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Abstract

Two of the major assumptions that common statistical tests make about random
sampling and distribution of the data are not tenable for most typological data.
We suggest to use randomization tests, which avoid these assumptions. Ran-
domization is applicable to frequency data, rank data, scalar measurements,
and ratings, so most typological data can be analyzed with the same tools. We
provided a free computer program, which also includes routines that help de-
termine the degree to which a statistical conclusion is reliable or dependent on
a few languages in the sample.

Keywords: chi-square test, Fisher’s Exact test, interval data, randomization,
sampling, statistics

1. The limits of classical statistical tests in typology

Two major assumptions that common statistical tests rely upon are not tenable
for most typological data. We suggest to use randomization tests, which avoid
these assumptions and which are applicable to a wide range of data types, so
most typological data can be analyzed with the same tools. To establish our
case for the use of randomization-based tests, we will first discuss the under-
pinnings of the two types of statistical tests that are most often used by typolo-
gists, and by social scientists in general. The two types of tests are the paramet-
ric tests (such as the t-test) and the classical non-parametric tests (such as the
chi-square test). Both types of tests make assumptions which can be problem-
atic for typological data. We will focus on the assumptions of the parametric
tests first.
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1.1. The importance and difficulty of random sampling

The parametric tests include common tests such as the t-test, the Analysis of
Variance (Anova), and others. The statistical aim of parametric tests is to infer
a property of the population from the sample. Let us first define some terms:
the languages under study form the sample; all languages we want to draw a
conclusion about (e.g., a family, an area, or the entire world) are the popula-
tion. What we loosely referred to as “a property of the population” is more
formally known as a population parameter, hence the name of the tests.

To make a statistically valid inference about the population, the sample has
to be constructed randomly: every language in the population has to have the
same chance of being included in the sample. Random sampling guarantees
that there are no biases in our sample which may lead to incorrect inferences
about the population.

There are a number of problems with the notion of selecting random lan-
guages for a typological sample. Obviously, selecting only languages that are
well described is not in accordance with random sampling, yet a necessity for
typological research. Secondly, random sampling assumes we have a multitude
of languages to choose from. This is not the case for smaller families. Sampling
one language from such a family may already be near-exhaustive or, in the case
of isolates, actually exhaustive. Exhaustive sampling defies the inference from
sample to population that parametric tests are about, because sample and pop-
ulation are (almost) the same.

There are also conceptual problems. If Basque happens to be excluded from
a sample of European languages, one will still arrive at statistically valid
inferences about all languages spoken in Europe. This is so because Basque
had the same chance as other languages to be included in the sample. The
fact that it happened not to be included does not change inference. A for-
tiori, if our sample of European languages happens to contain five Germanic
and only one Romance language, this does not change the population that
we make inferences about. The population would still be all European lan-
guages.

Such inferences might be statistically valid, but many typologists will be
unhappy with them because one generally wants to be able to tell genealogical
factors apart from structural or areal factors. A sample excluding Basque or a
sample heavily biased towards Germanic will obscure the factors of interest.
If we find a distributional bias, it is unclear whether the bias is due to the
family relationships in the sample, or due to a real characteristic of the entire
population of languages in Europe.

Thus, genealogical relatedness is an important confounding factor (a fac-
tor which obscures the relation that we are interested in). The standard sta-
tistical method to control for confounding factors is stratification. Under a
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simplistic approach, the languages of Europe (the population) are divided into
strata (genealogical units, e.g., genera or families) and a random sample is then
taken, with the crucial constraint that the same number of languages is taken
from each stratum. This is very similar to the way in which opinion polls en-
sure that the same number of men and women are included in order to avoid
any gender bias in sampling. It guarantees that Basque is included and that the
same number of Germanic and Romance languages are included.

Stratification on genealogical factors works well for large and well-described
language families. When it comes to smaller families, however, it increases the
problem signaled earlier: as the strata get smaller, random sampling becomes
more restrictive, to the point where it becomes exhaustive and inference from
parametric tests is no longer warranted. In our example, each stratum will con-
tain only one member, because there is one stratum (genus) that has only one
member: Basque. And note that in this stratum, the sample will be the entire
population.

To complicate matters, stratification on genealogical relatedness might not
be sufficient because it leaves out language-contact factors. Few valid infer-
ences can be made from an (admittedly small) sample of European languages
which, through random sampling within the Romance and Germanic strata,
happens to contain Romansh and Swiss German as the representatives of the
Romance and Germanic families. These two languages have undergone much
more intense cross-genera contact than other Romance and Germanic lan-
guages and existing areal patterns in Europe will be greatly overestimated
based on this sample.

Thus, language-contact factors limit our choice of languages from each genus
further. In typological practice the choice of languages in a sample is often
guided by many additional criteria, depending on the research question (e.g.,
only languages with case in a study of case exponence). The list of require-
ments can get increasingly restrictive, so that even sampling from the larger
families effectively approaches exhaustive sampling. Because of this, random
sampling of languages is normally unwanted in typology, even where it is pos-
sible (pace Widmann & Bakker 2006).

1.2. The level of sampling

Can the problem of sampling be solved by looking at a different level of analy-
sis? It has independently been argued (Dryer 1989, 2000) that the correct level
of analysis in quantitative typology may not be the level of the language, but
that of the genus. Genera should be sampled at random and the population
would be “all genera” (in the world, in an area, etc.). We are obviously not
committed to the choice of the genus: depending on the scope and nature of the
research question, other levels might be appropriate, such as the stock, phy-



422 Dirk P. Janssen, Balthasar Bickel, and Fernando Zúñiga

lum, or subbranch. (For ease of discussion, we will assume a survey in which
the genus is chosen as the level of analysis throughout.)

The problem of exhaustive sampling of languages is now avoided. Each
genus is one data point, and each genus could be represented by one language
of the genus or by a mean, mode, or other aggregate measure taken from the
genus. However, the problem of exhaustive sampling now returns at the level
of the genera. One will want to include as many genera as possible to make
the sample most representative, but this will lead to exhaustive sampling of all
genera in the area of interest.

1.3. Possible solutions to sampling and inference

We have seen that parametric tests are not valid for (near-)exhaustive samples
because random sampling is a requirement. More technically, if the sample and
the population are identical, parametric statistical tests such as the t-test and
the Analysis of Variance do not apply.1 What are the alternatives to random
sampling and classical statistical inference?

One option is to deny the use of statistical testing altogether or take the per-
spective that because the populations are sampled completely, statistical testing
is not necessary. There are two problems with this position. First, if in one re-
gion 8 out of 10 genera prefer the verb to occur in sentence-final position and
in the other region 7 out of 10 genera prefer this, who can decide whether this a
meaningful difference (cf. Cysouw 2005)? Secondly, this approach disregards
an inherent problem when selecting languages by hand rather than by chance:
If other languages were taken to represent genera, would the difference in word
order still be the same or would it reverse or disappear?

A better solution is to use non-parametric statistical tests, which do not aim
to make inferences about the population but speak only of the cases included in
the sample. Because of this, random sampling is no longer an issue. We will see
below that it is still possible to make logical inferences (but not statistical
inferences) to larger populations from the results of these tests.

Randomization tests are non-parametric, as are more commonly known tests
such as the chi-square test. We will discuss the drawbacks of the chi-square
test and its relatives in Section 2 and discuss the randomization alternative in
Section 3.

To summarize, random sampling is crucial for classical statistical inference
from a sample to a population, but it is rarely possible and never desirable

1. This can easily be demonstrated as follows. A parametric statistic answers the question
whether a difference observed in the sample is likely to also be present in the population.
A significant p-value means that it is unlikely that the difference in the sample came about by
chance. If the sample is identical to the population, any difference is therefore significant by
definition and no testing is necessary or applicable.
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in typology, because of genealogical, areal, and other constraints that lead to
exhaustive sampling. Non-parametric tests focus on inference on the data at
hand and are a better alternative.

1.4. Possible misunderstandings about random sampling

Before we continue, two implications of the above are worth mentioning. Ran-
dom sampling does not require independence of cases in the sense that each
and every case in the sample is independent of all the others. Independence
of cases can never be a statistically valid requirement of sampling, as the lan-
guages in such a sample cannot be representative of the population. Thus, in
a truly random sample of African languages, one is very likely to encounter a
good number of Bantu languages, which reflects the fact that the Bantu family
is very large.

Random sampling requires independence of selection of cases. Each
case in the population has the same chance of appearing in the sample. We
can therefore never make a valid statistical inference to the population of “all
possible human languages” or “all human languages that ever existed”, as only
a tiny fraction of these languages has any chance of being sampled at all – those
spoken now or known from written records.

2. The importance and difficulty of data distribution

If a test is non-parametric, it involves statistical inference at the level of the
sample. This makes it more attractive for typology, but not necessarily suitable
for it because many tests still put requirements on the distribution of the data.
We will demonstrate this issue using the chi-square test and its distribution-free
alternative, the Fisher Exact test.

2.1. The chi-square test

The commonly used chi-square test (officially known as the Pearson Chi-
Square Test) is a non-parametric test that considers the numbers in a table of
counts. First, expected values for the cells are derived according to Formula 1.
Using the numbers in Table 1 as an example, the expected value for the top-left
corner is 14�43=48D 12:5. The Pearson chi-square statistic is the sum of all
squared differences between the expected values (E) and the observed values
(O), scaled by the size of the expected values, as shown in Formula 2. For Ta-
ble 1, the statistic equals 4.5 (note that the term “statistic” refers to the Pearson
quantity, and not to its probability or p-value).

How can we decide whether the observed counts are significantly differ-
ent from the expected counts? Pearson observed that, for large enough num-
bers that are evenly distributed over the table, the distribution of the chi-square
statistic is similar to that of the independently known �2 distribution (to avoid
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Expectedr;c D
Totalr �Totalc

Totalgrand

Formula 1. Computing the expected value for a cell in row r and column c

Chi-SquareD
X .Observed�Expected/2

Expected

Formula 2. Computing the Pearson Chi-Square statistic

Table 1. Number of languages which have possessive classes in the Caucasian and
Himalayan Enclaves versus the Rest of Eurasia, Mundari data set (Bickel & Nichols
2003, Nichols & Bickel 2005)

Area Possessive classes

Observed Expected

No Yes Total No Yes Total

A: Enclaves 10 4 14 12.5 1.5 14
B: Rest of Eurasia 33 1 34 30.5 3.5 34

Total 43 5 48 43 5 48

Fisher’s Exact test: Columns are not independent of rows.
Chi-square test: Invalid test due to two expected values lower than five.
Randomized Chi-square test (see Section 3.1): Columns are not independent of rows.

confusion, we will use chi-square statistic and �2 distribution). Only with help
of the �2 distribution can a Pearson chi-square statistic be mapped to a proba-
bility level (e.g., p D 0:12).2

This means that the Pearson chi-square is not distribution-free, because the
use of the �2 distribution rests on the assumption that the numbers are large
enough and evenly distributed over the table. Regrettably, there is no strict
definition of “large enough numbers” or of “evenly distributed”. The rule of

2. The �2 distribution with k degrees of freedom is computed by summing k squared, indepen-
dent, standardized normal variables. So �2.4/ is distributed as �.Z2

1
CZ2

2
CZ2

3
CZ2

4
/,

with each Z a standardized normal variable. A three-by-three table has 4 degrees of free-
dom and, by mathematical proof, its Pearson chi-square value will be distributed as �2.4/
when the cell counts in the four topmost-leftmost cells can be assumed to behave like normal
variables. This is the case when those counts are large enough.
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thumb that is usually given is that no cell should have an expected count smaller
than five (Howitt & Cramer 2005). An alternative version of this rule states that
at least 80 percent of the expected numbers must be larger than or equal to five
and all should be larger than one (Cochran 1954).

These are all highly problematic restrictions in typology, because empty
cells and cells with small values are particularly interesting. They suggest
heavy biases in the data, and yet these tables are intrinsically hard to test with
the Pearson chi-square test.

2.2. Fisher’s Exact test

For the specific case of a two-by-two table of counts, a non-parametric and
distribution-free test was proposed by R. A. Fisher in the 1930s. The Fisher
Exact test can be run in all major statistics packages and in various other tools,
and is preferable to the Pearson chi-square in all cases of two-by-two tables
with small expected values.

Distribution-free tests put fewer (if any) requirements on the distribution of
the observed data. Examples of such requirements are the need to have data
that are normally distributed (Anova), or minimum expected values in each
cell (Pearson chi-square).3

Similar to the randomization tests we will advocate below, the Fisher Exact
test considers all possible ways in which a two-by-two table can be constructed
without changing the margin totals. In a standard typological table such as
shown in Table 1, the margin totals are the number of languages in the two
regions and the total number of languages that have, or do not have, the feature
under study. These data are taken from Bickel & Nichols (2003) and Nichols
& Bickel (2005).4

For the example given in Table 1, the test will consider the many ways in
which 14 Enclave languages and 34 languages from the Rest of Europe can di-
vide the five languages which have possessive classes between them. There are
usually several hundreds or thousands such tables, depending on the number
of data points. Significance is determined by finding out how exceptional the
observed data are. If the observed table occurs in the range of possible tables
only rarely, it is more exceptional, and it is less likely that the observed table

3. The term can be considered a bit of misnomer: distribution-free tests do not imply that the
data do not have any distribution (a statistical impossibility), but they do not rely on a known
distribution.

4. The datasets contained in the World Atlas of Language Structures are not genealogically bal-
anced samples. For these papers, we used genealogically balanced samples based on the WALS
data (but our samples may include more languages because data collection has continued
since submitting the WALS chapter). We have made these data sets available at http://www.
uni-leipzig.de/~autotyp/available.html (files possclg_eurasia.csv and syng_eurasia.csv). The
files are also included in the Trotter package.



426 Dirk P. Janssen, Balthasar Bickel, and Fernando Zúñiga

has occurred by chance. In the example, there are very few other tables that
are like the observed data, and the Fisher Exact test concludes that rows and
columns are not independent. That is to say, the number of languages with pos-
sessive classes is not randomly distributed, but larger in one area (the Enclaves)
than in the other.5

No statistical test is perfect, but Fisher’s Exact test has been severely criti-
cized by some statisticians. The major point of contention is the assumption of
fixed margins, which we will discuss in detail in Section 3.4. If the data is not
compatible with this assumption, Fisher’s test is quite conservative, i.e., some
tables which depart from independence will not result in a significant p-value
(D’Agostino, Chase, & Belanger 1988). With this precaution in mind, Fisher’s
Exact test is still the recommended distribution-free test for all two-by-two ta-
bles which violate the assumptions for the Pearson chi-square test. If, for a
particular data set, there is a strong concern about this test being too conserva-
tive, a randomized chi-square test (without Yates continuity correction) can be
applied.

3. Randomization tests

The Fisher Exact test cannot solve all statistical problems in typology, because
it is limited to two-by-two tables of counts. Randomization tests are also non-
parametric and distribution-free, as they are a generalization of Fisher’s Exact
test. (Historically, Fisher’s Exact test is an easy-to-compute version of what
is now known as the class of Fisher-Pitman tests or randomization tests, see
Sprent 1998 and Fisher 1935.) Randomization tests can be applied to larger
tables of counts and, as we will see below, to measurements different from
counts. The randomization approach can therefore provide a unified solution
to a number of statistical problems in typology.

3.1. Randomization of frequency tables larger than two-by-two

The statistical question that underlies all randomization testing is whether the
observed data could have been generated by chance. Consider the frequency
tables in Table 2. The first panel (2a) shows the observed table and the other
panels (2b, 2c) show two alternative tables with the same margin totals. The
alternative tables are constructed by assuming that, if chance has it, the features
F1 to F3 are randomly distributed over the three regions. In technical terms,
they assume independence of rows and columns.

5. To avoid confusion, we have explained the Fisher Exact test in terms of listing all possible
tables. In actual fact there is a statistical distribution, the hypergeometric distribution, which
summarizes a listing of all cases. Even though Fisher’s Exact test is computed with the help of
this distribution, it is a distribution-free test because it does not make any assumptions about
the distribution of the observed data, like the chi-square test does.
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To relate these data to the previous example, one could think of F1 as having
zero possessive classes, F2 as having a few, and F3 as having many possessive
classes. Clearly, the observed table is unlike either of the two tables based on
chance, as F1 is relatively commonly observed in Area A, F2 in Area B, and
F3 in Area C. In the middle and rightmost panels, no such strong regularities
exist.

The statistical question of interest is how likely it is that the observed table
is a product of chance alone. We can re-phrase this question to: How far is
the observed data removed from a totally independent table (as shown in the
rightmost panel)? One way to measure this is to use the value of the Pearson
chi-square statistic (but not the p-value connected to it). As explained above,
the Pearson statistic compares the observed values with the values expected
under independence using Formula 1.

For the three data sets in Table 2, the Pearson chi-square statistics are 10.6,
2.9, and 1 (respectively), which corresponds with the idea that the observed
data are furthest removed from independence. Note that chance data sets are
not always completely independent: the middle panel shows data in which F2
does not occur at all in area C, although this is entirely coincidental.

In a classical Pearson chi-square test, we determine the probability of the
chi-square value of 10.6 (for the observed table) from the �2 distribution. We
saw in Section 1 that this is unwarranted for the current data, as there are
many small expected values. A randomization test using Pearson chi-square
will instead consider about 10,000 alternative tables6 constructed on the basis
of chance, similar to those shown in the middle and right panel of Table 2. Next,
a Pearson chi-square statistic is computed for each alternative table. If the ob-
served chi-square value is much higher than most of the values that are found
in the chance-based tables, the observed table is unlikely to be due to chance.
In the example in Table 2, the observed value of 10.6 is indeed higher than the
two alternative values (2.9 and 1) and compared to another 9,998 tables, it will
turn out to be significantly higher, with only 23 alternative tables meeting or
exceeding this value, p < 0:05.7 Figure 1 shows this graphically: the smoothed
frequency (density) of finding chi-square values between 0 and 20 is shown by
the curve. The 5 % largest values of chi-square are those to the right of the line
that is labeled “estimated p D 0:05” and are shaded. The observed chi-square
value of 10.6 is inside this shaded area and therefore significant.

6. One may wonder why 10,000 tables are enough and whether more tables are better. Simula-
tions have shown a number of this magnitude to give robust and consistent results. A larger
number of tables will only increase the precision of the final p-value, something which is
usually not required. See Edgington (1995) for discussion.

7. Significance in this randomization test is defined in a very straightforward way: if the observed
outcome is among the 5 percent highest chi-square values, it is significant.
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Figure 1. Simulated values of chi-square, graph produced by the Trotter routine

If however the observed data had been those shown in the middle panel of
Table 2, the randomization test would lead us to conclude that this pattern is
very likely to occur by chance because a large number of chance-based table
(854 in our simulation) are as far removed from independence as the middle
table is, p > 0:10.

3.2. Follow-up tests

We have now rejected the independence model, which holds that areas and fea-
ture values are independent for the observed data in Table 2. In other words, in
the observed data, the distribution of features F1 to F3 is not the same for areas
A, B, and C. It is usually of interest to examine exactly where the differences
are. Follow-up tests can be done on selected columns and rows of the observed

Table 2. Example of randomization testing: Observed data and two alternatives that
will be considered by a randomization test

A: Observed Table B: Alternative Table C: Alternative Table

Feature Value Feature Value Feature Value

F1 F2 F3 F1 F2 F3 F1 F2 F3

Area A 2 0 1 3 Area A 1 1 1 3 Area A 1 1 1 3
Area B 0 2 0 2 Area B 0 1 1 2 Area B 1 0 1 2
Area C 1 0 3 4 Area C 2 0 2 4 Area C 1 1 2 4

Total 3 2 4 9 3 2 4 9 3 2 4 9
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data, and on new columns and rows created by merging existing cells. One pos-
sible set of comparisons, using both existing and merged rows, would compare
area A versus area B and compare area C versus the sum of area A and B.

In a table with three columns, no more than two follow-up tests should be
done. Ideally, these tests should also be independent, that is, the significance
of the first follow-up tests should not influence the second one (Agresti 2002).
If the tests are not independent, a Bonferroni or Holm correction should be ap-
plied to test at a stricter alpha level, here 0:05=2D 0:025. Note that the follow-
up tests should be planned before the data are collected, too many significant
results will be obtained if one simply compares the lowest and the highest scor-
ing areas.

The comparison set introduced above involved area A versus B and area C
versus the sum of A and B. This set is statistically independent and complete,
that is, the two comparisons together test the same questions as the original
randomized chi-square test on the complete table.8

3.3. Comparing classical and randomization tests

There are a number of advantages of the randomized test over the classical
ones. First, the Pearson chi-square is not applicable to the data in Table 2 be-
cause its assumptions (expected values all five or larger) are violated. If one
does apply the Pearson chi-square, conservative estimates are obtained which
will make few comparisons significant.

Fisher’s Exact test cannot be applied to tables larger than two-by-two in
its canonical form. An extension to larger tables was made by Mehta & Patel
(1986; this test is available in R) but this extension cannot handle tables with
too many columns or rows, and it will run very slowly when one or two cells
have high counts in them (not an unusual situation in typology).

Complex multivariate techniques, such as log-linear analysis or logistic re-
gression, are better suited for tables of three or more dimensions. Neither tech-
nique can cope well with small cell counts, because even the log-transformed
counts or odds behave non-linear in this domain; but see Agresti (2002) for
further suggestions.

Randomization tests, on the other hand, can easily deal with this table, larger
tables, and with tables of higher dimensionality (for example, a table which
distinguishes area, word order, and possessive classes). Although they are not
necessarily very fast to compute, they do not take more time when the table
becomes more complex.

8. If likelihood-ratio chi-square values (Wilks’ G2) are used instead of Pearson chi-square val-
ues, the follow-up tests will sum exactly to the overall test, see Sprent (1998) or Agresti (2002)
for details.
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Below, we will discuss applications of randomization to data that are tra-
ditionally analyzed with a Mann-Whitney U-test, a Wilcoxon rank-sum test,
or a Kruskal-Wallis test. The randomization tests have the advantage that the
same principle can be applied to all these data, obviating the need to know
about a number of disjunct tests that all have their own narrow field of applica-
tion.

The randomized test also has drawbacks. The major drawback we see is the
current lack of popularity: randomization tests are not yet as widely used as
classical tests. Statisticians use randomization (and its relative, bootstrapping)
routinely, but, with the notable exception of genetics and a few other sciences,
many fields have not caught up yet. Furthermore, not all statistical software
packages support these tests. Again, this is changing rapidly (SPSS now pro-
vides a related module for the Windows platform), and we have created some
easy-to-use scripts for the free statistical software called R, which we will de-
scribe below.

Non-parametric and distribution-free tests are usually considered less pow-
erful than the parametric tests. This means that the parametric tests are more
likely to detect a difference where one exists, where non-parametric tests might
occasionally miss an existing difference. Sprent (1998) argues that this received
wisdom is only correct if the comparison is made on data to which the para-
metric tests are applicable. For data that violate the assumptions of parametric
tests, non-parametric tests are much more powerful. Still, randomization tests
should only be applied to data that do not fully satisfy the assumptions of para-
metric tests.

We have seen that non-parametric tests focus on statistical inference on the
observed cases (the sample). This can be a drawback, as scientists normally
want to draw conclusions that go beyond the observed cases. Logical inference
can alleviate this problem: if we can argue on typological grounds that the sam-
ple is representative of the larger unit (say, the area), we can logically extend
the conclusions drawn on the basis of the sample to the area. Logical inference
is at the heart of most sciences: if a psychologist performs a test on college
students, the results can be extended to the larger population only by logical
inference. Statistical inference is not possible, as the members of the larger
population had no chance of being included in the sample (see Section 1.4).
The premise for the logical inference is that we do not expect college students
to be different from the population on dimensions relevant for the test.

Randomization testing requires computing resources. It used to be the case
that computing statistics on 10,000 random tables required substantial com-
puter power and much patience. With modern computers, this is no longer an
issue. On a machine which is modest by current standards (AMD Athlon at
1.3 GHz), our scripts used less than 20 seconds to compute the 10,000 random-
ized chi-square values mentioned above.
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As a final point, researchers who are new to randomization often notice that
the results of the tests cannot be exactly replicated. Because significance is
based on a comparison to 10,000 random tables, a slightly different result will
be obtained if the same test is run again, on 10,000 different tables. However,
the randomization significance level is precise to 0.0001 (1/10,000), which
means that a second run would have to be different in 100 tables to make a 0.01
difference in the significance level. In practice, different runs produce signifi-
cance values well within 0.001 from each other and such variation is harmless.
Further discussion of the benefits and drawbacks of randomization tests can be
found in Edgington (1995), Manly (1991), and Sprent (1998).

3.4. The assumption of fixed margins

Both Fisher’s Exact test and the randomization tests using chi-square crucially
assume that all alternative tables are constructed so that they have the same
margin totals. This assumption of fixed margins has been the subject of a long-
standing debate in statistics. Sprent concludes that “its validity in most situa-
tions is now widely accepted” (1998: 333); but see Agresti (1992) for discus-
sion.

In the randomization tests used above, assuming fixed margins seems a vi-
able approach to us. The randomization essentially considers what the chances
are of finding the observed data given that there are three, two, and four lan-
guages in the areas A, B, and C and there are three, two, and four languages
with feature values F1, F2, and F3. The assumption of fixed margins allows
us to look at the distribution of F1 to F3 over the areas, without making any
assumptions about the overall chance that F1 to F3 occur.

If one drops the assumption of fixed margins, the randomization test essen-
tially becomes a bootstrap test. Bootstrap tests also compare the observed data
to a range of alternative tables, but the existing cases are sampled with replace-
ment (randomization samples without replacement). This sampling means that
an alternative table may have more F1 languages than the observed table, if an
F1 language was included twice at the expense of an F2 language. Bootstrap
tests are a good way to estimate population parameters from non-normal data.

It follows from our discussion above that we deem randomization tests more
appropriate to typological data because statistical inferences about the popula-
tion are not required or are even unwarranted because of exhaustive sampling
(cf. Section 1). Also, even the bootstrap cannot reliably estimate population
parameters from less than 10 to 15 cases per cell. However, we think it is a
distinct advantage of randomization tests over other non-parametric tests that
randomization can easily be replaced with its cousin, the bootstrap, if one does
not want to assume fixed margins and has large enough numbers.
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4. Expanding randomization to other data types

We alluded to the wide applicability of randomization to other types of data
than counts above. We now discuss which types of data are traditionally distin-
guished, and how randomization can deal with these.

4.1. Types of data

Three types of data are classically distinguished in science: nominal, ordinal,
and interval (Howitt & Cramer 2005). Many classical typologies consider nom-
inal data, such as the absence or presence of a phenomenon (Table 1). A slightly
extended version of nominal data is a typology which distinguishes a number
of labels (such as in Table 2). As an actual example, Östen Dahl’s typology
of the words for ‘tea’ has “derived from cha”, “derived from te”, and “other”
(Dahl 2005). In the case of nominal data, a statistical analysis considers the
frequency with which each label occurs and we suggest to use a randomization
test on Pearson chi-square values.

For other typologies the labels given to each language can be ordered in
some way, leading to an ordinal or rank measurement. Consider Ian Mad-
dieson’s study of consonant inventories (Maddieson 2005), which uses the la-
bels “small”, “moderately small”, “average”, “moderately large”, and “large”.
Running frequency statistics on rank measurements is not incorrect, but such
an analysis is insensitive to the fact that “moderately large” and “large” are
much closer to each other than “small” and “large” are.

It is important for rank-based analyses that all labels can be ordered. If there
is an “other” label that cannot be compared to the others because it is a mixed
bag of cases, we can either only use frequency statistics, or we have to exclude
all languages of the “other” type. If we include “other”, we have what is tech-
nically called an incomplete ranking, in which some but not all categories
can be ordered.

David Gil’s typology of “Genitives, adjectives and relative clauses” (Gil
2005) shows another type of incomplete ranking (see Table 3). It is probably
impossible to objectively rank labels 2 to 5. To use rank-statistics on these data,
one could collapse to a three-way distinction as indicated in the rightmost col-
umn. Of course, this would mean loss of precision in the data, as we no longer
distinguish between different types of moderately differentiated languages. An
ideal analysis would therefore consider both a frequency-based analysis of all
data and a rank-based analysis of the collapsed data.

Rank data can be analyzed with classical non-parametric tests like the Mann-
Whitney U-test (for two groups) or the Kruskal-Wallis test (for more than two
groups). These tests are closely related to each other and to the Wilcoxon rank-
sum test, the Jonckheere-Terpstra test, and the Kendall rank correlation test
(Sprent 1998, Agresti 2002). All are included in standard statistical packages
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Table 3. Typology of genitives, adjectives, and relative clauses, from Gil (2005)

Original label Ranked label

1: weakly differentiated weak
2: genitives and adjectives collapsed moderate
3: genitive and relative clauses collapsed moderate
4: adjectives and relative clauses collapsed moderate
5: moderately differentiated in other ways moderate
6: highly differentiated strong

and are described in textbooks like Howitt & Cramer (2005). As this is a be-
wildering array of tests, we recommend to analyze rank data with randomized
Anova techniques (see below) if the number of ranks is large enough, and as
nominal data otherwise.

A final type of data is that of interval measurements (including ratio mea-
surements, which can be treated as interval measurements for all statistical
purposes). The crucial difference between a rank and an interval measurement
is that, for interval measurements, the distance between all values is the same.
There are currently only few typological measurements of interval type, but
there are a number of typologies that come close enough to be analyzed as
interval measurements. An example is Bickel & Nichols’ (2005a) typology of
verbal inflectional synthesis, which we will discuss below. However, one can
also use interval statistics on typologies that use a rating scale to express how
much each languages exhibits a feature, if the rating scale has at least five
(preferably seven) levels and one is willing to make the simplifying assump-
tions that the points on the scale are approximately equidistant. Maddieson’s
(2005) consonant classification into five ranks, described above, could also be
analyzed as interval data, which brings several benefits in terms of data analy-
sis.

4.2. Randomized Anova

We will briefly consider how the randomization method can be used for in-
terval data. Table 4 shows the distribution of inflectional verbal synthesis over
two areas, the Caucasian and Himalayan Enclaves versus the Rest of Eurasia
(Bickel & Nichols 2003, 2005a). Two things are obvious from looking at these
data: the Enclaves seem to have overall higher values for synthesis than the
Rest of Eurasia, but the counts for the Enclaves are very small.

A classical Anova (analysis of variance) would be a good test for these data,
as it can tell us whether there is a difference between the values of synthesis in
each region and, if so, which regions differ from each other. However, the data
are not even close to normally distributed and certainly not randomly sampled,
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Table 4. Inflectional Synthesis of the Verb, data for Caucasian and Himalayan Enclaves
(Enclaves) versus the Rest of Eurasia (R. Eurasia) (from Bickel & Nichols 2003, 2005a)

Observed values of synthesis

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 20 22 25

Enclaves 0 0 0 0 3 3 1 1 0 1 0 5 0 0 1 1 1 1 1
R.Eurasia 1 1 1 3 3 9 5 1 2 4 2 0 2 1 0 0 0 1 0

Total 1 1 1 3 6 12 6 2 2 5 2 5 2 1 1 1 1 2 1

Expected values of synthesis, derived from column and row totals

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 20 22 25

Enclaves 0.3 0.3 0.3 1 2.1 4.1 2.1 0.7 0.7 1.7 0.7 1.7 0.7 0.3 0.3 0.3 0.3 0.7 0.3
R. Eurasia 0.7 0.7 0.7 2 3.9 7.9 3.9 1.3 1.3 3.3 1.3 3.3 1.3 0.7 0.7 0.7 0.7 1.3 0.7

Total 1 1 1 3 6 12 6 2 2 5 2 5 2 1 1 1 1 2 1

Descriptive statistics
Enclaves: 19 cases, mean 11.5, median 12, standard deviation 6.1
R. Eurasia: 36 cases, mean 7.5, median 6.5, standard deviation 4.0
Total: 55 cases, mean 8.9, median 7, standard deviation 5.1

which would make any application of a classical Anova flawed. Because this is
a complete sample of the Enclaves, the inferences drawn from this test would
be meaningless, as argued in Section 1.

Still, if we compare the observed counts with the expected counts, it is clear
that the number of Enclave languages with a synthesis value of 12 is much
higher than expected (5 observed, 1.7 expected). Also, both mean and median
synthesis value for the Enclaves are much higher than for the Rest of Eurasia,
which is partly due to the fact that the Rest of Eurasia has consistently fewer
languages at the high end of the synthesis scale (0 observed, 0.7 expected)
and more languages at the lower end of the scale (1 observed, 0.7 expected).
This observation can be made more statistically precise using a randomization
method.

A randomized Anova works like the randomized chi-square test described
above. For each alternative table, languages are assigned to cells of the table at
random, with the constraint that the margin totals stay the same. For each table,
an Anova F-value is computed.

The F-value expresses how large the differences between the areas are, rel-
ative to the differences within the areas. The assumption is that the F-value for
each alternative table might not be fully accurate because of the low numbers
in the Enclaves, but the ordering of F-values is correct across all alternative
tables. If the observed F-value is much higher than what is routinely found
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among random alternative tables, the observed table is significant because it is
unlikely to be due to chance.

For the comparison between the Enclaves and the rest of Eurasia, the ran-
domized Anova with 10,000 alternatives yields a main effect of Area, which
is significant at p D 0:0054. Thus, we can conclude that languages in the En-
claves tend to have higher synthesis degrees than those in the Rest of Eurasia.

5. Reliability and misclassification

After any successful statistical analysis has been done, one may wonder what
would have happened if a problematic language had been classified or ana-
lyzed differently. Additionally, what would have happened if we had chosen
other languages from each genus? To some extent, this is an empirical prob-
lem that cannot be solved by any statistical procedure. However, what statistics
can do is estimate the degree to which our data are sensitive to the issue of
misclassification and thereby help us determine how reliable our findings are.
We propose a method for this, which involves computing the statistics on all
alternative scenarios that are one or more misclassifications away from our
observed data and graphing the results. If there are many ways in which one
misclassified language changes the significance of the results, we have to be
careful when interpreting the data. If one or a few misclassified languages do
not make any difference, we can be more certain of our case.

5.1. Reliability for count data

The reliability graph is closely related to randomization testing. Recall that ran-
domization testing is based on finding alternative tables with the same margin
totals. If, instead, we alter the margin totals in such a way that only the total
number of languages (the sample size) remains unaltered, we can explore the
issue of misclassification. As an example, we examine the data on possessive
classes (POSSCL) from Table 1 again. The two categories are again languages
with or without possessive classes. For the two-by-two count table created by
looking at this dichotomization for the Enclaves versus the Rest of Eurasia, a
reliability landscape is produced as shown in Figure 2. In the figure, the num-
ber of positive cases (languages with possessive classes) increases as we move
up and to the right.

The bold-faced square near the bottom of the figure symbolizes the observed
data point. This point has coordinates (4,1), that is, there are four POSSCL
languages in the Enclaves (plotted from left to right) and one in the rest of
Eurasia (plotted up-down). The shading of this square signals a significance
level of p< 0:05. The square to the right of the bold printed one has coordinates
(5,1): it is the hypothetical case in which there are five POSSCL languages in
the Enclaves and one in the Rest of Eurasia. This square is more significant
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Figure 2. Reliability Landscape for a two-by-two table, with increasing levels of shading
indicating significance at or below 0.10, 0.05 and 0.01 levels. White squares are not
significant, p > 0.10.

(p < 0:01) as our observed data point. In other words, we do not have to fear
for having missed one POSSCL language in the Enclaves because if such a
language exists, the result of our statistical tests would have been even stronger.

If, on the other hand, we have spuriously classified one Enclave language
as POSSCL whereas it is not, we are in less good shape: The (3,1) point in
the graph, which shows the hypothetical case in which there are only three
POSSCL language in the Enclaves and one in the Rest of Eurasia, is no longer
significant (p < 0:10). Similarly, if we had missed one POSSCL language from
the Rest of Eurasia, this would change our results: the (4,2) square, symbolizing
four POSSCL languages in the Enclaves and two in the Rest of Eurasia, is not
significant (p < 0:10).

We find ourselves in hot water if, for some reason, we suspect that we
have overclassified two Enclave languages as POSSCL that are actually not
POSSCL (point 2,1), or if we think it is likely that we have missed two POSSCL
languages in the Rest of Eurasia (point 4,3). In either case, the resulting square
is white, that is, the difference between the regions is not significant at all
(p > 0:10).

The reliability graph has made it clear that the data in Table 1 are sensitive
to the issue of misclassification in that one misclassified language can lead to
loss of the observed significant difference between the areas. Table 1 is based
on data with Mundari as the representative of the Munda genus in the Rest of
Eurasia. A possible alternative is to take Korku in place of Mundari, in which
case none of the languages in the Rest of Eurasia show evidence for possessive
classes. The reliability graph makes it clear that choosing Korku leads to an
increased observed significance (point 4,0, for which p < 0:01). If Korku is
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Figure 3. Anova reliability graph for synthesis data, increasing levels of cross-hatching
indicate significance of the p < 0.10, p < 0.03, and p < 0.01 level

chosen, this also implies that the finding is more reliable because two languages
have to be misclassified before the observed significant difference is lost (one
has to either find two Eurasian languages with possessive classes, point 4,2;
lose two Enclave languages with possessive classes, point 2,0; or one of either,
point 3,1).

Thus, the reliability graph allows careful examination of how trustworthy
the finding of statistical significance is in a test, and to what degree it depends
on coding accuracy and sample selection. This does not of course do away
with the empirical problems of uncertainty in typological data-gathering, but
it allows us to estimate the impact of this uncertainty beyond mere impres-
sions.

5.2. Reliability for interval data

The reliability approach is not limited to count data. We have also developed
a similar graphical method for the issue of reliability with interval measures.
In this case, the reliability of the statistical tests is most strongly influenced
by the presence of outliers, i.e., languages that fall outside of the body of
observations. For example, if Table 4, discussed above, had also included an
Enclave language with a synthesis value of 50, this would have been a clear
outlier: it is more than twice as high as the next language. With such an outlier,
the average for synthesis in the Enclaves would have jumped from its current
value 11.5 to 13.4 and the difference with the Rest of Eurasia (average synthesis
value 7.5) would have been artificially inflated.
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The existing Enclave languages with synthesis values of 20 and higher are
not such clear outliers, but one might still wonder what their influence on the
randomized Anova analysis is. The Anova reliability graph displays the effect
of replacing the smallest and largest value from each area with the grand mean.
By replacing these values, the size of the sample stays the same but the influ-
ence of the most extreme cases is removed.

This procedure is repeated for replacing the two largest and the two smallest
values, and so on for more replacements. The result (shown in Figure 3) is a
graph that is very similar to what we have seen for count data above. The ob-
served case is indicated by the bold face square at (0;0). Its shading indicates a
probability of p < 0:01. The languages of the Enclaves are plotted left to right.
When moving right from (0;0), we observe the effect of replacing the largest
cases in the Enclaves (i.e., the mean is substituted for the cases with the largest
value for synthesis). Because the mean synthesis value for the Enclaves was
higher than mean synthesis for the Rest of Eurasia, replacing the largest cases
of the Enclaves will reduce the difference. At (1;0), replacing the one largest
value indeed leads to a reduced significance level of p < 0:05. If the three
largest cases from the Enclaves are replaced in (3,0), the difference between
the Enclaves and Eurasia becomes non-significant at p > 0:10.

Because the Enclaves have the higher mean synthesis value, replacing the
smallest cases in the Enclaves (i.e., those with the smallest values for synthesis)
with the mean will only enhance the difference between the areas. This is seen
when going left from (0,0), where negative numbers indicate the number of
smallest cases replaced. Similarly, going up from (0;0) the largest cases in the
Rest of Eurasia are replaced. This also enhances the difference between the two
areas.

Finally, going down from (0;0) we observe the effect of replacing the lowest
cases in Eurasia. This will increase the average synthesis values in the Rest of
Eurasia, which reduces the significance level. But even with the four smallest
cases replaced at (0;�4), the significance level is still p < 0:05.

The critical observations to make are that when the three highest synthesis
values in the Enclaves are replaced, the significance level rises to p > 0:10

(point 3,0). It does not matter how many of the lowest values from the Rest of
Eurasia we replace, as (0;�4) is still at p < 0:05. The combined replacement
of 2 largest Enclave languages and three smallest Eurasian languages will also
lead to loss of significance, p > 0:10 at (2;�3).

Again, the reliability graph allows us to form an impression of the degree
to which the statistical result depend on coding accuracy and sample selection.
The graph does not solve the issue of uncertainty, but it can help focus the
discussion on the most important threats to the analysis, like square (3;0) in
Figure 3.
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6. Conclusion

We think the techniques presented here can greatly facilitate progress in the
study of typology. To make the randomization statistic and the reliability graph
accessible, we have implemented all the necessary routines for randomization
testing and for creating reliability graphs in a free statistical software pack-
age called R (Ihaka & Gentleman 1996, R Development Core Team 2005,
http://www.r-project.org). R is very powerful but not particularly user-friendly
for occasional users. Our routines implement the tests (which are quite simple)
and provide a textual user interface which makes running these test more in-
tuitive, even if one has never used R before. The software can be downloaded
from the first author’s website http://www.kent.ac.uk/psychology/department/
people/janssend/trotter/, or from http://www.uni-leipzig.de/~autotyp/ and is
further described in Janssen (in preparation).
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