) are identical. In
other words, if there is no commonly accepted reference model,
we use the average model as the reference instead. When there are
many forecasters, the average model becomes a reference model
based on common sense. In this way, the parimutuel gambling ap-
proach also solves the stability problem that plagues the fixed-odds
gambling score. With fixed odds, if a reference model estimates a
vanishingly small probability of a particular outcome, the candidate
model stands to gain a large amount on a single wager; indeed this
amount could dominate the total return over all wagers. This was the
situation we (Zechar & Zhuang 2010) encountered when evaluating
the Reverse Tracing of Precursors (RTP) algorithm (Keilis-Borok
& Shebalin 2004): if some contentious predictions with small ref-
erence model probabilities were ignored, the RTP net return was
greatly diminished and the overall RTP performance was no longer
statistically significant. While a candidate forecast gambling against
a reference model can gain an unlimited amount of wealth with a
single wager, it stands to lose at most one unit for each wager. For
a single wager in parimutuel gambling, each forecast can lose at
most one unit, but the maximum return is finite and governed by the
number of candidate forecasts (i.e. the maximum return is £ — 1).

Suppose that, under the true model, the probability for the fore-
casted event to happen is p*, and let py = % Zle p: be the reference

probability. Then, the expected return for Forecast 1 is

E[AR,]

k pi k(1= p1)
=7 )+ =) | e ]
() e[S

_ P p + (I —=p9d—-p) _
Do 1 — po
— (p1 — po)(P™ — po)
po(1 = po)

1

&)

Then, the expected value of AR, is positive only when p; is posi-
tively correlated to p*/py, that is, if p* > py, it must be that p; > py.
In summary, the parimutuel gambling score prefers the model that
is most closely correlated to the true model, relative to the average
model.

Currently, the most common format for seismicity forecasts is
the space-rate—magnitude format that was designed for the RELM
experiment (Schorlemmer et al. 2007): the forecaster specifies the
expected number of earthquakes to occur within bins that are de-
fined by a range of latitude, longitude, magnitude and time. Table 1
shows an example hypothetical forecast. Certainly, these are not de-
terministic forecasts: the number of earthquakes specified by each
forecast in each bin is an expected value and represents a Poisson
distribution. In other words, each bin contains a Poisson probability
distribution for the number of events. We note that the forecast need
not be Poisson in every bin; it is only required that a probability
mass function is given for each bin so the probability of any obser-
vation can be calculated. Specifying a probability mass function is
analogous to spreading your chips across all the possible outcomes
in a game of roulette, where the sum of your chips is unity. After
the wheel spins, you lose all the chips not placed on the winning
number and win your fair share of the pot—this is exactly what
(4) describes.

Atthe end of an experiment, we use the probability distribution in
each bin to calculate the probability of the observation in each bin.
For example, for the forecast in Table 1, imagine that zero earth-
quakes occurred in the first bin that is shown. The probability for
this bin is {0]0.37) = 0.69, where fis the Poisson probability mass
function. Each bin represents a separate wager, so the total amount
won/lost by the jth candidate forecast is obtained by summing over
all n bins:

k
i j 1

AR; =) Al (6)
Pin k i=1

m=1
We use (6) to quantify the skill of multiple probabilistic space—rate—
magnitude forecasts. In the next section, we describe two such sets
of forecasts from the 5-yr RELM experiment in California.



3 DATA

The RELM working group designed a 5-yr experiment to forecast
M4.95+ earthquakes in and around California. In preparing for the
experiment, the working group: developed several probabilistic seis-
micity forecasts; precisely delineated the space—time—magnitude re-
gion of interest and the earthquake catalogue to use for observations;
and proposed several tests to assess forecast performance. These ef-
forts were documented in the 2007 January/February special issue
of Seismological Research Letters and were summarized by Schor-
lemmer et al. (2010b). RELM forecasts were constructed using the
format described in the previous section: they specified a probabil-
ity mass function for the number of earthquakes to occur during the
S-yr period from 2006 January 1 to 2010 December 31 (inclusive)
in latitude—longitude—magnitude bins (0.1° x 0.1° x 0.1 units).
The RELM working group created two forecast classes: one would
forecast all seismicity, and the other would forecast only mainshock
seismicity, where mainshocks would be identified ex post facto by a
pre-determined algorithm (Reasenberg 1985). The working group
developed 11 mainshock forecasts and 6 mainshock+aftershock
forecasts. One other feature of RELM forecasts is that bins could
be masked—any forecast in a masked bin should be ignored. From
the gambling perspective, masking is equivalent to sitting out a
round or abstaining from gambling. The forecasts were devel-
oped independently and without knowledge of each other: unlike
some games, no bettor could adjust wagers based on the wagers of
other bettors.

The scientific bases of the RELM forecasts have been widely
discussed elsewhere and are not the emphasis of this paper, so we
refer you to the RELM special issue (Bird & Liu 2007; Ebel et al.
2007; Helmstetter et al. 2007; Holliday et al. 2007; Kagan et al.
2007; Shen et al. 2007; Ward 2007; Wiemer & Schorlemmer 2007)
and the summary articles by Schorlemmer ez al. (2010b) and Zechar
et al. (2013). For map-view representations of each forecast and the
testing region, see Zechar ef al.’s (2013) figs 1 and 2. We note
that the majority of the forecasts used masking extensively: some
forecasts were thereby limited to southern California, and others
have irregular holes.

During the RELM experiment, 31 target earthquakes occurred,
and 20 of them were deemed to be mainshocks; details are shown
in Fig. 1 and Table 2. We provide the forecasts and the catalogues
of observed earthquakes in the Supporting Information. Of partic-
ular interest for this study is the large number of bins used in the
experiment: 314 962 (7682 spatial cells each having 41 magnitude
bins).

4 RESULTS

In Fig. 2, we present the results of a parimutuel gambling analysis
of the RELM experiment. The forecasts are ordered by overall net
return [AR; from (6); filled circles in the figure], and we also plot
the returns from only the bins in which earthquakes occurred (i.e.
disregarding those bins where no earthquakes occurred; hollow dia-
monds in the figure). In the mainshock class, the forecast developed
by Helmstetter et al. is the best, which matches the conclusions of
Zechar et al. (2013) based on pairwise information gain analyses.
We note that the Helmstetter et al. mainshock forecast is also best
when considering only the bins where target earthquakes occurred,
but to look at only these bins could be misleading. For example,
the mainshock+aftershock forecast by Ebel et al. had the highest
net return when only looking at bins where earthquakes occurred;
because no bin had an expectation greater than unity, the high gam-
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Figure 1. Catalogue of RELM target earthquakes, modified from fig. 1 in
Zechar et al. (2013). The colour of each square represents the earthquake
occurrence time. The squares with white borders are, according to the RELM
definition, aftershocks.

bling return suggests that the Ebel et al. mainshock+-aftershock
forecast had higher expectations than the other forecasts. However,
italso has high expectations in bins where earthquakes did not occur,
resulting in a negative net return when considering all bins. Zechar
et al. (2013) also noted that such high rates meant that the Ebel
et al. mainshock+-aftershock forecast significantly overpredicted
the number of target earthquakes. In the mainshock+aftershock
class, the Holliday et al. forecast obtained the largest net return and
Helmstetter et al. the second largest. In a direct pairwise information
gain analysis, Zechar et al. (2013) found the reverse, but concluded
that the difference was not statistically significant.

In Fig. S1 and Tables S1 and S2, we report the returns for each bin
where an earthquake occurred. This detailed breakdown emphasizes
that, when masking is allowed, the total pot is not the same for
every bin. This type of analysis could provide insight in the event
that particular earthquakes are of special interest: for example, if
you wanted to emphasize large earthquakes (such as the E1 Mayor-
Cucapah M7.2 earthquake).

Maps showing spatial gambling returns can provide additional
insight, and we present two example maps in Figs 3 and 4. We note
that the largest gambling returns are for the cells where earthquakes
occurred; the probability of observing zero target earthquakes is of
the same order of magnitude for almost all forecasts, meaning there
is not much ‘action’ in bins without earthquakes. Nevertheless, we
note a slightly rosy tint to the Ebel er al. mainshock+aftershock
map; this tint, indicating a negative gambling return, corresponds to
the overall overprediction mentioned above. Parimutuel gambling
maps also reveal features that corresponding maps of likelihood
cannot. [We include maps of net returns and likelihood for each
forecast in the Supporting Information; see Clements ef al. (2011)
for additional examples of graphical methods for forecast evaluation
and comparison.] For example, consider the main shock+-aftershock
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Table 2. Catalogue of RELM target earthquakes, same as Table 1 in Zechar
et al. (2013). Italics indicate aftershocks, final column is the magnitude
indicated in the Advanced National Seismic System (ANSS) catalogue.

Origin time (UTC) Latitude Longitude MaNSS
1 2006 May 24, 4:20 32.31 —115.23 5.37
2 2006 July 19, 11:41 40.28 —124.43 5.00
3 2007 February 26, 12:19 40.64 —124.87 5.40
4 2007 May 9, 7:50 40.37 —125.02 5.20
5 2007 June 25, 2:32 41.12 —124.82 5.00
6 2007 October 31, 3:04 37.43 —121.77 5.45
7 2008 February 9, 7:12 32.36 —115.28 5.10
8 2008 February 11, 18:29 32.33 —115.26 5.10
9 2008 February 12, 4:32 32.45 —115.32 4.97
10 2008 February 19, 22:41 32.43 —115.31 5.01
11 2008 April 26, 6:40 39.53 —119.93 5.00
12 2008 April 30, 3:03 40.84 —123.50 5.40
13 2008 July 29, 18:42 33.95 —117.76 5.39
14 2008 November 20, 19:23 32.33 —115.33 4.98
15 2008 December 6, 4:18 34.81 —116.42 5.06
16 2009 September 19, 22:55 32.37 —115.26 5.08
17 2009 October 1, 10:01 36.39 —117.86 5.00
18 2009 October 3, 1:16 36.39 —117.86 5.19
19 2009 December 30, 18:48 32.46 —115.19 5.80
20 2010 January 10, 0:27 40.65 —124.69 6.50
21 2010 February 4, 20:20 40.41 —124.96 5.88
22 2010 April 4, 22:40 32.26 —115.29 7.20
23 2010 April 4, 22:50 32.10 —115.05 5.51
24 2010 April 4, 23:15 32.30 —115.26 5.43
25 2010 April 4, 23:25 32.25 —115.30 5.38
26 2010 April 4, 0:07 32.02 —115.02 5.32
27 2010 April 5, 3:15 32.63 —115.81 4.97
28 2010 April 8, 16:44 32.22 —115.28 5.29
29 2010 June 15, 4:26 32.70 —115.92 5.72
30 2010 July 7, 23:53 33.42 —116.49 5.43
31 2010 September 14, 10:52 32.05 —115.20 4.96

Kagan et al. map (Fig. 4). The trace of the San Andreas Fault is
delineated by blue cells, suggesting that the Kagan et al. forecast
obtained a positive gambling return in these cells by deemphasizing
faults relative to the other forecasts. Recall that the ideal forecast
has high probabilities in bins where earthquakes occur and low
probabilities elsewhere. Again, we note that maps of likelihood
could not be used to identify such features (see Figs S2—S5), and
maps of information gain are limited to pairwise comparisons.

5 DISCUSSION

As demonstrated with the RELM experiment, the parimutuel gam-
bling score can be used to compare probabilistic seismicity fore-
casts. In many applications across the statistical sciences, likelihood
ratios (or related information criteria, or Bayes factors) are used for
pairwise model comparison. (For examples in the context of seis-
micity forecasting, we refer you to the articles by Schorlemmer
et al. 2007; Harte & Vere-Jones 2005; Marzocchi et al. 2012.) The
parimutuel gambling score can also be applied in pairwise fash-
ion, and this permits a direct comparison of the resulting ‘head-to-
head’ metric—a special case of parimutuel gambling with only two
bettors—with the log-likelihood ratio. Consider two forecasts for
a single observation with corresponding likelihoods of p; and p,,
respectively. The log-likelihood ratio of these forecasts is

LLR(py. p2) = log 2. %)
D2

The difference in winnings of the two forecasts using the head-to-
head score is

2 D1
pi+p

We can express the log-likelihood ratio in terms of the gambling
score difference

ARy — AR, = G(p1, p2) = - 1. (8)

1+ G(pi, Pz)] ' ©)

1 —G(p1, p2)

The log-likelihood ratio is a monotone function of the head-to-head
gambling score difference, but their relationship is not perfectly
linear, and the range of the head-to-head gambling difference is
[—1, 1] while the log-likelihood ratio is unbounded. In particular,
these measures diverge at low probabilities, with the possibility
that the log-likelihood is dominated by a single earthquake in an
experiment; the gambling approach avoids such an instability.

The head-to-head gambling score is also closely related to
the rate-corrected information gain per earthquake suggested by
Rhoades et al. (2011). However, as with the log-likelihood ratio,
information gains are unbounded; moreover, the analysis suggested
by Rhoades et al. (2011) groups all bins where no target earth-
quakes occurred, while parimutuel gambling considers each bin
individually.

Model optimization can be thought of as a special case of model
comparison, and therefore researchers can use parimutuel gambling
to optimize their models. For example, consider the TripleS (Sim-
ple Smoothed Seismicity) model of Zechar & Jordan (2010a). This
model has a single adjustable parameter: the size of the smoothing
kernel to be applied to past epicentres. As is common practice, the
optimal value of this parameter is estimated using a retrospective
forecast experiment in which the most recent target earthquakes
are forecast. Several candidate values of the parameter are used to
generate forecasts, and these forecasts are compared. In the im-
plementation for seismicity in Italy, the area skill score (Zechar &
Jordan 2010b) was used for comparison; for an illustration using
seismicity in China, spatial likelihood was used (Mignan et al.
2013). For the reasons we suggested in Section 1 (e.g. stability
with respect to low-probability earthquakes), the parimutuel gam-
bling score could be useful in future applications of this model
to other regions. Of course, we mention TripleS only as a repre-
sentative example of a seismicity model with adjustable parame-
ters; you could optimize arbitrarily complex models using the same
technique.

The parimutuel gambling analysis in this study is an example
of inference based on multiple comparisons, a common research
topic in medical studies. In that context, researchers seek to mea-
sure the differences between several treatments on many subjects
and thereby find the best treatment. The analogy here is forecasts
as treatments, bins as patients and gambling returns as patient re-
sponses. Hsu (1996) describes a number of inferential methods that
apply when making multiple comparisons. For example, perhaps the
most important question we can ask is whether the forecast obtain-
ing the largest average gambling return—that is, the ‘sample best’
forecast—is truly the best. Hsu (1996) shows that to answer this
question of ‘multiple comparisons with the sample best’, you can
simply perform a two-sample Student’s #-test on the sample best
and the sample second best. (This assumes normality and equal
variances of the responses, which a non-parametric approach could
be employed to relax.) For the mainshock group, this corresponds
to a paired #-test with the samples being the returns in each bin
for the Helmstetter et al. forecast and the Wiemer—Schorlemmer

LLR(p:, p>) = log [
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Figure 2. Parimutuel gambling returns from round table analysis of RELM (a) mainshock forecasts and (b) mainshock+aftershock forecasts. Hollow diamonds
show the returns based on the bins where target earthquakes occurred; filled circles show total return from all bins. Forecasts are ordered by total return.
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Figure 3. Map showing the spatial distribution of Ebel et al.’s gambling returns from round table analysis of RELM mainshock+-aftershock forecasts. Light
grey indicate cells that were masked (see text for details), white indicates returns near zero, blue indicate positive returns and red negative.

forecast: the resulting p-value is 0.449, suggesting that the perfor-
mances of the two models are not significantly different. For the
mainshock-+aftershock group, a p-value of 0.914 suggests that the
performances of the Holliday et al. (the sample best) and Helm-
stetter et al. forecasts are not significantly different. We note that
these results are nearly identical to those reported by Zechar et al.
(2013), the only difference being that a paired #-test of informa-
tion gain suggested that the Helmstetter et al. forecast was better
than the Holliday et al. forecast (although, again, without statistical
significance).

But we do not want to overemphasize questions of statistical sig-
nificance: one can imagine employing various Monte Carlo meth-

ods to answer such questions, but these methods would likely in-
clude questionable assumptions. For example, to simulate additional
catalogues based on the observations would be to make the mis-
take of putting ‘the randomness in an intractable place (the Earth)’
(Stark 1996) and/or would likely require you to assume that seis-
micity exhibits some form of stationarity (see Wang et al. 2010,
for evidence that this assumption does not hold in California).
Simulating catalogues based on each model would almost surely
indicate that none of the models is the data-generating model for
seismicity (i.e. in this situation every model would obtain larger re-
turns with simulated catalogues than its return based on the observed
catalogue), but we know this without resorting to simulations. In
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Figure 4. Same as Fig. 3 for Kagan et al. mainshock+-aftershock forecast.

general, we are not as interested in obtaining a strict statistically
significant ranking of models (e.g. Smyth et al. 2012) as we are in
getting an idea of how models differ from each other. And perhaps
more importantly, we ask: in what ways do the models not fit the
observations well? Answers to this question can guide model im-
provement, which is the ultimate goal of this enterprise. Following
this line of thinking, we suggest that parimutuel gambling returns
could be used as weights to build ensemble forecasts; Taroni et al.
(2014) did this for a global forecast experiment and found that an
ensemble using weights derived from parimutuel gambling returns
outperformed individual models as well as several alternative linear
combinations. (For a more general treatment of model combina-
tion, see Cesa-Bianchi & Lugosi 2006.) And parimutuel gambling
analysis could be applied to different model dimensions separately:
you could potentially find one model has a superior spatial forecast,
another has a superior magnitude forecast, another the best overall
rate and use parimutuel gambling weights to combine them.

6 CONCLUSIONS

In this paper, we described a parimutuel gambling method that
can be used to compare seismicity forecasts, and we illustrated the
method using the 5-yr RELM experiment in California. This method
is different from previous techniques because it does not require the
choice or construction of a reference forecast model and it can be
used to simultaneously compare multiple models. Moreover, this
method is intuitive because of the simple analogues in gambling:
each model is a bettor, every earthquake forecast bin is a game, you
can bet on every possible outcome or even abstain from betting,
and so on. And, although we only demonstrated its application to
one class of space—rate—magnitude forecasts, it applies generally:
you could make similar analyses of probabilistic models in weather,
climate, finance, etc.

While scientific forecast experiments similar to RELM have
flourished (Gerstenberger & Rhoades 2010; Schorlemmer et al.
2010a; Nanjo et al. 2011; Eberhard et al. 2012; Mignan et al. 2013;
Taroni et al. 2014), there is an increased interest in short-term,
time-varying seismicity models and the seismic hazard estimates
they inform; such efforts are now referred to as operational earth-

. -118  -116 -114
longitude

quake forecasting (OEF; Jordan & Jones 2010; Jordan et al. 2011).
Other than the shortened forecast horizon, many OEF models are
similar to those considered here, and parimutuel gambling can pro-
vide guidance for model combination and insight into model per-
formance.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online ver-
sion of this article: For the sake of transparency and reproducibility,
all codes and data to perform analyses, generate figures, gener-
ate supplementary figures and generate supplementary tables are
included in the src directory, you can do all these things with
relm_gambling.py, have a look there. Then run the .sh scripts in
figures/used to create figures/ to produce the final figures.

Figure S1. From the round table analysis of the RELM experiment,
these are the parimutuel net returns in the bins where target earth-
quakes occurred. The earthquake numbers on the horizontal axis
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refer to the earthquakes in Table 2. In the legend, for each fore-
cast the net return for all bins where target earthquakes occurred
is shown. (These values are the same as the hollow diamonds in
Fig. 2.) Part a) shows results for all mainshock forecasts, part b)
shows results for mainshock+-aftershock forecasts. The total return
for a forecast is usually not dominated by a single earthquake (as
it may be in fixed-odds gambling), and no model is superior for all
earthquakes.

Figure S2. Maps of the spatial distribution of gambling returns from
round table analysis of RELM mainshock forecasts. The colour scale
varies from map to map, but pure white is always zero, blue is always
positive, and red is always negative. Each pixel is the net return for
all magnitude bins at the plotted location. Forecast cells that were
designated by the model developer as masked are excluded from
analysis and therefore not plotted here.

Figure S3. Same as Fig. S2 but showing spatial distribution of
log-likelihood rather than gambling returns.

Figure S4. Same as Fig. S2 for mainshock+-aftershock forecasts.
Figure S5. Same as Fig. S3 for mainshock+aftershock forecasts.
Table S1. Values from Fig. S1(a), parimutuel net returns in the bins
where target earthquakes occurred for mainshock forecasts.

Table S2. Values from Fig. S1(b), parimutuel net returns in the
bins where target earthquakes occurred for mainshock+aftershock
forecasts (http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/
gji/ggul37/-/DC1).
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